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Abstract 11 

In indoor environments, accretion of mass to materials may provide sites for surface chemistry that differ 12 
from those of the original material. Since indoor surfaces are a major sink of oxidant gases, surface mass 13 
accretion may impact indoor O3 chemistry. In this study, the effect of surface mass accretion on O3 14 
surface deposition was tested by deploying cleaned borosilicate glass plates in two types of indoor 15 
environments: a mechanically ventilated (MV) office and a naturally ventilated (NV) residence located in 16 
Singapore. In each environment, seven replicate glass plates and one field blank were deployed for 17 
between 7-56 days and examined in a laboratory chamber for O3 deposition rate and surface reaction 18 
probability. Average mass accretion to plates, deployed in a horizontal position and including deposited 19 
particles, was 10.6 mg/(m2 d) in the MV office vs. 18.5 mg/(m2 d) in the NV residence and the 20 
comparison is at the threshold of statistical significance (p = 0.054). Ozone reactivity to the plates 21 
increased in magnitude and persistence with longer plate deployment. Ozone reaction probabilities to 22 
cleaned plates prior to deployment ranged [0.06-0.74]×10-6 for two hours of observable removal whereas 23 
plates deployed for 56 days ranged [0.15-1.2]×10-6 for four hours of observable removal. Regressions of 24 
cumulative O3 removed during chamber tests vs. mass accreted show removal of 4.3 nmol O3/mg for the 25 
NV residence and 2.4 nmol O3/mg for the MV office. These results imply that accretion of mass to 26 
surfaces may alter indoor O3 transport and transformation pathways. 27 

 28 

1 Introduction 29 

Exposure to elevated O3 is associated with cardiovascular effects, asthma, and increases in daily mortality 30 

[1–3]. Humans are exposed to O3 primarily in the small fraction of the atmosphere contained inside built 31 

environments. The predominant source of indoor O3 is from outdoor air where O3 is formed due to 32 

photochemical reactions that involve sunlight, volatile organic compounds (VOCs), NOx, and carbon 33 

monoxide [4]. Indoor O3 levels are 20-70% that of outdoor levels mainly due to chemical reactions with 34 

interior surfaces that remove O3 from air [5]. In spite of lower indoor O3 levels, total indoor O3 exposures 35 

typically exceed outdoor exposures because of the time spent in indoors [6–8]. Epidemiological studies 36 

suggest a safe level of exposure to O3 is below 10 ppb [9], a level which indoor spaces routinely exceed 37 
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[5].  Certain surface O3 reaction pathways may generate byproducts, effectively trading indoor O3 for 38 

other harmful or irritating byproducts [10]. There is interest in developing beneficial indoor surface O3 39 

pathways to passively reduce human exposure to O3, if removal results in no byproducts or only benign 40 

byproducts [11,12]. 41 

In a typical indoor space, many exposed surfaces can react with O3. A seminal study of indoor O3 42 

dynamics reported ozone decay constants for homes and decomposition rates for specific indoor surfaces 43 

[13]. Subsequent studies have expanded our knowledge of indoor O3 dynamics by characterizing reaction 44 

rates with a wide variety of building materials [11,12,14–22], as well as identifying byproduct formed 45 

from material-O3 reactions [10,23–26]. Outcomes of studies of material-O3 interactions generally report 46 

material reactivity as a deposition velocity, vd [27], or a reaction probability, γ [28]. Such 47 

parameterizations enable material balance models of indoor O3 that describe fate, transport, and 48 

transformation of O3 and O3 reaction byproducts [16,29–31]. 49 

As materials react with O3, so-called “aging” phenomena are observed where ozone reactivity decreases 50 

with time. Over short time-scales (< 10 h), this has been observed in chamber tests where materials are 51 

exposed to elevated O3 that is alternated with air free of O3 on a time scale of hours [13]. Under such 52 

conditions, materials generally exhibit a reduction in material-O3 reactivity with increasing exposures or 53 

exposure periods [14,18,21]. This behavior is ascribed to exhaustion of reaction sites on the surface after 54 

initial O3 exposure, with subsequent O3 removal rate-limited by diffusion of new reaction sites to the 55 

surface [32].   56 

Over longer time-scales, e.g., months of deployment in real buildings, prior studies demonstrate 57 

variability in impacts on magnitudes of material-O3 reactivity. In a study where four materials were 58 

placed in field sites over a period of ~6 months, material-O3 vd increased modestly for ceiling tile, 59 

decreased for carpet, and was largely unchanged for activated carbon and painted drywall [25]. Another 60 

study of material-O3 reaction showed that for three building materials deployed in an occupied office 61 

environment, vd decreased for painted drywall after 1 and 2 months of deployment while vd for carpet and 62 
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ceiling tile decreased after 1 month, subsequently increasing to higher than the “fresh” reactivity after 2 63 

months of placement in the field [18]. These studies posit that deposition processes occurring in the 64 

indoor environment provide a mechanism by which gases and particles may associate with the surface, in 65 

some cases replenishing O3 surface reaction sites.  66 

Accretion of low-volatility gases, particles, water, inorganic species and elemental carbon create a surface 67 

film on indoor surfaces [33]. Previous studies show that sorption of low-volatility compounds and 68 

deposition of particles impact the chemical composition of building and indoor surfaces. Studies of indoor 69 

and exterior window surfaces demonstrate that window surfaces act as a reservoir for alkanes, polycyclic 70 

aromatic hydrocarbons, polychlorinated biphenols, and pesticides [34,35]. Another study investigated 71 

surface film formation by heating glass and aluminum materials that were initially clean and then exposed 72 

to successively longer periods of an indoor air matrix [36]. Time exposed to indoor air was a strong 73 

determinant of ultrafine particle formation, due to condensation of SVOCs that were volatilized from the 74 

material during a controlled heating process. Settling of indoor dust may also alter surface chemical 75 

composition. A study of the O3 reactivity of indoor dust shows high rates of O3 removal to dust, with 76 

increases of C7-C9 aldehydes and other reaction byproducts produced from O3-dust reactions [32].  77 

Given the importance of indoor surfaces in governing indoor O3 and O3 reaction byproduct 78 

concentrations, the objective of the present study is to investigate dynamics of surface mass accretion and 79 

the resulting reactivity of indoor surfaces. This study addresses this knowledge gap by measuring how 80 

surface film accretion impacts ozone deposition and surface reaction probability. While other studies have 81 

explored this phenomena, this work uses glass plates as an idealized surface that reduces confounders 82 

such as initial material composition, material aging, and material cleanliness in subsequent studies of 83 

accreted mass. However, glass is also a common indoor material such that mass accretion can be taken as 84 

representative of what can occur on certain surfaces in real indoor environments. The study results will 85 

provide baseline data for how mass is accreted to initially inert, clean materials and subsequent ozone-86 
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surface reaction dynamics in two typical indoor environments: 1) a naturally ventilated residence and 2) a 87 

mechanically ventilated office.  88 

2     Methods 89 

2.1 Glass plates 90 

Borosilicate glass plates were selected as surfaces to facilitate investigations of the dynamics of the mass 91 

accumulated to indoor surfaces (i.e., a surface film of deposited particles and/or sorbed gases from indoor 92 

air) and resulting ozone reactivity of the glass plate/surface film.  Borosilicate glass plates were selected 93 

due to the inertness and smoothness of glass and the known low uptake of O3 to clean glass [19,30]. Glass 94 

provides a low baseline from which subsequent signals of O3 uptake to accreted masses can be more 95 

readily differentiated. Borosilicate glass plates (McMaster-Carr) with horizontal projected surface area of 96 

232 cm2 (15.24 cm × 15.24 cm, thickness = 0.3175 cm) were used in this investigation.   97 

Prior to deployment in the field, sixteen glass plates were cleaned by washing with laboratory-grade soap 98 

and a soft sponge. All glass plates were then rinsed in water three times to ensure no soap film remained. 99 

Glass plates were then cleaned with a lint-free wipe (Kimtech Kimwipes, Kimberly-Clark Professional) 100 

dipped in high purity isopropyl alcohol (Levinson Scientific and Chemicals, IPA Technical Grade >99%) 101 

and allowed to air dry in a fume hood in a vertical position. After drying, all plates were heated with a 102 

heat gun for fifteen minutes to vaporize remaining solvent or other sorbed volatile species. All plates were 103 

then placed in a chamber apparatus (details in Section 2.4) and were passivated of ozone reaction sites by 104 

supplying approximately 500 ppb of ozone to the chamber for 8 h. All plates were then immediately 105 

weighed (see section 2.3) to obtain the initial mass of the plate and placed in polypropylene storage bags 106 

for ~1 week until deployment into the field environments. Tests of O3 reactivity were made for two 107 

randomly selected plates to establish a baseline ozone deposition velocity (vd) to a clean plate.  108 

2.2 Deployment and collection of glass plates 109 

Seven test plates and one field blank plate were randomly selected from the set of sixteen plates for 110 

concurrent deployment to two indoor environments: a naturally ventilated (NV) residential dwelling and a 111 
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mechanically ventilated (MV) office building. In both environments, the seven plates were placed on wire 112 

racks such that the plates were horizontal to the ground (see Fig. S1 for an image of the deployment). A 113 

field blank, a glass plate prepared as described in Section 2.1, but deployed to the field environment in the 114 

polypropylene bag, was deployed to each of the field locations. In both locations, the temperature (°C), 115 

relative humidity (%), and light (lux) levels were recorded in 5-minute interval (HOBO U12-012, Onset 116 

Computer Corporation), shown in Fig. S2. In both the MV and NV location, plates were deployed for a 117 

total of 56 days. Test glass plates were collected at approximately weekly intervals while a field blank 118 

was collected after deployment for three weeks (NV residence) and eight weeks (MV office).  119 

Racks used to support glass plates were placed in unobtrusive locations that were representative of typical 120 

tabletop height surfaces in each environment. Racks were used to facilitate testing of ozone removal to 121 

the downward facing side of the plate subsequent to the upward face. However, no observable O3 removal 122 

could be discerned to the downward facing plate. Results presented here are tests where only the upward 123 

facing side of the plate was exposed to O3 inside the chamber. In the MV office building, the wire racks 124 

with plates were placed on a desk height table top, typical of an office environment where computer-125 

related work tasks are conducted. The office building is served by a demand-controlled ventilation system 126 

that introduces outdoor air proportional to the amount of carbon dioxide in the space, and includes 127 

mechanical systems for filtration (MERV 6-8 rated filters), cooling, and dehumidification. The ventilation 128 

rate was not measured during the period of the deployment. The plates were placed on an L-shaped desk, 129 

approximately 1 m in distance from the workstation where an office worker was present during normal 130 

working hours. The zone was typically occupied by 5-15 office workers.  131 

In the NV residential environment, the racks with the seven test plates and one field blank were placed on 132 

a television stand in a living room at approximately 1 m in height. The residential environment was 133 

occupied by two individuals, typically during non-working hours. The zone the plates were placed in was 134 

served only by fan-assisted natural ventilation; ventilation and cooling were provided to the space by 135 

window opening and fans that were operated to draw outdoor air into the room based on the preference of 136 
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the occupants. The typical schedule was windows closed with fans off during working hours, windows 137 

open with fans on during evenings and weekends, and windows closed with fans off during sleeping 138 

hours. The ventilation rate was not measured during the period of the deployment. 139 

The two sites investigated were located within 1 km of each other in vicinity of the National University of 140 

Singapore and we expect the outdoor conditions to be similar. We lack accompanying air quality data at 141 

the field sites; in general, the Singapore National Environment Association reported Pollutant Standard 142 

Index levels of 30-50 across the period of this study, indicating “good” to “moderate” outdoor air quality.  143 

In such conditions, indoor particle and ozone concentrations are likely higher for the naturally ventilated 144 

residence than the mechanically ventilated office because of no filtration with frequently open windows in 145 

the residence. The MV and NV location were approximately a 5 min and 15 min walk, respectively, from 146 

the laboratory where analyses occurred. The protocol developed for transporting plates for analysis 147 

consisted of wearing new nitrile gloves to carefully place plates into polypropylene bags sized such that 148 

there was no contact between the top surface of the plate and the bag. The plate was then placed in a 149 

container to be immediately transported, in the same orientation as when placed in the field, to the 150 

laboratory for weighing and analysis of ozone removal. It took less than two hours until the samples were 151 

analyzed in the laboratory.   152 

2.3 Measurement of mass accretion to glass plates 153 

Initial plate mass was measured with an analytical balance (ME204, Mettler Toledo), with an absolute 154 

uncertainty of ±0.0001 g. While plates were nominally of uniform dimension and material, each plate was 155 

tracked specifically as small variations in initial plate mass were noted (µ = 170.1751 g, σ = 0.44 g). After 156 

deployment to the field and subsequent return to the laboratory, each plate was measured by placing the 157 

plate on a clean sheet of weighing paper and allowing the mass reading to stabilize over a period of 158 

approximately 1 min and the change in mass from its initial “clean” measurement was noted.  The 159 

environmental conditions of the laboratory were different from that of both the MV office environment 160 

and the NV residence. The 1 min duration was chosen to allow the reading to stabilize from the 161 
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disturbance of placement of the plate onto the scale, but to preclude longer-duration phenomena such as 162 

the equilibration of sorbed water with the laboratory environment.  163 

Average mass accretion rates to the plates deployed in the field were calculated according to eq. 1: 164 

�̇�𝑚 =
�𝑚𝑚𝑓𝑓 −𝑚𝑚𝑖𝑖�

𝑡𝑡𝑑𝑑𝐴𝐴
 (1) 

 165 

where �̇�𝑚 is the mass accretion rate to a test plate (g/(m2 d)), mf is the final mass accreted to a test plate 166 

after a field deployment (g), m,i is the initial mass of a cleaned plate prior to deployment (g), 𝑡𝑡𝑑𝑑 is the time 167 

duration the plate spent deployed in the field (d), and A is the exposed area of the top surface of the plate 168 

(m2). Since the bottom surface was also exposed to the environment, the normalization introduces a small 169 

error as some mass may have accumulated on the bottom surface. The implications of this assumption are 170 

discussed in Section 3.1. 171 

2.4 Test apparatus 172 

Ozone deposition velocities were measured in a laboratory chamber apparatus; a schematic of the 173 

apparatus is shown in Fig. 1. Compressed laboratory air passed through a membrane dryer that included a 174 

0.1 micron pre-filter (Laman MD-15LS and Laman SAM350-E, Air Parts Center Pte Ltd) to remove 175 

particles and water vapor present in the compressed air. Dried, particle-free air was then passed through a 176 

packed bed of activated carbon (BPL 6×16, Calgon Carbon) to remove ozone and volatile organic 177 

compounds. The air flow was then split into three streams with flow rates set and maintained using mass 178 

flow controllers (Omega FMA5500, Omega Singapore). One stream was used to humidify the airflow to 179 

the desired setpoint based on the depth of deionized water in the water column and the flowrate through 180 

the column. The second stream was an unmodified flow of dry, clean air that was mixed with the 181 

humidified stream to maintain the desired relative humidimty (RH) set-point. The third stream passed 182 

through a stable ozone generator (U04/97-0066-02, UVP LLC). These three flow streams were re-183 

combined prior to entering a temperature controlled enclosure (KBE3.1, Binder GmBH) that was used to 184 
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maintain the air temperature and humidity to constant setpoints. Inside the temperature controlled 185 

enclosure was an 11.4 L electropolished stainless steel chamber (CTH-24, Eagle Stainless) in which glass 186 

plates were placed. A sensor was placed in an outlet stream from the test chamber to measure the chamber 187 

temperature and RH (U12-012, Onset Computer Corporation).  188 

 189 

Fig. 1. Schematic of test apparatus for measuring ozone deposition occurring on clean and field deployed 190 
glass surfaces. MFC = mass flow controller, RH = relative humidity. 191 

2.5 Experimental protocol 192 

Prior to a test of a glass plate, a test of background O3 removal of the empty stainless steel chamber was 193 

conducted. Ozone was injected into the empty chamber at a stable until steady-state conditions, defined as 194 

changing less than 2 ppb in a 20 minute time period [37]. After conducting a background test of an empty 195 

chamber, a cleaned (week 0), field-environment deployed plate (weeks 1-7), or field blank glass plate was 196 

placed in the chamber and the O3 injection was repeated. Ozone injections when glass plates were present 197 

were conducted for a period of four hours; longer test durations were explored but resulted in deposition 198 

velocities that were indistinguishable from background removal. A switching valve was used to 199 

periodically alternate between inlet and outlet concentrations of ozone (Model 202, 2BTech). Across all 200 

experiments, the average (mean ± 1 std. dev.)  temperature and RH was 25.2 ± 0.057 °C and 49.3 ± 1.8%.  201 

Experiments were conducted with an average chamber flowrate of 2.2 ± 0.1 L/min (air exchange rate = 202 

11.5 /h). Inlet ozone concentrations to the test chamber were an average 96.8 ± 2.0 ppb.  203 
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2.6 Data analysis 204 

2.6.1 Determination of vd, vt, γ  205 

The background loss rate Lbg  (h-1) of ozone was calculated from steady-state data according to eq. 2:  206 

𝑑𝑑𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑑𝑑𝑡𝑡

= 0 = 𝜆𝜆𝐶𝐶𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜 − 𝜆𝜆 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 − 𝐿𝐿𝑏𝑏𝑏𝑏 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 (2) 

 207 

where Cinlet and Coutlet are the inlet and outlet concentrations of ozone (ppb), t is time (h), λ is the air 208 

exchange rate (h-1) and Lbg is the background loss rate (h-1) to stainless steel chamber surfaces.  Ozone vd 209 

to background chamber stainless steel surfaces were calculated using the exposed area of the stainless 210 

steel chamber surfaces (1810 cm2) and the chamber volume (11,400 cm3). Ozone vd to stainless steel 211 

surfaces were, on average, ~0.002 cm s-1 and was determined in a background test prior to each 212 

experiment.  Ozone deposition velocity (vd) to glass plates was determined using a transient mass balance 213 

relationship that was solved numerically for the deposition velocity in 5-min interval, as shown in eq. 3: 214 

𝑣𝑣𝑑𝑑𝑜𝑜 =
𝑉𝑉
𝐴𝐴𝑆𝑆

.
1

𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 �𝜆𝜆�𝐶𝐶𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 − 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 � − 𝐿𝐿𝑏𝑏𝑏𝑏 �
𝐴𝐴𝐵𝐵𝐵𝐵 − 𝐴𝐴𝑆𝑆,𝑝𝑝

𝐴𝐴𝐵𝐵𝐵𝐵
�𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 −

𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 − 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜+1

∆𝑡𝑡
� (3) 

 215 

where 𝑣𝑣𝑑𝑑𝑜𝑜  is the ozone deposition velocity at time t to the glass plate (cm s-1), V is the volume of the 216 

chamber (cm3), As is the area of the top and sides of the glass plate (cm2), 𝐶𝐶𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 is the ozone concentration 217 

entering the chamber at time t (ppb), 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  is the ozone concentration exiting the chamber at time t 218 

(ppb), 𝐴𝐴𝐵𝐵𝐵𝐵  is the area of background chamber surface (cm2), 𝐴𝐴𝑆𝑆,𝑝𝑝 is the projected area of the glass plate 219 

(cm2), and all other terms as defined previously.  220 

The total molar uptake of ozone to a test glass plate, Φ (mol), was determined as shown in eq. 4: 221 

Φ =  �𝑣𝑣𝑑𝑑𝑜𝑜 × 𝐶𝐶�̅�𝛥𝑜𝑜 × 𝐴𝐴𝑆𝑆 × ∆𝑡𝑡
𝑖𝑖

𝑜𝑜=1

 (4) 

 222 
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where 𝐶𝐶�̅�𝛥𝑜𝑜 is the average ozone concentration (mol m-3) in the chamber during the five-minute period, ∆𝑡𝑡,  223 

in which 𝑣𝑣𝑑𝑑𝑜𝑜  is calculated.  224 

Ozone deposition velocities were further parameterized according to resistance-uptake theory, where vd 225 

can be expressed in terms of a transport limited deposition velocity, vt (cm s-1) and a reaction probability, 226 

γ (-), or the fraction of ozone-surface collisions that result in a reaction [14,28,38], shown in eq. 5:  227 

1
𝑣𝑣𝑑𝑑

=
1
𝑣𝑣𝑜𝑜

+
4

𝛾𝛾〈𝑣𝑣〉
 (5) 

 228 

where 〈𝑣𝑣〉 is the Boltzmann velocity (cm s-1). 229 

The vt was determined from an experiment in which cleaned glass was coated in a solution of 20 g of 230 

potassium iodide (>99% purity, Sigma-Aldrich) dissolved in 25 mL of deionized water. The solution was 231 

applied to a cleaned borosilicate glass dish with a small lip. The dish was then dried in the chamber with 232 

cleaned, ozone-free air until a solid KI film coated the surface of the dish. An ozone deposition 233 

experiment was conducted and the deposition velocity was determined using eq. 2. This condition 234 

assumed negligible reaction resistance (i.e., 4
𝛾𝛾〈𝑣𝑣〉

≪ 1
𝑣𝑣𝑡𝑡

) such that vd = vt. Since fluid dynamic conditions in 235 

the chamber were held constant across all experiments, this allowed determination of γ in subsequent 236 

experiments. The experimentally determined vt (µ ± σ = 0.57 ± 0.028 cm/s) is shown in Fig. S3 and is in 237 

general agreement with previously determined values in laboratory [18] and field environments [39]. 238 

To enable statistical comparison across dynamic estimates of ozone reactivity, we employed a metric that 239 

characterized the time-variant reaction probability to enable regression analysis. First-order kinetics were 240 

applied to the transient values of the reaction probability as shown in equation 6:  241 

𝑑𝑑𝛾𝛾(𝑡𝑡)
𝑑𝑑𝑡𝑡

= −𝛽𝛽 × 𝛾𝛾(𝑡𝑡) (6) 

 242 
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where 𝛾𝛾(𝑡𝑡) is the time-varying reaction probability (-), t is the time (min), and β (min-1) is the first-order 243 

decay constant of the reaction probability.  244 

With the initial condition of t = 0,  𝛾𝛾(𝑡𝑡) = 𝛾𝛾(𝑡𝑡 = 0), the solution to eq. 6 takes the form y = mx where y is 245 

−𝑙𝑙𝑙𝑙 � 𝛾𝛾(𝑜𝑜)
𝛾𝛾(𝑜𝑜=0)

�, m is 𝛽𝛽, and x is the time during an experiment where reaction probability is being 246 

measured. Higher values of β indicate a faster decay of the reaction probability than lower values of β.  247 

2.6.2 Quality assurance 248 

Experimental uncertainty in estimates of deposition velocities were determined using a propagation of 249 

errors analysis for eq. 3, based on the manufacturer’s specifications of instrument error. An uncertainty of 250 

the greater of 2 ppb or 2% was used for the ozone monitor for inlet and outlet ozone measurements, 1.5% 251 

of the reading for the mass flow controller for uncertainty on air exchange, while the error introduced due 252 

to area and volume measurements of plates was assumed to be 1%. Uncertainty in calculated reaction 253 

probabilities was taken as the sum of the experimental uncertainty for vd and vt in quadrature. Reported 254 

uncertainties on absolute mass measurements are given as the repeatability of the balance summed in 255 

quadrature for two measurements, or ± 0.14 mg. Uncertainties reported for cumulative ozone uptake are 256 

reported from a propagation of errors analysis on eq. 4 considering uncertainty on 𝑣𝑣𝑑𝑑𝑜𝑜  and the chamber 257 

ozone concentration. The total uncertainty on molar uptake was determined by summing uncertainty at 258 

each time step in quadrature.  259 

3. Results and Discussion 260 

3.1 Rates of mass accretion to glass plates 261 

Measurements of total mass accretion to glass plates as a function of time deployed are shown in Fig. 2. 262 

The figure shows the absolute mass accreted and indicates a general trend of increasing mass with more 263 

time spent in the field. Rates of mass accretion were normalized to the area of the upward facing top of 264 

the plate. Note that plates were placed on wire racks to avoid direct contact with actual indoor surfaces 265 

and enable testing of O3 removal both upper and lower surfaces. This protocol resulted in exposure of 266 
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both the top and bottom of glass plates to air (see Figure S1). In the results presented here, only the top 267 

surface and sides were exposed to the ozone deposition test chamber. Given that plates were deployed in a 268 

horizontal orientation, and were not processed to remove settled particles, we expect the surface film to be 269 

comprised of both settled particles and sorbed organic compounds. However, as will be discussed 270 

subsequently, mass accretion rates were normalized to the top area of plates because measured 271 

magnitudes are in the range that appears predominantly due to deposition of coarse-mode particles and 272 

rates of dustfall [34,36].  273 

Weschler and Nazaroff [33] summarize the range of magnitudes of mass accretion of particles and 274 

SVOCs to surfaces in models and in previous empirical studies. Their work reports a range of mass 275 

accretion rates due to adsorption of gas-phase organics in the range of 30-300 µg/(m2 d) [33]. This 276 

reported rate is approximately 1-2 orders of magnitude lower than the accretion rates observed in this 277 

study. Mass accretion rates observed here are in general agreement with the upper limit of the range 278 

reported by Weschler and Nazaroff [33] to include deposition of coarse mode particles of 20-9000 µg/(m2 279 

d). For example, after 56 days in the field, glass plates in the MV office and NV residence accreted ~0.50-280 

0.78 g/m2 of additional mass, or 9000-14,000 µg/(m2 d). The average mass accretion rate across all 281 

collected plates is 10,600 µg/(m2 d) in the MV office vs. 18,500 µg/(m2 d) in the NV residence, and a one-282 

tailed t-test comparing higher accretion rates in the NV residences vs. MV office is at the threshold of 283 

statistical significance (p = 0.054). The range of mass accretion shown in Figure 2 is also in reasonable 284 

agreement with experimental results of dustfall rates in the literature. Edwards et al. [40] reported mean 285 

values of 2200 and 3700 µg/(m2 d) in the summer and winter, respectively, in a study of four homes in 286 

New Jersey, USA. In a study of 559 Canadian homes meeting a specified cleaning protocol, the reported 287 

median dustfall rate was 10,000 µg/(m2 d) [41]. Thus, the exposure of the bottom face of the plate likely 288 

introduced a small, acceptable error (<3%) to the mass accretion rates determined here. 289 
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 290 

Fig. 2. Summary of mass accretion to test plates in two field environments: mechanically ventilated (MV) 291 
office and naturally ventilated (NV) residence. Panel a) shows absolute mass accretion while panel b) 292 
shows accretion rates. The average mass accretion rate (mg/(m2 d)) was calculated as the arithmetic mean 293 
of seven mass accretion rates measured over seven weeks. Error bars on average accretion rate are the 294 
standard deviation of the mean mass accretion rate. Uncertainty on each estimate of absolute mass 295 
accreted is ±0.14 mg as described in the text.  296 

While the mean mass accretion rate in the MV and NV locations are on the threshold of statistical 297 

significance in their difference, the magnitude of the difference in all but one sequential measurement of 298 

mass accreted to plates in the NV residence is consistently larger than that accreted to the MV office, and 299 

greater than the propagated uncertainty in the mass measurement from the analytical balance (i.e., 300 

measurement > 0.19 mg). We speculate the consistent difference between the MV and NV plates is due to 301 

lack of particle filtration in the NV residence which led to higher indoor particle concentrations and 302 

greater deposition flux of particles to the sample surface. Previous studies in Singapore of MV vs. NV 303 

residences indicate NV environments have a higher proportion of outdoor particulate matter present 304 

indoors than MV environments [42,43].  305 

3.2 Ozone reactivity of plates with accreted mass 306 

3.2.1 Parameterizing transient O3 removal to surfaces  307 

The deposition of O3 to indoor surfaces is typically parameterized according to equation 5, where the 308 

resistance uptake model ascribes resistances to removal due to transport from a well-mixed bulk core 309 

through a concentration boundary layer and subsequent reaction with the surface [27]. Across ozone 310 
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deposition experiments, chamber conditions were held constant with the exception of changes in the 311 

accreted mass on the glass plate. Therefore, observed changes in vd can be attributed to the accreted mass 312 

present on the glass plate.  An illustrative  result showing the data collected during an experiment is 313 

provided in Figure S4. 314 

As discussed previously in Section 3.1, it appears that the majority of the accreted mass to the glass plates 315 

deployed to field environments is derived from deposited particles. Thus, a recent study of ozone 316 

reactions occurring on various indoor dust samples [32] provides a relevant basis for comparison for 317 

ozone sink strengths. Deposition velocities reported in the first 90 min of each experiment, when 318 

observable values are reported, are generally in the range of 0.002-0.025 cm/s across all plates with 319 

accreted mass (see Figure S5). These values are roughly consistent with steady-state vd converted from 320 

O3-dust reaction rates in Vibenholt et al. [32] who report a range of values from 0.008-0.29 cm s-1. We 321 

speculate that higher dust loadings in those experiments (1 g vs. ~0.01 g here) explains the generally 322 

higher deposition and observation of removal over >12 h time-scales not observed in this study. It is 323 

worth noting that vd reported in both studies are under reaction-limited conditions as the Vibenholt et al. 324 

study was conducted in a FLEC cell operated at very high air exchange rate (AER) while for the 325 

conditions of this study surface resistance contributes >99% of total resistance for all experiments. 326 

Ozone removal was highest initially and decayed for the duration of the experiment until a steady-state 327 

removal indistinguishable from that of background removal was reached. Reaction probabilities for each 328 

plate are reported in Table 1; values are arithmetic averages across each hour of the experiment for which 329 

γ could be calculated from removal statistically higher than that of the background chamber surfaces. In 330 

general, with additional time deployed to the field, reported reaction probabilities increased and O3 331 

removal persisted for longer periods of testing in the laboratory chamber.  332 

  333 
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Table 1. Summary of regression parameters and time-averaged reaction probabilities across the first four 334 
hours of each experiment of ozone reactivity with deployed plates.  335 

 MV office NV residence 

 Regression%  Rxn. Probability#, γ×10-6 Regression  Rxn. probability, γ×10-6 

 
β 

(min-1) 
SE  

×10-3 r2 
0-1 
h 

1-2 
h 

2-3 
h 

3-4 
h 

β 
(min-1) 

SE 
×10-3 r2 

0-1 
h 

1-2 
h 

2-3 
h 

3-4 
h 

0 d 0.045 5.2 0.54 0.74 0.06 - - 0.045 5.2 0.54 0.74 0.06 - - 

8 d 0.026* 2.9 0.62 0.70 0.01 - - 0.024* 2.1 0.29 1.0 0.34 0.23 - 

15 d 0.020* 1.4 0.62 1.3 0.41 - - 0.031* 1.9 0.33 1.6 0.43 0.01 - 

29 d 0.013* 0.68 0.70 1.1 0.55 - - 
0.0093

* 0.46 0.51 1.6 0.76 0.55 0.57 

36 d 0.019* 2.0 0.09 1.2 0.38 0.16 - 0.025* 0.61 0.47 1.8 0.82 0.60 0.46 

42 d 0.019 1.7 0.35 1.2 0.24 0.06 - 0.013* 0.65 0.67 1.5 0.72 0.46 0.18 

56 d 0.018 2.0 0.23 1.2 0.29 0.17 0.15 0.013 0.61 0.75 1.8 0.83 0.48 0.19 
Field 
Blank 0.046 4.7 0.53 1.3 0.07 - - 0.051 2.5 0.61 1.5 0.08 - - 

%Reported regression parameters are the resulting slope, standard error (SE) of the slope, and correlation coefficient 336 
from the y = mx linear regression of natural logarithm transformed reaction probabilities.  337 
#Reaction probabilities are the arithmetic average across the indicated period of the experiment. Dashes indicate the 338 
reaction probabilities were indistinguishable from background removal for that period. 339 
*Indicated values of β are statistically significantly different than the estimate of the preceding plate. Note that 340 
slopes for all plates > 0 d are statistically significantly different from the 0 d plate.  341 

 342 

In general, the parameterization of the time-variant reaction probability with equation 6 resulted in r2 343 

values of the regression that were typically >0.5 (see Figure S6 for examples of the regression). Several 344 

experiments had low r2 values (<0.4) but are included in subsequent analyses for completion and to 345 

facilitate the goals of the regression analysis to enable statistical comparison across experiments. The 346 

analysis of transient decay data also enables determination of the dynamics of ozone reactions to accreted 347 

masses that would be obscured by solely comparing the cumulative O3 removed as in Section 3.2.2. For 348 

example, the data reported in Table 1 demonstrate that as larger masses accrete to surfaces, increasing 349 

periods of time are required to increase cumulative O3 removal.  350 

Across plates deployed in both the MV office and the NV residence, values of β decreased as plates were 351 

deployed for longer periods. This trend continued until approximately 42 days of deployment (Table 1). 352 

From 42-56 days, slopes of the regression appear to stabilize at approximately β = 0.013-0.019. Note that 353 

higher values of β indicate the magnitude of γ is ”decaying” more rapidly than for lower values of β. This 354 
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observation is also observed in that measurable values of γ persisted into 3-4 hours of the experimental 355 

testing only for glass plates deployed for 56 d (MV office) or 29 days or greater (NV residence). 356 

Statistical significance of differences in β were determined by calculating z-scores from the difference in 357 

slopes divided by the difference in the standard error of the slopes of the regression. The detailed 358 

procedure is described in the Supporting Information. A summary of p-values for comparisons between 359 

each plate and the preceding plate, as well as each plate compared to the 0 day plate, are provided in 360 

Tables S1 and S2 of the Supporting Information. It appears that surface mass accretion results in 361 

significant differences in O3 reactivity, especially in the first month of deployment. Differences in β are 362 

not statistically distinguishable when comparing longer deployment periods for plates deployed in MV 363 

offices or NV residences, e.g., the plates deployed for 36 d and 42 d are statistically similar, as are plates 364 

deployed for 42 d and 56 d, for the MV office. For the NV residence, the plate deployed for 42 d is 365 

similar to the plate deployed for 56 d.   366 

3.2.2 Parameterizing cumulative ozone removal to surfaces with accreted mass 367 

It appears that for glass plates, accretion of mass to the surface of the plate results in a general trend of 368 

increasing O3 reactivity. The relationship between mass accretion and cumulative O3 removed is explored 369 

in Fig. 3, which presents cumulative O3 removed as a function of mass accreted (panel a) and the average 370 

reaction probability as a function of total mass accreted (panel b). The period of 15-200 minutes was 371 

selected to calculate the cumulative O3 removal and the average γ. Cumulative O3 uptake to the accreted 372 

mass is in the range of 20-90 nmol (Figure 3a), with a general increasing trend with greater accreted mass 373 

to the plate for both MV and NV environments. Variance in the observed cumulative O3 removed was 374 

similarly and relatively well-explained by the mass accreted to the plate for both MV and NV 375 

environments (r2 = 0.75-0.76). 376 
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 377 

Fig. 3.  Panel a) Cumulative O3 a function of mass accreted to field deployed glass plates. Cumulative 378 
uptake is determined from the period 15-200 minutes following the injection of ozone into the chamber. 379 
The theoretical uptake from squalene and acyl groups assumes accretion of mass with reaction sites from 380 
human-derived constituents onto a surface with the same initial reactivity (that is, 0 mg of accreted mass) 381 
as the clean glass plates used in the NV and MV environments. Panel b) Reaction probability as a 382 
function of accreted mass.  383 

The slopes shown in Figure 3a provide a proxy for the total reactivity of the accreted surface mass. The 384 

intercept is indicative of the reactivity of a clean plate, that is, the plate with no accreted mass from 385 

deployment to a field environment. The cumulative O3 removal to a clean glass plate was 19 nmol. The 386 

results shown in Figure 3a indicate that 4.3 nmol O3 was removed per mg of accreted mass for the NV 387 

residence vs. 2.4 nmol O3 per mg of accreted mass for the MV office. The p-values for slopes of the 388 

regressions in Figure 3a were statistically significant for both the MV and NV environments (p = 0.011 389 

and 0.011, respectively), which together with relatively high r2 values implies mass accreted is a 390 

meaningful predictor of observed changes in cumulative O3 removal.  The data reported in Figure 3a 391 

indicate that the mass accreted in the NV residence results in nearly twice the cumulative surface O3 392 

removal compared to the MV office. However, a comparison of the standard error of the difference 393 

between the slopes shown in Figure 3a is calculated and is not statistically significant (p = 0.13).  394 

Two pathways are typically considered as mechanisms of O3 reaction with indoor surfaces. Ozone may 395 

react with the accreted mass via catalytic degradation [32] or via the Criegee mechanism at carbon double 396 
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bonds present in organic compounds in the accreted mass [5,32,44]. Previous studies, summarized by 397 

Weschler [45], show that the presence of humans in indoor spaces results in transfer of skin flakes 398 

(desquamation) and skin oils to indoor surfaces. These human-derived constituents contain compounds, 399 

namely squalene [46] and acyl groups [47], that may act as O3 surface reaction sites. The subsequent 400 

analysis quantitatively evaluates the extent to which human-derived skin flakes and skin oils may explain 401 

the observed removal to accreted mass on glass plates deployed to the MV and NV test environments. 402 

 Weschler et al. [48] estimate that dust contains approximately 60 µg of squalene per gram. This is 403 

equivalent to 150 nmol of squalene present in each gram of accreted dust. There are six available double 404 

bonds in a squalene molecule with which O3 may react [49]. In addition to squalene, there are other co-405 

occurring compounds present in human skin oil that also contribute unsaturated sites where ozone 406 

chemistry can occur. Pandrangi and Morrison [47] estimate that the molar fraction of unsaturations are 407 

split between acyl groups (0.48) and squalene (0.44). Combining squalene and acyl groups, there are 408 

available unsaturated reaction sites to remove 12.5 nmol of O3  per nmol of squalene present in dust. 409 

Normalizing by the previously noted mass of squalene in dust yields a ratio of ~1.85 nmol of O3 removal 410 

due to squalene and acyl groups for every mg of accreted dust.  411 

The previous estimate of the reactivity of squalene and acyl groups in particles calculated from the 412 

literature, 1.85 nmol O3 removal/mg of accreted mass, can be compared with the reactivity of the accreted 413 

mass calculated using equation 4. The theoretical O3 removal due to squalene and acyl groups in dust is 414 

shown in Figure 3a, with the same intercept as a cleaned glass plate. Comparing the slope of the 415 

theoretical squalene and acyl groups line with slopes from plates deployed in the two field environments 416 

shows that 42% (NV residence) and 75% (MV office) of O3 may be attributed to these components on 417 

human skin oil.  Note again that this analysis assumes, as discussed in Section 3.1, that particles or dust 418 

are the predominant contributor to the accreted mass observed here. 419 

The calculation of 42-75% of the total removed O3 as due to skin oil constituents implies other O3 420 

reactive constituents are also present in the accreting mass. A recent study of heterogeneous oxidation of 421 
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squalene with O3 reported reactive uptake coefficients of [4.0-4.3]×10-4 [50].  Values of plate reaction 422 

probability reported here are much lower, with average values between [2-9]×10-7 (Figure 3b). We 423 

speculate this difference is a result of other compounds present in the accreting mass, as well as a 424 

relatively low total accreted mass and potential for oxidation of highly reactive compounds like squalene 425 

to occur while aging in the field. A study of the chemical composition of house dust reports total carbon 426 

content on the order of 23-33% by mass [51,52]. Metals are shown to be a contributor to the indoor dust 427 

composition, e.g., calcium levels of between 5-7% by mass are reported in two studies of the composition 428 

of house dust [41,52]. While the form of calcium in dust is not reported, there is precedence in the 429 

literature that ozone reactions with, for example, calcium carbonate, will not proceed via irreversible 430 

deposition, but rather reversible adsorption [53]. Given that the composition of indoor dust is expected to 431 

be highly variable [41], this discussion is speculative and intended to be illustrative of the potential for 432 

sources of lower reactivity compounds in masses accreting to indoor surfaces. The need for further study 433 

of oxidation on indoor accreted mass paired with chemical composition of the accreted mass is noted.  434 

3.2.3 Study limitations and future directions 435 

It is worth noting that plates were deployed in real field environments with low, but non-zero O3 436 

concentrations; the O3 reactivity reported from testing in the laboratory does not account for oxidation 437 

reactions that are likely to have occurred while the plates were deployed. Continuous interactions of 438 

ozone with indoor surface films while deployed can reduce concentrations of surface unsaturated sites by 439 

oxidation. Therefore, the estimates of the reactivity of the surface film reported here are likely 440 

underestimating the true reactivity of the accreted mass. It is possible that the indoor concentration of 441 

oxidants, rather than a difference in the amount or chemical makeup of the accreted mass, may be the 442 

driver of the observed differences in reactivity between the NV residence (no filtration, frequently open 443 

windows) and MV office (filters present in HVAC system, windows never open). We parameterized the 444 

changing reaction probability using first-order kinetics to enable regression analysis, effectively treating 445 

the changing reaction probability as a proxy for the changing density of surface reaction sites. It is 446 
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possible that these dynamics could be more mechanistically explained if surface concentrations of 447 

unsaturated sites in the accreted mass were known.  448 

We tested field blanks where cleaned glass plates were deployed inside sealed polypropylene bags for the 449 

duration of their deployment to the field. However, we speculate that the mass observed on the field blank 450 

plates was unacceptably influenced by water vapor condensing on the plate that penetrated the consumer 451 

grade polypropylene storage bag during the deployment. There are limited points of comparison in the 452 

literature to either inform or compare the quality assurance measures taken here. In a study of surface 453 

films on windows, Liu et al.[34] show that field blank Kimwipes, which were waved in the indoor air of 454 

the field environment but were not in contact with the target window, contained 24% of the average 455 

sample value of n-alkanes and 1% of the sample concentrations of polar compounds. Wallace et al. [36], 456 

who conducted a study using collection methods similar to those described here, investigate the potential 457 

for bare hand contact to contaminate surfaces, but do not isolate surfaces to consider as a field blank. 458 

Further effort to standardize field sampling methods that use inert surfaces as media for experiments of 459 

aging and surface film accretion in indoor spaces is warranted.  460 

The findings of this study compel further quantitative research into the study of the reactivity of accreted 461 

masses on surfaces as a function of building operation, building type, and indoor air pollution levels. 462 

Characterization of surface-bound compounds pre- and post-ozonation would be beneficial in elucidating 463 

the specific contributors to O3 reaction sites in mass accreted to indoor surfaces. There is precedence in 464 

the literature for indoor and outdoor derived aerosols to differ in terms of chemical composition [54,55], 465 

biological content [56], and water content [54]. Future studies should examine how these factors influence 466 

the reactivity of the surface in addition to amount of mass accreted.  467 

4. Conclusions 468 

Accretion of mass to surfaces may alter reaction pathways by providing distinct reaction sites from those 469 

of the original material. Previous studies of O3 removal to materials have used aged building materials in 470 

studies, most notably carpet, drywall, and ceiling tile samples [14,18,25]. This study employed an initially 471 
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inert, cleaned glass material to provide a baseline that allows isolation of the effect of the accreted mass 472 

on surface O3 reactions.  The results show that the accretion of mass to the glass plates resulted in as 473 

much as a factor of 4.5 increase in cumulative O3 surface removal. Ozone reaction probabilities increased 474 

with time spent in the field and mass accreted. Notable differences in the cumulative O3 removed per 475 

mass accreted to the surface were observed for plates deployed to MV vs. NV environments, implying 476 

building operation may affect how materials interact with indoor O3. In the range of ~40-70% of total O3 477 

removal may result from human skin and skin oil constituents present in the accreted mass. Given the 478 

large extent of available surface area in indoor environments, further study of aging, mass accretion, 479 

oxidation and oxidant cycling, byproduct formation and the integrated effect on indoor air quality and 480 

human exposure is warranted.  481 
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