
Portland State University Portland State University

PDXScholar PDXScholar

Electrical and Computer Engineering Faculty
Publications and Presentations Electrical and Computer Engineering

2010

Fault Testing Quantum Switching Circuits Fault Testing Quantum Switching Circuits

Marek Perkowski
Portland State University, marek.perkowski@pdx.edu

Jacob Biamonte

Follow this and additional works at: https://pdxscholar.library.pdx.edu/ece_fac

 Part of the Electrical and Computer Engineering Commons

Let us know how access to this document benefits you.

Citation Details Citation Details
Perkowski, Marek and Biamonte, Jacob, "Fault Testing Quantum Switching Circuits" (2010). Electrical and
Computer Engineering Faculty Publications and Presentations. 212.
https://pdxscholar.library.pdx.edu/ece_fac/212

This Pre-Print is brought to you for free and open access. It has been accepted for inclusion in Electrical and
Computer Engineering Faculty Publications and Presentations by an authorized administrator of PDXScholar.
Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/ece_fac
https://pdxscholar.library.pdx.edu/ece_fac
https://pdxscholar.library.pdx.edu/ece
https://pdxscholar.library.pdx.edu/ece_fac?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F212&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F212&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/ece_fac/212
https://pdxscholar.library.pdx.edu/ece_fac/212?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F212&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:pdxscholar@pdx.edu

ar
X

iv
:q

ua
nt

-p
h/

05
01

10
8v

3
 1

9
Ja

n
20

10

Fault testing quantum switching circuits

Jacob D Biamonte and Marek Perkowski∗

January 1, 2014

Abstract

Test pattern generation is an electronic design automation tool that attempts to find an input
(or test) sequence that, when applied to a digital circuit, enables one to distinguish between the
correct circuit behavior and the faulty behavior caused by particular faults. The effectiveness of this
classical method is measured by the fault coverage achieved for the fault model and the number of
generated vectors, which should be directly proportional to test application time. This work address
the quantum process validation problem by considering the quantum mechanical adaptation of test
pattern generation methods used to test classical circuits. We found that quantum mechanics allows
one to execute multiple test vectors concurrently, making each gate realized in the process act on a
complete set of characteristic states in space/time complexity that breaks classical testability lower
bounds.

1 Introduction

Classically, both the fault models considered and the test inputs are localized (not entangled). Form this
fact and other reasons, it is not immediately apparent how methods developed in classical test theory
could be put to use when testing quantum mechanical switching networks. Here ones views a quantum
circuit as being a description of the actions on, and the interactions between qubits. To avoid brute force
testing, a method to test these time dependent connections as well as the logical operation of each gate
realized in a process is presented. This is done by considering a logical set of failure models designed
to drive a switching network to it’s bounds of operation and assure main aspects of individual gate
functionality.

It is theoretically interesting to combine classical test theory with quantum effects such as entangle-
ment. For instance, quantum states can be designed to execute multiple test vectors concurrently. In
addition quantum systems are reversible and any reversible system preserves information. This means
that a reversible system preserves the probability that additional information may be present [9]. The
additional information present could be used to detect the presence of a fault. In a faulty reversible

circuit, the probability of detection for quantum fault f observable with Â is solely related to the proba-
bility of f ’s presence (see § 2). For instance, one may develop a test set, consisting of input vectors and
corresponding observables, that separates a circuit from all considered faults. Based on the information
conservative properties of reversible systems [9], this test set can be applied multiple times to detect the
probabilistic version of the considered faults.

We consider extending methods developed to test classical circuits, and so present tests designed to
separate an oracle from one containing a given set of considered faults [7]. Classically, the testability
of the circuit class comprising the oracle has already received much attention after the 1972 paper by
Sudhakar M. Reddy [2]. This paper presents a quantum mechanical generalization of this and several
other classical methods [1, 2, 10].

Structure of the paper: Sec. 1.1 gives an introduction to oracle construction. Sec. 2 discusses the
quantum fault models used in this study. The Quantum Test Algorithm is presented in Sec. 3 followed
by the conclusion in Sec. 4.

∗JDB and MP are with Portland State University, Portland, Oregon 97201, USA. JDB present address: Oxford University
Computing Laboratory, Wolfson Building, Parks Road, Oxford, OX1 3QD, UK.

1

http://arxiv.org/abs/quant-ph/0501108v3

x1 • x1

x2 • x2

...
xk • xk

y �������� y ⊕ x1 · x2 · ... · xk

Figure 1: k−CN Gate Realizing y ⊕ x1 · x2 · ... · xk on the (k + 1)th qubit.

1.1 Constructing Quantum Oracle Search Spaces

Any Boolean equation may be uniquely expanded to the Positive Polarity Reed-Muller Form (PPRM) [2]
as:

f(x1, x2, ..., xk) = c0 ⊕ c1x
σ1

1 ⊕ c2x
σ2

2 ⊕ · · · ⊕ cnx
σn

n ⊕

cn+1x
σ1

1 xσn

n ⊕ · · · ⊕ c2k−1x
σ1

1 xσ2

2 , ..., xσk

k , (1)

where selection variable σi ∈ {0, 1}, literal xσi

i represents a variable or its negation and any c term labeled
c0 through cj is a binary constant 0 or 1.

Example:

f(x1, x2, x3, x4) = 1⊕ x1 ⊕ x2 ⊕ x3 ⊕ x3x4 ⊕ x1x3x4 ⊕

x1x2x3 ⊕ x2x3x4 (2)

Each term in the expansion of Eqn. 2 is called a product term [8], and each variable xi a literal.
For example, x3 · x4 is a product term, with literals x3 and x4 (constant 1 is not considered to be a
product term). Each product term for a given PPRM expansion is realized by an arbitrary quantum
controlled-NOT gate (k−CN) given in Fig. 1. Repeating this procedure for each product term in Eqn. 2
and sequencing the gates leads to the network realization given in Fig. 2. Above each gate is the label pi,
p refers to a product term in the expansion of Eqn. 2, and i the index used to label the seven products.
This example will be used again so it is stated explicitly that p0 corresponds to x1, p1 to x2, p3 to x3, p3
to x3x4, p4 to x1x3x4, p5 to x1x2x3 and finally p6 to x2x3x4.

In many quantum algorithms, after Boolean function f is constructed by means of a k−CN network
it is placed in a black box oracle (O). The bottom (k+1)th bit contains the realization of f to be read at
the box’s right. The top k inputs to the box begin in state |0〉 and the (k+1)th input (target) qubit starts
in state |1〉. The Hadamard operation H⊗(k+1) is applied placing the input query in a superposition of
all 2(k+1) classical states. Generally the black box takes as input:

H⊗(k+1) : |0〉
⊗k

⊗ |1〉 −→ (|0〉+ |1〉)⊗k ⊗ (|0〉 − |1〉) (3)

Inside the black box all of the targets act on state |−〉 (an eigenvector of the k−CN gate) and the top k
qubits remain in a superposition. The true minterms are inputs that make a Boolean function evaluate
to 1 where false minterms evaluate to 0. Each term in the superposition on the top k bits representing
a true minterm in the switching function f realized in the oracle will be appended with a negative
(relative) phase. The phase of states that do not represent true minterms are left invariant. This is
seen by examining the truth table from Fig. 3. The action of an oracle O,1 realizing a binary function
f(x1, x2, ..., xk), is represented by the transform:

O : |k〉 ⊗ |−〉 −→ (−1)f(k) |k〉 ⊗ |−〉 . (4)

2 Gate Level Quantum Fault Models

Consider the single stage circuit shown in Fig. 4. The numbered locations of possible gate external faults
are illustrated by placing an ”×” on the line representing a qubits time traversal and here, the gate,
initial states (|i0〉 , |i1〉 , |i2〉) and measurements (m0,m1,m2) may also contain errors.

Definition 1 Error/Fault Location: The wire locations between stages as well as any node, gate initial
state or measurement in a given network (see Fig. 4).

2

p0 p1 p2 p3 p4 p5 p6

x1 • • • x1

x2 • • • x2

x3 • • • • • x3

x4 • • • x4

y = 1 �������� �������� �������� �������� �������� �������� �������� 1⊕ f(x1, x2, x3, x4)

Figure 2: Quantum Network Realization of Eqn. 2 built from arbitrary k-CN gates as shown in Fig. 1.
The truth table of this oracle is given in Fig. 3.

phase state x1 x2 x3 x4 f

+ |0000〉 0 0 0 0 0
+ |0001〉 0 0 0 1 0
− |0010〉 0 0 1 0 1
+ |0011〉 0 0 1 1 0
− |0100〉 0 1 0 0 1
− |0101〉 0 1 0 1 1
+ |0110〉 0 1 1 0 0
+ |0111〉 0 1 1 1 0
− |1000〉 1 0 0 0 1
− |1001〉 1 0 0 1 1
+ |1010〉 1 0 1 0 0
+ |1011〉 1 0 1 1 0
+ |1100〉 1 1 0 0 0
+ |1101〉 1 1 0 1 0
+ |1110〉 1 1 1 0 0
− |1111〉 1 1 1 1 1

Figure 3: Oracle Truth Table for Eqn. 2 implemented by the network in Fig. 2: Boolean function f
is implemented quantum mechanically. Each of the 2k terms in a superposition input that evaluate to
logic-one will be marked with a negative phase (also shown in Eqn. 12, in Sec. 3).

Definition 2 Quantum Single Fault Model: For simplification the ”quantum single fault model” is as-
sumed in this work. In the single fault model, test plans are optimized for all considered faults assuming
that only a single failure perturbs the quantum circuit exclusively. Multiple faults will accumulate and be
detected, but the single fault model makes it much easier to develop test plans.

Conjecture 1 A test set designed to detect all considered single errors will detect and sample the accu-
mulated impact of multiple errors at multiple locations.

The following definitions are used to define some of the fault types considered in this work. Complete
fault coverage occurs after a test set has determined that the considered fault(s) are not present in a
given circuit.

Definition 3 Pauli Fault Model: The addition of an unwanted Pauli matrix in a quantum network, at
any error location and with placement probability p. The Pauli matrices are given in Eqn. 5, 6 and 7.

σx = |1〉 〈0|+ |0〉 〈1| (5)

σy = i |0〉 〈1| − i |1〉 〈0| (6)

σz = |0〉 〈0| − |1〉 〈1| (7)

Definition 4 Initialization Error: A qubit that statistically favors correct preparation in one basis state
over the other.

Definition 5 Measurement Fault Model: A single functional measurement gate is replaced with a faulty
measurement gate that statistically favors returning logic-zero or a logic-one.

1O is sometimes represented as,
∑

x(−1)f(x) |x〉 〈x|.

3

1 2

|i0〉 × • × m0;;��

3 4

|i1〉 × • × m1;;��

5 6
|i2〉 × �������� × m2;;��

Figure 4: 2−CN gate with error locations.

Quantum Test Requirement 1 A bit flip (σx or σy) at any error location must be detectable. �

Quantum Test Requirement 2 A phase flip (σz or σy) at any error location must be detectable. �

Quantum Test Requirement 3 Each qubit must be initialized in both basis states |0〉 and |1〉. �

Quantum Test Requirement 4 With the target acting on state |−〉: Each gate must be shown to attach
a relative phase to arbitrary activating state |a〉 with both positive and negative eigenvalues. Furthermore,
each gate must be shown not to attach a relative phase to arbitrary non-activating state |n〉 with both
positive and negative eigenvalues. The target state must remain globally invariant under both |a〉 and
|n〉. �

Quantum Test Requirement 5 With the target acting on state |+〉: relative phase must be shown not
to change under arbitrary activating state |a〉 with both positive and negative eigenvalues. Furthermore,
relative phase must not change under arbitrary non-activating state |n〉 with both positive and negative
eigenvalues. �

Quantum Test Requirement 6 For the target acting separately on basis state |0〉 and |1〉: All controls
in a gate must be activated concurrently. Furthermore, each control must be addressed with a non-
activating state. �

Quantum Test Requirement 7 Each target must separately act on basis state inputs |0〉 and |1〉. �

Quantum Test Requirement 8 Each qubit must be measured in both logic-zero and logic-one states. �

2.1 Conclusions based on the Gate Level Fault Models

In practice, the choice of the fault model will be determined by a particular quantum circuit technology,
as well as how the circuit will be used. In this work the functional use of k−CN networks are oracle
search spaces. In this setting, any k−CN gate exhibits twelve, functionally distinct actions.

Theorem 1 A quantum k−CN gate is capable of four characteristic classical operations. (By character-
istic it is meant that all other operations are variants of this basic set.)

Proof 1 The gate is able to act on a |0〉 and a |1〉 state when all controls are set. The two remaining
functions are simply to act on |0〉 and |1〉 when one or more control(s) is addressed with a non-activating
state. There are 2k−1 input states that do not activate the gate, but these inputs all probe the off function.

Similarly, each control has two logical functions. The first is to be addressed with a logical |0〉 and the
second is to be addressed with a |1〉. �

v0 → 0 0 0 0 · · · 1
v1 → 0 0 0 0 · · · 0
v2 → 1 1 1 1 · · · 1
v3 → 1 1 1 1 · · · 0

Figure 5: Classical test vectors (v0, v1, v2, v3) acting on binary basis vectors {0, 1} with the gate first off
(v0, v1) and then on (v2, v3). The rightmost bit in the figure is applied to the (k + 1)th bit.

4

Minterm Target State Minterm Target State

e+iφ |true〉
(
|0〉+ e+iϕ |1〉

)
e+i(φ+ϕ) |true〉

(
|0〉 + e+iϕ |1〉

)

e−iφ |true〉
(
|0〉+ e+iϕ |1〉

)
e−i(φ−ϕ) |true〉

(
|0〉 + e+iϕ |1〉

)

e+iφ |false〉
(
|0〉+ e+iϕ |1〉

)
e+i(φ) |false〉

(
|0〉 + e+iϕ |1〉

)

e−iφ |false〉
(
|0〉+ e+iϕ |1〉

)
e−i(φ) |false〉

(
|0〉 + e+iϕ |1〉

)

e+iφ |true〉
(
|0〉+ e−iϕ |1〉

)
e+i(φ−ϕ) |true〉

(
|0〉 + e−iϕ |1〉

)

e−iφ |true〉
(
|0〉+ e−iϕ |1〉

)
e−i(φ+ϕ) |true〉

(
|0〉 + e−iϕ |1〉

)

e+iφ |false〉
(
|0〉+ e−iϕ |1〉

)
e+iφ |false〉

(
|0〉 + e−iϕ |1〉

)

e−iφ |false〉
(
|0〉+ e−iϕ |1〉

)
e−iφ |false〉

(
|0〉 + e−iϕ |1〉

)

Figure 6: A k−CN Gate Truth Table (Case: 2 top, Case: 1 bottom): Illustrating all of the different
possible gate actions for orthogonal setting of variables φ and ϕ. A |true〉 minterm activates the gate,
any |false〉 minterm does not.

Provided the state of the top k bits is some equal superposition and the target of the gate acts on
a state with the following form: |0〉 + e±iϕ |1〉. Under this condition, the inputs to a k−CN gate are
expressed as:

|ψin〉 −→

2k−1
∑

x = 0

wx |x〉

⊗ (|0〉+ e±iϕ |1〉), (8)

where wx = e±iφ. Similarly, as in the case of Theorem 1, certain operations define the gate’s function.
The arbitrary quantum superposition state defined in Eqn. 8 allows one to consider each input as

a separate state. In the column denoted minterm from Fig. 6, |true〉 minterms activate the gate while
|false〉 terms do not. Under this consideration the following holds:

Theorem 2 A k−CN gate is capable of eight characteristic quantum operations. (We consider quantum
operations as those that manipulate quantum phase and non-classical superposition states; characteristic
has the same meaning as in Theorem 1.)

Proof 2 The proof is constructive:
Case 1: When activated, quantum gates exhibit phase kickback when the state of the target is |0〉 +

e−iϕ |1〉. The activating state can have a phase of +wx or −wx. Furthermore, a non-activating state can
have a phase of +wx or −wx and of course, nothing should happen when acted on by the k−CN gate.

Case 2: (The opposite of Case 1.) The alternative case is that the target acts on state |0〉+ e+iϕ |1〉.
As before, the activating and non-activating states can have phases of +wx or −wx. Nothing should
happen under the case of both an activating and a non-activating state. This functionality is probed in
four additional tests.

We draw the readers attention now to the table in Fig. 6 for the illustration of Case 1 and Case
2. Variables φ and ϕ are set to create states that are operated on by the k−CN gate, these are the
combinations of actions considered. The Proof is concluded by mentioning that, all the quantum functions
of the k−CN gate represent one variant of these eight cases when used in a phase oracle. �

Thus according to Theorems 1 and 2 in total we need 4 + 8 = 12 non-entangled tests to identify the
function of any k−CN gate.

3 The Fault Detection Algorithm

Tests T1, T2, T5 and T6 verify all classical degrees of freedom. Tests T3 and T4 verify the phase kickback
features of the oracle. As a proof of concept the introduced method holds the test set size to constant
six, increasing the complexity of added stages for tests T3 and T4. This approach helps better tie classical
ideas with quantum test set generation. This is due to the fact that classically, circuits realizing linear
functions are easy to test due to their high level of controllability.

Definition 6 Quantum Build In Self Test Circuit (QBIST): A quantum circuit designed to test a second
quantum circuit; the quantum circuit under test (QCUT). A QBIST circuit may be built at the input
and/or output terminals of the QCUT, and the QBIST stage is always assumed to contain no errors.

5

Consider the example circuit presented in Fig. 2. The analysis given in the coming subsections begins
by generating an input state that turns all the gates in the network on and off concurrently. Denote
these tests as T1 and T2, and their general form on a k variable function follows:

T1: (|0〉⊗k + |1〉⊗k)⊗ |0〉

T2: (|0〉
⊗k

− |1〉
⊗k

)⊗ |1〉

The classical equivalent of tests T1 and T2 was given in Fig. 5 (where T1 corresponded to vectors v0
and v2, and T2 corresponded to both v1 and v3). Together tests T1 and T2 will be shown to satisfy
Requirements 1, 3, 6, 7 and 8 in Sec. 3.1 and 3.2.

Sec. 3.3 considers tests T5 and T6. These tests are shown to satisfy Requirement 5 by using the

following states as oracle inputs: |+〉
⊗k

⊗|+〉 and |−〉
⊗k

⊗|+〉. In both tests, the state at the controls will
not impact the state at the target, leaving all qubits—ideally—unchanged (since no net entanglement is
generated).

Sec. 3.4 and 3.5 investigate the ability of the network to both attach a relative phase to each activating
term in the superposition and to leave non-activating states unaltered. This in general is a complex
procedure, that in the first case can be done in two tests denoted as T3 and T4. Test T3 utilizes state

|+〉
⊗k

⊗ |−〉 and test T4 utilizes state |−〉
⊗k

⊗ |−〉 as input to the oracle. However, additional ”design-
for-test” stages must be added to the end of the circuit, thereby leading to a deterministic measurement.
Tests T3 and T4 are shown to satisfy Requirement 4.

3.1 Test T1: (|0〉⊗k + |1〉⊗k)⊗ |0〉

In test T1, all qubits are initialized as: |0000〉 ⊗ |0〉. The action of the first QBIST11 stage (from Fig. 8)
creates the following oracle input state:

QBIST11 : |0000〉 ⊗ |0〉 −→
(

|0〉
⊗k

+ |1〉
⊗k

)

⊗ |0〉 . (9)

The left half of the entangled test sequence is |0000〉 ⊗ |0〉. It is clear that for a ”gold circuit” not one
gate turns on, and the target qubit will be left untouched. For the right half of the entangled test vector,
each gate in the circuit turns on, and this cycles the (k + 1)th qubit initially starting in |0〉 back and
forth between basis states. The state of the last qubit after the oracle is |0〉.2 The purpose of QBIST12

is simply to remove the phase induced entanglement experienced on the top k qubits. The intermittent
states at each stage of the circuit under test T1 are shown in Fig. 7. The final step in the QBIST12 circuit
applies a Hadamard gate to the top qubit, resulting back in the starting state, |0000〉 ⊗ |0〉, thereby
completing test T1. The complexity of the added CN and H gates needed for test T1 is 2(k − 1)CN+2H.

Stage Action of Stage
in −→ |0000〉 ⊗ |0〉

QBIST11 −→ (|0000〉+ |1111〉)⊗ |0〉
p0 −→ |0000〉 |0〉 + |1111〉 |1〉
p1 −→ |0000〉 |0〉 + |1111〉 |0〉
p2 −→ |0000〉 |0〉 + |1111〉 |1〉
p3 −→ |0000〉 |0〉 + |1111〉 |0〉
p4 −→ |0000〉 |0〉 + |1111〉 |1〉
p5 −→ |0000〉 |0〉 + |1111〉 |0〉
p6 −→ |0000〉 |0〉 + |1111〉 |1〉

QBIST12 −→ |0000〉 ⊗ |0〉

Figure 7: T1 test pattern and impact at each gate in the circuit. Gates as labeled left to right p1 to p6.

2If an an even number of gates were present a slight modification to the final half of the QBIST12 circuit must be
made. This modification is the removal of the first CN gate at the start of the QBIST12 acting on the (k+ 1)th qubit and
controlled by the kth qubit. In general for an odd number of gates in a quantum network prior to the final QBIST12 stage

the circuit will be in state |0〉⊗k |0〉 ± |1〉⊗k |1〉. The addition of a CNk,k+1 gate removes unwanted entanglement so that
the final qubit will be left in a product state.

6

QBIST11 Circuit Under Test QBIST12

|a〉 �������� • • • • H |a〉
_ _ _ _ _ _ _ _ _ _ _ _ _ _�
�
�
�
�
�
�

�
�
�
�
�
�
�

_ _ _ _ _ _ _ _ _ _ _ _ _ _

|a〉 �������� • • • • • �������� |a〉

︷ ︸︸ ︷

|a〉 �������� • • • • • • • �������� |a〉

︷ ︸︸ ︷

|a〉 H •
|a〉 |ā〉 |a〉 |ā〉

• •
|a〉 |ā〉 |a〉 |ā〉

• • �������� |a〉

|a〉 �������� �������� �������� �������� �������� �������� �������� �������� |a〉

Figure 8: Tests T1 and T2 (GHZ states): In Test T1, a = 0 so the circuit starts off in state: |0000〉.
QBIST11 maps this state to the oracle’s input as: (|0000〉 + |1111〉) ⊗ |0〉. In Test T2, a = 1 and the
input to the oracle is: (|0000〉 − |1111〉)⊗ |1〉. QBIST12 removes entanglement and returns the system to
a product state.

3.2 Test T2: (|0〉⊗k − |1〉⊗k)⊗ |1〉

No physical change is made to the circuit from Fig. 8, however the qubits are now initialized to state
|1111〉⊗|1〉. The outcome is similar to test T1, the bottom qubit is toggled a total of seven times resulting
in the final state of |1〉. (Each gate that acted on |0〉 in test T1 now acts on |1〉 thereby exhaustively probing
every classical input combination of each k−CN gate, seen in Fig. 8.) The QBIST12 again disentangles
the test responses, resulting back in the initial state of |1111〉 ⊗ |1〉.

In tests T1 and T2 each node is addressed with both activating and non-activating states. Furthermore,
each qubit is initialized and measured in both basis states. Tests T1 and T2 have an added CN and H
gate complexity of 4(k− 1)CN+4H. The following Theorems prove which faults have been detected with
tests T1 and tests T2 and are general for n bit oracles:

Theorem 3 Either test T1 or test T2 will detect σx and σy bit flips at any error location, thus satisfying
Requirement 1.

Proof 3 Tests T1 and T2 both satisfy Requirement 1. The proof in this section is given for test T1 and
is nearly identical to the steps taken for test T2. Consider now test T1:

Case 1: The top (1st) qubit is flipped: QBIST12 receives state (|1〉 |0〉
⊗(k−1)

± |0〉 |1〉
⊗(k−1)

) as in-

put. After successive applications of CNi−1,i from i = k to i = 2 the state will be (|11〉 |0〉
⊗(k−2)

±

|01〉 |1〉⊗(k−2)) = (|0〉± |1〉)⊗|1〉⊗ |0〉⊗(k−2). Thus, a bit flip impacting the 1st bit is detectable on the 2nd

bit. Given a bit flip impacting any other qubit q, (1 < q ≤ k) QBIST12 receives (|0〉
⊗(q−1)

|a〉 |0〉
⊗(k−q)

±

|1〉
⊗(q−1)

|ā〉 |1〉
⊗(k−q)

) as input state. A similar relation holds such that a bit flip on the (q − 1)th bit is
detectable on the qth and possibly the 1st bit if the phase is also inverted. For errors impacting any qubit
other than the 1st, both the qth bit as well as the (q + 1)th (impacted bit) will show the error.

Case 2: Bottom (k + 1)th qubit is flipped: Normally the top k bits and the bottom (k + 1)th bits are
factorable when entering the final QBIST12 stage. Assume an even number of gates in the oracle and that

instead of state: (|0〉
⊗k

+|1〉
⊗k

)⊗|0〉 the final QBIST12 receives the worst case state of |0〉
⊗k

|0〉+|1〉
⊗k

⊗|1〉.
The final QBIST12 will not remove the entanglement associated with the (k+1)th bit. This is detectable
based on p, the probability that a bit flip occurred in the computational basis in the first place, satisfying
Requirement 1. This is the only fault that, when deterministically present interjects a probabilistic outcome
in observability. �

Theorem 4 Together tests T1 and T2 initialize each qubit in both basis states so that Requirement 3 is
satisfied.

Proof 4 In test T1 the initial state of the register is |0〉
⊗k⊗|0〉 and in test T2 the initial state is |1〉

⊗k⊗|1〉,
therefore Requirement 3 is satisfied. �

Theorem 5 Taken together tests T1 and T2 activate all controls concurrently and each control is ad-
dressed with a non-activating state while the target is separately in basis state |0〉 and next |1〉 satisfying
Requirement 6.

Proof 5 In tests T1 and T2 the test state prior to application of the oracle is (|0〉⊗k ± |1〉⊗k) ⊗ |ā〉. In

both tests T1 and T2 the term |0〉
⊗k

addresses each control with a non-activating state, the term ± |1〉
⊗k

activates all gates and in both tests the target is in a basis state. This satisfies Requirement 6. �

7

Theorem 6 Taken together tests T1 and T2 force each gate in the circuit to act on both basis states,
thereby satisfying Requirement 7.

Proof 6 In both tests T1 and T2 the term ± |1〉
⊗k

activates all gates. Each gate in test T1 that received
target input state |a〉 received target input state |ā〉 in test T2, thus satisfying Requirement 7. �

Theorem 7 After executing test T1 and T2 each qubit will be measured in both basis states, thus satisfying
Requirement 8.

Proof 7 The result of test T1 is |0〉
⊗(k+1)

and the measured result pending the success of test T2 is

|1〉
⊗(k+1)

thus satisfying Requirement 8. �

3.3 Tests T5 and T6: |+〉⊗k ⊗ |+〉 and |−〉⊗k ⊗ |+〉

The two following tests are simple to conceptualize, as seen in Fig. 9 they have an added gate complexity
of 4kH . When a = 0 test T5 generates input state |++++〉⊗|+〉 and when a = 1 test T6 generates input
state |− − −−〉 ⊗ |+〉. Since the eigenvalue of the target state is +1, no change in relative phase should
result from propagation through the quantum circuit and the state of the register should not become
entangled. Theorem 8 proves that test T5 combined with test T6 satisfy Requirement 5 with an added
gate complexity of 4kH.

Circuit Under Test

|a〉 H • • • H |a〉
_ _ _ _ _ _ _ _ _ _ _ _ _ _�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

_ _ _ _ _ _ _ _ _ _ _ _ _ _

|a〉 H • • • H |a〉

|a〉 H • • • • • H |a〉

|a〉 H
|+〉 |+〉 |+〉 |+〉

• •
|+〉 |+〉

• H |a〉

|0〉 H �������� �������� �������� �������� �������� �������� �������� H |0〉

Figure 9: Tests T5 and T6 (Super Tests): Test |+〉
⊗k

⊗ |+〉 is first generated (a = 0, T5) and next test

|−〉
⊗k

⊗ |+〉 is applied (a = 1, T6). The target of each k-CN gate acts on state |+〉. No entanglement is
added in either test, since no relative phase change of individual superposition term(s) will occur.

Theorem 8 Together tests T5 and T6 satisfy Requirement 5.

Proof 8 In both tests T5 and T6 the state of the target qubit is |+〉. Any gate that was activated by
a state with an eigenvalue +1 in test T5 will be activated by a state with an eigenvalue −1 in test T6.
Relative phase will not change under arbitrary non-activating and activating states since the target state
has an eigenvalue of +1, satisfying Requirement 5. �

Theorem 9 Either one of tests T5 or T6 detects σz or σy phase flips and therefore satisfies Requirement 2.

Proof 9 Here the Proof is done considering test T5, however the steps are the same as those needed for

test T6. Consider state |+〉
⊗k

⊗ |+〉, this is a product state that may be expanded as: |+〉 ⊗ · · · ⊗ |+〉 ⊗
|+〉 ⊗ |+〉 ⊗ · · · ⊗ |+〉. The state of the target is |+〉 and therefore phase will not make the state non-local
(with an exception of a phase flip on the (k + 1)th bit, in that case the bottom bit will deterministically
reveal the presence of an error). Given a σz fault impacting any qubit, the state becomes |+〉⊗ · · ·⊗ |+〉⊗
|−〉 ⊗ |+〉 ⊗ · · · ⊗ |+〉. In the final stage of QBIST52 a Hadamard operation H⊗(k+1) is applied to the
register:

H⊗(k+1) · |+〉 ⊗ · · · ⊗ |+〉 ⊗ |−〉 ⊗ |+〉 ⊗ · · · ⊗ |+〉 −→

|0〉 ⊗ · · · ⊗ |0〉 ⊗ |1〉 ⊗ |0〉 ⊗ · · · ⊗ |0〉 . (10)

Since the σz bit flip impacts the global state of a qubit, it will be seen as a bit flip in the measured
state of T5 satisfying Requirement 2. The proof is concluded mentioning that this result coincides with
observations drawn in [7], (Theorem 2, § 4). �

8

Requirements (↓) Fault Types Tested (↓) − Tests (→) T1 T2 T3 T4 T5 T6 T1 ∪ T2 T3 ∪ T4 T5 ∪ T6

Requirement 1 Any σx or σy bit flips occurring? × × ×
Requirement 2 Any σz phase flips occurring? ◦ ◦ ◦ × × ◦ ◦ ×
Requirement 3 Is initialization into |0〉 and |1〉 O.K.? ◦ ◦ ◦ ◦ × ×
Requirement 4 With |−〉 at target is phase kickback O.K.? ◦ ◦ ×
Requirement 5 Any phase problems with |+〉 at the target? ◦ ◦ ×
Requirement 6 Are the controls activated with |0〉 and |1〉? ◦ ◦ ×
Requirement 7 Gate acts on basis |0〉 and |1〉 O.K.? ◦ ◦ ×
Requirement 8 Is measurement in |0〉 and |1〉 O.K.? ◦ ◦ ×

Table 1: Tests are depicted in columns 3− 11, fault types in column 2 and Requirements in column 1. A
given test (column) with table entry × below it satisfies the Requirement listed in the row corresponding
to that ×. Entries with ◦ inside correspond to tests that cover some, but not all of the faults depicted in
the corresponding row.

The classical degrees of freedom for an oracle have been accounted for in tests T1, T2, T5 and T6 with
an added gate complexity of only 4(k+1)H+4(k− 1)CN. The phase kickback features of the gates in the
oracle are verified next in tests T3 and T4.

The controllability of a circuit represents an ability to propagate a specific input vector through a
network, such that it will map a state to a specific fault location. This represents an added challenge
in the case of quantum circuits, since inputs will become entangled. However, after a discussion of the
upper bounds of tests T3 and T4 in Sec. 3.6 more controllable test input vectors are proposed (Sec. 3.7)
replacing the added complexity of these tests with a linear increase in the number of experiments needed.

3.4 Test T3: |+〉⊗k ⊗ |−〉

The goal of test T3 is to verify that phase traverses correctly amongst all gates. For test T3 the Hadamard
gates at the left of Fig. 10 are used to prepare the following superposition state input on the top k bits:

=⇒ |0000〉+ |0001〉+ |0010〉+ |0011〉+ |0100〉+ |0101〉

+ |0110〉+ |0111〉+ |1000〉+ |1001〉+ |1010〉+ |1011〉

+ |1100〉+ |1101〉+ |1110〉+ |1111〉 (11)

Observe that Eqn. 12 is like a truth table where all the true minterms of the function have phase factors
of −1, (see Fig. 3). This often results in phase induced entanglement as shown in Eqn. 12.

=⇒ |0000〉+ |0001〉 − |0010〉+ |0011〉 − |0100〉 − |0101〉

+ |0110〉+ |0111〉 − |1000〉 − |1001〉+ |1010〉+ |1011〉

+ |1100〉+ |1101〉+ |1110〉 − |1111〉 (12)

In general, a product (local) superposition state may be written as:

±
k−1
⊗

i=0

(|0〉+ ai |1〉) (13)

where any ai term is either +1 or −1. For the state in Eqn. 12 to be expressible as a product state,
Eqn. 14 must be satisfied:

(|0〉+ a0 |1〉)(|0〉+ a1 |1〉)(|0〉+ a2 |1〉)(|0〉+ a3 |1〉). (14)

Given Eqn. 14, any one of 2i (0 ≤ i < k) possible choices for ai results in a local description of the
quantum state (the implications of which will be discussed in Sec. 3.6). The general expansion of Eqn. 14
leads directly to the generic state:

=⇒ |0000〉+ a3 |0001〉+ a2 |0010〉+ a1 |0100〉+ a0 |1000〉

+a0 · a1 |1100〉+ a0 · a2 |1010〉+ a0 · a3 |1001〉

+a1 · a2 |0110〉+ a1 · a3 |0101〉+ a2 · a3 |0011〉

+a0 · a1 · a2 |1110〉+ a0 · a2 · a3 |1011〉

+a0 · a1 · a3 |1101〉+ a1 · a2 · a3 |0111〉

+a0 · a1 · a2 · a3 |1111〉 (15)

9

Comparing Eqns. 12 and 15 for the considered circuit, the system of arithmetic equations given in Eqn. 16
is obtained. This system is clearly not specifying a product state since Eqns. 12 and 15 matched with
Eqn. 16 are inconsistent. The interfering terms a0 · a1 · a2 and a2 · a3 could be changed for the system
to return to a local, product state description. This may be done by inserting the QBIST 32 circuit given
in Fig. 10. QBIST 32 inverts the phase on terms |1110〉 and |0011〉 to +1, making the state factorable as
(|0〉+ |1〉)(|0〉+ |1〉)(|0〉+ |1〉)(|0〉 − |1〉)⊗ |−〉.

a0 = −1 a1 · a3 = +1
a1 = −1 a2 · a3 = +1
a2 = −1 a0 · a1 · a2 = +1
a3 = +1 a0 · a1 · a3 = −1

a0 · a1 = +1 a0 · a2 · a3 = +1
a0 · a2 = +1 a1 · a2 · a3 = +1
a0 · a3 = −1 a0 · a1 · a2 · a3 = −1
a1 · a2 = +1 ∀i, ai ∈ {−1,+1}

(16)

Circuit Under Test QBIST32

|a〉 H • • • • ����	
� H |a〉
_ _ _ _ _ _ _ _ _ _ _ _�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

_ _ _ _ _ _ _ _ _ _ _ _

|a〉 H • • • • ����	
� H |a〉

|a〉 H • • • • • • • H |a〉

|a〉 H
|−〉 |−〉 |−〉

• •
|−〉 |−〉 |−〉 |−〉

• ����	
� • H |ā〉

|1〉 H �������� �������� �������� �������� �������� �������� �������� �������� �������� H

_ _ _�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

_ _ _
|1〉

Figure 10: Circuit Under Test T3 and T4: Test T3 −→ |+〉⊗k ⊗ |−〉 is first generated (a = 0, T3) and next

test T4 −→ |−〉
⊗k

⊗ |−〉 is applied (a = 1, T4). Nodes activated with |0〉 are denoted as (◦). QBIST32

removes entanglement returning the system to a product state and has the same form in both tests.

3.5 Test T4: |−〉⊗k ⊗ |−〉

Test T4 is an exact dual to test T3 and therefore, the needed QBIST42 stage will have the exact same
structure as the QBIST32 already used. Now the register is initialized into state |1111〉 ⊗ |1〉 (by setting
a = 1 in Fig. 10). The Hadamard operators map this initial state as follows:

(

H⊗(k+1)
)

· (|1111〉 ⊗ |1〉) −→ |− −−−〉 ⊗ |−〉 (17)

and this acts as input to the oracle. The phase of each term is now opposite when compared with T3.
QBIST 42 inverts the phase on term |1110〉 and |0011〉 to −1, making the state factorable and resulting
in this local state description (|0〉 − |1〉)(|0〉 − |1〉)(|0〉 − |1〉)(|0〉+ |1〉)⊗ |−〉.

Theorem 10 proves that test T3 combined with test T4 satisfy Requirement 4. Tests T3 and T4 have
a worst case added gate complexity of at most Θ(N − k) + 4kH , where Θ is a function of the number of
controls needed in the disentanglement stage and the linearity of the oracle.

Theorem 10 Together tests T3 and T4 satisfy Requirement 4.

Proof 10 In tests T3 and T4 the state of the target is |−〉. Any gate that was activated by a state with
eigenvalues ±1 during test T3 is activated by a state with eigenvalues ∓1 in test T4. Furthermore, both
tests T3 and T4 contain non-activating terms, each with opposite eigenvalues. Tests T3 and T4 therefore
satisfy Requirement 4. �

Table 1 provides a concise illustration of the sets of faults entirely covered by given test(s) (denoted
by ×) as well as the sets of faults partially covered by a given test (denoted by ◦). We have developed
a quantum test algorithm that probes the logical function of each k−CN gate in an oracle. Now upper
bounds on the extraction technique (QBIST32 circuit stage) will be derived in Sec. 3.6.

10

3.6 Upper Bounds for QBIST32:

The concepts of the presented test algorithm are general and therefore work for any circuit. They do
however require the successful design of the QBIST32. This design varies between oracles and has an
upper bound of added depth complexity that depends on the function realized in the oracle.

Definition 7 An affine Boolean function Af (x1, ..., xk) , on variables x1, ..., xk is any function the takes
the form

Af (x1, x2, ..., xk) = c0 ⊕ c1 · x1 ⊕ c2 · x2 ⊕ · · · ⊕ ck · xk, (18)

where · is Boolean AND, ⊕ is EXOR (modulo 2 addition), ci ∈ {0, 1} and i = 0, 1, ..., n are indices
of coefficients. It is easy to see that there exist 2k+1 affine functions all of which have checkered cube
patterns. A linear function is any one of the 2k affine functions generated when coefficient c0 = 0.

We present the following theorem (11) relating state separability to the function being realized by a
given oracle.

Theorem 11 Consider oracle O for which test T3 obtains only separable (local) measurements (requires
no disentanglement). O necessarily realizes only affine functions over k variables.

Proof 11 The proof is based on the straightforward generalization of the following example:
Assume input variables (x1, x2, x3). The expression

|000〉 (+1) + |001〉 a2 + |010〉 a1 + |011〉 a1 · a2 +

|100〉 a0 + |101〉 a0 · a2 + |110〉 a0 · a1 +

|111〉 a0 · a1 · a2 (19)

corresponds to a classical truth table with
∏

ai expressions corresponding to sum-of-product canonical
coefficients. Assuming the encoding

en(+1) = 0, en(−1) = 1, (20)

arithmetic expressions like a1 ·a2 are changed to Boolean values like en(a1)⊕en(a2). Normally one would
consider the case that b0 = 0 for linear functions. Because of global phase b0 may take either binary value
corresponding to all affine functions on k variables. It is well known from the canonical SOP to PPRM
conversion method that PPRM = b0 ·1⊕ (b0⊕b1) ·x3⊕ (b0⊕b2) ·x2⊕ (b0⊕b1⊕b2⊕b3) ·x2 ·x3⊕ (b0⊕b2⊕
b4⊕ b6) ·x1 ·x2⊕ (b0⊕ b4) ·x1⊕ (b0⊕ b1⊕ b4⊕ b5) ·x1 ·x3⊕ (b0⊕ b1⊕ b2⊕ b3⊕ b4⊕ b5⊕ b6⊕ b7) ·x1 ·x2 ·x3,
where bi are coefficients of minterms, i.e. b0 is a coefficient of |000〉, b1 is a coefficient of |001〉, etc. The
minterms of canonical SOP obtain thus the following encoding (symbol · is arithmetic multiplication)3

b1 = en(a2), b2 = en(a1), b3 = en(a1 · a2) = en(a1)⊕ en(a2) = b2 ⊕ b1, b4 = en(a0), b5 = en(a0 · a2) =
en(a0)⊕ en(a2) = b4 ⊕ b1, b7 = en(a0 · a1 · a2) = en(a0)⊕ en(a1)⊕ en(a2) = b4 ⊕ b2 ⊕ b1.

Applying now the encoding from Eqn. 20 and substituting into the above PPRM one obtains PPRM =
b0 ·1⊕(b0⊕b1)·x3⊕(b0⊕b2)·x2⊕[(b0⊕b1⊕b2)⊕(b2⊕b1)]x2 ·x3⊕[(b0⊕b2⊕b4)⊕(b4⊕b2)]x1 ·x2⊕(b0⊕b4)x1⊕
[(b0⊕b1⊕b4)⊕(b4⊕b1)]x1 ·x2⊕[(b0⊕b1⊕b2)⊕(b2⊕b1)⊕(b4)⊕(b4⊕b1)⊕(b4⊕b2)⊕(b4⊕b2⊕b1)]·x1 ·x2 ·x3 =
b0 ·1⊕ (b0⊕ b1)x3⊕ (b0⊕ b2)x2⊕ (b0⊕ b4) ·x1. Thus, PPRM = b0⊕ (b0⊕ b1)x3⊕ (b0⊕ b2)x2⊕ (b0⊕ b4)x1
which corresponds to all affine functions on variables x1, x2, x3.

If oracle O contains function f(x1, ..., xk) that is not affine, a modification to any one of the affine
functions Ai(x1, ..., xk) must be made. This can be done by adding a circuit (such as QBIST 32(x1, ..., xk))
and can be thought of as EXORing it with some function, like this:

f(x1, ..., xk)⊕BISTi(x1, ..., xk) = Ai(x1, ..., xk). (21)

Thus, f(x1, ..., xk) = BISTi(x1, ..., xk) ⊕ Ai(x1, ..., xk). The general disentanglement procedure is as
follows:

1. Each function Ai(x1, ..., xk)⊕BISTi(x1, ..., xk) is realized as an ESOP.

2. BISTi(x1, ..., xk) with the minimum cost is selected.

3This is also called the polarity table in which one considers a Boolean function over variables {−1, 1} instead of {0, 1}.
In this case, XOR (⊕) over {0, 1} is equivalent to real multiplication over {−1, 1}.

11

3. Function BISTi(x1, ..., xk) is added (XORed) after f as QBIST 32.

Theorem 12 The minimum number of product terms in the ESOP realization of the BIST circuit
ESOP[BIST(x1, ..., xk) ⊕ Ai(x1, ..., xk)] where Ai is an arbitrary affine function on variables x1, ..., xk
is equal to p− k where p is the minimal number of product terms in ESOP(BIST(x1, ..., xk)).

Proof 12 Given is the minimal ESOP, denoted by ESOP(BIST), of function BIST (x1, ..., xk). Let A be
an arbitrary affine function on variables x1, x2, ..., xk and c0 ⊕ c1 ·x1 ⊕ ...ck · xk, where ci ∈ {0, 1}. There
are two of these functions that have the maximum number of variables equaling k; x1 ⊕ x2 ⊕ ...xk and
1⊕ x1 ⊕ x2 ⊕ · · · ⊕ xk = x̄1 ⊕ x2 ⊕ ...xk. Assuming that ESOP(BIST) has the minimal number of product
terms, the following cube pair types must not be included in it: xi ·xj ⊕xi, xi ·xj ⊕xi · x̄j, xi · x̄j ⊕ x̄i ·xj ,
xi · xj ⊕ x̄i · x̄j. The only product terms possible in ESOP(BIST) are necessarily xi, x̄i, xi · xj , xi · x̄j ,
xi ⊕ xi · xj · ... · xk. If one writes ESOP(BIST⊕Ai) as ESOP(BIST)⊕ x1 ⊕ x2 ⊕ . . . xk provided all the
best merging cases, then all variables (literals) from A are merged, each of them with some literal from
ESOP(BIST), like this: xi ⊕ xi = 0, x̄i ⊕ x̄i = 0 and xi ⊕ x̄i. Each of these cases will decrease the ESOP
cost by one. Merging xi with xi · xj = xi; xi ⊕ xi · xj = xi · x̄j will not change the ESOP cost. All other
mergings will increase the cost of the ESOP(BIST⊕Ai) with respect to ESOP(BIST). Thus, the number
of terms in the ESOP can be decreased by no more than k. Observe also that the highest decrease of cost
is when BIST is already an affine function.

3.7 Possible Extensions and Applications

An alternative approach based on the theory outlined in tests T3 and T4 utilizes highly controllable
test vectors. The growth in additional circuitry is thus replaced with linear growth in the number of
experiments needed. The total number of experiments in this second method is (5 + 4⌈k/2⌉). There is
little added growth in circuit complexity. Tests T3 and T4 are replaced with first repeating the circuitry
needed in test T1. (All replaced tests of course have state |−〉 at the target.) Next, starting with the top
2 qubits (Fig. 11), an EPR pair is generated to test the oracle and mirrored with a measurement in the
Bell basis. This is then moved down all the top k qubits (Fig. 12) a total of 2⌈k/2⌉ times. The EPR
generating circuitry is used to create inputs that are products of state |01〉± |10〉 and |1〉. These must be
repeated with both positive and negative versions to satisfy Requirement 4. This results in something in
classical test known as walking-a-zero [8] (except quantum mechanics allows two zeros to be walked at
the same time). This alternative approach however, does not probe the oracle under the types of inputs
experienced when used in a Grover search algorithm. It does however illustrate that the algorithm can be
modified to reduce the complexity of the stages needed to extract information. Alternative applications
of the methods presented in this paper also exist.

Circuit Under Test
|1〉 �������� • • •

Bell
=<:;

_ _ _ _ _ _ _ _ _ _ _ _ _ _�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

_ _ _ _ _ _ _ _ _ _ _ _ _ _

|±〉 • • • •

|1〉 • • • • • FE

|1〉
|−〉 |−〉 |−〉 |−〉

• •
|−〉 |−〉

• FE

|−〉 �������� �������� �������� �������� �������� �������� �������� H FE

Figure 11: Alternative setup for tests T3 and T4: Test |0111〉± |1011〉. The target of each k-CN gate acts
on state |−〉. No entanglement is added in either test, since all relative phases will result in a product
measurement in the Bell basis.

4 Conclusion

This work reduced the classical test problem by utilizing entanglement as a controllability resource.
Classically, the lower bound of this circuit class was found to be (k + 4 + 2ne) by Reddy [2] (where the
2ne term depends on the function being realized). Quantum effects were used to reduce the test problem
to a linear growth of (5 + 4⌈k/2⌉) in experiment count. When testing an oracle, states become non-local
due to the phase change undergone by all true minterms as seen in tests T3 and T4 in Sec 3.4 and 3.5. It
was shown in Sec. 3.6 that all affine oracles generate no net entanglement when used as a search oracle,

12

Circuit Under Test

|1〉 • • • FE

_ _ _ _ _ _ _ _ _ _ _ _ _ _�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

_ _ _ _ _ _ _ _ _ _ _ _ _ _

|1〉 • • • FE

|1〉 �������� • • • • •
Bell
=<:;

|±〉 •
|−〉 |−〉 |−〉 |−〉

• •
|−〉 |−〉

•

|−〉 �������� �������� �������� �������� �������� �������� �������� H FE

Figure 12: Alternative setup for tests T3 and T4: Test |1101〉 ± |1110〉.

while an oracle realizing a bent function requires the greatest effort to disentangle the state and return
the system to a local product state. Since there are 2k+1 affine functions, Sec. 3.6 addressed the question
of how close an arbitrary state is to a factorable state with phase terms that represent the spectrum of
an affine function. The distance in many cases is close, but the upper bound is ∼ Θ(N − k). Linear
and Affine functions are very easy to test when realized quantum mechanically. Based on the potential
limitations highly controllable test vectors were developed in Sec. 3.7 that do not undergo phase induced
entanglement when propagation though a phase oracle occurs. In a correspondence from Agrawal in
1981 [12], fault detection probability was shown to be the highest when the information output of a
circuit is maximized. An information theoretic approach to quantum fault testing might lead to further
useful insight into the quantum test problem.

References

[1] W. Kautz, Testing faults in combinational cellular logic arrays, Proceedings of 8th annu. Symp.
Switching and Automata Theory, Oct. 1971, pp. 161-174.

[2] S. Reddy, ”Easily Testable Realizations for Logic Functions,” IEEE Transactions on Computers, Vol.
C-21, No. 11, pages 1183 - 1188, November (1972).

[3] D. Deutsch, ”Quantum computational networks,” Proc. R. Soc. London A, 425:73, (1989).

[4] A. Barenco, C. Bennett, R. Cleve, D. DiVincenzo, N. Margolus, P. Shor. T. Sleator, J. Smolin, and
H. Weinfurter, ”Elementary gates of quantum computation,” Phys.Rev.A, 52(5):3457-3467, (1995),
quant-ph/9503016.

[5] A. Gilchrist, N. Langford and M. Nielsen, ”Distance measures to compare real and ideal quantum
processes,” Phys. Rev. A 71, 062310 (2005), quant-ph/0408063.

[6] J.B. Altepeter, D. Branning, E. Jeffrey, T.C. Wei, P.G. Kwiat, R.T. Thew, J.L. O’Brien, M.A. Nielsen
and A.G. White, ”Ancilla-assisted quantum process tomography,” Phys. Rev. Lett. 90, 193601 (2003),
quant-ph/0303038.

[7] J.D. Biamonte, J.S. Allen and M.A. Perkowski, ”Fault Models for Quantum Mechanical Switching
Networks,” 22 pages, (2005), quant-ph/0508147.

[8] U. Kalay, M. Perkowski and D. Hall ”A Minimal Universal Test Set for Self-Test of EXOR-Sum-of-
Product Circuits,” IEEE Transactions on Computers, vol. 49, no. 3, pp. 267-276, (2000).

[9] W. Zurek, ”Reversibility and Stability of Information Processing Systems,” Phys. Rev. Lett. 53,
pages 391-394, (1984), DOI: 10.1103/PhysRevLett.53.391.

[10] E. McCluskey and C.W. Tseng, ”Stuck-fault tests vs. actual defects,” in Proc. of Int. Test Conf., pp.
336-343, (2000).

[11] T. Sasao, ”Easily Testable Realizations for Generalized Reed-Muller Expressions,” IEEE Trans. Com-
puters, 46(6), pp. 709-716, (1997).

[12] V. Agrawal, ”An Information Theoretic Approach to Digital Fault Testing,” IEEE Transactions on
Computers, vol. 30, pages 582 - 587, August (1981).

13

http://arxiv.org/abs/quant-ph/9503016
http://arxiv.org/abs/quant-ph/0408063
http://arxiv.org/abs/quant-ph/0303038
http://arxiv.org/abs/quant-ph/0508147
http://link.aps.org/abstract/PRL/v53/p391

	Fault Testing Quantum Switching Circuits
	Let us know how access to this document benefits you.
	Citation Details

	1 Introduction
	1.1 Constructing Quantum Oracle Search Spaces

	2 Gate Level Quantum Fault Models
	2.1 Conclusions based on the Gate Level Fault Models

	3 The Fault Detection Algorithm
	3.1 Test T1: ("026A30C 0"526930B k + "026A30C 1"526930B k)"026A30C 0"526930B
	3.2 Test T2: ("026A30C 0"526930B k - "026A30C 1"526930B k)"026A30C 1"526930B
	3.3 Tests T5 and T6: "026A30C +"526930B k"026A30C +"526930B and "026A30C -"526930B k"026A30C +"526930B
	3.4 Test T3: "026A30C +"526930B k"026A30C -"526930B
	3.5 Test T4: "026A30C -"526930B k"026A30C -"526930B
	3.6 Upper Bounds for QBIST32:
	3.7 Possible Extensions and Applications

	4 Conclusion

