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Path integral for the quantum harmonic oscillator using
elementary methods

S. M. Cohen
Department of Physics, Portland State University, Portland, Oregon 97207

(Received 12 September 1997; accepted 12 November 1997)

We present a purely analytical method to calculate the propagator for the quantum harmonic
oscillator using Feynman’s path integral. Though the details of the calculation are involved, the
general approach uses only matrix diagonalization and well-known integrals, techniques which an
advanced undergraduate should understand. The full propagator, including both the prefactor and
the classical action, is obtained from a single calculation which involves the exact diagonalization
of the discretized action for the system. 1998 American Association of Physics Teachers.

[. INTRODUCTION ing bond lengths confined in a harmonic potential. Addition-
ally, we show how the classical action arises naturally, along

Since their introductioﬁ,Feynman path integra|s have be- with the prefactor, from a smgle calculation. This differs
come a powerful method of calculation for quantum me-from previous approaches in which only the prefactor was
chanical problem&? Though until recently exact solutions calculated, the appearance of the classical action being as-
were available for only the simplest cases, great advances Fiimed due to a theorem given by Feynrfan.
developing methods of solving these integrals have been
made in the last 15 yeafsYet even before these advances,
the. approach bor“e fruit in manynways. For example., thql_ FORMAL EVALUATION OF THE PATH
derivatior? of the “Feynman rules” was an extremely im- INTEGRAL
portant contribution which greatly simplified calculations in
perturbation theory.

In a recent article, English and Wint8rsave presented a
method of calculating the Feynman path integral for the pref
actor of the propagator of the quantum harmonic oscillator. it _

The motivation for their work was “to introduce a formula- K(b,a)=f D[x(t)]exp(— f %[x(t),x(t)]), Q)
tion of quantum mechanics which is usually considered be- LUN

yond the scope of most undergraduate courses.” We agrégnere

with these authors that it is of interest to make alternative ) )

approaches to quantum mechanics accessible to the under- Z[X(t),X(t)]=3mx*— smw?x? (2

graduate. We believe that path integrals have great beauty in . )
the simplicity of their basic formulation. They also clarify IS the classical Lagrangian, and the sympDI[x(1)] repre-

various aspects of quantum mechanics, such as the unc&ents Integration over all pathslm configuration space begin-
tainty principle. The clarification in this particular case fol- NiNg ata and ending ab. As is common practice, these
lows immediately from the central idea upon which the pathntégrals may be done by first partitioning the time interval
integral formulation is based: that all paths in configurationinto N pieces of widthe each, so that =t,—t,=Ne. At the
space contribute to the evolution of the wave function. Thug€nd of the calculation the limithl—, e—0, are taken,
there is an intrinsic uncertainty as to the evolution of anysuch thafT=Ne is held constant. Then, witk;=x(j€), we
system(we cannot know the trajectory the system follows), may write

The quantum propagatadg(b,a) for a particle beginning
at positionx(t,) =a and ending ak(t,)=b, is given a8

and this uncertainty is explicitly illustrated in this approach. N2
In this note, we give an alternative presentation which we K(b,a)= lim ( m )
believe is somewhat more direct than that of English and ’ N 2T RE
Winters. The method used by these authors required the use €0
of a symbolic computational program, and an intermediate o o
result written in terms of continued fractiondBut see our Xf f dxdX,- - dxy_1
Appendix for a discussion of how the approach of these au- - -
thors may be completed analytica)lyOur method does not o imi2tes) ()2~ 2oBd) 3)

require the use of a computer and is straightforward, for-

mally, so it should be accessible to students. An understandfhe argument of the exponential contains the quadratic form
ing of Gaussian integrals, and of matrices and their eigen-

vectors and eigenvalues, are the only prerequisites to N 5 2 9.2
following this approach. Q221 [(Xj=Xj-1)"— €“wX]]
Although this problem has been addressed in numerous =
other works®®®7our presentation is new in some important = X2+ X2~ 20— 2X1Xo— 2XpXn_1+ Q' (4)

ways. First, we discretize the action from the very beginning, ) -
allowing us to obtain a final result which is exact for arbi- Where we may writeQ’ =x"AX. Here,
trary N (the number of intervals chosen for the
discretization—see below). These results are thus directly
transferable to the case of a polymer chain with nonvanishis the transpose of, and

X' = (XqXp" " Xn—1) ®
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2— 20?2 -1 0 0 ' m N/2 im 5 22
1 2-w® -1 o - K(b.a)= lim 277ihe) 2he | KON’
A= 0 -1 2— 2w? -1 0
0 0 12— w? B 2 (On- l]XN+01]X0) ]
(6)
f exp< e jzjz)dzj ) (14)
If, using a change of variables from the to new variables
zj, we can rewriteQ’ into the form The integrals are now simple Gaussians, as advertised above,
yielding
" 12 ;
Q' =constant+Y, \;Z%, 7 . m im ) 2
= K(b,a) N“Lnx Sihe 7e X5+ X3 — w23
e—0
where the constant does not depend on zhge then the e Yoy + Oy X0)2 N—1 —12
(coupled)integrals in Eq.(3) will have been reduced tdl _ E N-1j"N T ~170 J( IT A,
—1 separate Gaussian integrals. First, we will find a trans- Aj =1
formation of variables, m |12
o =e'/? Sd |im (—2 = ) (detA)~Y2=F(T)e'" S,
x=0y, (8) N mine
such that (15)
We will show below that
OTAO=A, 9)
H m 2 2 22,2
Sg= lim 7¢ XoT XN — 0 €°Xy
with A a diagonal matrix,Aj;=\;d;, and O will be or- Nﬂgo €

thogonal sincéA is symmetric and real. Then we may write
N—1 - 2

(On-1,XnFO1%0)?
)\.

(16)

Q=x3+x3— w2e®Xx3—2xy >, On-1,Y] o _ ! _ o
j=1 is indeed the classical action, as it must be; and we will find
N-1 N—1 detA and thus the prefactd¥(T), as well.
—2x0j§=:l Oy, + ,2’1 NjYE. (10)

] . ~lll. DIAGONALIZATION OF THE MATRIX, A
Completing the squares, we change variables once again to

To implement the transformation of variables, E8), we

XNOn-—1j+ X001 must find the matrixO which diagonalizesA. As is well
Zj=yj— v -, (11)  known, O is the matrix of the eigenvectors &f. It is not
! difficult to show that a complete set of eigenvectors, which
ieldi we shall denote aéj , is given in terms of their components
yielding by
N-1 R \F i
Q:,Zl NZ2+ X5+ XE— 0?€xy &)= Vs~ (17)
_ with 1<<i, j<N—1. The corresponding eigenvalues are
_N ' (On-1,XntO1X0) (12) ) P g€l
i=1 Aj Nj=2— w’e —2C0< NJ) 4snz( ) w’€?,  (18)

Since O is orthogonal, deD=1, and the Jacobian of both leading directly to the result

transformations, Eq€¢8) and(11), is unity. Hence we have N—1 N—1 j
the replacement _ _ ol T 2.2
detA j]:[l \| j]:[l 4sm2(2 ) w e)
f f dxldxz---de_lzf f dz;dz,---dzy_, (—gN-L M2 N
I U I S j]:[l Sir? 6— sir? w19
(13)

where we have written sif for we/l2=wT/2N, and M
in Eq. (3) along with the transformation of variables. We =2N. The product appearing in the final form of this equa-
obtain tion is given in Hansef,
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M/2
[]
j=1

and we find

Sin(2N6)

detA= —sin(za) ,

correct for alIN=wT/2. Furthermore, taking

O|] = (éj)i )
we may calculate

mN
2T

—E

2

Sa(N) = X5+ XN~

(On- lJXN+OleO)

N

J

= apX5+ agX3+ agnXoXy -

Now,

But,

sir? 9— sinz(wﬁj) } =(—1)M221"M sin(M 6)cot 6,

(20)

(21)

(22)

(23)

(24)

(25)

with, as beforeM=2N, sin#=wT/2N, and also cog=1
— w?T?/2N?. This sum may also be found in Hans&n,

M/2-1

>

=1

2mjk

cod 27
2]

CosS¢p— co{ M )

2 2

1
+chc2

where in our case we nedd=0,2. Then we have

cog(N—2)¢)—

w2T2

M M ¢ %
=— = CSC¢ CSC—— CO

M

Tk) ¢}

¢ 1 ¢
E _Z(_l)k Seé<§>,

cogN¢)

an= N2

mN
2T

2 sin ¢ sin(N¢)

539 Am. J. Phys., Vol. 66, No. 6, June 1998

(26)

(27)

The evaluation o8, is identical to that oy, apart from the
term proportional to 1/Nthat is,

_mN( cos((N—Z)gb)—cos(Ncﬁ))
2= 5T | * T T 2sing sin(Ng) 28)
In the same way, we find
. mN'G' Oy_1j0y
NTIT A TN
mht (0 1) sz(%) mN sin ¢
T A S(wj)__Tsin(N@'
COS¢—Co N
(29)

In wntmg the last equality, we have again referred to
Hansen'!

N-1 (—1) sin2<%]
CoS ¢p— cos( %J)

IV. EXACT PROPAGATOR FOR N DISCRETE
TIME INTERVALS

=—N sin ¢ cscNe¢. (30)

=1

Using the above results, we can determine the propagator
for an arbitrary numben\, of divisions of the time interval
T. This expression may be useful for students and others
doing numerical work with path integrals, as a check of their
discrete-time algorithms. The result is

mNsin(26) |"? .
Kn(b.a)=| 257 sin(zNa)) et %, (31
with
mN cog(N—2)¢)—cogN¢)
SC'(N):ﬁ[(l_ 2 sin ¢ sin(N¢) )az
»’T? cos((N—2)¢)—cos(N¢)) )
1Nz 2sing sNg) | °
2sing¢
" sin(Ng) 2 ] 2
o)
f0=arcsi N (33)
and
w2T2
¢=arcco% 1- W) (34)

Note that we have usexdy=a, xy=Db.
Finally, the true propagator is obtained as
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K(b,a)=lim Ky(b,a)
N—o
Mo 1/2
2qif sin wT)

X exp = [ a2+ b?)cos T~ 2ab
ex 5% sian[(a )COS w ab];,

(35)
having used the fact that for largé,
oT
= m,
and
oT
= W

In conclusion, we have presented a strictly analytical method
by which the full propagator for the quantum harmonic os-
cillator may be obtained using Feynman’s path integral ap-
proach. Though the details are involved, the general ap-

proach should be accessible to advanced students.

In 1/2 1/2
particular, our presentation may be of interest to those in- :<2wiﬁT> (sin(wT)J :

sinj arccosy/2)]

structors of graduate-level quantum mechanics who would

like to introduce path integrals into their courses.
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APPENDIX

In Ref. 6, it is shown that the prefactdf,(T), may be
written as a product of factors,
1/2

N-1
A.

N N

11:[1 le

where theA; andB; satisfy the same recursion relations,

F(T)= lim

N— oo

(A1)

m 12
ZWiﬁT)

Ai=YAi-1—Aj-2, (A2)
Bj=vBj-1—Bj_2, (A3)
with y=2—w?T?/N?, and starting conditionsA_,;=—1,

Ap=0,B_;=0, andBy=1. As these authors obser;  ;

=B;. What we would like to point out is that these relations
brand these objects as Chebyshev polynomials of the secon

kind.*? Specifically,
B_U Y| sin(j+1)arcco$vy/2)]
Im¥iI\2) 7 simarcco$vy/2)]

Therefore, the product appearing in the formula Fg¢im)
is just

(Ad)
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A siMarccos$y/2)]
j=1 Bj j=1 | sin(j+1)arccosy/2)]
siMarccosy/2)]
sinarccosy/2
_ sifarccosy/2)] e
SinM N arcco$y/2)]
Thus we have
F(T)
( w2T2 1/2
m |12 sin arcco%l— 2N2”
:<2wiﬁT) lim o N = y LT
{ SI arcco —W
[ oT 1/2
= ” lim 1 N—Slr{W
“\2mint) (M _F{N<wT)
si —
L N
m T
(A6)
Finally, then
Mo 1/2
F(T):(zmﬁ sin(a)T)) ' (A7)

This is the desired result, once again obtained by purely ana-
lytical means.
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