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Path integral for the quantum harmonic oscillator using
elementary methods

S. M. Cohen
Department of Physics, Portland State University, Portland, Oregon 97207

~Received 12 September 1997; accepted 12 November 1997!

We present a purely analytical method to calculate the propagator for the quantum harmonic
oscillator using Feynman’s path integral. Though the details of the calculation are involved, the
general approach uses only matrix diagonalization and well-known integrals, techniques which an
advanced undergraduate should understand. The full propagator, including both the prefactor and
the classical action, is obtained from a single calculation which involves the exact diagonalization
of the discretized action for the system. ©1998 American Association of Physics Teachers.

I. INTRODUCTION

Since their introduction,1 Feynman path integrals have be-
come a powerful method of calculation for quantum me-
chanical problems.2,3 Though until recently exact solutions
were available for only the simplest cases, great advances in
developing methods of solving these integrals have been
made in the last 15 years.4 Yet even before these advances,
the approach bore fruit in many ways. For example, the
derivation5 of the ‘‘Feynman rules’’ was an extremely im-
portant contribution which greatly simplified calculations in
perturbation theory.

In a recent article, English and Winters6 have presented a
method of calculating the Feynman path integral for the pref-
actor of the propagator of the quantum harmonic oscillator.
The motivation for their work was ‘‘to introduce a formula-
tion of quantum mechanics which is usually considered be-
yond the scope of most undergraduate courses.’’ We agree
with these authors that it is of interest to make alternative
approaches to quantum mechanics accessible to the under-
graduate. We believe that path integrals have great beauty in
the simplicity of their basic formulation. They also clarify
various aspects of quantum mechanics, such as the uncer-
tainty principle. The clarification in this particular case fol-
lows immediately from the central idea upon which the path
integral formulation is based: that all paths in configuration
space contribute to the evolution of the wave function. Thus
there is an intrinsic uncertainty as to the evolution of any
system~we cannot know the trajectory the system follows!,
and this uncertainty is explicitly illustrated in this approach.

In this note, we give an alternative presentation which we
believe is somewhat more direct than that of English and
Winters. The method used by these authors required the use
of a symbolic computational program, and an intermediate
result written in terms of continued fractions.~But see our
Appendix for a discussion of how the approach of these au-
thors may be completed analytically.! Our method does not
require the use of a computer and is straightforward, for-
mally, so it should be accessible to students. An understand-
ing of Gaussian integrals, and of matrices and their eigen-
vectors and eigenvalues, are the only prerequisites to
following this approach.

Although this problem has been addressed in numerous
other works,2,3,6,7our presentation is new in some important
ways. First, we discretize the action from the very beginning,
allowing us to obtain a final result which is exact for arbi-
trary N ~the number of intervals chosen for the
discretization—see below!. These results are thus directly
transferable to the case of a polymer chain with nonvanish-

ing bond lengths confined in a harmonic potential. Addition-
ally, we show how the classical action arises naturally, along
with the prefactor, from a single calculation. This differs
from previous approaches in which only the prefactor was
calculated, the appearance of the classical action being as-
sumed due to a theorem given by Feynman.2

II. FORMAL EVALUATION OF THE PATH
INTEGRAL

The quantum propagator,K(b,a) for a particle beginning
at positionx(ta)5a and ending atx(tb)5b, is given as2

K~b,a!5E D@x~ t !#expS i

\ E
ta

tb
L@x~ t !,ẋ~ t !# D , ~1!

where

L@x~ t !,ẋ~ t !#5 1
2mẋ22 1

2mv2x2 ~2!

is the classical Lagrangian, and the symbol*D@x(t)# repre-
sents integration over all paths in configuration space begin-
ning at a and ending atb. As is common practice, these
integrals may be done by first partitioning the time interval
into N pieces of widthe each, so thatT5tb2ta5Ne. At the
end of the calculation the limitsN→`, e→0, are taken,
such thatT5Ne is held constant. Then, withxj5x( j e), we
may write

K~b,a!5 lim
N→`
e→0

S m

2p i\e D N/2

3E
2`

`

•••E
2`

`

dx1dx2•••dxN21

3eim/2\e( j 51
N $~xj 2xj 21!22e2v2xj

2%. ~3!

The argument of the exponential contains the quadratic form

Q5(
j 51

N

@~xj2xj 21!22e2v2xj
2#

5x0
21xN

2 2e2v2xN
2 22x1x022xNxN211Q8, ~4!

where we may write,Q85xWTAxW . Here,

xWT5~x1x2•••xN21! ~5!

is the transpose ofxW , and
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A5S 22e2v2 21 0 0 •••

21 22e2v2 21 0 •••

0 21 22e2v2 21 •••

0 0 21 22e2v2

A A A �

D .

~6!

If, using a change of variables from thexj to new variables
zj , we can rewriteQ8 into the form

Q85constant1(
j 51

N21

l j zj
2, ~7!

where the constant does not depend on thezj , then the
~coupled!integrals in Eq.~3! will have been reduced toN
21 separate Gaussian integrals. First, we will find a trans-
formation of variables,

xW5OyW , ~8!

such that

OTAO5 L, ~9!

with L a diagonal matrix,L i j 5l jd i j , and O will be or-
thogonal sinceA is symmetric and real. Then we may write

Q5x0
21xN

2 2v2e2xN
2 22xN (

j 51

N21

ON21,j y j

22x0 (
j 51

N21

O1,j y j1 (
j 51

N21

l j y j
2. ~10!

Completing the squares, we change variables once again to

zj5yj2
xNON21,j1x0O1,j

l j
, ~11!

yielding

Q5 (
j 51

N21

l j zj
21x0

21xN
2 2v2e2xN

2

2 (
j 51

N21
~ON21,j xN1O1,j x0!2

l j
. ~12!

SinceO is orthogonal, detO51, and the Jacobian of both
transformations, Eqs.~8! and ~11!, is unity. Hence we have
the replacement

E
2`

`

•••E
2`

`

dx1dx2•••dxN21⇒E
2`

`

•••E
2`

`

dz1dz2•••dzN21

~13!

in Eq. ~3! along with the transformation of variables. We
obtain

K~b,a!5 lim
N→`
e→0

S m

2p i\e D N/2

expH im

2\e Fx0
21xN

2 2v2e2xN
2

2 (
j 51

N21
~ON21,j xN1O1,j x0!2

l j
G J

3 )
j 51

N21 F E
2`

`

expS im

2\e
l j zj

2Ddzj G . ~14!

The integrals are now simple Gaussians, as advertised above,
yielding

K~b,a!5 lim
N→`
e→0

S m

2p i\e D 1/2

expH im

2\e Fx0
21xN

2 2v2e2xN
2

2 (
j 51

N21
~ON21,j xN1O1,j x0!2

l j
G J S )

j 51

N21

l j D 21/2

5ei /\ Scl lim
N→`
e→0

S m

2p i\e D 1/2

~det A!21/2[F~T!ei /\ Scl.

~15!

We will show below that

Scl5 lim
N→`
e→0

m

2e Fx0
21xN

2 2v2e2xN
2

2 (
j 51

N21
~ON21,j xN1O1,j x0!2

l j
G ~16!

is indeed the classical action, as it must be; and we will find
detA and thus the prefactorF(T), as well.

III. DIAGONALIZATION OF THE MATRIX, A

To implement the transformation of variables, Eq.~8!, we
must find the matrixO which diagonalizesA. As is well
known, O is the matrix of the eigenvectors ofA. It is not
difficult to show that a complete set of eigenvectors, which
we shall denote aseW j , is given in terms of their components
by

~eW j ! i5A2

N
sinS p i j

N D , ~17!

with 1< i , j <N21. The corresponding eigenvalues are

l j522v2e222 cosS p j

N D54 sin2S p j

2ND2v2e2, ~18!

leading directly to the result

det A5 )
j 51

N21

l j5 )
j 51

N21 F S 4 sin2S p j

2ND2v2e2D G
5

~24!N21

sin2 u21 )
j 51

M /2 Fsin2 u2sin2S p j

M D G , ~19!

where we have written sinu for ve/25vT/2N, and M
52N. The product appearing in the final form of this equa-
tion is given in Hansen,8
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)
j 51

M /2 Fsin2 u2sin2S p j

M D G5~21!M /2212M sin~Mu!cot u,

~20!

and we find9

det A5
sin~2Nu!

sin~2u!
, ~21!

correct for allN>vT/2. Furthermore, taking

Oi j 5~eW j ! i , ~22!

we may calculate

Scl~N!5
mN

2T Fx0
21xN

2 2
v2T2

N2 xN
2

2 (
j 51

N21
~ON21,j xN1O1,j x0!2

l j
G

5aNxN
2 1a0x0

21a0Nx0xN . ~23!

Now,

aN5
mN

2T S 12
v2T2

N2 2 (
j 51

N21 ON21,j
2

l j
D . ~24!

But,

(
j 51

N21 ON21,j
2

l j
5

2

N (
j 51

N21 sin2S p j ~N21!

N D
4 sin2S p j

2ND2sin2 u

5
2

N (
j 51

N21 sin2S p j

N D
4 sin2S p j

2ND2sin2 u

5
1

2N (
j 51

M /221 12cosS 4p j

M D
cosf2cosS 2p j

M D , ~25!

with, as before,M52N, sinu5vT/2N, and also cosf51
2v2T2/2N2. This sum may also be found in Hansen,10

(
j 51

M /221 cosS 2p jk

M D
cosf2cosS 2p j

M D
52

M

2
cscf csc

Mf

2
cosH S M

2
2kDfJ

1
1

4
csc2S f

2 D2
1

4
~21!k sec2S f

2 D , ~26!

where in our case we needk50,2. Then we have

aN5
mN

2T S 12
v2T2

N2 2
cos~~N22!f!2cos~Nf!

2 sin f sin~Nf! D .

~27!

The evaluation ofa0 is identical to that ofaN , apart from the
term proportional to 1/N; that is,

a05
mN

2T S 12
cos~~N22!f!2cos~Nf!

2 sin f sin~Nf! D . ~28!

In the same way, we find

a0N52
mN

T (
j 51

N21 ON21,jO1,j

l j

5
m

T (
j 51

N21 ~21! j sin2S p j

N D
cosf2cosS p j

N D 52
mN

T

sin f

sin~Nf!
.

~29!

In writing the last equality, we have again referred to
Hansen,11

(
j 51

N21 ~21! j sin2S p j

N D
cosf2cosS p j

N D 52N sin f cscNf. ~30!

IV. EXACT PROPAGATOR FOR N DISCRETE
TIME INTERVALS

Using the above results, we can determine the propagator
for an arbitrary number,N, of divisions of the time interval
T. This expression may be useful for students and others
doing numerical work with path integrals, as a check of their
discrete-time algorithms. The result is

KN~b,a!5S mN sin~2u!

2p i\T sin~2Nu! D
1/2

ei /\ Scl~N!, ~31!

with

Scl~N!5
mN

2T H S 12
cos~~N22!f!2cos~Nf!

2 sin f sin~Nf! Da2

1S 12
v2T2

N2 2
cos~~N22!f!2cos~Nf!

2 sin f sin~Nf! Db2

2
2 sin f

sin~Nf!
abJ , ~32!

u5arcsinS vT

2ND , ~33!

and

f5arccosS 12
v2T2

2N2 D . ~34!

Note that we have usedx05a, xN5b.
Finally, the true propagator is obtained as
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K~b,a!5 lim
N→`

KN~b,a!

5S mv

2p i\ sin vTD 1/2

3expH imv

2\ sin vT
@~a21b2!cosvT22ab#J ,

~35!

having used the fact that for largeN,

u>
vT

2N
,

and

f>
vT

N
.

In conclusion, we have presented a strictly analytical method
by which the full propagator for the quantum harmonic os-
cillator may be obtained using Feynman’s path integral ap-
proach. Though the details are involved, the general ap-
proach should be accessible to advanced students. In
particular, our presentation may be of interest to those in-
structors of graduate-level quantum mechanics who would
like to introduce path integrals into their courses.
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APPENDIX

In Ref. 6, it is shown that the prefactor,F(T), may be
written as a product of factors,

F~T!5S m

2p i\TD 1/2

lim
N→`

FN )
j 51

N21
Aj

Bj
G1/2

, ~A1!

where theAj andBj satisfy the same recursion relations,

Aj5gAj 212Aj 22 , ~A2!

Bj5gBj 212Bj 22 , ~A3!

with g522v2T2/N2, and starting conditions,A21521,
A050, B2150, andB051. As these authors observe,Aj 11

5Bj . What we would like to point out is that these relations
brand these objects as Chebyshev polynomials of the second
kind.12 Specifically,

Bj5U j S g

2D5
sin@~ j 11!arccos~g/2!#

sin@arccos~g/2!#
. ~A4!

Therefore, the product appearing in the formula forF(T)
is just

)
j 51

N21
Aj

Bj
5 )

j 51

N21 H sin@ j arccos~g/2!#

sin@arccos~g/2!#

sin@~ j 11!arccos~g/2!#

sin@arccos~g/2!#

J
5

sin@arccos~g/2!#

sin@N arccos~g/2!#
. ~A5!

Thus we have

F~T!

5S m

2p i\TD 1/2

lim
N→`H N

sinFarccosS 12
v2T2

2N2 D G
sinFN arccosS 12

v2T2

2N2 D GJ
1/2

5S m

2p i\TD 1/2

lim
N→`H N

sinFvT

N G
sinFNS vT

N D GJ
1/2

5S m

2p i\TD 1/2H vT

sin~vT!J 1/2

. ~A6!

Finally, then

F~T!5S mv

2p i\ sin~vT! D
1/2

. ~A7!

This is the desired result, once again obtained by purely ana-
lytical means.
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