6-1998

Path Integral for the Quantum Harmonic Oscillator Using Elementary Methods

Scott M. Cohen
Portland State University

Let us know how access to this document benefits you.
Follow this and additional works at: https://pdxscholar.library.pdx.edu/phy_fac
Part of the Physics Commons

Citation Details

This Article is brought to you for free and open access. It has been accepted for inclusion in Physics Faculty Publications and Presentations by an authorized administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.
I. INTRODUCTION

Since their introduction,1 Feynman path integrals have become a powerful method of calculation for quantum mechanical problems.2,3 Though until recently exact solutions were available for only the simplest cases, great advances in developing methods of solving these integrals have been made in the last 15 years.4 Yet even before these advances, the approach bore fruit in many ways. For example, the derivation5 of the “Feynman rules” was an extremely important contribution which greatly simplified calculations in perturbation theory.

In a recent article, English and Winters6 have presented a method of calculating the Feynman path integral for the propagator of the quantum harmonic oscillator. The motivation for their work was “to introduce a formulation of quantum mechanics which is usually considered beyond the scope of most undergraduate courses.” We agree with these authors that it is of interest to make alternative approaches to quantum mechanics accessible to the undergraduate. We believe that path integrals have great beauty in the simplicity of their basic formulation. They also clarify various aspects of quantum mechanics, such as the uncertainty principle. The clarification in this particular case follows immediately from the central idea upon which the path integral formulation is based: that all paths in configuration space contribute to the evolution of the wave function. Thus there is an intrinsic uncertainty as to the evolution of any system (we cannot know the trajectory the system follows), and this uncertainty is explicitly illustrated in this approach.

In this note, we give an alternative presentation which we believe is somewhat more direct than that of English and Winters. The method used by these authors required the use of a symbolic computational program, and an intermediate result written in terms of continued fractions. (But see our Appendix for a discussion of how the approach of these authors may be completed analytically.) Our method does not require the use of a computer and is straightforward, formally, so it should be accessible to students. An understanding of Gaussian integrals, and of matrices and their eigenvectors and eigenvalues, are the only prerequisites to following this approach.

Although this problem has been addressed in numerous other works,2,3,6,7 our presentation is new in some important ways. First, we discretize the action from the very beginning, allowing us to obtain a final result which is exact for arbitrary N (the number of intervals chosen for the discretization—see below). These results are thus directly transferable to the case of a polymer chain with nonvanishing bond lengths confined in a harmonic potential. Additionally, we show how the classical action arises naturally, along with the prefactor, from a single calculation. This differs from previous approaches in which only the prefactor was calculated, the appearance of the classical action being assumed due to a theorem given by Feynman.2

II. FORMAL EVALUATION OF THE PATH INTEGRAL

The quantum propagator, $K(b,a)$ for a particle beginning at position $x(t_a) = a$ and ending at $x(t_b) = b$, is given as

$$K(b,a) = \int \mathcal{D}[x(t)] \exp \left(\frac{i}{\hbar} \int_{t_a}^{t_b} \mathcal{L}[x(t),x'(t)] \right),$$

where

$$\mathcal{L}[x(t),x'(t)] = \frac{1}{2} m \dot{x}^2 - \frac{1}{2} m \omega^2 x^2 \tag{2}$$

is the classical Lagrangian, and the symbol $\int \mathcal{D}[x(t)]$ represents integration over all paths in configuration space beginning at a and ending at b. As is common practice, these integrals may be done by first partitioning the time interval into N pieces of width ϵ each, so that $T = t_b - t_a = N\epsilon$. At the end of the calculation the limits $N \to \infty$, $\epsilon \to 0$, are taken, such that $T = N \epsilon$ is held constant. Then, with $x_j = x(j\epsilon)$, we may write

$$K(b,a) = \lim_{N \to \infty} \frac{\epsilon^{N^2}}{(2\pi i \hbar \epsilon)^N} \times \prod_{j=1}^{N} dx_1 dx_2 \cdots dx_{N-1} \times e^{im/2\hbar \epsilon x_{N}} e^{i\epsilon^2 \omega^2 x_j^2}. \tag{3}$$

The argument of the exponential contains the quadratic form

$$Q = \sum_{j=1}^{N} [(x_j-x_{j-1})^2 - \epsilon^2 \omega^2 x_j^2]$$

$$= x_0^2 + x_N^2 - \epsilon^2 \omega^2 x_N^2 - 2x_1 x_0 - 2x_N x_{N-1} + Q' \tag{4},$$

where we may write, $Q' = \mathbf{x}^T \mathbf{A} \mathbf{x}$. Here,

$$\mathbf{x}^T = (x_1 x_2 \cdots x_{N-1}) \tag{5}$$

is the transpose of \mathbf{x},
coupled integrals in Eq. (3) will have been reduced to \(N - 1 \) separate Gaussian integrals. First, we will find a transformation of variables,

\[
\tilde{\mathbf{x}} = \mathbf{O}\tilde{\mathbf{y}},
\]

such that

\[
\mathbf{O}^T \mathbf{A} \mathbf{O} = \Lambda,
\]

with \(\Lambda \) a diagonal matrix, \(\Lambda_{ij} = \lambda_j \delta_{ij} \), and \(\mathbf{O} \) will be orthogonal since \(\mathbf{A} \) is symmetric and real. Then we may write

\[
Q = x_0^2 + x_N^2 - \omega^2 \varepsilon^2 x_2^2 - 2x_N \sum_{j=1}^{N-1} \mathbf{O}_{N-1,j} y_j
\]

\[
- 2x_0 \sum_{j=1}^{N-1} \mathbf{O}_{1,j} y_j + \sum_{j=1}^{N-1} \lambda_j y_j^2.
\]

Completing the squares, we change variables once again to

\[
z_j = y_j - \frac{x_N \mathbf{O}_{N-1,j} + x_0 \mathbf{O}_{1,j}}{\lambda_j},
\]

yielding

\[
Q = \sum_{j=1}^{N-1} \lambda_j z_j^2 + x_0^2 + x_N^2 - \omega^2 \varepsilon^2 x_2^2
\]

\[
- \sum_{j=1}^{N-1} \left(\mathbf{O}_{N-1,j} x_N + \mathbf{O}_{1,j} x_0 \right)^2 / \lambda_j.
\]

Since \(\mathbf{O} \) is orthogonal, \(\det \mathbf{O} = 1 \), and the Jacobian of both transformations, Eqs. (8) and (11), is unity. Hence we have the replacement

\[
\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} dx_1 dx_2 \cdots dx_{N-1} = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} dz_1 dz_2 \cdots dz_{N-1}.
\]

in Eq. (3) along with the transformation of variables. We obtain

\[
K(b,a) = \lim_{N \to \infty} \left(\frac{m}{2\pi i \hbar} \right)^{1/2} \exp \left[im \frac{b}{2\hbar} \left(x_0^2 + x_N^2 - \omega^2 \varepsilon^2 x_2^2 \right)
\right.
\]

\[
- \sum_{j=1}^{N-1} \left(\mathbf{O}_{N-1,j} x_N + \mathbf{O}_{1,j} x_0 \right)^2 / \lambda_j
\]

\[
\times \prod_{j=1}^{N-1} \int_{-\infty}^{\infty} \exp \left[\frac{im}{2\hbar} \lambda_j z_j^2 \right] dz_j.
\]

The integrals are now simple Gaussians, as advertised above, yielding

\[
K(b,a) = \lim_{N \to \infty} \left(\frac{m}{2\pi i \hbar} \right)^{1/2} \left(\det \mathbf{O} \right)^{-1/2} \exp \left[im \frac{b}{2\hbar} \left(x_0^2 + x_N^2 - \omega^2 \varepsilon^2 x_2^2 \right)
\right.
\]

\[
- \sum_{j=1}^{N-1} \left(\mathbf{O}_{N-1,j} x_N + \mathbf{O}_{1,j} x_0 \right)^2 / \lambda_j
\]

\[
\times \prod_{j=1}^{N-1} \int_{-\infty}^{\infty} \exp \left[\frac{im}{2\hbar} \lambda_j z_j^2 \right] dz_j.
\]

We will show below that

\[
S_{cl} = \lim_{N \to \infty} \left(\frac{m}{2\pi i \hbar} \right)^{1/2} \left(\det \mathbf{O} \right)^{-1/2} \exp \left[im \frac{b}{2\hbar} \left(x_0^2 + x_N^2 - \omega^2 \varepsilon^2 x_2^2 \right)
\right.
\]

\[
- \sum_{j=1}^{N-1} \left(\mathbf{O}_{N-1,j} x_N + \mathbf{O}_{1,j} x_0 \right)^2 / \lambda_j
\]

is indeed the classical action, as it must be; and we will find \(\det \mathbf{A} \) and thus the prefactor \(F(T) \), as well.

III. DIAGONALIZATION OF THE MATRIX, A

To implement the transformation of variables, Eq. (8), we must find the matrix \(\mathbf{O} \) which diagonalizes \(\mathbf{A} \). As is well known, \(\mathbf{O} \) is the matrix of the eigenvectors of \(\mathbf{A} \). It is not difficult to show that a complete set of eigenvectors, which we shall denote as \(\tilde{e}_j \), is given in terms of their components by

\[
(\tilde{e}_j)_i = \sqrt{\frac{2}{N}} \sin \left(\frac{\pi ij}{N} \right),
\]

with \(1 \leq i, j \leq N-1 \). The corresponding eigenvalues are

\[
\lambda_j = 2 - \omega^2 \varepsilon^2 - 2 \cos \left(\frac{\pi j}{N} \right) = 4 \sin^2 \left(\frac{\pi j}{2N} \right) - \omega^2 \varepsilon^2,
\]

leading directly to the result

\[
\det \mathbf{A} = \prod_{j=1}^{N-1} \lambda_j = \prod_{j=1}^{N-1} \left[4 \sin^2 \left(\frac{\pi j}{2N} \right) - \omega^2 \varepsilon^2 \right]
\]

\[
= \left(-4 \right)^{N-1} \frac{M^2}{\sin^2 \theta - \sin^2 \left(\frac{\pi j}{M} \right)}
\]

where we have written \(\sin \theta \) for \(\omega e/2 = \omega T/2N \) and \(M = 2N \). The product appearing in the final form of this equation is given in Hansen.
The evaluation of a_0 is identical to that of a_N, apart from the term proportional to $1/N$; that is,

\[
a_0 = \frac{mN}{2T} \left(1 - \frac{\cos((N-2)\phi) - \cos(N\phi)}{2\sin \phi \sin(N\phi)} \right). \quad (28)
\]

In the same way, we find

\[
a_{0N} = \frac{mN}{T} \sum_{j=1}^{N-1} \frac{\sin^2 \left(\frac{\pi j}{N} \right)}{\cos \phi - \cos \left(\frac{\pi j}{N} \right)} = \frac{mN}{T} \frac{\sin \phi}{\sin(N\phi)}. \quad (29)
\]

In writing the last equality, we have again referred to Hansen,\(^{10}\)

\[
\sum_{j=1}^{N-1} \frac{(-1)^j \sin^2 \left(\frac{\pi j}{N} \right)}{\cos \phi - \cos \left(\frac{\pi j}{N} \right)} = -N \sin \phi \csc N\phi. \quad (30)
\]

IV. Exact Propagator for N Discrete Time Intervals

Using the above results, we can determine the propagator for an arbitrary number, N, of divisions of the time interval T. This expression may be useful for students and others doing numerical work with path integrals, as a check of their discrete-time algorithms. The result is

\[
K_N(b, a) = \left(\frac{mN}{2\pi i T} \sin(2\theta) \right)^{1/2} \exp \left[\frac{-i}{2} S_c(N) \right], \quad (31)
\]

with

\[
S_c(N) = \frac{mN}{2T} \left(1 - \frac{\cos((N-2)\phi) - \cos(N\phi)}{2\sin \phi \sin(N\phi)} \right) a^2 - \frac{2 \sin \phi}{\sin(N\phi)} ab \right], \quad (32)
\]

\[
\theta = \arcsin \left(\frac{\omega T}{2N} \right), \quad (33)
\]

and

\[
\phi = \arccos \left(1 - \frac{\omega^2 T^2}{2N^2} \right). \quad (34)
\]

Note that we have used $x_0 = a$, $x_N = b$.

Finally, the true propagator is obtained as
\[K(b,a) = \lim_{N \to \infty} K_N(b,a) \]

\[= \left(\frac{m \omega}{2 \pi i} \right)^{1/2} \exp \left\{ \frac{i m \omega}{2 h \sin \omega T} \left[(a^2 + b^2) \cos \omega T - 2ab \right] \right\}, \]

(35)

having used the fact that for large \(N \),

\[\theta \equiv \frac{\omega T}{2N}, \]

and

\[\phi \equiv \frac{\omega T}{N}. \]

In conclusion, we have presented a strictly analytical method by which the full propagator for the quantum harmonic oscillator may be obtained using Feynman’s path integral approach. Though the details are involved, the general approach should be accessible to advanced students. In particular, our presentation may be of interest to those instructors of graduate-level quantum mechanics who would like to introduce path integrals into their courses.

ACKNOWLEDGMENTS

We would like to thank Pui-Tak Leung for helpful comments and for bringing Ref. 6 to our attention.

APPENDIX

In Ref. 6, it is shown that the prefactor, \(F(T) \), may be written as a product of factors,

\[F(T) = \left(\frac{m}{2 \pi i h T} \right)^{1/2} \lim_{N \to \infty} \left[N \prod_{j=1}^{N-1} \frac{A_j}{B_j} \right]^{1/2}, \]

(A1)

where the \(A_j \) and \(B_j \) satisfy the same recursion relations,

\[A_j = \gamma A_{j-1} - A_{j-2}, \]

(A2)

\[B_j = \gamma B_{j-1} - B_{j-2}, \]

(A3)

with \(\gamma = 2 - \omega^2 T^2/N^2 \), and starting conditions, \(A_{-1} = -1, A_0 = 0, B_{-1} = 0, B_0 = 1 \). As these authors observe, \(A_{j+1} = B_j \). What we would like to point out is that these relations brand these objects as Chebyshev polynomials of the second kind. Specifically,

\[B_j = U_j \left(\frac{\gamma}{2} \right) \frac{\sin[(j+1) \arccos(\gamma/2)]}{\sin[\arccos(\gamma/2)]}. \]

(A4)

Therefore, the product appearing in the formula for \(F(T) \) is just

\[\prod_{j=1}^{N-1} \frac{A_j}{B_j} = \lim_{N \to \infty} \left\{ \frac{\sin[j \arccos(\gamma/2)]}{\sin[\arccos(\gamma/2)]} \right\}^{1/2} \]

Thus we have

\[F(T) = \left(\frac{m}{2 \pi i h T} \right)^{1/2} \lim_{N \to \infty} \left[N \frac{\sin \left(\frac{\omega T}{N} \right)}{\sin \left(\frac{\omega T}{N} \right)^{1/2}} \right]^{1/2}, \]

(A5)

Finally, then

\[F(T) = \left(\frac{m}{2 \pi i h \sin(\omega T)} \right)^{1/2}. \]

(A7)

This is the desired result, once again obtained by purely analytical means.

9. This result has been obtained previously in H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, and Polymer Physics (World Scientific, Singapore, 1990), p. 85, Eq. #2.140.
10. Reference 8, p. 272, Eq. #41.2.19.
11. Reference 8, p. 272, Eq. #41.2.25.