
Portland State University Portland State University 

PDXScholar PDXScholar 

Computer Science Faculty Publications and 
Presentations Computer Science 

6-2013 

GUInform: Interactive Fiction for GUI Prototyping GUInform: Interactive Fiction for GUI Prototyping 

Tesca Fitzgerald 
Portland State University, tesca@cs.pdx.edu 

Follow this and additional works at: https://pdxscholar.library.pdx.edu/compsci_fac 

 Part of the Graphics and Human Computer Interfaces Commons 

Let us know how access to this document benefits you. 

Citation Details Citation Details 
Fitzgerald, Tesca, "GUInform: Interactive Fiction for GUI Prototyping" (2013). Computer Science Faculty 
Publications and Presentations. 209. 
https://pdxscholar.library.pdx.edu/compsci_fac/209 

This Technical Report is brought to you for free and open access. It has been accepted for inclusion in Computer 
Science Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if 
we can make this document more accessible: pdxscholar@pdx.edu. 

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/compsci_fac
https://pdxscholar.library.pdx.edu/compsci_fac
https://pdxscholar.library.pdx.edu/compsci
https://pdxscholar.library.pdx.edu/compsci_fac?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F209&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F209&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/compsci_fac/209
https://pdxscholar.library.pdx.edu/compsci_fac/209?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F209&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:pdxscholar@pdx.edu


GUInform: Interactive Fiction for GUI Prototyping

Tesca Fitzgerald
Portland State University

P.O. Box 751
Portland, OR 97207

tesca@cs.pdx.edu

ABSTRACT
There are many methods of rapidly prototyping a graphical
user interface (GUI), the most prominent being paper pro-
totyping and wireframe prototyping. In paper prototyping,
the developer creates a physical GUI prototype using simple
materials such as paper, pencils, and tabbed cards. Paper
prototyping, while easy to implement, leads to unrealistic
and awkward user interaction. Wireframe prototyping in-
volves the use of simplified software tools to develop a prim-
itive version of the proposed user interface. This method
enables graceful interaction, but requires major implemen-
tation e↵ort. I propose a middle ground: a method of rapid,
interactive GUI prototyping using Interactive Fiction (IF)
tools.

I have modified Gargoyle, an IF environment, to render and
display SVG in the interactive console. I have also built li-
braries for the Inform 7 IF description language, enabling
SVG rendering of GUI elements. The resulting system,
GUInform, permits a GUI developer to use Inform 7 to de-
fine the elements of a GUI prototype and how they respond
to interaction. A user can then interact with this prototype
by typing textual commands and viewing the displayed re-
sponses.

Keywords
Graphical User Interface, Prototype, Interactive Fiction

1. INTRODUCTION
Prototyping is an essential step in the development of a soft-
ware product. By prototyping their graphical user interface
designs, software developers can test that their designs are
intuitive and e↵ective. The method that developers choose
to prototype their graphical user interface (GUI) designs
may impact the e�ciency and e↵ectiveness of the process.
Choosing a method that is rapid while allowing for inter-
active testing can be di�cult, as each method is associated
with features and drawbacks that impact the prototyping

To appear as Portland State University Computer Science Department Tech-

nical Report #13-01, June 2013.

process.

In this paper, I evaluate the uses, features, and drawbacks
of paper prototyping and wireframe prototyping. I discuss
the background of Interactive Fiction (IF) systems, followed
by an introduction of a new method of interactive prototyp-
ing using the Inform 7 IF description language for rapidly
prototyping GUIs.

Section 2 discusses the importance of user interface proto-
typing and review the general classification of prototyping
methods. Sections 3 and 4 discuss the benefits and draw-
backs of using paper prototyping and wireframe prototyp-
ing. Section 5 provides a summary of interactive fiction and
its technologies. Section 6 describes the process involved
in developing the GUInform prototyping system. Sections
7 draws conclusions and makes recommendations for future
work.

I call this project the ”GUInform”system for interactive pro-
totyping. The main contributions of this work can be sum-
marized as follows.

1. A method of rapid GUI prototype development using
an IF platform

2. A system for textual interaction with GUI prototypes

3. The addition of SVG capabilities to Gargoyle, an IF
environment

4. An extension for the Inform 7 description language
that provides a toolkit of elements for creating GUI
prototypes

2. BACKGROUND
Prototyping is an important stage in the software develop-
ment process, and is used to incrementally improve a de-
sign prior to its implementation. While prototyping often
takes significant time and e↵ort to complete, its benefits far
outweigh its cost. Prototyping allows the developers to cor-
rect ambiguities found during the requirements and specifi-
cations stage of the software engineering process [10]. Catch-
ing such ambiguities during the specifications process often
requires less time and money to correct than if discovered
during the development or production stages.

In applications with a graphical user interface (GUI), the
prototyping stage involves viewing or interacting with a vi-



sual design of variable finality. In creating such a prototype,
the developer is forced to consider the intended interface in
more detail. An interface that may have seemed intuitive in
concept may be revealed as too complex or di�cult to nav-
igate only once a visual, GUI prototype of the interface has
been developed. As a result, time and e↵ort can be saved if
this realization can be made during the prototyping stage,
rather than following the GUI’s implementation. Interact-
ing with a GUI prototype can be accomplished in multiple
ways depending on the degree to which the user interface
has been implemented. User interface prototyping can be
accomplished using several approaches. Exploratory, exper-
imental, and evolutionary prototyping are common meth-
ods [6].

2.1 Definitions
Several terms are recurrent throughout this paper. A devel-
oper is a person designing or implementing a GUI prototype,
which is then evaluated by a test user. I refer to ”interac-
tive” prototyping as any prototyping process in which the
GUI prototyping system provides the test user with real-
time feedback. This feedback may be in the form of an up-
dated image, pop-up window, change in page view, or other
interaction between the prototype and the user. Each visual
aspect of the interface, such as a button or drop-down menu,
is referred to as an element. Finally, a ”rapid” prototyping
process allows a GUI prototype developer to easily create
and modify their designs.

2.2 Prototyping Methods
The aim of exploratory prototyping is to develop a proto-
type that explores a potential solution to a posed problem.
As a result, this prototyping method often results in a pre-
sentation prototype or functional prototype. A presentation
prototype is used to demonstrate how a user interface de-
sign fits the user’s specifications. A functional prototype is
also used to demonstrate the user interface design, but also
incorporates the usability and functionality of the proposed
interface.

Experimental prototyping is focused on the usability of the
interface. The most important result of this type of proto-
typing is a demonstration of how the interface is used, rather
than how it appears to the user. As a result, a common de-
liverable of this type of prototyping is a functional prototype
or breadboard. A breadboard represents the technical de-
tails of a prototype’s functionality. Rather than represent
the project as a whole, breadboards can be used to test and
design particular portions of the project that must be eval-
uated for risk.

Finally, evolutionary prototyping is a method used to change
and evaluate a usable prototype over time. Rather than a
single project, evolutionary prototyping is focused on adapt-
ing a prototype to further its development. As a result, a
common deliverable of this prototyping method is a pilot
system. A pilot system is a refined prototype that can be
incorporated into the final design, and represents an inter-
face design that has already been refined and implemented.

Once a usable prototype, such as a functional prototype or
pilot system, has been created, the developer may choose to
present it to a test user, who may be a potential end-user of

Figure 1: A Simple Paper Prototype [21]

the product. After the developer has given the test user a
task to complete, such as ”Locate the product information
page,” the test user interacts with the prototype to complete
the task. By reviewing or recording the test user’s interac-
tions with the prototype, the developer can learn whether
the interface design is intuitive, e↵ective, and meets the in-
terface design criteria. Changes may then be made to en-
hance the prototype in response to this testing feedback.

3. PAPER PROTOTYPING
Paper prototyping is a common method of application pro-
totyping for usability testing, and was first used in the early
1990’s [23]. This method is a form of exploratory proto-
typing, as it is an easily implemented method of exploring
potential user interface designs. The aim of this form of
prototyping is to create a presentation prototype that may
illustrate the proposed interface, but does not allow for easy
usability or functionality testing. Creating a paper proto-
typing consists of using pen, paper, and other common craft
supplies to create a prototype of the proposed user inter-
face. Elements of the interface are drawn onto the paper.
Figure 1 depicts an example of a paper prototype of a web-
site’s shopping cart page.

The complexity of paper prototyping depends on the devel-
oper’s intentions and on the level of potential interaction
with the prototype. For example, a set of tabbed index
cards can be used to represent a tabbed interface, with each
index card containing a drawing of its respective content
in the interface. The content of drop down menus can be
drawn directly onto the paper prototype, and text or graph-
ical content can be written, drawn, or printed directly onto
the paper prototype. Prototype elements can be drawn onto
sticky notes and then rearranged to alter the prototype de-
sign. Figure 2 shows how tabbed cards can be used to rep-
resent the tabs in an interface design.

The ease of creating a paper prototype has led to it being the
most commonly used prototyping method [9]. Two meth-
ods are common for testing a paper prototype. The first
method involves asking a product user to draw how they



Figure 2: Using Tabs for Paper Prototype Interac-
tion [24]

would expect the interface to appear follow the completion
of a specified action. This method allows the product de-
velopers and designers to understand how their users expect
to use their product’s interact, allowing them to design the
interface accordingly.

The second method involves the creation of a paper proto-
type by the interface designer that is then presented to a
product user. The user then interacts with the paper pro-
totype in a way that corresponds to how they would inter-
act with an actual interface of the same design [13]. Users
perform tasks typical of the resulting interface product by
interacting with a physical, paper version of the interface.
To mimic a computerized interaction with the prototype,
the paper prototype is manipulated using physical variants
corresponding to interactions that would occur in the final
interface [22]. To simulate clicking on a button drawn on the
paper prototype in Figure 3, the user may tap the button
drawing with a pencil or otherwise indicate ’clicking’ on the
button drawing.

This paper prototyping method allows developers to receive
feedback regarding their user interface design by observing
how the user manipulates the paper interface [23].

3.1 Advantages of Paper Prototyping
Paper prototyping has many benefits. First, paper prototyp-
ing is a method that is accessible to people without techni-
cal backgrounds who may find computer-based prototyping
methods to be intimidating [11]. No programming experi-
ence is required to create prototypes, allowing designers of
diverse backgrounds and roles to participate in the proto-
typing process. Second, multiple iterations of a prototype
can be developed quickly. This is in contrast to the time
cost associated with changing an implemented prototype be-
tween prototyping iterations, as the implementation form of
prototyping requires that the implementation be potentially
rewritten to account for changes in design. Paper prototyp-
ing allows the interface developer to completely recreate or
edit a new interface with minimal e↵ort. Finally, paper pro-

Figure 3: Using Static Tabs for Paper Prototyp-
ing [21]

totyping is an inexpensive form of prototyping, as low-cost
materials are used in contrast to perhaps expensive proto-
typing software suites.

3.2 Disadvantages of Paper Prototyping
While paper prototyping has many benefits, there are also
scenarios in which it is not a desirable prototyping method.
Paper prototyping is useful for testing the visual aspects of
an interface, but does not realistically simulate an interac-
tive interface. Elements of interaction such as scrolling, text
fonts, and graphics can be di�cult to represent in a paper
prototype. Additionally, it can be time consuming to create
an interface in which design components are used repeat-
edly, as the design components must be re-drawn for each
interface view. Elements of the interface that are common
to multiple pages can be di�cult to duplicate or reuse for
multiple iterations of the same prototype. Finally, unless
prototypes are drawn onto removable sticky notes, a new
interface must be drawn when elements need to be changed
or relocated during an iteration of the prototyping process.

Overall, paper prototyping is an appealing method of proto-
typing when few interfaces need to be created and a limited
degree of interaction is required to test the prototype. This
method is useful and e↵ective for quickly prototyping an in-
terface, but is not a good indicator of usability since it is
not fully interactive, and is not ideal for prototyping multi-
ple, frequently changing interfaces. Paper prototyping may
be appropriate for the first stage of interface development
when developers want to test a potential interface design.
However, a di↵erent prototyping system may be needed to
present the proposed interface to a test user.

4. WIREFRAME PROTOTYPING
Another method of interface prototyping is the development
of a rudimentary implementation of the interface. This in-
volves the creation of a wireframe prototype in the target
programming language or using interface building software.
This method of prototyping may involve writing one or more
programs that would allow the basic functionalities of the
prototype to be tested. In doing so, this method allows the



Figure 4: An HTML Wireframe Prototype [12]

developers to focus on the usability and interaction with
components of the interface prototype, rather than specifics
of its visual design. Basic shapes are used to represent func-
tional elements of the eventual design, creating an inter-
active illustration of the proposed interface design [20], as
shown in Figures 4 and 5.

A prototype developed using this implementation method
would also be tested by a user guided by a test facilitator.
Similar to the evaluation of paper prototypes, the facilita-
tor and developers observe the user’s attempts to complete a
task specified by the facilitator. However, instead of simulat-
ing an interaction via a paper prototype, the user interacts
with the prototype as if it were the final implementation of
the product. The test facilitators can gain feedback from the
user’s interaction with the prototype by observing any di�-
culties the user has when attempting to complete the task.
This allows the developers to view more realistic interactions
with the interface prototype than if paper prototypes were
used.

4.1 Advantages of Wireframe Prototyping
This method of implementing a more complete prototype
allows the developers to determine whether the interactions
associated with the prototype are intuitive. Figure 5 illus-
trates an wireframe prototype that can respond to user in-
teraction such as button clicking.

If the user has di�culty using the interface to complete the
task given by the test facilitator, the interface developers can
adjust the prototype accordingly. Additionally, this proto-
typing method may reveal design constraints that could only
be realized through the process of implementing the proto-
type, such as constraints of the target system that impact
how the interface must be designed. When a change needs
to be made to the prototype, the same prototype can be kept
with minor edits to its source code, rather than recreating
the entire prototype to incorporate a change. The prototype
code can also be incorporated in the final implementation of
the application should the prototype be successful.

Figure 5: A Balsamiq Wireframe Prototype [8]

4.2 Disadvantages of Wireframe Prototyping
While there are many benefits to wireframe prototyping, it
is also a time consuming method. When creating a full or
partial implementation of an interface, the developer must
devote time to determining the implementation details of
the interface design. This detracts from the purpose of in-
terface prototyping, which is to create an intuitive design
that allows the user to e↵ectively use the software product
rather than define the technical details of how the inter-
face should be implemented. As a result, it is di�cult to
use this method to quickly design, test, and evaluate inter-
face designs. Should a complete redesign of the interface be
necessary, much development time is wasted, as the imple-
mentation of the interface is no longer usable for prototype
design.

Overall, this method of prototyping by implementation may
be best suited for testing interfaces that are already near
their final form. Rather than being used in the initial de-
sign, creation, or testing phases of prototyping, this method
would best be used in scenarios where the product is not at
risk for a complete redesign and will require few edits.

4.3 Optimal Prototyping
After looking at these the paper prototyping and prototyp-
ing by implementation methods, two extremes of prototype
development methods, it seems that the following aspects
are desirable in a prototyping method:

• Fast initial implementation

• Easily altered to reflect changes in design

• Models interactions with the interface

• Accessible to those without technical backgrounds

An optimal prototyping method will cater to these needs of
developers during the prototyping stage. While paper pro-
totyping addresses the criteria of fast initial implementation
and accessibility to those without technical backgrounds, it
fails to accurately simulate interactions with the interface.
Additionally, it is not as suitable for scenarios in which fre-
quent alterations must be made to prototypes. Prototyp-
ing by wireframe implementation properly simulates inter-
actions with the interface, but is extremely time consuming



to create initially and is not suitable for frequently changing
designs. An optimal prototyping method will strike a bal-
ance between the two extremes of the paper and wireframe
methods.

5. INTERACTIVE FICTION
Interactive fiction (IF) is a form of writing that involves the
user by responding to the user’s text statements or com-
mands [14]. Text adventures, a form of IF, are a type of
computer game that interacts with the player via text. In
its standard use, an IF player simulates the exploration of a
computerized environment without a visual representation,
but rather though the use of textual dialogs [1]. The current
situation is presented in the IF game as a textual, story-like
description to which the user can respond with a variety of
text commands. These interactions, both story dialog and
text commands, occur through a console window that dis-
plays the situation description in the form of a text log and
accepts input from the user via a text prompt. When the
user enters a text command into the prompt, the IF game
presents an updated situation story according to rules that
are pre-defined by the game developer. Figure 6 demon-
strates an interactive console as it would be used in an IF
game.

The ”Z-machine”[15] is the IF virtual machine developed by
Infocom in 1979 to run large interactive fiction games on
computers with limited available memory. The code it in-
terprets is known as ”Z-code”, which is now the standard
for running interactive fiction. Interactive fiction programs
can be expressed compactly using Z-code, an object ori-
ented language describing interactive fiction objects. A in-
terpreter program on the user’s personal computer must em-
ulate the Z-machine and interpret Z-code as input to provide
the game [3].

Since the Z-machine file format was designed for use on com-
puters with limited memory, it does not allow the creation of
games larger than 128K. The number of objects, attributes,
and properties are also limited to keep the game size to
128K. Additionally, the Z-machine does not support the use
of graphics, sound, various typefaces, and additional I/O
features that are desirable to interactive fiction developers.

Glk is an API developed to handle I/O interactions with
the text interfaces associated with interactive fiction [16].
It is designed to handle input from the user and output as
designated by its associated virtual machine. The purpose of
Glk is to provide a common I/O API for multiple versions of
interactive fiction virtual machines, including the Z-machine
and with multiple libraries.

The Glulx virtual machine specification[18] was created by
Andrew Plotkin and Graham Nelson to address the limita-
tions of the Z-machine specifications. Glulx is a lightweight
virtual machine designed for use with the Inform language,
a language specifically designed for creating interactive fic-
tion. Glulx relies on the Glk I/O API and overcomes the
memory constraint of the Z-machine by using 32-bit mem-
ory rather than 16-bit memory [17]. As a result of being
lightweight and utilizing more available memory than the Z-
machine, the Glulx virtual machine is advantageous for use
in modern computers.

Gate Waiting Area A-1

You can see a Gate A-1 Door, an insurance

salesman, a flight attendant, a red suitcase

(empty), a blue table and a cookie here.

> examine suitcase

It’s the salesman’s suitcase, colored red. As you

look at it, the salesman begins to glare at you.

> go north

Terminal A-1 Commons

A airport terminal common area with the usual

restaurants, tables, vending machines, information

desks, restrooms, etc. To the south is the gate

waiting area.

You can see a television and an oak desk (on which

is a blue key) here.

> take key

Taken.

> go south

Gate Waiting Area A-1

You can see a Gate A-1 Door, an insurance

salesman, a flight attendant, a red suitcase

(empty), a blue table and a cookie here.

> unlock door

(with the blue key)

You unlock the Gate A-1 Door.

>

Figure 6: An Interactive Fiction Game Transcript



Figure 8: A web page prototype prior to receiving
a text command

The Inform 7 language[19] is designed for the creation of
interactive fiction using natural language programming. As
a result, it allows a user without a technical background to
create interactive fiction. The Inform compiler is designed
to create code for both the Z-machine and Glulx virtual
machines. Programs written in Inform 7 are created using
the Inform IDE shown in Figure 7.

6. METHODS
My goal was to create a prototyping system that allows for
the easy implementation of prototype designs while still pro-
viding an interactive experience to the user. I chose to use
Inform 7 to implement this prototyping system because it
allows for such interactions between the user and an inter-
active console, which could present the interface prototype.
Additionally, Inform 7 does not require a technical back-
ground to use, increasing the number of potential users. It
is also able to be used on multiple operating systems and
does not use a large amount of memory.

As interactive fiction responds to text commands, the pro-
totyping system would use text input from the user to inter-
act with the prototype design. The idea, proposed by Bart
Massey, was to define GUI elements using Inform and dis-
play them in an interactive fiction text-interface window as
shown in Figure 8.

6.1 Architecture
The GUI prototype’s description and interaction rules are
implemented in Inform 7. These interaction rules contain
references to commands defined in a custom Inform 7 ex-
tension that I developed. The layers of the system include
the following: the GLK specification; the implementation of
the GLK specification in an Inform 7 interpreter; and the
Inform 7 extension that provides a definition of commands
that call for SVG rendered in the interpreter. To support
commands that result in SVG drawings, changes are needed
for each of these layers. Figure 9 illustrates the architecture
of the GUInform system.

Figure 9: GUInform System Architecture



Figure 7: The Inform 7 IDE

Figure 10: Updated Prototype in Response to a
Text Command

6.2 Inform 7 Prototype Definition
Text commands are used to simulate actions performed on
the prototype. As commands are entered into the interface
window, the GUI elements are changed to reflect the results
of interactions with the prototype. Figure 10 shows the same
prototype as in Figure 8, but updated after a text command
is entered.

To use the prototyping system, the developer must deter-
mine the interactions that can be performed on the proto-
type. These interactions are modeled as action rules in In-
form, which allow an action to result from a text command
entered by the user. Actions dictate how the prototype re-
sponds to various commands from the user. The Inform 7
code in Figure 11 demonstrates how an action may be de-
fined for an interface prototype. This action responds to
the text commands ”click home” and ”click home button” by

Clicking home is an action applying to nothing.

Understand "click home" or "click home button" as

clicking home.

Carry out clicking home:

Display the home panel.

Figure 11: An Inform 7 Action Definition

displaying the home panel, which is defined elsewhere in the
Inform 7 code. This home panel definition, along with mul-
tiple other panel definitions, comprise the visual elements
of the prototype’s interface design. Each panel contains a
description of various visual GUI elements. The Inform 7
code in Figure 12 demonstrates the definition of a panel.

6.3 GLK I/O Layer and IF Interpreter
An interpreter is necessary to run Inform 7 programs as IF.
Some currently available IF interpreters have graphics ca-
pabilities, enabling them to display a static image stored
on disk. However, none of these interpreters support SVG
rendering. This limitation led me to modify an existing IF
interpreter to support SVG. I chose to modify Tor Ander-
sson’s implementation of the Gargoyle interpreter due to
its portability on multiple operating systems, current sup-
port for static graphics, and availability as an open-source
project [2].

The GLK specification is a standard held universally for
all Inform 7 interpreters to ensure that basic functions are
implemented. While this standard requires the implemen-
tation of various functions, it does not require every inter-
preter to support all features. For example, each interpreter



Section - The Basic Panel

The basic panel is a panel.

The basic-background is a white background. The x

is 0. The y is 0. The width is 140. The height is

210.

The result is a text field. The x is 10. The y is

10. The width is 120. The height is 30. The

content is "0".

To make the basic panel:

Include the basic-background in the basic panel;

Include the result in the basic panel;

Figure 12: A Panel Definition Example

may support static graphics display, or instead implement
a function stating that the graphics feature is unavailable.
While graphics are a part of the GLK specification, support
for SVG is not. As a result, I edited the GLK specifica-
tion to include the standard for a function that renders SVG
text and displays the rendered image in the interactive inter-
preter window. The revised specification files are available
in the GUInform project repository [7].

6.4 SVG Rendering
To render SVG strings, an SVG rendering library was needed.
After considering multiple libraries, I decided to use the
Cairo library because of its portability and implementation
in C. Cairo is an open source project and provides a C API,
which was necessary to render SVG directly from the Gar-
goyle code. Many other SVG rendering libraries contain
extraneous image editing abilities that would not be needed
in this project, such as image manipulation or rendering of
multiple image formats. Additionally, Cairo is also heavily
documented and easily available for any users who would be
interested in downloading my version of Gargoyle to render
SVG images. Cairo is available for download online [4].

Cairo works by creating a ”surface object” from the SVG,
which can then be equated to a GLK picture object’s data.
One option was to have Cairo convert the SVG to an equiv-
alent PNG file which would then be saved in the game’s
directory. The Inform program would then read the PNG
file and display it as it would any other image in its direc-
tory. This works in testing mode, but in the release mode,
any figures to be used in the Inform game must be pack-
aged into the release version game. Due to the way that
interactive fiction games are packaged, any images to be
displayed must be in the project at the time of packaging.
This prevents the system from being able to dynamically
create and subsequently reference PNG files created from
SVG. Rather, I needed a way to directly access the rendered
SVG object in memory and handle it using the default GLK
methods. To do this, a new GLK picture object was created
with a bitmap extracted from the Cairo surface object. This
GLK picture object was then displayed using the originally
provided graphics functions. These provided graphics func-

To draw a SVG rectangle of dimension (width - a

number) by (height - a number) at position (x - a

number) by (y - a number):

render "<rect width=’[width]’ height=’[height]’

x=’[x]’ y=’[y]’/>" as SVG.

Figure 13: Command to Draw an SVG Rectangle

tions display a given GLK picture object in the interactive
interpreter window. This code is available in the GUInform
project repository [7].

6.5 Inform 7 SVG Extension
Having edited the GLK standard and the Gargoyle code, I
created an Inform 7 extension designed to specifically handle
SVG rendering requests and call the GLK function. This ex-
tension contains Inform 7 rules, such as the one in Figure 13,
to call the GLK function for drawing SVG.

The purpose of the Inform 7 SVG extension was to provide a
function that could call the GLK SVG function without forc-
ing the Inform 7 programmer to be knowledgeable in writing
SVG. Rather, the extension serves as an API for the GLK
SVG function, allowing the programmer to write SVG com-
mands using natural text in Inform 7. The ”indexed text”
data type is used to send dynamic text to the GLK function.
Inform 7 indexed text is converted character-by-character to
a C-style string, and then used as a parameter for the GLK
SVG function [5]. This SVG handler extension is available
for download at the GUInform project repository [7].

The GUI elements demonstrated in previous sections are not
native to Inform 7. Rather, I created an Inform 7 extension
that contains SVG strings that, once rendered, illustrate
the intended GUI element. For example, in the previous
Figure 12 example, the ”white background” and ”text field”
references are GUI elements that are defined in my Inform 7
extension. The following elements are defined in the In-
form extension: radio buttons; checkboxes; buttons; labels;
drop-down menus; backgrounds; and text fields. The latter
portion of the example, starting with ”To make the basic
panel”, attributes the background and text field elements to
the ”basic panel” object.

Figure 14 illustrates how panels can be used multiple times
within a single prototype. This example contains a panel of
basic calculator buttons that is displayed when the calcula-
tor is in ”basic” mode, and an additional panel containing
buttons that are specific to the scientific calculator mode.
Both the scientific button panel and basic button panel are
displayed when the calculator is in ”scientific” mode. An
action is defined for this prototype such that both panels
are displayed when a ”choose scientific mode” command is
entered, and only the basic button panel is displayed when
the ”choose basic mode” command is entered.

To interact with the prototype, the developer or test user
enters text commands into the interactive console. When
the user enters a command into the console, the prototype
is updated according to the actions defined in Inform 7 by



Figure 14: The prototype changes in response to a
”choose scientific” command

the developer, as described in Section 6.2. The rendered
GUI prototype and text commands from the user are not
erased from the prototype window. This results in a log of
commands and resulting prototype states that is created in
the prototype window. This log can be used to record a pro-
totype testing session for use in developing later revisions of
the prototype. Figure 15 illustrates a log created by inter-
acting with the timer prototype. The Inform 7 definition for
this prototype is provided in the appendix.

7. CONCLUSIONS
Overall, I found that using the interactive fiction framework
for GUI prototyping is an e↵ective method of quickly creat-
ing interactive prototypes. The use of SVG to create these
visual prototypes allows a prototype designer to create dy-
namic prototypes that react to a given text command. The
main contributions of this work are as follows:

• A method of rapid GUI prototype development using
an IF platform

• A system for textual interaction with GUI prototypes

• The addition of SVG capabilities to an IF environment

• An extension of the Inform 7 description language that
provides a toolkit of elements for creating GUI proto-
types

A low-level GUI implementation is not required for develop-
ers to interact with their prototypes. Rather, the developer
can define action rules in the GUInform system that dictate

Figure 15: A Prototype Interaction Log



how the prototype responds to user interaction. Addition-
ally, prototypes can be designed quickly without the use
of the paper prototyping method. While paper prototyp-
ing is a simple and e↵ective method, it does not allow for
a realistic interaction between the user and the prototype.
The GUInform system allows the developer to experience a
more realistic interaction with the prototype that incorpo-
rates drop-down menus, radio buttons, and other standard
interface elements. Finally, this work demonstrates how in-
teractive fiction platforms can be used for purposes other
than creating text adventure games. The incorporation of
SVG into the interactive fiction platform allows developers
to use Inform 7 for interactive graphics purposes.

8. FUTURE WORK
Future work on this project includes further testing and in-
corporation of the GUInform system into a realistic software
engineering process. Additionally, I would like to incorpo-
rate layouts and other methods specifying a GUI prototype
element’s location, as the current method of specifying each
elements’ coordinates is tedious.

I would like to measure the e�ciency of GUInform prototyp-
ing compared to other methods. I plan to receive feedback
regarding this prototyping method from software develop-
ers who have also had experience using other prototyping
method, namely paper and wireframe prototyping. One ef-
ficiency test could be performed by requiring three devel-
oper groups to prototype the same design using the paper,
wireframe, and GUInform prototyping methods. The devel-
opment time and quality of the prototypes resulting from
each method could then be compared.

9. ACKNOWLEDGMENTS
Many thanks to my advisor, Professor Bart Massey, for
proposing the GUInform concept, and for his continual feed-
back throughout this project. This project would not be
possible without his guidance and support.

I also thank Professor Lois Delcambre for her suggestions
regarding ways I could test the GUInform system in the
future. Thank you Brady ”EmacsUser” Garvin for provid-
ing the Inform 6 code that converts SVG strings from the
Inform 7 indexed text format into GLK C-strings, making
the GUInform system possible. I would also like to thank
Graham Nelson for developing the Inform 7 description lan-
guage, Andrew ”Zarf” Plotkin for developing the GLK spec-
ification and Glulx virtual machine, and the developers of
the Gargoyle Interactive Fiction interpreter.



10. REFERENCES
[1] About interactive fiction.

http://www.inform7.com/if. Accessed 2013-05-25.
[2] garglk - a cross-platform io layer for an interactive

fiction player. http://code.google.com/p/garglk/.
Accessed 2013-05-27.

[3] How to fit a large program into a small machine. http:
//www.csd.uwo.ca/Infocom/Articles/small.html,
Jul 1995. Accessed 2013-01-03.

[4] Cairo. http://www.cairographics.org, March 2012.
Accessed 2013-05-28.

[5] Indexed text to glk function using if6.
http://www.intfiction.org/forum/viewtopic.php?

t=5518&p=40129, August 2012. Accessed 2013-05-28.
[6] Dirk Baumer, Walter R. Bischofberger, Horst Lichter,

and Heinz Zullighoven. User interface
prototyping–concepts, tools, and experience. In
Proceedings of the 18th international conference on

Software engineering, ICSE ’96, pages 532–541,
Washington, DC, USA, 1996. IEEE Computer Society.

[7] Tesca Fitzgerald.
http://github.com/TescaF/GUInform. Accessed
2013-05-28.

[8] Gus Fraser. Balsamiq vs powerpoint storyboarding
with vs 2012.
http://techblurt.com/2012/09/13/balsamiq-vs-

powerpoint-storyboarding-with-vs-2012/,
September 2012. Accessed 2013-05-19.

[9] Tracy Frayne. Tools of i.a. focus on prototyping.
http://csusap.csu.edu.au/~tfrayn01/

paperprototyping.html, June 2010. Accessed
2013-05-27.

[10] Hassan Gomaa and B.H. Scott Douglas. Prototyping
as a tool in the specification of user requirements.
IEEE, pages 333–342, 1981.

[11] J.A. Landay and B.A. Myers. Sketching interfaces:
Toward more human interface design. IEEE
Computer, 34, 2001.

[12] Patrick Lynch and Sarah Horton. The design process.
http://webstyleguide.com/wsg3/10-forms-and-

applications/4-design-process.html. Accessed
2013-05-28.

[13] Shawn Medero. Paper prototyping.
http://alistapart.com/article/paperprototyping,
January 2007. Accessed 2013-05-23.

[14] Stuart Moulthrop and Nancy Kaplan. Something to
imagine: Literature, composition and interactive
fiction. Computers and Composition, 9(1):7–23, Nov
1991.

[15] Graham Nelson. The z-machine standards document.
http://www.gnelson.demon.co.uk/zspec/, June
1997. Accessed 2013-01-03.

[16] Andrew Plotkin. Glk api specification.
http://eblong.com/zarf/glk/glk-spec-074.txt.
Accessed 2013-01-03.

[17] Andrew Plotkin. Glulx: A 32-bit virtual machine for
if. http://www.eblong.com/zarf/glulx/, October
2012. Accessed 2013-01-03.

[18] Andrew Plotkin. Glulx specifications. http:
//www.eblong.com/zarf/glulx/glulx-spec_0.html,
October 2012. Accessed 2013-01-03.

[19] Aaron Reed. Creating Interactive Fiction with Inform

7. Course Technology Press, Boston, MA, United
States, 1st edition, 2010.

[20] Garr Reynolds. The importance of wireframes in web
design and 9 tools to create wireframes.
http://www.onextrapixel.com/2009/07/15/the-

importance-of-wireframes-in-web-design-and-9-

tools-to-create-wireframes/, July 2009. Accessed
2013-05-27.

[21] Caroline Snyder. Paper prototyping.
http://www.snyderconsulting.net/article_

paperprototyping.htm. Accessed 2013-05-28.
[22] Caroline Snyder. Using paper prototypes to manage

risk.
http://www.uie.com/articles/prototyping_risk/.
Accessed 2013-01-02.

[23] Carolyn Snyder. Paper Prototyping: The Fast and

Easy Way to Design and Refine User Interface.
Morgan Kaufmann, 1st edition, April 2003.

[24] Terry Winograd and Bill Verplank. Paper prototyping
- climate control.
http://hci.stanford.edu/courses/cs247/2009/

handouts/paper-2009-exercise.html, 2009.
Accessed 2013-05-28.



APPENDIX
[Prototyping Example]

The following is an example of a GUI prototype written in
Inform 7 using the GUInform system.

"Timer" by "Tesca Fitzgerald"

Include GUI Library by Tesca Fitzgerald.

Section - Setup

The entry is a room.
The current panel is a text that varies.

When play begins:
Make the stopwatch panel;
Make the countdown panel;
Now the current panel is "

stopwatch ";
Display the stopwatch panel.

Section - The Stopwatch Panel

The stopwatch panel is a panel.

The stopwatch -background is a white
background. The x is 0. The y is 0.
The width is 120. The height is 100.

The display -field is a text field. The x
is 10. The y is 10. The width is 100.
The height is 30. The content is
"0:00:00".

The go-button is a blue button. The x is
85. The y is 15. The content is "GO".
The width is 20. The height is 20.

The mode list is a dropdown. The x is 10.
The y is 50. The width is 100. The
height is 20. The content list is {"
Stopwatch", "Countdown "}. The title is
"Timer Mode".

Toggling mode is an action applying to
nothing. Understand "toggle mode" or "
click mode" or "mode" as toggling
mode.

Carry out toggling mode:
Toggle the mode list;
If the current panel matches the

text "stopwatch", display the
stopwatch panel;

Otherwise display the countdown
panel.

Selecting mode is an action applying to
one topic. Understand "select [text]"
or "choose [text]" as selecting mode.

Carry out selecting mode:
If "[the topic understood ]"

matches the text "stopwatch ":
Toggle the mode list;
Now the current panel is "

stopwatch ";
Now the content of the

display -field is
"0:00:00";

Display the stopwatch
panel;

Otherwise if "[the topic
understood ]" matches the text
"countdown ":

Toggle the mode list;
Now the current panel is "

countdown ";
Now the content of the

display -field is
"0:15:00";

Display the countdown
panel.

To make the stopwatch panel:
Include the stopwatch -background

in the stopwatch panel;
Include the display -field in the

stopwatch panel;
Include the go-button in the

stopwatch panel;
Include the mode list in the

stopwatch panel.

Section - The Countdown Panel

The countdown panel is a panel.

The countdown -background is a white
background. The x is 0. The y is 0.
The width is 120. The height is 130.

The plus -button is a white button. The x
is 10. The y is 90. The content is
"+". The width is 15. The height is
20.

The minus -button is a white button. The x
is 30. The y is 90. The content is
"-". The width is 15. The height is
20.

The alarm -label is a label. The content is
"Alarm on?". The x is 60. The y is

90.

The alarm option is a checkbox. The x is
60. The y is 100. The toggle is 1.

Checking box is an action applying to
nothing. Understand "toggle checkbox"
or "check" or "uncheck" or "alarm on"
or "alarm off" or "click checkbox" as
checking box.

Carry out checking box:
Toggle the alarm option;
Display the countdown panel.

To make the countdown panel:
Include the countdown -background

in the countdown panel;
Include the plus -button in the

countdown panel;
Include the minus -button in the

countdown panel;
Include the alarm -label in the

countdown panel;
Include the alarm option in the

countdown panel;
Include the stopwatch panel in the

countdown panel;
Remove the stopwatch -background

from the countdown panel.


	GUInform: Interactive Fiction for GUI Prototyping
	Let us know how access to this document benefits you.
	Citation Details

	Untitled

