
Portland State University Portland State University

PDXScholar PDXScholar

Electrical and Computer Engineering Faculty
Publications and Presentations Electrical and Computer Engineering

2004

Logic Synthesis for Regular Fabric realized in Logic Synthesis for Regular Fabric realized in

Quantum Dot Cellular Automata Quantum Dot Cellular Automata

Marek Perkowski
Portland State University

Alan Mishchenko
University of California - Berkeley

Follow this and additional works at: https://pdxscholar.library.pdx.edu/ece_fac

 Part of the Electrical and Computer Engineering Commons

Let us know how access to this document benefits you.

Citation Details Citation Details
Perkowski, Marek, and Alan Mishchenko, "Logic Synthesis for Regular Fabric realized in Quantum Dot
Cellular Automata," 2004.

This Pre-Print is brought to you for free and open access. It has been accepted for inclusion in Electrical and
Computer Engineering Faculty Publications and Presentations by an authorized administrator of PDXScholar.
Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/ece_fac
https://pdxscholar.library.pdx.edu/ece_fac
https://pdxscholar.library.pdx.edu/ece
https://pdxscholar.library.pdx.edu/ece_fac?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F213&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F213&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/ece_fac/213
mailto:pdxscholar@pdx.edu

Logic Synthesis for Regular Fabric realized in Quantum Dot

Cellular Automata

 Marek Perkowski and Alan Mishchenko +

Department of Electrical and Computer Engineering, Portland State University,

Portland, OR 97207, USA, mperkows@ece.pdx.edu

+ Department of Electrical Engineering and Computer Science, University of California,

Berkeley, Berkeley, CA 94720

Abstract
 Quantum Dot Cellular Automata are one of the most prospective nano-technologies to build digital circuits. Because of

the requirements of only 2 layer wiring and noise avoidance, realizing the circuit in a regular fabrics is even more

important for this technology than for classical technologies. In this paper, we propose a regular layout geometry called

33 lattice. The main difference of this geometry compared to the known 22 lattices is that it allows the cofactors on a

level to propagate to three rather than two nodes on the lower level. This gives additional freedom to synthesize compact

functional representations. We propose a SAT-based algorithm, which exploits this freedom to synthesize 33 lattice

representations of completely specified Boolean functions. The experimental results show that the algorithm generates

compact layouts in reasonable time.

1. Introduction
Designers face many problems related to shrinking feature sizes of IC processes. Cross-talk,

electromigration, self-heat, and other problems become more and more important. Cross-talk can lead

to unpredictable design behaviors, high variation of delays and signal integrity problems in a wire

depending on a state of a neighbor wire [10] and thus should be avoided at any cost. Book [10]

proposes to solve the problem of cross-talk-immune IC design by using predetermined layout patterns

on the IC, called the “layout fabric”. It can be observed that the same problems exist in new

technologies such as quantum dot cellular automata.

Bridging together logic synthesis and layout synthesis proceeds in several directions. One approach to

this problem, exemplified by [28], makes logic synthesis aware of the layout early in the design flow.

Another approach aims at creating specific layout structures with regular properties and synthesizing

circuits using these structures. Research in regular structures to implement Boolean functions has

started with the work of Akers [1]. The advantage of the regular layout fabrics is that they guarantee

short wire length, predictable delay, and the absence of crosstalk. The disadvantage is that it may be

difficult to derive compact representation for relatively complex logic functions.

Recently, regular layout fabrics are becoming popular with the new hardware implementation

technologies such as single-electron transistor (SET) devices [9] and quantum dots [11, 12, 39]. A

slide taken Papers [9, 39] illustrate the use of the 2*2 lattices, especially in SET technology. There is

no routing and all connections are short. Another circuits of interest for regular structure approach are

 The term lattice is used to described the layout geometry because it is similar to a grid formed by logic gates and interconnections. The

use of this term in the paper is not related to the set-theoretic concept of a lattice.

mailto:mperkows@ece.pdx.edu

called Chemically Assembled Electronic Nanotechnology (CAEN) [6, 7]. CAEN is expected to offer

significantly denser devices than CMOS technology. For example, a single RAM cell will require

roughly 100nm
2

[6, 7]. In CMOS technology, a similar cell occupies 100,000nm
2
 [9].

The regular layout structure called 2*2 lattice with Shannon gates at the nodes has been first proposed

in [18, 19, 20, 21]. Publication [21] proposed also more general regular geometries and expansions

other than Shannon, including Davio. These ideas were next expanded by several research groups [2, 5,

6, 13, 16, 23, 25] leading to the development of a number of efficient logic synthesis methods [5, 13, 23,

24, 36, 38].

There has been recently many papers published on Quantum Dots Cellular Automata (QCA) [4, 11, 12,

17, 30, 31, 32, 34, 35, 37, 39]. These papers use the majority and inverter gates for logic. Although the

authors appreciate regularity in their designs of special functions, they did not consider a general-purpose

design methods to design arbitrary combinational logic blocks. The only exception is [17] which

proposes a general purpose FPGA, but without synthesis algorithms for it.

In this paper, we propose a new regular layout structure called 3*3 lattice. The 3*3 geometry preserves

the close localization of logic elements characteristic of the 2*2 lattice but allows for more flexibility

when implementing logic functions. We also propose the lattice synthesis algorithm, based on Boolean

satisfiability, which makes use of the flexibility to reduce the number of levels and nodes in the lattice.

The remaining of the paper is organized as follows. Section 2 presents background on expansions and

expansion-based regular fabric. We discuss quantum dot cellular automata in section 3 and we present

our designs of regular fabric cells for them. Section 4 presents the lattice synthesis algorithm based on

Satisfiability. Section 5 gives experimental results. Section 6 concludes the paper and outlines future

work.

2. Background on expansion-based regular fabric

2.1. Expansions

Given a Boolean function F: B
n

 B, where B = {0,1}, the negative (positive) cofactor of F with

respect to (w.r.t.) variable x is the Boolean function F0 (F1) derived by substituting into F instead of x the

value 0 (1).

Let us denote F2 the exclusive sum (EXOR) of the negative and positive cofactors: F2 = F0 F1.

Three canonical expansions of F are defined as follows:

 F = x F0 x F1 Shannon expansion (S)

 F = F0 x F2 Positive Davio expansion (pD)

 F = F1 x F2 Negative Davio expansion (nD)

Cofactors w.r.t. two and more variables are defined as repeated cofactoring w.r.t to each variable in the

set. The final result does not depend on the variable order.

For example, function F(a,b,c) = ab cba bca has the following cofactors w.r.t. variable a:

Fa=0 = F(0, b, c) = bc.

Fa=1 = F(1, b, c) = b c.

Lattice Types

Regular layout fabrics discussed in this paper are called lattices [23]. Essentially, a lattice is a regular

arrangement of gates locally interconnected to form a grid. Each gate has a control signal propagating

from left to right and two data signals propagating from bottom to top. Lattice synthesis is typically

performed from top to bottom when the levels of gates are synthesized one at a time until the level with

constant cofactors is reached. Lattice with n levels can implement every totally symmetric binary

function. It was proved [1] that all non-symmetric functions can be implemented in a 2*2 lattice be

repeating variables in the levels and it was shown experimentally [36, 38] that the number of repetitions

is rather low for many real-life benchmarks. In addition, many designs can be well-partitioned to logic

blocks realized by lattices and next these blocks are placed and connected by routing.

Differences between the 2*2 lattices and the 3*3 lattices are illustrated in Figure 1, where circles

represent gates and edges represent possible interconnections. The number pairs (“2*2” and “3*3”)

specify the lattice geometry: the first number tells how many gates of the lower level can feed into the

given gate; the second number tells how many gates of the upper level can receive the output of the

given gate. The general concept of “k*k” diagrams that included 2*2 and 3*3 lattices has been presented

in [18, 20]. It should be noted that there exist various other 3*3 regular diagrams [2, 3, 16, 25] that are

not 3*3 lattices in the sense of this paper but have been also called “lattices” by us, as a general class of

expansion based regular layouts. However, in this paper the terms 2*2 and 3*3 lattices will refer only to

structures shown in Figure 1.

Depending on the lattice type, three types of gates can be used in the nodes: Shannnon gates (MUXes),

Positive Davio gates, and Negative Davio gates, created according to the three canonical expansions.

Shannon lattices are built using only Shannnon gates, Kronecker lattices can have any of the three gates

but only one gate type on each level. Pseudo-Kronecker lattices can have any of the three gates assigned

to any node.

The lattices considered in this paper have the following additional flexibilities:

 (1) the data inputs of a gate can be complemented;

 (2) both data inputs of a gate can be connected to the same gate below.

In the synthesis methods developed for 3*3 lattices, in this paper the gates are limited to only Shannon

gates.

Figure 1. 2*2 and 3*3 lattices.

Comparison of 2*2 and 3*3 Geometries

Note that although, in the 3*3 lattice, a gate can receive inputs from any of the three gates on the lower

level (left, center, right), no more than two gates actually provide the inputs (because each gate has only

two data inputs). The synthesis algorithm can use this additional freedom for choosing two gates out of

three candidates on the lower level to achieve a compact layout, with less logic levels and fewer gates.

Figure 2. Layou tof a 2*2 lattice for a random function of 7 variables.

3*3 Lattice layout for the same

function as in Figure 2.

Figure 2 shows the 2*2 lattice for a randomly generated 7 variable function. The 2*2 lattice was

synthesized using the tools from [33]. Observe variable repetition that occurred, because the function

was not totally symmetric. For comparison, Figure 3 shows the 3*3 lattice synthesized for the same

function. The 3*3 lattice was created by a new tool, which implements the algorithm presented in this

paper. Both lattices are synthesized using only Shannon gates. The 2*2 lattice has 29 levels and 392

nodes. The 3*3 lattice has 20 levels and 150 nodes.

Random functions are among those that are the most difficult to implement in regular structures.

Figures 2 and 3 clearly demonstrate the advantage of the 3*3 geometry. For other functions, 3*3 lattices

are never larger than 2*2 lattices but the difference is less pronounced. Of course, in the final layout the

user can select a 2*2 or a 3*3 lattice for every combinational logic block.

3. Quantum Dot Cellular Automata Cells.
The exponential scaling in feature sizes follows still the Moore’s Law using standard lithography based

VLSI technology. However, as the fundamental limits of CMOS technology that are imposed by the laws

of physics are approached, one thinks about what technology will replace the today’s standard. The

difficult challenges include noise, lithography costs, power, and many others. It is predicted that new

nano-technologies will achieve density of 10
12

 devices/cm
2
 , will operate at THz frequencies, and with

ultra low power consumption.

Quantum Dot Cellular Automata (QCA) have been first proposed by Lent et al in 1993 [11] and

fabricated in 1997. In QCA, binary information is encoded in the charge configuration within quantum

dot cells. A QCA cell can be in simplification treated as a structure of four dots (containers of charge,

like electrons) located at the corners of a square. The electrons tend to occupy antipodal sites in a cell as

a result of their mutual electrostatic repulsion. Thus there exist two equivalent energetically minimal

arrangements of the two electrons in the QCA cell (as seen in Figures 4(a)). These two arrangements are

denoted as cell polarization P = +1 and P = -1 respectively. We encode information with +1 representing

logic 1 and -1 representing logic 0. Operation of QCA is based on quantum-mechanical interaction of

electrons within quantum dots. Observe that this is a phenomenon that one wants to avoid in standard

CMOS. The cell contain two extra mobile electrons which can quantum mechanically tunnel between

cells. The dots can be realized in several different ways – electrostatically formed quantum dots in a

semiconductor, small metallic islands connected by tunnel junctions, or redox centers in a molecule.

[17]. While in standard CMOS information is transmitted by an electric current, operation of QCA is

based on Coulombic interactions between cells. This way logic functions are realized because the state

of a cell influences the neighbor cells. The fundament of QCA is self-latching where information is

stored at each device by the position of single electrons. This means, that even at its lowest level this is a

pipelining technology, in which pipelining is imbedded in every wire and inside every logic gate.

It is anticipated that the QCAs will be one of main technologies and that a QCA cell will have few

nanometer size and will be fabricated through molecular implementation by a self-assembly process

(which is one more argument of the same basic layout pattern to be repeated). QCA technology allows to

realize both combinational and sequential circuits and several complete although simple computing

blocks have been already designed, such as adders, barrel shifters, memories, microprocessors and

FPGAs. Some QCA devices have been fabricated with metal cells operating at 50mk. It is predicted that

QCAs operating at room-temperature will follow.

Current QCA systems use majority and inverter gates for which no good CAD tools exist. In addition,

the layout is planar with only one layer and special cells and rules are required to realize the intersecting

wires. There are no CAD tools for placement and routing of QCA systems based on these restrictions. As

observed in [40], two wires in a QCA placed close to one another interfere similarly to the crosstalk

effect in standard CMOS. Thus, one has to try to use for QCA CAD methods that have been already

developed in standard CMOS to fight cross-talk and again, regular fabrics such as lattices are one of

proposed methods with respect to this aspect. The current work on QCA takes already into account

combining the logic synthesis and physical design aspects, since for this technology these two aspects

cannot be separated from the very beginning [17, 31, 37].

See [37] for a brief introduction to realization of logic functions in QCAs and examples of designs and

design methodology. Figure 4 has a cell for 2*2 Shannon Lattice. Figure 5 includes a cell for a 3*3

Shannon Lattice in which there are two ways of ordering cofactors. Figure 6 presents a cell of a

generalized Lattice that can be personalized to Positive Davio, Negative Davio and Shannon expansions,

and also to some other functions. These cells have been designed for abutting in regular fabrics.

4. SAT-Based Lattice Synthesis
This section shows how the problem of synthesizing one level of the 3*3 lattice with Shannon gates

can be reduced to a SAT instance. We assume the reader’s familiarity with the basics of Boolean

satisfiability as presented, for example, in [14, 15].

Outline of the Algorithm

Synthesis of the 3*3 lattice is performed level by level. On each level, we solve the SAT problem,

create the layout of that level, and proceed to the next level. Synthesis terminates when a level is reached

on which all cofactors are constants. To formulate the SAT problem for one level of the lattice, we

consider all the nodes on the level following immediately after the given one. The given level is called

the upper level; the level following immediately after the given one is called the lower level. We

formulate the set of requirements representing all possible routings of cofactors from the upper level to

the lower level. Only non-constant cofactors are considered for routing. The constraints generated for all

the nodes of the lower level are added to the set of all constraints representing the SAT instance.

Variables

Let us consider node N on the lower level. In the 3*3 lattice, there are six cofactors (c1,…,c6) that can

potentially be routed to this node. These cofactors come from the nodes on the left (L), in the center (C),

and on the right (R) nodes, with respect to the node N (Figure 7).

Figure 7. The routing choices for node N.

A group of SAT variables (x
N

1, …, x
N

k) is associated with each node N of the lower level. These

variables represent mutually exclusive possibilities of joining in node N the cofactors coming from the

upper level.

Suppose the cofactors (c1,…,c6) are different non-constant Boolean functions. The group of six

variables (x
N

1, …, x
N

6) is used to represent the possibilities that node N receives only one cofactor.

Another group of six variables (x
N

7, …, x
N

12) is used to represent the possibility that N receives a pair of

cofactors combined using join-vertex operation [16, 18, 23].

The join-vertex operation is defined for cofactors coming from different nodes and having opposite

polarity. This is why there are only six pairs, namely (c1,c4), (c2,c3), (c3,c6), (c4,c5), (c1,c6), and (c2,c5).

Clauses

The clauses of the SAT problem are divided into two categories: covering constraints and closure

constraints. The covering constraints specify the requirement that each non-constant cofactor on the

upper level is routed to the lower level. The closure constraints represent two types of requirements:

(1) each cofactor on the upper level is routed no more than once, and

(2) each node on the lower level is used no more than once.

There are as many covering constraints as there are non-constant cofactors on the upper level. Each

covering constraint is the disjunction of variables, which represent routing choices involving the given

cofactor. Suppose, for some cofactor, there are m such variables. The mutual exclusiveness of these

variables translates into m(m-1)/2 closure constraints of type (1), specifying that no two variables are

equal to 1 at the same time.

The closure constraints of type (2) are similar. For each node Ni on the lower level, they represent the

mutual exclusiveness of variables in (x
Ni

1, …, x
Ni

ki). There are ki(ki-1)/2 such constraints for node Ni with

ki associated variables. Because k 12, the number of these constraints does not exceed 66 for any node

Ni.

The Number of Variables and Clauses

In this subsection, we approximate the number of clauses and constraints in a SAT problem, which

arises in the lattice synthesis on level n.

In the 3*3 lattice, level n (the upper level) consists of 2n - 1 nodes. The level n+1 (the lower level)

consists of 2n + 1 nodes. Each node on the lower level can have up to 12 variables, so the upper bound V

on the number of variables is

V(n) = 12(2n+1).

The number of covering constraints is equal to the number of cofactors on level n, which is 2(2n-1). In

the worst case, the number of the closure constraints of type (1) and type (2) is 66(2n-1) and 66(2n+1),

respectively. This yields the upper bound C on the number of clauses in the SAT problem

C(n) = 2n – 1 + 66(2n-1) + 66(2n+1) 266n.

c

1

c

2
c

3

c

4
c

5

c

6

1 1 1 0 0 0
L C R

N

The worst-case number of variables and clauses grows linearly with the number of lattice levels. For

example, for n=10, there are at the most V = 252 variables and C = 2660 clauses. When some of the

cofactors on the upper level are constants or equal up to complementation, it is possible to introduce less

than 12 variables for nodes of the lower level. These special cases can be used to significantly reduce the

routing choices. As a result, the actual number of clauses is typically two times smaller than the worst-

case estimation.

Weighted SAT Problem

Each variable (x
Ni

1, …, x
Ni

ki) in the SAT problem is assigned a cost. The negative assignment of a

variable has the cost 0. The positive assignment of a variable representing the join-vertex operation has a

positive cost which is higher compared to the cost of the variable representing routing of the cofactors or

joining of the cofactors equal up to complementation.

In solving the SAT problem, we look for satisfying variable assignments having the smallest cost. Such

solutions would guarantee that there are relatively few nodes with the join-vertex operation, which helps

reducing the number of levels in the lattice.

The complexity of the weighted SAT problem is NP-complete.

Trading Quality for Runtime

To simplify the complexity of the SAT problem, each level can be split into parts, for which SAT is

solved independently. There is no routing of cofactors across the boundaries of the parts.

This approach to reduce complexity of SAT allows for trading the layout quality for runtime. The

smaller are the individual SAT problems, the faster they are solved. On the other hand, splitting a level

into many parts leads to the sub-optimal layout near the boundaries.

In practice, we found that having the parts composed of 5-7 nodes allows for a reasonable tradeoff

between the optimality of the solution and the runtime of weighted SAT problems, which in this case

takes approximately 0.1 seconds per instance.

5. Experimental Results
We have implemented the 3x3 lattice synthesis in a C program using the BDD package CUDD [29] for

the manipulation of Boolean functions and the MINCOV package in SIS [27] to iteratively solve the

weighted Boolean satisfiability problem.

We tested our program on selected MCNC benchmarks. The resulting lattices were written into BLIF

files and verified against the initial specification of the benchmark functions. The runtime for any

particular example was dominated by the runtime of SAT solver and did not exceed three seconds on a

933MHz Pentium III PC under MS Windows 2000.

Table 1 shows the comparison of our results with those published in [5] for 2*2 lattices. The 2*2

lattices are called Pseudo-Symmetric Binary Decision Diagrams (PSBDDs). They use only Shannon

gates and allow for the same additional flexibilities:

 (1) the data inputs of a gate can be complemented;

 (2) both data inputs of a gate can be connected to the same gate below.

Column “Name” gives the name of the benchmark circuit. Column “Outs” gives the total number of

outputs in the circuit and, in parentheses, the particular output used for testing. Similarly, column “Ins”

gives the total number of input in the circuit and, in parentheses, the number of variables in the support

of the output used for testing. Column “2*2 Lattice” gives the number of levels and nodes in the lattice

reported in [5]. Column “3*3 Lattice” gives the number of levels and nodes in our implementation.

The experimental result in Table 1 show that synthesizing benchmark functions into the 3*3 lattices

helps reducing the number of levels by 24% and the number of nodes by 56%, which speaks for the

efficiency of the SAT-based synthesis algorithm.

 Table 1. Experimental results.

Name Outs Ins 2 * 2 Lattice 3 * 3 Lattice

levels nodes levels nodes

apex7 37(30) 49(17) 25 148 19 33

clip 5(1) 9(9) 18 103 9 30

 5(2) 9(9) 27 220 9 30

cm162a 5(3) 14(10) 11 24 10 18

cps 109(1) 24(22) 26 134 24 61

 109(2) 24(18) 26 164 21 66

 109(3) 24(22) 39 342 30 128

duke2 29(3) 22(15) 18 52 15 69

 29(6) 22(17) 18 47 17 36

 29(18) 22(15) 22 92 15 44

example

2

66(23) 85(16) 21 52 16 45

 66(59) 85(14) 17 31 14 21

 66(63) 85(13) 15 37 13 26

frg2 139(99) 143(20

)

22 189 20 28

 139(10

0)

143(19

)

28 164 20 61

sao2 4(2) 10(10) 18 71 14 56

 4(3) 10(10) 16 73 14 65

 4(4) 10(10) 16 68 11 46

Total 383 2011 291 863

Ratio, % 100 100 76 43

6. Conclusions
Quantum Dots Cellular Automata (QCA) are a new idea which promises to build highly dense, low

power, high-speed nano-scale computing. This technology allows to build logic into wires so that

processing is done everywhere in the chip, but so far this idea has not been used practically and much

percent of the chip are just wires that are not performing logical functions. Here comes a perfect match

with the old idea of regular logic [18 – 26], fabrics and cellular automata organization of computing

systems. In this paper we introduced the concept of regular fabric for quantum dot cellular automata and

we presented a regular layout structure called 3*3 lattice. We demonstrated that this structure gives

additional freedom to implement Boolean functions and is quite favourable for realizations of arbitrary

logic blocks in QCA. We proposed a synthesis algorithm, which uses this freedom to generate the lattice

layout with a smaller number of levels and nodes, compared to the known 2*2 lattice synthesis

algorithms. The proposed synthesis algorithm reduces the problem of lattice synthesis on a level to an

instance of weighted Boolean satisfiability. We showed that the worst-case number of variables and

clauses in the SAT instances is linear in the level number to be synthesized. An additional advantage of

the SAT formulation is that it allows for an efficient trade-off between the layout quality and runtime.

Our future work in this area includes clocking schemes (see [17, 31] for clock design issues) and

simulation using QCADesigner [34]. Other work will include generalizing the synthesis algorithm to

synthesize Kronecker and Pseudo-Kronecker 3*3 lattices and integrating our tools with one of the

powerful SAT solvers developed recently, for example [15]. It is important to note that these ideas can

be expanded to regular structures based on multiple-valued and fuzzy logic expansions and their

reversible counterparts [2, 3, 18, 19, 20, 21, 22, 25, 26] and are thus applicable to many emerging nano-

technologies for computing. As observed in [9, 39], the Single Electron Transistor technology can be

used as an example. Additional research is needed to extend our algorithm for multi-output functions.

The method will be used in conjunction with Ashenhurst/Curtis and Bi-Decomposition, because only

after such decompositions the results are well-realizable for several benchmarks. Otherwise, too many

variable-repetitions are needed and the shape of the lattice differs too much from a rectangle. The

presented 3*3 lattices cannot be used alone, they should be used only as a part of the comprehensive

logic synthesis system. We are not claiming that 3*3 lattices are always better than 2*2 lattices or other

realizations of QCAs, we believe only that various regular fabric tools should be available in a system so

that the user will make the best choice. For instance, 2*2 lattices are good for completely symmetric

functions.

7. References
[1] S. B. Akers. A Rectangular Logic Array, IEEE Trans. on Computers. Vol. C-21, pp. 848-857, 1972.

[2] Al-Rabadi and M. Perkowski, Shannon and Davio Sets of New Lattice Structures for Logic

Synthesis in Three-Dimensional Space, Proc. RM'0.

[3] Al-Rabadi and M. Perkowski, New Classes of Multi-valued Reversible Decompositions for Three-

Dimensional Layout, Proc. RM'01.

[4] G.H. Bernstein, Quantum-dot Cellular Automata: Computing by Field Polarization, Proc. DAC

2003, pp. 268-273.

[5] M. Chrzanowska-Jeske, Y. Xu, M. Perkowski, Logic Synthesis for a Regular Layout. VLSI Design:

An International Journal of Custom-Chip Design, Simulation, and Testing, 1999.

[6] B.T. Drucker, C.M. Files, M. A. Perkowski, and M.Chrzanowska-Jeske. Polarized Pseudo-

Kronecker Symmetry with an Application to the Synthesis of Lattice Decision Diagrams. Proc.

ICCIMA'98 Conference, pp. 745-755.

[7] P. Farm and E. Dubrova, Technology Mapping for Chemically Assembled Electronic

Nanotechnology, Proc. IWLS ’02.

[8] S. Goldstein and M. Budiu, Nanofabrics: Spatial computing using molecular electronics, Proc. 28th

Annual International Symposium on Computer Architecture, (Gothenborg, Sweden), June 2001.

[9] H. Hasegawa, A. Ito, Ch. Jiang, and T. Muranaka, Atomic Assisted Selective MBE Growth of

InGaAs Linear and Hexagonal Nanowire Networks For Novel Quantum Circuits, Proc. 4
th

 Intern

Workshop on Novel Index Surfaces (NIS’01), Sept 16-20, Apset France.

[10] S.P. Khatri, R.K. Brayton, A.L. Sangiovanni-Vincentelli, Cross-Talk Noise Immune VLSI

Design Using Regular Layout Fabrics, Kluwer Academic Publishers, Boston, Hardbound, ISBN 0-

7923, 7407-X, June 2001, 144 pp

[11] C. Lent, P. Tougaw, W. Porod, and G. Bernstein, Quantum cellular automata, Nanotechnology,

4: pp. 49-57, 1993.

[12] C.S. Lent, and P.D. Tougaw, A device architecture for computing with quantum dots,

Proceedings of the IEEE, 85, 4, pp. 541 - 547, 1997.

[13] P. Lindgren, R. Drechsler, B. Becker, Synthesis of Pseudo-Kronecker Lattice Diagrams. Proc. of

Intl. Worshop of Applications of Reed-Muller Expantions to Circuit Synthesis, 1999, Victoria, B. C.,

Canada, pp. 197 - 204.

[14] J. P. Marques-Silva, K. A. Sakallah, GRASP: A Search Algorithm for Propositional

Satisfiability. IEEE Trans. Comp. Vol. 48, No. 5, May 1999, pp. 506-521.

[15] M. W. Moskewicz et al., Chaff: Engineering an Efficient SAT Solver. Proc. DAC’01, pp. 530-

535.

[16] A. Mukherjee, R. Sudhakar, M. Marek-Sadowska, S. I. Long, Wave Steering in YADDs: A

Novel Non-Iterative Synthesis and Layout Technique. Proc. DAC’99, pp. 466-471.

[17] M. T. Niemier, A. F. Rodriques, P.M. Kogge, A Potentially Implementable FPGA for Quantum

Dot Cellular Automata, Workshop on Non-Silicon Computation (NSC), in conjunction with Int.

Symp. On High Performance Computer Architecture (HPCA), February 3, 2003

[18] M. Perkowski, and E. Pierzchala, New Canonical Forms for Four-Valued Logic, Report,

Electrical Engineering Department, PSU . 1993.

[19] E. Pierzchala, and M. Perkowski, Patent #5,959,871, September 28, 1999. Programmable

Analog Array Circuit.

[20] M. Perkowski, E. Pierzchala, and R. Drechsler, Ternary and Quaternary Lattice Diagrams for

Linearly-Independent Logic, Multiple-Valued Logic and Analog Synthesis, Proc. ISIC-97, Singapur,

10-12 Sept.1997.

[21] M. Perkowski, L. Jozwiak, R. Drechsler, and B. J. Falkowski, Ordered and Shared, Linearly

Independent, Variable-Pair Decision Diagrams, Proc. First International Conference on Information,

Communications and Signal Processing, ICICS'97, Singapur, 9-12 Sept. 1997. Session 1C1: Spectral

Techniques and Decision Diagrams.

[22] M. Perkowski, E. Pierzchala, and R. Drechsler, Layout-Driven Synthesis for Submicron

Technology: Mapping Expansions to Regular Lattices, Proc. First International Conference on

Information, Communications and Signal Processing, ICICS'97, Singapur, 9-12 Sept. 1997. Session

1C1: Spectral Techniques and Decision Diagrams.

[23] M. Perkowski, M. Chrzanowska-Jeske, and Y. Xu, Lattice Diagrams Using Reed-Muller Logic.

Proc. of Intl. Worshop of Applications of Reed-Muller Expansions to Circuit Synthesis, 1997, Oxford

Univ., U.K., pp. 85 - 102.

[24] M. A. Perkowski, M. Chrzanowska-Jeske, and Yang Xu, Multi-Level Programmable Arrays for

Sub-Micron Technology based on Symmetries, Proc. ICCIMA'98 Conference, pp. 707-720, February

1998, Australia, published by World Scientific.

[25] M. Perkowski, A. Al-Rabadi, P. Kerntopf, A. Mishchenko and M. Chrzanowska-Jeske, Three-

Dimensional Realization of Multiple-Valued Functions using Reversible Logic, Invited Talk, Proc.

Workshop on Post-Binary Ultra-Large Scale Integration Systems (ULSI), , pp. 47 - 53, May 21,

2001, Warsaw, Poland.

[26] E. Pierzchala, M. A. Perkowski, S. Grygiel, A Field Programmable Analog Arrray for

Continuous, Fuzzy and Multi-Valued Logic Applications, Proc. ISMVL'94, pp. 148 - 155, Boston,

MA, May 25-27, 1994.

[27] E. Sentovich, et al., SIS: A System for Sequential Circuit Synthesis, Tech. Rep. UCB/ERI,

M92/41, ERL, Dept. of EECS, Univ. of California, Berkeley, 1992.

[28] A. Singh, G. Parthasarathy, M. Marek-Sadowska, Interconnect Resource-Aware Placement for

Hierarchical FPGAs. Proc. ICCAD ’01, pp. 132-137.

[29] F. Somenzi. CUDD Package, Rel. 2.3.1, http://vlsi.Colorado.EDU/~fabio/CUDD/cuddIntro.html

[30] P.D. Tougaw, C.S. Lent, Logical devices implemented using quantum cellular automata, J. Appl.

Phys., American Institute of Physics, 75, (3), 1818, 1994.

[31] A. Vetteth, K. Walus, V.S. Dimitrov, G.A. Jullien, Quantum-Dot Cellular Automata Carry-Look-

Ahead Adder and Barrel Shifter, Proc. IEEE Emerging Telecommunications Technologies

Conference, Dallas, Texas, September 2002.

[32] A. Vetteth, K. Walus, G. A. Jullien, V. S. Dimitrov, "RAM design using quantum-dot cellular

automata", Vol. 2, Pages 160-163, 2003 Nanotechnology Conference, February 23-27, 2003, San

Francisco, CA.

[33] VLSI Design Automation Laboratory. Pseudo-Symmetric Kronecker Functional Decision

Diagrams. http://web.pdx.edu/~suresh/pskfdd/main.php

[34] K. Walus, QCADesigner Homepage, http://www.atips.ca/~walus, ATIPS Laboratory, University

of Calgary, Calgary, AB, CA, 2002.

[35] K. Walus, G. A. Jullien, V. S. Dimitrov, Computer Arithmetic Structures for Quantum Cellular

Automata, Proc. Asilomar Conference on Signals, Systems, and Computers, November 9-12, 2003,

Pacific Grove, CA. IEEE

[36] W. Wang, M. Chrzanowska-Jeske, Optimizing Pseudo-Symmetric Binary Decision Diagrams

Using Multiple Symmetries. Proc. IWLS'98, pp. 134-140.

[37] W. Wang, K. Walus, and G.A. Jullien, Quantum-Dot Cellular Automata Adders, Adders”, IEEE

Nano 2003 Conference, San Francisco, CA. 2003.

[38] W. Wang, M. Chrzanowska-Jeske, Generating Linear Arrays Using Symmetry Chain. Proc.

IWLS'99, pp.115 -119.

[39] T. Yamada, Y. Kinoshita, S. Kasai, H. Hasegawa, Y. Amemiya, Quantum Dot Logic Circuits

Based on Shared Binary-Decision Diagram, Jpn. J. Appl. Phys. Vol. 40, 2002, pp. 4485-4488, Part

1, No. 7, July 2001.

[40] M. B. Tahoori, M. Momenzadeh, J. Huang, F. Lombardi, Defects and Faults in Quantum Dot

Cellular Automata Based Designs, in Proc. of Design Automation and Test in Europe (DATE), 2004.

http://vlsi.colorado.edu/~fabio/CUDD/cuddIntro.html
http://web.pdx.edu/~suresh/pskfdd/main.php
http://www.atips.ca/~walus

	Logic Synthesis for Regular Fabric realized in Quantum Dot Cellular Automata
	Let us know how access to this document benefits you.
	Citation Details

	Logic Synthesis of Reversible Maitra Cascade

