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Abstract 
 Quantum Dot Cellular Automata are one of the most prospective nano-technologies to build digital circuits. Because of  

the requirements of only 2 layer wiring and noise avoidance, realizing the circuit in a  regular fabrics is even more 

important for this technology than for classical technologies.  In this paper, we propose a regular layout geometry called 

33 lattice. The main difference of this geometry compared to the known 22 lattices is that it allows the cofactors on a 

level to propagate to three rather than two nodes on the lower level. This gives additional freedom to synthesize compact 

functional representations. We propose a SAT-based algorithm, which exploits this freedom to synthesize 33 lattice 

representations of completely specified Boolean functions. The experimental results show that the algorithm generates 

compact layouts in reasonable time. 

1. Introduction 
Designers face many problems related to shrinking feature sizes of IC processes. Cross-talk, 

electromigration, self-heat, and other problems become more and more important. Cross-talk can lead 

to unpredictable design behaviors, high variation of delays and signal integrity problems in a wire 

depending on a state of a neighbor wire [10] and thus should be avoided at any cost. Book [10] 

proposes to solve the problem of cross-talk-immune IC design by using predetermined layout patterns 

on the IC, called the “layout fabric”. It can be observed that the same problems exist in new 

technologies such as quantum dot cellular automata. 

 

Bridging together logic synthesis and layout synthesis proceeds in several directions. One approach to 

this problem, exemplified by [28], makes logic synthesis aware of the layout early in the design flow.  

Another approach aims at creating specific layout structures with regular properties and synthesizing 

circuits using these structures. Research in regular structures to implement Boolean functions has 

started with the work of Akers [1]. The advantage of the regular layout fabrics is that they guarantee 

short wire length, predictable delay, and the absence of crosstalk. The disadvantage is that it may be 

difficult to derive compact representation for relatively complex logic functions.  

 

Recently, regular layout fabrics are becoming popular with the new hardware implementation 

technologies such as single-electron transistor (SET) devices [9] and quantum dots [11, 12, 39]. A 

slide taken Papers [9, 39] illustrate the use of the 2*2 lattices, especially in SET technology. There is 

no routing and all connections are short. Another circuits of interest for regular structure approach are 

                                                 

 The term lattice is used to described the layout geometry because it is similar to a grid formed by logic gates and interconnections. The 

use of this term in the paper is not related to the set-theoretic concept of a lattice.  
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called Chemically Assembled Electronic Nanotechnology (CAEN) [6, 7]. CAEN is expected to offer 

significantly denser devices than CMOS technology. For example, a single RAM cell will require 

roughly 100nm
2 

[6, 7]. In CMOS technology, a similar cell occupies 100,000nm
2
 [9]. 

The regular layout structure called 2*2 lattice with Shannon gates at the nodes has been first proposed 

in [18, 19, 20, 21]. Publication  [21] proposed also more general regular geometries and expansions 

other than Shannon, including Davio. These ideas were next expanded by several research groups [2, 5, 

6, 13, 16, 23, 25]  leading to the development of a number of efficient logic synthesis methods [5, 13, 23, 

24, 36, 38].   

There has been recently many papers published on Quantum Dots Cellular Automata (QCA) [4, 11, 12, 

17, 30, 31, 32, 34, 35, 37, 39]. These papers use the majority and inverter gates for logic. Although the 

authors appreciate regularity in their designs of special functions, they did not consider a general-purpose 

design methods to design arbitrary combinational logic blocks. The only exception is [17] which 

proposes a general purpose FPGA, but without synthesis algorithms for it. 

In this paper, we propose a new regular layout structure called 3*3 lattice. The 3*3 geometry preserves 

the close localization of logic elements characteristic of the 2*2 lattice but allows for more flexibility 

when implementing logic functions. We also propose the lattice synthesis algorithm, based on Boolean 

satisfiability, which makes use of the flexibility to reduce the number of levels and nodes in the lattice. 

The remaining of the paper is organized as follows. Section 2 presents background on expansions and 

expansion-based regular fabric. We discuss quantum dot cellular automata in section 3 and we present 

our designs of regular fabric cells for them. Section 4 presents the lattice synthesis algorithm based on 

Satisfiability. Section 5 gives experimental results. Section 6 concludes the paper and outlines future 

work. 

2. Background on expansion-based regular fabric 

2.1. Expansions 

Given a Boolean function F: B
n

  B, where B = {0,1}, the negative (positive) cofactor of F with 

respect to (w.r.t.) variable x is the Boolean function F0 (F1) derived by substituting into F instead of x the 

value 0 (1).  

Let us denote F2 the exclusive sum (EXOR) of the negative and positive cofactors: F2 = F0  F1.  

Three canonical expansions of F are defined as follows: 

   F = x F0   x F1     Shannon expansion (S)  

   F =  F0   x F2        Positive Davio expansion (pD)  

   F =  F1   x F2        Negative Davio expansion (nD)  

Cofactors w.r.t. two and more variables are defined as repeated cofactoring w.r.t to each variable in the 

set. The final result does not depend on the variable order.  

For example, function F(a,b,c) = ab  cba  bca  has the following cofactors w.r.t. variable a: 

Fa=0 = F( 0, b, c ) = bc. 

Fa=1 = F( 1, b, c ) = b  c. 

Lattice Types 

Regular layout fabrics discussed in this paper are called lattices [23]. Essentially, a lattice is a regular 

arrangement of gates locally interconnected to form a grid. Each gate has a control signal propagating 



from left to right and two data signals propagating from bottom to top. Lattice synthesis is typically 

performed from top to bottom when the levels of gates are synthesized one at a time until the level with 

constant cofactors is reached. Lattice with n levels can implement every totally symmetric binary 

function. It was proved [1] that all non-symmetric functions can be implemented in a 2*2 lattice be 

repeating variables in the levels and it was shown experimentally [36, 38] that the number of repetitions 

is rather low for many real-life benchmarks. In addition, many designs can be well-partitioned to logic 

blocks realized by lattices and next these blocks are placed and connected by routing. 

 

Differences between the 2*2 lattices and the 3*3 lattices are illustrated in Figure 1, where circles 

represent gates and edges represent possible interconnections. The number pairs (“2*2” and “3*3”) 

specify the lattice geometry: the first number tells how many gates of the lower level can feed into the 

given gate; the second number tells how many gates of the upper level can receive the output of the 

given gate. The general concept of “k*k” diagrams that included 2*2 and 3*3 lattices has been presented 

in [18, 20].  It should be noted that there exist various other 3*3 regular diagrams [2, 3, 16, 25]  that are 

not 3*3 lattices in the sense of this paper but have been also called “lattices” by us, as a general class of 

expansion based regular layouts. However, in this paper the terms 2*2 and 3*3 lattices will refer only to 

structures shown in Figure 1. 

Depending on the lattice type, three types of gates can be used in the nodes: Shannnon gates (MUXes), 

Positive Davio gates, and Negative Davio gates, created according to the three canonical expansions. 

Shannon lattices are built using only Shannnon gates, Kronecker lattices can have any of the three gates 

but only one gate type on each level. Pseudo-Kronecker lattices can have any of the three gates assigned 

to any node.  

The lattices considered in this paper have the following additional flexibilities:  

    (1) the data inputs of a gate can be complemented;  

    (2) both data inputs of a gate can be connected to the same gate below.  

In the synthesis methods developed for 3*3 lattices, in this paper the gates are limited to only Shannon 

gates. 

 

 

 

 

   

 

 

 

Figure 1. 2*2 and 3*3 lattices. 

Comparison of 2*2 and 3*3 Geometries 

Note that although, in the 3*3 lattice, a gate can receive inputs from any of the three gates on the lower 

level (left, center, right), no more than two gates actually provide the inputs (because each gate has only 

two data inputs). The synthesis algorithm can use this additional freedom for choosing two gates out of 

three candidates on the lower level to achieve a compact layout, with less logic levels and fewer gates.  



 

Figure 2. Layou tof a 2*2 lattice for  a random function of 7 variables. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

 

 

 

 

 

3*3 Lattice layout for the same 

function as in Figure 2. 

 



 

 

 

 

 

 

 

Figure 2 shows the 2*2 lattice for a randomly generated 7 variable function. The 2*2 lattice was 

synthesized using the tools from [33]. Observe variable repetition that occurred, because the function 

was not totally symmetric. For comparison, Figure 3 shows the 3*3 lattice synthesized for the same 

function. The 3*3 lattice was created by a new tool, which implements the algorithm presented in this 

paper. Both lattices are synthesized using only Shannon gates. The 2*2 lattice has 29 levels and 392 

nodes. The 3*3 lattice has 20 levels and 150 nodes.  

Random functions are among those that are the most difficult to implement in regular structures. 

Figures 2 and 3 clearly demonstrate the advantage of the 3*3 geometry. For other functions, 3*3 lattices 

are never larger than 2*2 lattices but the difference is less pronounced. Of course, in the final layout the 

user can select a 2*2 or a 3*3 lattice for every combinational logic block. 

3. Quantum Dot Cellular Automata Cells. 
The exponential scaling in feature sizes follows still the Moore’s Law using standard lithography based 

VLSI technology. However, as the fundamental limits of CMOS technology that are imposed by the laws 

of physics are approached, one thinks about what technology will replace the today’s standard. The 

difficult challenges include noise, lithography costs, power, and many others. It is predicted that new 

nano-technologies will achieve density of 10
12

 devices/cm
2
 , will operate at THz frequencies, and with 

ultra low power consumption.  

 

Quantum Dot Cellular Automata (QCA) have been first proposed by Lent et al in 1993 [11] and 

fabricated in 1997. In QCA, binary information is encoded in the charge configuration within quantum 

dot cells. A QCA cell can be in simplification treated as a structure of four dots (containers of charge, 

like electrons) located at the corners of a square. The electrons tend to occupy antipodal sites in a cell as 

a result of their mutual electrostatic repulsion. Thus there exist two equivalent energetically minimal 

arrangements of the two electrons in the QCA cell (as seen in Figures 4(a)). These two arrangements are 

denoted as cell polarization P = +1 and P = -1 respectively. We encode information with +1 representing 

logic 1 and -1 representing logic 0. Operation of QCA is based on quantum-mechanical interaction of 

electrons within quantum dots. Observe that this is a phenomenon that one wants to avoid in standard 

CMOS. The cell contain two extra mobile electrons which can quantum mechanically tunnel between 

cells. The dots can be realized in several different ways – electrostatically formed quantum dots in a 

semiconductor, small metallic islands connected by tunnel junctions, or redox centers in a molecule. 

[17]. While in standard CMOS information is transmitted by an electric current, operation of QCA is 

based on Coulombic interactions between cells. This way logic functions are realized because the state 

of a cell influences the neighbor cells. The fundament of QCA is self-latching where information is 

stored at each device by the position of single electrons. This means, that even at its lowest level this is a 

pipelining technology, in which pipelining is imbedded in every wire and inside every logic gate. 

 



It is anticipated that the QCAs will be one of main technologies and that a QCA cell will have few 

nanometer size and will be fabricated through molecular implementation by a self-assembly process 

(which is one more argument of the same basic layout pattern to be repeated). QCA technology allows to 

realize both combinational and sequential circuits and several complete although simple computing 

blocks have been already designed, such as adders, barrel shifters, memories, microprocessors and 

FPGAs. Some QCA devices have been fabricated with metal cells operating at 50mk. It is predicted that 

QCAs operating at room-temperature will follow. 

 

Current QCA systems use majority and inverter gates for which no good CAD tools exist. In addition, 

the layout is planar with only one layer and special cells and rules are required to realize the intersecting 

wires. There are no CAD tools for placement and routing of QCA systems based on these restrictions. As 

observed in [40], two wires in a QCA placed close to one another interfere similarly to the crosstalk 

effect in standard CMOS. Thus, one has to try to use for QCA CAD methods that have been already 

developed in standard CMOS to fight cross-talk and again, regular fabrics such as lattices are one of 

proposed methods with respect to this aspect. The current work on QCA takes already into account 

combining the logic synthesis and physical design aspects, since for this technology these two aspects 

cannot be separated from the very beginning [17, 31, 37].  

 

See [37] for a brief introduction to realization of logic functions in QCAs and examples of designs and 

design methodology. Figure 4 has a cell for 2*2 Shannon Lattice. Figure 5 includes a cell for a 3*3 

Shannon Lattice in which there are two ways of ordering cofactors. Figure 6 presents a cell of a 

generalized Lattice that can be personalized to Positive Davio, Negative Davio and Shannon expansions, 

and also to some other functions. These cells have been designed for abutting in regular fabrics.  

4.  SAT-Based Lattice Synthesis  
This section shows how the problem of synthesizing one level of the 3*3 lattice with Shannon gates 

can be reduced to a SAT instance. We assume the reader’s familiarity with the basics of Boolean 

satisfiability as presented, for example, in [14, 15].  

Outline of the Algorithm 

Synthesis of the 3*3 lattice is performed level by level. On each level, we solve the SAT problem, 

create the layout of that level, and proceed to the next level. Synthesis terminates when a level is reached 

on which all cofactors are constants. To formulate the SAT problem for one level of the lattice, we 

consider all the nodes on the level following immediately after the given one. The given level is called 

the upper level; the level following immediately after the given one is called the lower level. We 

formulate the set of requirements representing all possible routings of cofactors from the upper level to 

the lower level. Only non-constant cofactors are considered for routing. The constraints generated for all 

the nodes of the lower level are added to the set of all constraints representing the SAT instance. 

Variables  

Let us consider node N on the lower level. In the 3*3 lattice, there are six cofactors (c1,…,c6) that can 

potentially be routed to this node. These cofactors come from the nodes on the left (L), in the center (C), 

and on the right (R) nodes, with respect to the node N (Figure 7).  

 



 

 

 

 

 

Figure 7. The routing choices for node N. 

 

A group of SAT variables (x
N

1, …, x
N

k) is associated with each node N of the lower level. These 

variables represent mutually exclusive possibilities of joining in node N the cofactors coming from the 

upper level.  

Suppose the cofactors (c1,…,c6) are different non-constant Boolean functions. The group of six 

variables (x
N

1, …, x
N

6) is used to represent the possibilities that node N receives only one cofactor. 

Another group of six variables (x
N

7, …, x
N

12) is used to represent the possibility that N receives a pair of 

cofactors combined using join-vertex operation [16, 18, 23].  

The join-vertex operation is defined for cofactors coming from different nodes and having opposite 

polarity. This is why there are only six pairs, namely (c1,c4), (c2,c3), (c3,c6), (c4,c5), (c1,c6), and (c2,c5).  

Clauses 

The clauses of the SAT problem are divided into two categories: covering constraints and closure 

constraints. The covering constraints specify the requirement that each non-constant cofactor on the 

upper level is routed to the lower level. The closure constraints represent two types of requirements:  

(1) each cofactor on the upper level is routed no more than once, and  

(2) each node on the lower level is used no more than once. 

There are as many covering constraints as there are non-constant cofactors on the upper level. Each 

covering constraint is the disjunction of variables, which represent routing choices involving the given 

cofactor. Suppose, for some cofactor, there are m such variables. The mutual exclusiveness of these 

variables translates into m(m-1)/2 closure constraints of type (1), specifying that no two variables are 

equal to 1 at the same time. 

The closure constraints of type (2) are similar. For each node Ni on the lower level, they represent the 

mutual exclusiveness of variables in (x
Ni

1, …, x
Ni

ki). There are ki(ki-1)/2 such constraints for node Ni with 

ki associated variables. Because k  12, the number of these constraints does not exceed 66 for any node 

Ni. 

The Number of Variables and Clauses 

In this subsection, we approximate the number of clauses and constraints in a SAT problem, which 

arises in the lattice synthesis on level n.  

In the 3*3 lattice, level n (the upper level) consists of 2n - 1 nodes. The level n+1 (the lower level) 

consists of 2n + 1 nodes. Each node on the lower level can have up to 12 variables, so the upper bound V 

on the number of variables is  

V(n) = 12(2n+1). 

The number of covering constraints is equal to the number of cofactors on level n, which is 2(2n-1). In 

the worst case, the number of the closure constraints of type (1) and type (2) is 66(2n-1) and 66(2n+1), 

respectively. This yields the upper bound C on the number of clauses in the SAT problem 

C(n) = 2n – 1 + 66(2n-1) + 66(2n+1)  266n.  
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The worst-case number of variables and clauses grows linearly with the number of lattice levels. For 

example, for n=10, there are at the most V = 252 variables and C = 2660 clauses. When some of the 

cofactors on the upper level are constants or equal up to complementation, it is possible to introduce less 

than 12 variables for nodes of the lower level. These special cases can be used to significantly reduce the 

routing choices. As a result, the actual number of clauses is typically two times smaller than the worst-

case estimation.  

Weighted SAT Problem 

Each variable (x
Ni

1, …, x
Ni

ki) in the SAT problem is assigned a cost. The negative assignment of a 

variable has the cost 0. The positive assignment of a variable representing the join-vertex operation has a 

positive cost which is higher compared to the cost of the variable representing routing of the cofactors or 

joining of the cofactors equal up to complementation.  

In solving the SAT problem, we look for satisfying variable assignments having the smallest cost. Such 

solutions would guarantee that there are relatively few nodes with the join-vertex operation, which helps 

reducing the number of levels in the lattice.  

The complexity of the weighted SAT problem is NP-complete. 

Trading Quality for Runtime 

To simplify the complexity of the SAT problem, each level can be split into parts, for which SAT is 

solved independently. There is no routing of cofactors across the boundaries of the parts.  

This approach to reduce complexity of SAT allows for trading the layout quality for runtime. The 

smaller are the individual SAT problems, the faster they are solved. On the other hand, splitting a level 

into many parts leads to the sub-optimal layout near the boundaries.  

In practice, we found that having the parts composed of 5-7 nodes allows for a reasonable tradeoff 

between the optimality of the solution and the runtime of weighted SAT problems, which in this case 

takes approximately 0.1 seconds per instance.  

5. Experimental Results  
We have implemented the 3x3 lattice synthesis in a C program using the BDD package CUDD [29] for 

the manipulation of Boolean functions and the MINCOV package in SIS [27] to iteratively solve the 

weighted Boolean satisfiability problem. 

We tested our program on selected MCNC benchmarks. The resulting lattices were written into BLIF 

files and verified against the initial specification of the benchmark functions. The runtime for any 

particular example was dominated by the runtime of SAT solver and did not exceed three seconds on a 

933MHz Pentium III PC under MS Windows 2000.  

Table 1 shows the comparison of our results with those published in [5] for 2*2 lattices. The 2*2 

lattices are called Pseudo-Symmetric Binary Decision Diagrams (PSBDDs). They use only Shannon 

gates and allow for the same additional flexibilities: 

 (1) the data inputs of a gate can be complemented;  

 (2) both data inputs of a gate can be connected to the same gate below. 

Column “Name” gives the name of the benchmark circuit. Column “Outs” gives the total number of 

outputs in the circuit and, in parentheses, the particular output used for testing. Similarly, column “Ins” 

gives the total number of input in the circuit and, in parentheses, the number of variables in the support 



of the output used for testing. Column “2*2 Lattice” gives the number of levels and nodes in the lattice 

reported in [5]. Column “3*3 Lattice” gives the number of levels and nodes in our implementation. 

The experimental result in Table 1 show that synthesizing benchmark functions into the 3*3 lattices 

helps reducing the number of levels by 24% and the number of nodes by 56%, which speaks for the 

efficiency of the SAT-based synthesis algorithm. 

                  

 

   Table 1. Experimental results. 

Name Outs Ins 2 * 2 Lattice  3 * 3 Lattice 

levels nodes levels nodes 

apex7 37(30) 49(17) 25 148 19 33 

clip 5(1) 9(9) 18 103 9 30 

 5(2) 9(9) 27 220 9 30 

cm162a 5(3) 14(10) 11 24 10 18 

cps 109(1) 24(22) 26 134 24 61 

 109(2) 24(18) 26 164 21 66 

 109(3) 24(22) 39 342 30 128 

duke2 29(3) 22(15) 18 52 15 69 

 29(6) 22(17) 18 47 17 36 

 29(18) 22(15) 22 92 15 44 

example

2 

66(23) 85(16) 21 52 16 45 

 66(59) 85(14) 17 31 14 21 

 66(63) 85(13) 15 37 13 26 

frg2 139(99) 143(20

) 

22 189 20 28 

 139(10

0) 

143(19

) 

28 164 20 61 

sao2 4(2) 10(10) 18 71 14 56 

 4(3) 10(10) 16 73 14 65 

 4(4) 10(10) 16 68 11 46 

Total   383 2011 291 863 

Ratio, %   100 100 76 43 

6. Conclusions  
Quantum Dots Cellular Automata (QCA) are a new idea which promises to build highly dense, low 

power, high-speed nano-scale computing. This technology allows to build logic into wires so that 

processing is done everywhere in the chip, but so far this idea has not been used practically and much 

percent of the chip are just wires that are not performing logical functions. Here comes a perfect match 

with the old idea of regular logic [18 – 26], fabrics and cellular automata organization of computing 

systems. In this paper we introduced the concept of regular fabric for quantum dot cellular automata and 

we presented a regular layout structure called 3*3 lattice. We demonstrated that this structure gives 



additional freedom to implement Boolean functions and is quite favourable for realizations of arbitrary 

logic blocks in QCA. We proposed a synthesis algorithm, which uses this freedom to generate the lattice 

layout with a smaller number of levels and nodes, compared to the known 2*2 lattice synthesis 

algorithms. The proposed synthesis algorithm reduces the problem of lattice synthesis on a level to an 

instance of weighted Boolean satisfiability. We showed that the worst-case number of variables and 

clauses in the SAT instances is linear in the level number to be synthesized. An additional advantage of 

the SAT formulation is that it allows for an efficient trade-off between the layout quality and runtime. 

 

Our future work in this area includes clocking schemes (see [17, 31] for clock design issues) and 

simulation using QCADesigner [34]. Other work will include generalizing the synthesis algorithm to 

synthesize Kronecker and Pseudo-Kronecker 3*3 lattices and integrating our tools with one of the 

powerful SAT solvers developed recently, for example [15]. It is important to note that these ideas can 

be expanded to regular structures based on multiple-valued and fuzzy logic expansions and their 

reversible counterparts [2, 3, 18, 19, 20, 21, 22, 25, 26]  and are thus applicable to many emerging nano-

technologies for computing. As observed in [9, 39], the  Single Electron Transistor technology can be 

used as an example. Additional research is needed to extend our algorithm for multi-output functions. 

The method will be used in conjunction with Ashenhurst/Curtis and Bi-Decomposition, because only 

after such decompositions the results are well-realizable for several benchmarks. Otherwise, too many 

variable-repetitions are needed and the shape of the lattice differs too much from a rectangle. The 

presented 3*3  lattices cannot be used alone, they should be used only as a part of the comprehensive 

logic synthesis system. We are not claiming that 3*3 lattices are always better than 2*2 lattices or other 

realizations of QCAs, we believe only that various regular fabric tools should be available in a system so 

that the user will make the best choice. For instance, 2*2 lattices are good for completely symmetric 

functions. 
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