
Portland State University Portland State University

PDXScholar PDXScholar

Electrical and Computer Engineering Faculty
Publications and Presentations Electrical and Computer Engineering

9-2002

Logic Synthesis for Regular Layout using Logic Synthesis for Regular Layout using

Satisfiability Satisfiability

Marek Perkowski
Portland State University

Alan Mishchenko
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/ece_fac

 Part of the Electrical and Computer Engineering Commons

Let us know how access to this document benefits you.

Citation Details Citation Details
Alan Mishchenko and Marek Perkowski, "Logic Synthesis for Regular Layout using Satisfiability,"
Proceedings of Symposium on Boolean Problems. September, 2002, Freiberg, Germany.

This Conference Proceeding is brought to you for free and open access. It has been accepted for inclusion in
Electrical and Computer Engineering Faculty Publications and Presentations by an authorized administrator of
PDXScholar. Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/ece_fac
https://pdxscholar.library.pdx.edu/ece_fac
https://pdxscholar.library.pdx.edu/ece
https://pdxscholar.library.pdx.edu/ece_fac?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F214&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F214&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/ece_fac/214
mailto:pdxscholar@pdx.edu

Logic Synthesis for Regular Layout using Satisfiability
 Marek Perkowski and Alan Mishchenko
 Department of Electrical and Computer Engineering
 Portland State University
 Portland, OR 97207, USA
 [mperkows, alanmi]@ece.pdx.edu

Abstract

 In this paper, we propose a regular layout geometry
called 3×3 lattice∗ . The main difference of this geometry
compared to the known 2×2 regular layout geometry is
that it allows the cofactors on a level to propagate to
three rather than two nodes on the lower level. This gives
additional freedom to synthesize compact functional
representations. We propose a SAT-based algorithm,
which exploits this freedom to synthesize 3×3 lattice
representations of completely specified Boolean functions.
The experimental results show that the algorithm
generates compact layouts in reasonable time.

1 Introduction

Bridging together logic synthesis and layout synthesis
proceeds in several directions. One approach to this
problem, exemplified by [23], makes logic synthesis
aware of the layout early in the design flow.

Another approach aims at creating specific layout
structures with regular properties and synthesizing circuits
using these structures. Research in regular structures to
implement Boolean functions has started with the work of
Akers [1]. The advantage of the regular layout fabrics is
that they guarantee short wire length, predictable delay,
and the absence of crosstalk. The disadvantage is that it
may be difficult to derive compact representation for
relatively complex logic functions.

Recently, regular layout fabrics are becoming popular
with the new hardware implementation technologies such
as single-electron transistor devices [8] and quantum dots
[28]. A slide taken from [8] (Figure 4) illustrates the use
of the 2x2 lattices in SET technology. There is no routing
and all connections are short. Another circuits of interest

∗ The term lattice is used to described the layout geometry
because it is similar to a grid formed by logic gates and
interconnections. The use of this term in the paper is not related
to the set-theoretic concept of a lattice.

for regular structure approach are called Chemically
Assembled Electronic Nanotechnology (CAEN) [6][7].
CAEN is expected to offer significantly denser devices
than CMOS technology. For example, a single RAM cell
will require roughly 100nm2 [6][7]. In CMOS technology,
a similar cell occupies 100,000nm2 [7].

The regular layout structure called 2x2 lattice with
Shannon gates at the nodes has been first proposed in
[13][14][21]. Publication [13] proposed also more general
regular geometries and expansions other than Shannon,
including Davio. These ideas were next expanded by
several research groups [2][5][12][15][16][17][18][25]
leading to the development of a number of efficient logic
synthesis methods [5][9][18][19][22][26][27].

In this paper, we propose a new regular layout structure
called 3x3 lattice. The 3x3 geometry preserves the close
localization of logic elements characteristic of the 2x2
lattice but allows for more flexibility when implementing
logic functions. We also propose the lattice synthesis
algorithm, based on Boolean satisfiability, which makes
use of the flexibility to reduce the number of levels and
nodes in the lattice.

The rest of the paper is organized as follows. Section 2
describes the background. Section 3 presents the lattice
synthesis algorithm. Section 4 gives experimental results.
Section 5 concludes the paper and outlines future work.

2 Background

2.1 Expansions
Given a Boolean function F: Bn

 → B, where B = {0,1},
the negative (positive) cofactor of F with respect to
(w.r.t.) variable x is the Boolean function F0 (F1) derived
by substituting into F instead of x the value 0 (1).

Let us denote F2 the exclusive sum (EXOR) of the
negative and positive cofactors: F2 = F0 ⊕ F1.

Three canonical expansions of F are defined as follows:
 F = x F0 ⊕ x F1 Shannon expansion (S)
 F = F0 ⊕ x F2 Positive Davio expansion (pD)
 F = F1 ⊕ x F2 Negative Davio expansion (nD)

Cofactors w.r.t. two and more variables are defined as
repeated cofactoring w.r.t to each variable in the set. The
final result does not depend on the variable order.

For example, function F(a,b,c) = ab ∨ cba ∨ bca has
the following cofactors w.r.t. variable a:

Fa=0 = F(0, b, c) = bc.
Fa=1 = F(1, b, c) = b ∨ c.

2.2 Lattice Types
Regular layout type discussed in this paper is called

lattices [18]. Essentially, a lattice is a regular arrangement
of gates locally interconnected to form a grid. Each gate
has a control signal propagating from left to right and two
data signals propagating from bottom to top. Lattice
synthesis is typically performed from top to bottom when
the levels of gates are synthesized one at a time until the
level with constant cofactors is reached.

Differences between the 2x2 lattices and the 3x3 lattices
are illustrated in Figure 1, where circles represent gates
and edges represent possible interconnections. The
number pairs (“2x2” and “3x3”) specify the lattice
geometry: the first number tells how many gates of the
lower level can feed into the given gate; the second
number tells how many gates of the upper level can
receive the output of the given gate. The general concept
of “kxk” diagrams that included 2x2 and 3x3 lattices has
been presented in [13][14]. It should be noted that there
exist various other 3x3 regular diagrams [2][3][13][20]
that are not 3x3 lattices in the sense of this paper but have
been also called “lattices” by us. However, in this paper
the terms 2x2 and 3x3 lattices will refer only to structures
shown in Figure 1.

Depending on the lattice type, three types of gates can
be used in the nodes: Shannnon gates (MUXes), Positive
Davio gates, and Negative Davio gates, created according
to the three canonical expansions. Shannon lattices are
built using only Shannnon gates, Kronecker lattices can
have any of the three gates but only one gate type on each
level. Pseudo-Kronecker lattices can have any of the three
gates assigned to any node.

The lattices considered in this paper have the following
additional flexibilities: (1) the data inputs of a gate can be
complemented; (2) both data inputs of a gate can be
connected to the same gate below. In the synthesis
methods developed for 3x3 lattices, the gates are limited
to only Shannon gates.

Figure 1. 2x2 and 3x3 lattices.

2.3 Comparison of 2××××2 and 3××××3 Geometries
Note that although, in the 3x3 lattice, a gate can receive

inputs from any of the three gates on the lower level (left,
center, right), no more than two gates actually provide the
inputs (because each gate has only two data inputs). The
synthesis algorithm can use this additional freedom for
choosing two gates out of three candidates on the lower
level to achieve a compact layout, with less logic levels
and fewer gates.

Figure 2. Layout comparison of 2x2 and 3x3 lattice for a

random function of 7 variables.

Figure 2 shows the 2x2 lattice and 3x3 lattices
synthesized for a randomly generated 7 variable function.
The 2x2 lattice was synthesized using the tools from [25].
The 3x3 lattice was created by a new tool, which
implements the algorithm presented in this paper. Both
lattices are synthesized using only Shannon gates. The 2x2
lattice has 29 levels and 392 nodes. The 3x3 lattice has 20
levels and 150 nodes.

Random functions are among those that are the most
difficult to implement in regular structures. Figure 2
clearly demonstrates the advantage of the 3x3 geometry.
For other functions, 3x3 lattices are never larger than 2x2
lattices but the difference is less pronounced.

3 SAT-Based Lattice Synthesis

This section shows how the problem of synthesizing one
level of the 3x3 lattice with Shannon gates can be reduced
to a SAT instance. We assume the reader’s familiarity
with the basics of Boolean satisfiability as presented, for
example, in [10].

3.1 Outline of the Algorithm
Synthesis of the 3x3 lattice is performed level by level.

On each level, we solve the SAT problem, create the
layout of that level, and proceed to the next level.
Synthesis terminates when a level is reached on which all
cofactors are constants.

To formulate the SAT problem for one level of the
lattice, we consider all the nodes on the level following
immediately after the given one. The given level is called

the upper level; the level following immediately after the
given one is called the lower level.

We formulate the set of requirements representing all
possible routings of cofactors from the upper level to the
lower level. Only non-constant cofactors are considered
for routing. The constraints generated for all the nodes of
the lower level are added to the set of all constraints
representing the SAT instance.

3.2 Variables
Let us consider node N on the lower level. In the 3x3

lattice, there are six cofactors (c1,…,c6) that can
potentially be routed to this node. These cofactors come
from the nodes on the left (L), in the center (C), and on the
right (R) nodes, with respect to the node N (Figure 1).

Figure 3. The routing choices for node N.

A group of SAT variables (xN

1, …, xN
k) is associated

with each node N of the lower level. These variables
represent mutually exclusive possibilities of joining in
node N the cofactors coming from the upper level.

Suppose the cofactors (c1,…,c6) are different
non-constant Boolean functions. The group of six
variables (xN

1, …, xN
6) is used to represent the possibilities

that node N receives only one cofactor. Another group of
six variables (xN

7, …, xN
12) is used to represent the

possibility that N receives a pair of cofactors combined
using join-vertex operation [13][18].

The join-vertex operation is defined for cofactors
coming from different nodes and having opposite polarity.
This is why there are only six pairs, namely (c1,c4), (c2,c3),
(c3,c6), (c4,c5), (c1,c6), and (c2,c5).

3.3 Clauses
The clauses of the SAT problem are divided into two

categories: covering constraints and closure constraints.
The covering constraints specify the requirement that each
non-constant cofactor on the upper level is routed to the
lower level. The closure constraints represent two types of
requirements: (1) each cofactor on the upper level is
routed no more than once, and (2) each node on the lower
level is used no more than once.

There are as many covering constraints as there are non-
constant cofactors on the upper level. Each covering
constraint is the disjunction of variables, which represent
routing choices involving the given cofactor. Suppose, for
some cofactor, there are m such variables. The mutual
exclusiveness of these variables translates into m(m-1)/2

closure constraints of type (1), specifying that no two
variables are equal to 1 at the same time.

The closure constraints of type (2) are similar. For each
node Ni on the lower level, they represent the mutual
exclusiveness of variables in (xNi

1, …, xNi
ki). There are

ki(ki-1)/2 such constraints for node Ni with ki associated
variables. Because k ≤ 12, the number of these constraints
does not exceed 66 for any node Ni.

3.4 The Number of Variables and Clauses
In this subsection, we approximate the number of

clauses and constraints in a SAT problem, which arises in
the lattice synthesis on level n.

In the 3x3 lattice, level n (the upper level) consists of
2n - 1 nodes. The level n+1 (the lower level) consists of
2n + 1 nodes. Each node on the lower level can have up to
12 variables, so the upper bound V on the number of
variables is

V(n) = 12(2n+1).
The number of covering constraints is equal to the

number of cofactors on level n, which is 2(2n-1). In the
worst case, the number of the closure constraints of type
(1) and type (2) is 66(2n-1) and 66(2n+1), respectively.
This yields the upper bound C on the number of clauses in
the SAT problem

C(n) = 2n – 1 + 66(2n-1) + 66(2n+1) ≈ 266n.
The worst-case number of variables and clauses grows

linearly with the number of lattice levels. For example, for
n=10, there are at the most V = 252 variables and C =
2660 clauses. When some of the cofactors on the upper
level are constants or equal up to complementation, it is
possible to introduce less than 12 variables for nodes of
the lower level. These special cases can be used to
significantly reduce the routing choices. As a result, the
actual number of clauses is typically two times smaller
than the worst-case estimation.

3.5 Weighted SAT Problem
Each variable (xNi

1, …, xNi
ki) in the SAT problem is

assigned a cost. The negative assignment of a variable has
the cost 0. The positive assignment of a variable
representing the join-vertex operation has a positive cost
which is higher compared to the cost of the variable
representing routing of the cofactors or joining of the
cofactors equal up to complementation.

In solving the SAT problem, we look for satisfying
variable assignments having the smallest cost. Such
solutions would guarantee that there are relatively few
nodes with the join-vertex operation, which helps
reducing the number of levels in the lattice.

The complexity of the weighted SAT problem is NP-
complete.

c1 c2 c3 c4 c5 c6
1 1 1 0 0 0 L C R

N

3.6 Trading Quality for Runtime
To simplify the complexity of the SAT problem, each

level can be split into parts, for which SAT is solved
independently. There is no routing of cofactors across the
boundaries of the parts.

This approach to reduce complexity of SAT allows for
trading the layout quality for runtime. The smaller are the
individual SAT problems, the faster they are solved. On
the other hand, splitting a level into many parts leads to
the sub-optimal layout near the boundaries.

In practice, we found that having the parts composed of
5-7 nodes allows for a reasonable tradeoff between the
optimality of the solution and the runtime of weighted
SAT problems, which in this case takes approximately 0.1
seconds per instance.

4 Experimental Results

We have implemented the 3x3 lattice synthesis in a C
program using the BDD package CUDD [24] for the
manipulation of Boolean functions and the MINCOV
package in SIS [22] to iteratively solve the weighted
Boolean satisfiability problem.

We tested our program on selected MCNC benchmarks.
The resulting lattices were written into BLIF files and
verified against the initial specification of the benchmark
functions. The runtime for any particular example was
dominated by the runtime of SAT solver and did not
exceed three seconds on a 933MHz Pentium III PC under
MS Windows 2000.

Table 1 shows the comparison of our results with those
published in [4] for 2x2 lattices. The 2x2 lattices are
called Pseudo-Symmetric Binary Decision Diagrams
(PSBDDs). They use only Shannon gates and allow for
the same additional flexibilities: (1) the data inputs of a
gate can be complemented; (2) both data inputs of a gate
can be connected to the same gate below.

Column “Name” gives the name of the benchmark
circuit. Column “Outs” gives the total number of outputs
in the circuit and, in parentheses, the particular output
used for testing. Similarly, column “Ins” gives the total
number of input in the circuit and, in parentheses, the
number of variables in the support of the output used for
testing. Column “2x2 Lattice” gives the number of levels
and nodes in the lattice reported in [4]. Column “3x3
Lattice” gives the number of levels and nodes in our
implementation.

The experimental result in Table 1 show that
synthesizing benchmark functions into the 3x3 lattices
helps reducing the number of levels by 24% and the
number of nodes by 56%, which speaks for the efficiency
of the SAT-based synthesis algorithm.

Table 1. Experimental results.

2 x 2 Lattice 3 x 3 Lattice Name Outs Ins

levels nodes levels nodes
apex7 37(30) 49(17) 25 148 19 33
clip 5(1) 9(9) 18 103 9 30

 5(2) 9(9) 27 220 9 30
cm162a 5(3) 14(10) 11 24 10 18

cps 109(1) 24(22) 26 134 24 61
 109(2) 24(18) 26 164 21 66
 109(3) 24(22) 39 342 30 128

duke2 29(3) 22(15) 18 52 15 69
 29(6) 22(17) 18 47 17 36
 29(18) 22(15) 22 92 15 44

example2 66(23) 85(16) 21 52 16 45
 66(59) 85(14) 17 31 14 21
 66(63) 85(13) 15 37 13 26

frg2 139(99) 143(20) 22 189 20 28
 139(100)143(19) 28 164 20 61

sao2 4(2) 10(10) 18 71 14 56
 4(3) 10(10) 16 73 14 65
 4(4) 10(10) 16 68 11 46

Total 383 2011 291 863
Ratio, % 100 100 76 43

5 Conclusions

We presented a regular layout structure called 3x3
lattice. We demonstrated that this structure gives
additional freedom to implement Boolean functions. We
proposed a synthesis algorithm, which uses this freedom
to generate the lattice layout with a smaller number of
levels and nodes, compared to the known 2x2 lattice
synthesis algorithms.

The proposed synthesis algorithm reduces the problem
of lattice synthesis on a level to an instance of weighted
Boolean satisfiability. We showed that the worst-case
number of variables and clauses in the SAT instances is
linear in the level number to be synthesized. An additional
advantage of the SAT formulation is that it allows for an
efficient trade-off between the layout quality and runtime.

The future work in this area may include generalizing
the synthesis algorithm to synthesis Kronecker and
Pseudo-Kronecker 3x3 lattices and integrating our tools
with one of the powerful SAT solvers developed recently,
for example [11]. It is important to note that these ideas
can be expanded to regular structures based on multiple-
valued and fuzzy logic expansions and their reversible
counterparts [2][3][13][15][16][17][20][21] and are thus
applicable to many emerging nano-technologies for
computing, especially such as Single Electron Transistors
and Quantum Dots.

References

[1] S. B. Akers. A Rectangular Logic Array, IEEE Trans.
on Computers. Vol. C-21, pp. 848-857, 1972

[2] Al-Rabadi and M. Perkowski, Shannon and Davio
Sets of New Lattice Structures for Logic Synthesis in
Three-Dimensional Space, Proc. RM'01

[3] Al-Rabadi and M. Perkowski, New Classes of Multi-
valued Reversible Decompositions for Three-
Dimensional Layout, Proc. RM'01.

[4] M. Chrzanowska-Jeske, Y. Xu, M. Perkowski, Logic
Synthesis for a Regular Layout. VLSI Design: An
International Journal of Custom-Chip Design,
Simulation, and Testing, 1999.

[5] B.T. Drucker, C.M. Files, M. A. Perkowski, and
M.Chrzanowska-Jeske. Polarized Pseudo-Kronecker
Symmetry with an Application to the Synthesis of
Lattice Decision Diagrams. Proc. ICCIMA'98
Conference, pp. 745-755.

[6] P. Farm and E. Dubrova, Technology Mapping for
Chemically Assembled Electronic Nanotechnology,
Proc. IWLS ’02.

[7] S. Goldstein and M. Budiu, Nanofabrics: Spatial
computing using molecular electronics, Proc. 28th
Annual International Symposium on Computer
Architecture, (Gothenborg, Sweden), June 2001.

[8] H. Hasegawa, A. Ito, Ch. Jiang, and T. Muranaka,
Atomic Assisted Selective MBE Growth of InGaAs
Linear and Hexagonal Nanowire Networks For Novel
Quantum Circuits, Proc. 4th Intern Workshop on
Novel Index Surfaces (NIS’01), Sept 16-20, Apset
France.

[9] P. Lindgren, R. Drechsler, B. Becker, Synthesis of
Pseudo-Kronecker Lattice Diagrams. Proc. of Intl.
Worshop of Applications of Reed-Muller Expantions
to Circuit Synthesis, 1999, Victoria, B. C., Canada,
pp. 197 - 204.

[10] J. P. Marques-Silva, K. A. Sakallah, GRASP: A
Search Algorithm for Propositional Satisfiability.
IEEE Trans. Comp. Vol. 48, No. 5, May 1999, pp.
506-521.

[11] M. W. Moskewicz et al., Chaff: Engineering an
Efficient SAT Solver. Proc. DAC’01, pp. 530-535.

[12] A. Mukherjee, R. Sudhakar, M. Marek-Sadowska, S.
I. Long, Wave Steering in YADDs: A Novel Non-
Iterative Synthesis and Layout Technique. Proc.
DAC’99, pp. 466-471.

[13] M. Perkowski, and E. Pierzchala, New Canonical
Forms for Four-Valued Logic, Report, Electrical
Engineering Department, PSU . 1993.

[14] E. Pierzchala, and M. Perkowski, Patent #5,959,871,
September 28, 1999. Programmable Analog Array
Circuit.

[15] M. Perkowski, E. Pierzchala, and R. Drechsler,
Ternary and Quaternary Lattice Diagrams for
Linearly-Independent Logic, Multiple-Valued Logic
and Analog Synthesis, Proc. ISIC-97, Singapur, 10-
12 Sept.1997.

[16] M. Perkowski, L. Jozwiak, R. Drechsler, and B. J.
Falkowski, Ordered and Shared, Linearly
Independent, Variable-Pair Decision Diagrams, Proc.
First International Conference on Information,
Communications and Signal Processing, ICICS'97,
Singapur, 9-12 Sept. 1997. Session 1C1: Spectral
Techniques and Decision Diagrams.

[17] M. Perkowski, E. Pierzchala, and R. Drechsler,
Layout-Driven Synthesis for Submicron Technology:
Mapping Expansions to Regular Lattices, Proc. First
International Conference on Information,
Communications and Signal Processing, ICICS'97,
Singapur, 9-12 Sept. 1997. Session 1C1: Spectral
Techniques and Decision Diagrams.

[18] M. Perkowski, M. Chrzanowska-Jeske, and Y. Xu,
Lattice Diagrams Using Reed-Muller Logic. Proc. of
Intl. Worshop of Applications of Reed-Muller
Expansions to Circuit Synthesis, 1997, Oxford Univ.,
U.K., pp. 85 - 102.

[19] M. A. Perkowski, M. Chrzanowska-Jeske, and Yang
Xu, Multi-Level Programmable Arrays for Sub-
Micron Technology based on Symmetries, Proc.
ICCIMA'98 Conference, pp. 707-720, February 1998,
Australia, published by World Scientific.

[20] M. Perkowski, A. Al-Rabadi, P. Kerntopf, A.
Mishchenko and M. Chrzanowska-Jeske, Three-
Dimensional Realization of Multiple-Valued
Functions using Reversible Logic, Invited Talk,
Proc. Workshop on Post-Binary Ultra-Large Scale
Integration Systems (ULSI), , pp. 47 - 53, May 21,
2001, Warsaw, Poland.

[21] E. Pierzchala, M. A. Perkowski, S. Grygiel, A Field
Programmable Analog Arrray for Continuous, Fuzzy
and Multi-Valued Logic Applications, Proc.
ISMVL'94, pp. 148 - 155, Boston, MA, May 25-27,
1994.

[22] E. Sentovich, et al., SIS: A System for Sequential
Circuit Synthesis, Tech. Rep. UCB/ERI, M92/41,
ERL, Dept. of EECS, Univ. of California, Berkeley,
1992.

[23] A. Singh, G. Parthasarathy, M. Marek-Sadowska,
Interconnect Resource-Aware Placement for
Hierarchical FPGAs. Proc. ICCAD ’01, pp. 132-137.

[24] F. Somenzi. CUDD Package, Release 2.3.1.
http://vlsi.Colorado.EDU/~fabio/CUDD/cuddIntro.ht
ml

[25] VLSI Design Automation Laboratory. Pseudo-
Symmetric Kronecker Functional Decision
Diagrams.
http://web.pdx.edu/~suresh/pskfdd/main.php

[26] W. Wang, M. Chrzanowska-Jeske, Optimizing
Pseudo-Symmetric Binary Decision Diagrams Using
Multiple Symmetries. Proc. IWLS'98, pp. 134-140.

[27] W. Wang, M. Chrzanowska-Jeske, Generating Linear
Arrays Using Symmetry Chain. Proc. IWLS'99,
pp.115 -119.

[28] T. Yamada, Y. Kinoshita, S. Kasai, H. Hasegawa,
Y. Amemiya, Quantum Dot Logic Circuits Based on
Shared Binary-Decision Diagram, Jpn. J. Appl. Phys.
Vol. 40, 2002, pp. 4485-4488, Part1, No. 7, July
2001.

Figure 4. Explanation of using lattice structure (called hexagonal structure)
based on Single Electron Transistors to realize a 2-bit adder [8].

	Logic Synthesis for Regular Layout using Satisfiability
	Let us know how access to this document benefits you.
	Citation Details

	tmp.1415660121.pdf.uOkj4

