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Abstract 

  In this paper, we propose a regular layout geometry 
called 3×3 lattice∗ . The main difference of this geometry 
compared to the known 2×2 regular layout geometry is 
that it allows the cofactors on a level to propagate to 
three rather than two nodes on the lower level. This gives 
additional freedom to synthesize compact functional 
representations. We propose a SAT-based algorithm, 
which exploits this freedom to synthesize 3×3 lattice 
representations of completely specified Boolean functions. 
The experimental results show that the algorithm 
generates compact layouts in reasonable time. 

1 Introduction 

Bridging together logic synthesis and layout synthesis 
proceeds in several directions. One approach to this 
problem, exemplified by [23], makes logic synthesis 
aware of the layout early in the design flow.  

Another approach aims at creating specific layout 
structures with regular properties and synthesizing circuits 
using these structures. Research in regular structures to 
implement Boolean functions has started with the work of 
Akers [1]. The advantage of the regular layout fabrics is 
that they guarantee short wire length, predictable delay, 
and the absence of crosstalk. The disadvantage is that it 
may be difficult to derive compact representation for 
relatively complex logic functions.  

Recently, regular layout fabrics are becoming popular 
with the new hardware implementation technologies such 
as single-electron transistor devices [8] and quantum dots 
[28]. A slide taken from [8] (Figure 4) illustrates the use 
of the 2x2 lattices in SET technology. There is no routing 
and all connections are short. Another circuits of interest 

                                                           
∗  The term lattice is used to described the layout geometry 
because it is similar to a grid formed by logic gates and 
interconnections. The use of this term in the paper is not related 
to the set-theoretic concept of a lattice.  

for regular structure approach are called Chemically 
Assembled Electronic Nanotechnology (CAEN) [6][7]. 
CAEN is expected to offer significantly denser devices 
than CMOS technology. For example, a single RAM cell 
will require roughly 100nm2 [6][7]. In CMOS technology, 
a similar cell occupies 100,000nm2 [7]. 

The regular layout structure called 2x2 lattice with 
Shannon gates at the nodes has been first proposed in 
[13][14][21]. Publication [13] proposed also more general 
regular geometries and expansions other than Shannon, 
including Davio. These ideas were next expanded by 
several research groups [2][5][12][15][16][17][18][25] 
leading to the development of a number of efficient logic 
synthesis methods [5][9][18][19][22][26][27]. 

In this paper, we propose a new regular layout structure 
called 3x3 lattice. The 3x3 geometry preserves the close 
localization of logic elements characteristic of the 2x2 
lattice but allows for more flexibility when implementing 
logic functions. We also propose the lattice synthesis 
algorithm, based on Boolean satisfiability, which makes 
use of the flexibility to reduce the number of levels and 
nodes in the lattice. 

The rest of the paper is organized as follows. Section 2 
describes the background. Section 3 presents the lattice 
synthesis algorithm. Section 4 gives experimental results. 
Section 5 concludes the paper and outlines future work. 

2 Background 

2.1 Expansions 
Given a Boolean function F: Bn

 → B, where B = {0,1}, 
the negative (positive) cofactor of F with respect to 
(w.r.t.) variable x is the Boolean function F0 (F1) derived 
by substituting into F instead of x the value 0 (1).  

Let us denote F2 the exclusive sum (EXOR) of the 
negative and positive cofactors: F2 = F0 ⊕  F1.  

Three canonical expansions of F are defined as follows: 
   F = x F0  ⊕  x F1     Shannon expansion (S)  
   F =  F0  ⊕  x F2        Positive Davio expansion (pD)  
   F =  F1  ⊕ x F2        Negative Davio expansion (nD)  



Cofactors w.r.t. two and more variables are defined as 
repeated cofactoring w.r.t to each variable in the set. The 
final result does not depend on the variable order.  

For example, function F(a,b,c) = ab ∨  cba ∨  bca  has 
the following cofactors w.r.t. variable a: 

Fa=0 = F( 0, b, c ) = bc. 
Fa=1 = F( 1, b, c ) = b ∨  c. 

2.2 Lattice Types 
Regular layout type discussed in this paper is called 

lattices [18]. Essentially, a lattice is a regular arrangement 
of gates locally interconnected to form a grid. Each gate 
has a control signal propagating from left to right and two 
data signals propagating from bottom to top. Lattice 
synthesis is typically performed from top to bottom when 
the levels of gates are synthesized one at a time until the 
level with constant cofactors is reached.  

Differences between the 2x2 lattices and the 3x3 lattices 
are illustrated in Figure 1, where circles represent gates 
and edges represent possible interconnections. The 
number pairs (“2x2” and “3x3”) specify the lattice 
geometry: the first number tells how many gates of the 
lower level can feed into the given gate; the second 
number tells how many gates of the upper level can 
receive the output of the given gate. The general concept 
of “kxk” diagrams that included 2x2 and 3x3 lattices has 
been presented in [13][14]. It should be noted that there 
exist various other 3x3 regular diagrams [2][3][13][20] 
that are not 3x3 lattices in the sense of this paper but have 
been also called “lattices” by us. However, in this paper 
the terms 2x2 and 3x3 lattices will refer only to structures 
shown in Figure 1. 

Depending on the lattice type, three types of gates can 
be used in the nodes: Shannnon gates (MUXes), Positive 
Davio gates, and Negative Davio gates, created according 
to the three canonical expansions. Shannon lattices are 
built using only Shannnon gates, Kronecker lattices can 
have any of the three gates but only one gate type on each 
level. Pseudo-Kronecker lattices can have any of the three 
gates assigned to any node.  

The lattices considered in this paper have the following 
additional flexibilities: (1) the data inputs of a gate can be 
complemented; (2) both data inputs of a gate can be 
connected to the same gate below. In the synthesis 
methods developed for 3x3 lattices, the gates are limited 
to only Shannon gates. 

 
 
 
 
 
 

Figure 1. 2x2 and 3x3 lattices. 

2.3 Comparison of 2××××2 and 3××××3 Geometries 
Note that although, in the 3x3 lattice, a gate can receive 

inputs from any of the three gates on the lower level (left, 
center, right), no more than two gates actually provide the 
inputs (because each gate has only two data inputs). The 
synthesis algorithm can use this additional freedom for 
choosing two gates out of three candidates on the lower 
level to achieve a compact layout, with less logic levels 
and fewer gates.  

 
Figure 2. Layout comparison of 2x2 and 3x3 lattice for a 

random function of 7 variables. 

Figure 2 shows the 2x2 lattice and 3x3 lattices 
synthesized for a randomly generated 7 variable function. 
The 2x2 lattice was synthesized using the tools from [25]. 
The 3x3 lattice was created by a new tool, which 
implements the algorithm presented in this paper. Both 
lattices are synthesized using only Shannon gates. The 2x2 
lattice has 29 levels and 392 nodes. The 3x3 lattice has 20 
levels and 150 nodes.  

Random functions are among those that are the most 
difficult to implement in regular structures. Figure 2 
clearly demonstrates the advantage of the 3x3 geometry. 
For other functions, 3x3 lattices are never larger than 2x2 
lattices but the difference is less pronounced.  

3 SAT-Based Lattice Synthesis  

This section shows how the problem of synthesizing one 
level of the 3x3 lattice with Shannon gates can be reduced 
to a SAT instance. We assume the reader’s familiarity 
with the basics of Boolean satisfiability as presented, for 
example, in [10]. 

3.1 Outline of the Algorithm 
Synthesis of the 3x3 lattice is performed level by level. 

On each level, we solve the SAT problem, create the 
layout of that level, and proceed to the next level. 
Synthesis terminates when a level is reached on which all 
cofactors are constants. 

To formulate the SAT problem for one level of the 
lattice, we consider all the nodes on the level following 
immediately after the given one. The given level is called 



the upper level; the level following immediately after the 
given one is called the lower level. 

We formulate the set of requirements representing all 
possible routings of cofactors from the upper level to the 
lower level. Only non-constant cofactors are considered 
for routing. The constraints generated for all the nodes of 
the lower level are added to the set of all constraints 
representing the SAT instance. 

3.2 Variables  
Let us consider node N on the lower level. In the 3x3 

lattice, there are six cofactors (c1,…,c6) that can 
potentially be routed to this node. These cofactors come 
from the nodes on the left (L), in the center (C), and on the 
right (R) nodes, with respect to the node N (Figure 1).  

 
 
 
 
 
 

Figure 3. The routing choices for node N. 
 
A group of SAT variables (xN

1, …, xN
k) is associated 

with each node N of the lower level. These variables 
represent mutually exclusive possibilities of joining in 
node N the cofactors coming from the upper level.  

Suppose the cofactors (c1,…,c6) are different 
non-constant Boolean functions. The group of six 
variables (xN

1, …, xN
6) is used to represent the possibilities 

that node N receives only one cofactor. Another group of 
six variables (xN

7, …, xN
12) is used to represent the 

possibility that N receives a pair of cofactors combined 
using join-vertex operation [13][18]. 

The join-vertex operation is defined for cofactors 
coming from different nodes and having opposite polarity. 
This is why there are only six pairs, namely (c1,c4), (c2,c3), 
(c3,c6), (c4,c5), (c1,c6), and (c2,c5).  

3.3 Clauses 
The clauses of the SAT problem are divided into two 

categories: covering constraints and closure constraints. 
The covering constraints specify the requirement that each 
non-constant cofactor on the upper level is routed to the 
lower level. The closure constraints represent two types of 
requirements: (1) each cofactor on the upper level is 
routed no more than once, and (2) each node on the lower 
level is used no more than once. 

There are as many covering constraints as there are non-
constant cofactors on the upper level. Each covering 
constraint is the disjunction of variables, which represent 
routing choices involving the given cofactor. Suppose, for 
some cofactor, there are m such variables. The mutual 
exclusiveness of these variables translates into m(m-1)/2 

closure constraints of type (1), specifying that no two 
variables are equal to 1 at the same time. 

The closure constraints of type (2) are similar. For each 
node Ni on the lower level, they represent the mutual 
exclusiveness of variables in (xNi

1, …, xNi
ki). There are 

ki(ki-1)/2 such constraints for node Ni with ki associated 
variables. Because k ≤ 12, the number of these constraints 
does not exceed 66 for any node Ni. 

3.4 The Number of Variables and Clauses 
In this subsection, we approximate the number of 

clauses and constraints in a SAT problem, which arises in 
the lattice synthesis on level n.  

In the 3x3 lattice, level n (the upper level) consists of 
2n - 1 nodes. The level n+1 (the lower level) consists of 
2n + 1 nodes. Each node on the lower level can have up to 
12 variables, so the upper bound V on the number of 
variables is  

V(n) = 12(2n+1). 
The number of covering constraints is equal to the 

number of cofactors on level n, which is 2(2n-1). In the 
worst case, the number of the closure constraints of type 
(1) and type (2) is 66(2n-1) and 66(2n+1), respectively. 
This yields the upper bound C on the number of clauses in 
the SAT problem 

C(n) = 2n – 1 + 66(2n-1) + 66(2n+1) ≈ 266n.  
The worst-case number of variables and clauses grows 

linearly with the number of lattice levels. For example, for 
n=10, there are at the most V = 252 variables and C = 
2660 clauses. When some of the cofactors on the upper 
level are constants or equal up to complementation, it is 
possible to introduce less than 12 variables for nodes of 
the lower level. These special cases can be used to 
significantly reduce the routing choices. As a result, the 
actual number of clauses is typically two times smaller 
than the worst-case estimation.  

3.5 Weighted SAT Problem 
Each variable (xNi

1, …, xNi
ki) in the SAT problem is 

assigned a cost. The negative assignment of a variable has 
the cost 0. The positive assignment of a variable 
representing the join-vertex operation has a positive cost 
which is higher compared to the cost of the variable 
representing routing of the cofactors or joining of the 
cofactors equal up to complementation.  

In solving the SAT problem, we look for satisfying 
variable assignments having the smallest cost. Such 
solutions would guarantee that there are relatively few 
nodes with the join-vertex operation, which helps 
reducing the number of levels in the lattice.  

The complexity of the weighted SAT problem is NP-
complete. 

c1 c2 c3 c4 c5 c6 
1 1 1 0 0 0 L C R 

N 



3.6 Trading Quality for Runtime 
To simplify the complexity of the SAT problem, each 

level can be split into parts, for which SAT is solved 
independently. There is no routing of cofactors across the 
boundaries of the parts.  

This approach to reduce complexity of SAT allows for 
trading the layout quality for runtime. The smaller are the 
individual SAT problems, the faster they are solved. On 
the other hand, splitting a level into many parts leads to 
the sub-optimal layout near the boundaries.  

In practice, we found that having the parts composed of 
5-7 nodes allows for a reasonable tradeoff between the 
optimality of the solution and the runtime of weighted 
SAT problems, which in this case takes approximately 0.1 
seconds per instance.  

4 Experimental Results  

We have implemented the 3x3 lattice synthesis in a C 
program using the BDD package CUDD [24] for the 
manipulation of Boolean functions and the MINCOV 
package in SIS [22] to iteratively solve the weighted 
Boolean satisfiability problem. 

We tested our program on selected MCNC benchmarks. 
The resulting lattices were written into BLIF files and 
verified against the initial specification of the benchmark 
functions. The runtime for any particular example was 
dominated by the runtime of SAT solver and did not 
exceed three seconds on a 933MHz Pentium III PC under 
MS Windows 2000.  

Table 1 shows the comparison of our results with those 
published in [4] for 2x2 lattices. The 2x2 lattices are 
called Pseudo-Symmetric Binary Decision Diagrams 
(PSBDDs). They use only Shannon gates and allow for 
the same additional flexibilities: (1) the data inputs of a 
gate can be complemented; (2) both data inputs of a gate 
can be connected to the same gate below. 

Column “Name” gives the name of the benchmark 
circuit. Column “Outs” gives the total number of outputs 
in the circuit and, in parentheses, the particular output 
used for testing. Similarly, column “Ins” gives the total 
number of input in the circuit and, in parentheses, the 
number of variables in the support of the output used for 
testing. Column “2x2 Lattice” gives the number of levels 
and nodes in the lattice reported in [4]. Column “3x3 
Lattice” gives the number of levels and nodes in our 
implementation. 

The experimental result in Table 1 show that 
synthesizing benchmark functions into the 3x3 lattices 
helps reducing the number of levels by 24% and the 
number of nodes by 56%, which speaks for the efficiency 
of the SAT-based synthesis algorithm. 

Table 1. Experimental results. 

2 x 2 Lattice  3 x 3 Lattice Name Outs Ins 

levels nodes levels nodes
apex7 37(30) 49(17) 25 148 19 33 
clip 5(1) 9(9) 18 103 9 30 

 5(2) 9(9) 27 220 9 30 
cm162a 5(3) 14(10) 11 24 10 18 

cps 109(1) 24(22) 26 134 24 61 
 109(2) 24(18) 26 164 21 66 
 109(3) 24(22) 39 342 30 128 

duke2 29(3) 22(15) 18 52 15 69 
 29(6) 22(17) 18 47 17 36 
 29(18) 22(15) 22 92 15 44 

example2 66(23) 85(16) 21 52 16 45 
 66(59) 85(14) 17 31 14 21 
 66(63) 85(13) 15 37 13 26 

frg2 139(99) 143(20) 22 189 20 28 
 139(100)143(19) 28 164 20 61 

sao2 4(2) 10(10) 18 71 14 56 
 4(3) 10(10) 16 73 14 65 
 4(4) 10(10) 16 68 11 46 

Total   383 2011 291 863 
Ratio, %   100 100 76 43 

5 Conclusions  

We presented a regular layout structure called 3x3 
lattice. We demonstrated that this structure gives 
additional freedom to implement Boolean functions. We 
proposed a synthesis algorithm, which uses this freedom 
to generate the lattice layout with a smaller number of 
levels and nodes, compared to the known 2x2 lattice 
synthesis algorithms.  

The proposed synthesis algorithm reduces the problem 
of lattice synthesis on a level to an instance of weighted 
Boolean satisfiability. We showed that the worst-case 
number of variables and clauses in the SAT instances is 
linear in the level number to be synthesized. An additional 
advantage of the SAT formulation is that it allows for an 
efficient trade-off between the layout quality and runtime. 

The future work in this area may include generalizing 
the synthesis algorithm to synthesis Kronecker and 
Pseudo-Kronecker 3x3 lattices and integrating our tools 
with one of the powerful SAT solvers developed recently, 
for example [11]. It is important to note that these ideas 
can be expanded to regular structures based on multiple-
valued and fuzzy logic expansions and their reversible 
counterparts [2][3][13][15][16][17][20][21] and are thus 
applicable to many emerging nano-technologies for 
computing, especially such as  Single Electron Transistors 
and Quantum Dots. 
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Figure 4. Explanation of using lattice structure (called hexagonal structure) 
based on Single Electron Transistors to realize a 2-bit adder [8]. 
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