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EXECUTIVE SUMMARY 

It can be expected that connected vehicles (CVs) will soon go beyond testbed and appear on real-
world road networks. Through vehicle-to-infrastructure communication channels, much more 
enriched data (e.g., the trajectories of CVs) will be available to operate more efficient and 
responsive traffic control modules. Many existing studies also showed the effectiveness of CV-
based transportation systems could be improved with the increase of CV penetration rates.   

Hence, to accommodate a large number of connected vehicles on the roads, traffic signal control 
on signalized arterials would require supports of various components such as roadside CV 
infrastructures, vehicle on-board devices, an effective communication network, and optimal 
control algorithms. In this project, we aim to establish a real-time and adaptive system for 
supporting the operations of CV-based traffic signal control functions. The proposed system will 
best utilize the capacity of the communication channels with optimization functions. The CV 
data sensing and acquisition protocol, built on Age of Information (AoI) as a function of the 
system overall latency and communication load, will support the feedback control loop to adjust 
signal timing plans.  

Our multidisciplinary research team, including researchers from transportation engineering and 
electrical engineering, carry out the project tasks along four directions that capitalized on the PIs’ 
expertise: (i) Data collection and communication, in which the proposed system is based on the 
AoI and optimize the communication network; (ii) Dynamic traffic signal coordination, which 
will concurrently facilitate the progression of traffic flows along multiple critical paths;  (iii) 
Smart traffic signal control, where both operational efficiency and safety improvement are 
accounted for at signalized intersections; and (iv) Multimodal system design, which will 
integrate transit signal priority (TSP) and suppression controls for accommodating connected 
buses. This project addresses the urgent needs in CV system designs and offers control 
foundations to support the operations of urban signalized arterials in a CV environment. 



2 

 

1.0 INTRODUCTION 

1.1 RESEARCH BACKGROUND 

Car ownership has increased tremendously all over the world in recent years, resulting in an 
increase in travel time and aggregated traffic congestion. A recent technical report showed that 
5.5 billion hours and 2.9 billion gallon of fuel were spent by American drivers each year due to 
traffic congestions (Schrank et al., 2012). The severity of those problems rises significantly at 
intersections because of the conflict of the right-of-way. Statistics results of the U.S. Department 
of Transportation (USDOT) and National Highway Traffic Safety Administration (NHTSA) 
further revealed that over half of all traffic congestion is caused at intersections and by traffic 
incidents (Florin and Olariu, 2015).  

In the meantime, with the rapid development of communication technologies connected vehicles 
(CVs) are considered as the next frontier for automotive revolution. According to  Foley & 
Lardner LLP’s Survey (2017), it is predicted that more than 20% of vehicles in transportation 
networks will be CVs by 2025. By exchanging real-time information between vehicles and 
infrastructure, CV applications have demonstrated promising benefits in improving safety and 
mobility of transportation and reducing emissions. CV technology has also shown great potential 
in mitigating traffic congestion and improving the efficiency of transportation systems (Lu et al., 
2014; Diakaki et al., 2015). The CVs equipped with onboard units can communicate via vehicle-
to-vehicle (V2V) and vehicle-to-infrastructure (V2I) infrastructure in real time. V2V technology 
allows CVs to exchange critical vehicle status data, such as vehicle speeds, location, 
acceleration, etc. The V2I platform supports vehicles’ communication with infrastructure (e.g., 
signal phase and timing data from the signal controller). For exploring potential benefits from 
CV technology, many researchers have investigated its applications in various traffic control 
domains (Wang et al., 2016; Ge and Orosz, 2014; Rao et al., 1994; Grumert and Tapani, 2017), 
which helps traffic agencies deploy CV applications in the real world. 

Hence, there is an urgent need to develop reliable and an efficient communication network (e.g., 
V2V and V2I) (Lu et al., 2014), and real-time functions for supporting CV-based traffic signal 
control (Zhu and Ukkusuri, 2015). Those works will become even more challenging when the 
system has to accommodate a large number of CVs on the road network. In a review of the 
literature, although great research efforts have been made to study connected and/or autonomous 
vehicle technology, most of them didn’t distinguish vehicles’ need in connectivity and 
automation very well (Talebpour and Mahmassani, 2016), which leaves many unanswered 
questions in control function designs. To support the CV corridor operations, our research team 
at the University of Utah aims to develop a systematic protocol that leverages the 
interdependencies between fundamental theories of wireless communication and the next 
generation of intelligent transportation systems (ITS). More specifically, the developed system 
includes four key modules such as communication network optimization, dynamic traffic signal 
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coordination, smart intersection signal timing control, and multimodal traffic signal optimization 
(transit signal priority and suppression controls).  

 

Figure 1.1: Overview of the key control modules of the system 

As shown in Figure 1.1, Module-I presents a communication and data acquisition protocol built 
off the concept of Age of Information (AoI) as a function of overall system latency and 
communication load, which measures the “freshness” of information, introduced in Kaul et al. 
(2012). It has been well recognized that “freshness” is essential for sensor systems, especially for 
the vehicular applications (Kaul et al., 2011; Sun et al., 2017). The module is designed in such a 
way to minimize AoI under some system models (single vs. multihop transmissions) for all CVs 
to ensure optimal control of status updates received at roadside units (RSU). Then under the CV 
environment, Module-II proposes a methodology to adaptively change the signal offsets to 
provide dynamic progression to multiple critical path-flows. The critical paths, determined by 
CV trajectories, refer to the routes that connect those OD pairs with high traffic volumes. 
Following the multipath progression principle, a real-time optimization model is constructed to 
design a signal coordination plan with a control objective of maximizing green bandwidth along 
the determined critical paths. To solve the optimization problem, a solution algorithm based on 
dynamic programming is then proposed.  

At the intersection level, Module-III further develops a control logic that can integrate CV data 
and traffic sensor information to concurrently address the needs of improving urban arterial 
safety and mobility. Under the mixed traffic pattern of CVs and human-driven vehicles (HVs), 
the system aims to achieve three primary objectives: proactively preventing rear-end collisions, 
reactively protecting side-street traffic from red-light-running vehicles, and effectively 
facilitating speed harmonization along local arterials. The embedded safety function will 
integrate CV and roadside sensor data to compute the distribution of dilemma zones for vehicles 
of different approaching speeds in real time. Such data fusion will enable the proposed system to 
offer the advice of either “stop” or “go” to both CVs and HVs so as to prevent rear-end collisions 
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and side-angle crashes. Given the locations and speeds of CVs, and the number of vehicles 
monitored by sensors, the proposed system can further compute the time-varying intersection 
queue length. Then the embedded mobility function will optimize the arterial signal plan in real 
time based on the output of Module-II, and produce the speed advisory to approaching vehicles 
to facilitate their progression through intersections.  

To extend the application of the developed system under a multimodal environment, Module-IV 
further introduces a control function to accommodate connected buses. Particularly, the function 
aims to address one of the most difficult cases that median-island stations are located beside 
intersections. Due to the limited storage space in the stations, high bus volumes may cause queue 
spillbacks and consequently block the nearby intersections. Traditional transit signal priority 
(TSP) control systems may deteriorate such situations when signal priorities are granted to 
approaching buses. Hence, at intersections with nearby stations, a new operational logic is 
required to ensure the operational efficiency and safety of traffic signals. To satisfy such a need, 
this module presents a real-time signal control system, using the CV technology, to integrate 
both priority control strategies (i.e., green extension and red truncation) and suppression control 
strategies (i.e., green truncation and red extension). Particularly, the suppression strategies are 
only implemented to the far-side directional traffic so as to prevent station queue overflow.  

1.2 PROJECT TASKS 

This project includes the following five key tasks: 

• Literature Review, where our project team conducts comprehensive reviews on existing 
research on various domains including sensing, data acquisition, and CV communications; 
device-to-device (e.g., V2V) coded caching with minimal  (AoI), urban corridor adaptive 
control, CV and CAV trajectory control, and multimodal traffic signal control. 

• Optimal Dynamic Control for V2V and V2I Downlink Communications, where an 
optimization model is developed to best utilize the capability of the communication networks 
so as to accommodate the data exchanging needs of CVs. 

• Dynamic Signal Progression Control Based on CV Technology, where a real-time 
traffic signal coordination model is formulated to facilitate the movement of CV and HV 
flows along different critical paths. 

• SMART Control for Improving both Safety and Operational Benefits, where an 
innovative control logic that can integrate CV data and traffic sensor information is 
developed to concurrently address the needs of improving urban arterial safety and mobility. 

• Multimodal Traffic Signal Control for Connected Buses, where both priority control 
strategies (i.e., green extension and red truncation) and suppression control strategies (i.e., 
green truncation and red extension) are provided to connected buses based on the queue 
length in roadside stations and their lateness conditions. 
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2.0 LITERATURE REVIEW 

2.1 SENSING, DATA ACQUISITION, AND CV COMMUNICATIONS 

Vehicular network combines wireless communication with sensing devices installed on vehicles. 
With in-vehicle sensing technologies, we are capable of collecting abundant driving data, such as 
speed and engine parameters, from a large number of vehicles. Such data are characterized as 
large volume, multifrequency and multisource, which largely reflect the vehicle and the road 
traffic status and thereby are widely used to adjust the traffic signal control and evaluate human 
driving behaviors. When infrastructure senses vehicle status via V2I, the key for the sensing 
system is to optimize the “freshness” of data instead of minimizing delay. The concept of AoI is 
therefore uniquely suited for our application, which focuses on status update instead of data 
communications. AoI was introduced in Kaul et al. (2012) to quantify the “freshness” of 
knowledge about the status of remote systems. More specifically, it is the time elapsed since the 
generation of the last successfully received source message containing the updated information 
about its source system. Utilizing different communication models, in a series of papers (Kaul et 
al, 2012; Yates et al., 2012; Costa et al., 2014; Yates, 2015; Pappas et al., 2015; Kam et al., 
2016; Kadota et al., 2016; Klei et al., 2017; Sun et al., 2017; Wu et al., 2018), AoI was 
characterized analytically. The concept has evolved and expanded to be more tractable or more 
suitable such as the Peak Age of Information (PAoI) (Costa et al., 2016) and average age 
penalty, opening even more research opportunities. In order to guarantee high freshness of 
information, keeping the AoI low is of high interest when AoI is being treated as a tool to 
facilitate the timely update of information that will eventually improve performance metrics in 
different contexts. Facilitated by the sensing system, data acquisition in vehicular networks is an 
important and challenging task due to the various requirements, complex and dynamic network 
environments. The efficient use of the wireless communication medium is one of the basic issues 
(Ashraf et al., 2016, 2017). Based on wireless communication technology, sensed data including 
localizations, speeds, directions, accelerations, etc. can be gathered at RSUs, which can 
determine accurately the traffic flow characteristics based on these data. The application of 
vehicular networks is capable of monitoring every single vehicle dynamically. 

Reliable and seamless V2V and V2I data communication is the critical component of CV 
technology applications (Dey et al., 2016). Various wireless technologies have been used to 
support the data transfer requirement of diverse ITS applications, such as Bluetooth, ZigBee, 
Passive RFID, Ultra Wide Bandwidth (UWB) and mmWave communications (Lu et al., 2014). 
The selection of a wireless communication option relies on the accessibility and feasibility of 
wired and wireless communication options and data transfer requirements of particular 
applications. While existing ITS applications are infrastructure-based (i.e., installed at the 
roadside locations) (Silva et al., 2017), the next major deployment of wireless technologies 
within the transportation grid is the high-speed wireless communication between moving 
vehicles and transportation infrastructure. To meet the requirements of CV applications (e.g., fast 
acquisition, low latency with high reliability, highest security and privacy standards), the Federal 
Communications Commission  had previously allocated the 5.9 GHz band (5.85GHz to 
5.925GHz) for V2V/V2I communications, also known as dedicated short-rangecommunications 
(DSRC) (Bai et al., 2010; Wang and Hassan, 2008; Ma et al., 2009; Hafeez et al., 2013). These 
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communications include that of safety messaging, geographic locations, sensor data (e.g., tire 
pressure), which involves periodic broadcast of time-sensitive status information by vehicles. We 
focus on the DSRC technology as our baseline communication schemes in this project. 

2.2 DEVICE-TO-DEVICE CODED CACHING WITH MINIMAL AGE-
OF-INFORMATION (AOI) 

The V2V or CV communication is one example of the so-called device-to-device (D2D) 
communication network in the area of wireless communications and networking. In the 
remainder of this section, we will refer to the vehicles as devices. In this research, based on a 
practical communication protocol such as DSRC,  for device 𝑖𝑖 under the assumption that the 
inter-updated time 𝑍𝑍𝑖𝑖 among two packets are independently and identically distributed (i.i.d.) 
following an exponential distribution, and the transmission slot is  a constant time slots for each 
packet, in this case, the AoI is given by 𝑐𝑐1

𝔼𝔼[𝑍𝑍𝑖𝑖
2]

𝔼𝔼[𝑍𝑍𝑖𝑖]
+ 𝑐𝑐2, where 𝑐𝑐1 and 𝑐𝑐2 are some constants. It can 

be shown that the AoI 𝑐𝑐1
𝔼𝔼[𝑍𝑍𝑖𝑖

2]
𝔼𝔼[𝑍𝑍𝑖𝑖]

+ 𝑐𝑐2 is a monotonic function of the system overall communication 
load in the D2D networks. In order to minimize the AoI, we can simply minimize the 
communication load. In this work, we will exploit a newly developed concept of coded caching 
in order to minimize the overall communication load in the D2D networks. Coded caching has 
been shown to be an efficient approach to handle dramatically increased traffic in the current 
internet. Maddah-Ali and Niesen (MAN, 2014) introduced a centralized shared-link caching 
network model, where a central controller serves K users, each of which is equipped with a cache 
of size M files from a library of N files, via an errorless broadcast link (shared link). Here, a file 
could simply be a packet and the library could just mean all the sensing packet in some duration 
of time. In order to achieve the optimal worst-case rate (i.e., communication load) under uncoded 
cache placement, a cache placement and a coded delivery schemes were proposed and required 
to partition each file into �𝐾𝐾𝑡𝑡� packets where t =  Kµ, µ=M/N (normalized  cache  memory  size).  
It can be easily seen that for a fixed µ, � 𝐾𝐾

𝐾𝐾𝐾𝐾� scales exponentially with K, which makes the 
implementation of the coded caching in wireless networks less practical due to unacceptably 
high subpaketization complexity. Later, it was shown that that this file subpacketization level is 
necessary to achieve the optimal rate under a so-called placement delivery array (PDA) design 
based on uncoded cache placement (Yan et al., 2017). In order to reduce the subpacketization 
levels, various combinatorial design-based schemes (Shanmugam et al., 2016; Shanmugam et al., 
2017; Shangguan et al., 2018; Tang et al., 2018; Jin et al., 2019) have been proposed and showed 
that the subpacketization can be reduced at a cost of a higher transmission rate (or higher traffic 
load) for the shared-link network model. Ji, Molisch and Caire extended the shared link 
caching model to D2D coded caching networks, where no central controller is present and 
all users serve each other via individual shared links (Ji et al., 2016). It can be seen that the 
V2V network is a special case of the D2D wireless network. Under uncoded cache 
placement, Ji et al. proposed a caching scheme referred to as the JCM scheme that achieves 
the optimal worst-case rate of 𝑅𝑅(𝑀𝑀) = 𝑁𝑁

𝑀𝑀
�1− 𝑀𝑀

𝑁𝑁
� when N ≥ K. In this case, 𝑅𝑅(𝑀𝑀) is 

surprisingly not a function of K and hence it is scalable. In order to achieve this rate, the 
required number of subpackets (subpacketization level) is equal to 𝐹𝐹𝐽𝐽𝐽𝐽𝑀𝑀 = 𝑡𝑡�𝐾𝐾𝑡𝑡 �, which can 
be impractical for large K. Efforts have been made in reducing the subpacketization levels 
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for D2D coded caching problem (Woolsey et al., 2017; Wang et al., 2017; Woolsey et al., 2018). 
For example, a design approach named D2D placement delivery array (DPDA) was introduced 
by Wang et al. (2017), which designed new DPDA schemes when t = 2, t = K−2, for which 
the JCM scheme is actually not optimal in terms of subpacketization although it achieves the 
optimal rate. Though some evidence of potential sunpacketization reduction opportunities 
was shown, the scheme therein is far from a general design since it essentially works only for 
two points of caching parameter t. In this work, we aim to minimize the overall system AoI 
and also aim to make the proposed system more practical by reducing the subpacketization 
level. Hence, we focus on the subpacketization level reduction problem of D2D coded 
caching under the assumption that the optimal communication load (AoI) must be preserved. 
Our new design result showed that order or constant reduction of subpacketization 
complexity of D2D coded caching can be achieved, which is a huge step in making coded 
caching techniques more practical.  

2.3 URBAN CORRIDOR ADAPTIVE CONTROL  

As one of the most commonly deployed traffic control systems, actuated signal control can 
accommodate variable phase sequences (e.g., optional protected left-turn phase), variable green 
time, and variable signal cycle length (Boillot et al., 1992). In both semi-actuated control and 
fully actuated control systems, there are three key parameters that need to be determined for 
operations: 1) the minimum green time (Kell, 1998); 2) the passage time (TRB, 2015); and 3) the 
maximum green time (Zhang and Wang, 2011). Using the real-time detected data, adaptive 
signal control is to dynamically adjust the signal plans and consequently improve the operational 
efficiency at local intersections. A lot of well-developed systems have been promoted by the 
transportation researchers, such as Spite Cycle and Offset Optimization Technique (SCOOT) 
(Day et al., 1998); Sydney Coordinated Adaptive Control System (SCATS) (Lowrie, 1990); 
Optimized Policies for Adaptive Control (OPAC) (Gartner, 2001); Real-time Hierarchical 
Optimizing Distributed Effective System (RHODES) (Mirchandani and Head, 2001); PRODYN 
(Khoudour et al., 1991); and UTOPIA (Mauro and Taranto, 1990). Grounded on the logic of 
adaptive signal control, more recent studies have focused on developing real-time signal control 
models with mixed CAVs and regular vehicles in the traffic (Feng et al., 2015; Hu et al., 2014, 
2015). Since CV trajectory data are mainly used to estimate traffic flows within a centralized 
computational environment, those models often require a relatively high CV penetration rate 
(Flint et al., 2002; Zhou et al., 2017; Ma et al., 2017; Bang and Ahn, 2017; Munigety et al., 
2016). CAV technology has the potential to enable precise control of individual vehicle 
trajectories (Ahn et al.,2013; Wang et al., 2014). With such trajectory control, vehicles can either 
adjust their driving behavior (e.g., speed, deceleration, acceleration) based on the approaching 
traffic signal timing plan (Kamalanathsharma et al., 2013) or coordinate with other vehicles to 
pass through an intersection during green (Dresner and Stone, 2008; Lee and Park, 2012). 
However, the human-in-the-loop feature, explicated by how other drivers would interact with 
CVs in the traffic stream, is not fully addressed. 

2.4 CV AND CAV TRAJECTORY CONTROL 

CAV technology has the potential to enable precise control of individual vehicle trajectories 
(Ahn et al., 2013; Wang et al., 2014a; Wang et al., 2014b). With such trajectory control, vehicles 
can either adjust their driving behavior (e.g., speed, deceleration, acceleration) based on the 
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approaching traffic signal timing plan (Kamalanathsharma et al., 2013) or coordinate with other 
vehicles to pass through an intersection during green (Dresner and Stone, 2008; Lee and Park, 
2012).   
Quite a few existing studies focused on addressing the individual vehicle trajectory control (He 
et al., 2015; Wu et al., 2015; Schouwenaars et al., 2001). Dynamic programming (DP)-based 
algorithm lays the theoretical foundation for single-vehicle trajectory optimization. However, 
DP-based trajectory optimization is oftentimes inefficient for real-world application due to its 
computational complexity, let alone applying to the scenarios involving multiple-vehicle 
trajectories control. To fill this research gap, Flint et al. (2002) proposed an approximate DP 
algorithm for multiple AVs to move cooperatively. McNaughton (2011) developed a five-
dimensional search space formulation for AV motion planning. More recently, Zhou et al. (2017) 
presented a parsimonious shooting heuristic (SH) algorithm that can effectively smooth 
trajectories of a stream of CAVs approaching a signalized intersection. A time geography-
oriented approach is combined with Newell’s simplified car-following model to control detailed 
acceleration profile. Other studies also incorporated Newell’s simplified car-following model for 
CAV platooning strategy (Bang and Ahn, 2017; Munigety et al., 2016). Following their 
preceding study (Zhou et al., 2017), Ma et al. (2017) discussed the SH algorithm on optimality 
and computational complexity. They proposed a framework for CAVs under centralized control 
for multitrajectory optimization with only a few control variables. Wei et al. (2017) developed 
mathematically rigorous optimization models and computationally tractable algorithms to model 
the dynamic process of tight platoon formation and system-level control for AVs. The vehicle 
trajectories are optimized subject to minimal safe driving distance between cars, as well as 
different entrance and exit boundary conditions. 

2.5 MULTIMODAL TRAFFIC SIGNAL CONTROL 

Developing public transportation systems has long been recognized as the most promising 
strategy to reduce the use of passenger cars and mitigate traffic congestion in urban networks 
(Al-Deek et al., 2017; Truong et al., 2017). Depending on the available information of operating 
buses, the functions of signal controllers, and the geometric layout of bus stations, a variety of 
transit signal priority (TSP) control systems have been implemented in practice since Wilbur et 
al. (1968) first conducted bus preemption experiments to reduce bus travel time. However, it 
remains a challenging research topic on how to implement TSP at those intersections with median 
stations which are often close to intersections. When the number of dwelling buses researched 
the station storage capacity, a granted TSP may cause queue overflows and consequently block 
the nearby intersection. Therefore, it is essential to develop a real-time control system which can 
concurrently reduce unnecessary time waste and prevent blocking the intersection. 
In reviews of literature for TSP control, many control methods have been reported to reduce bus 
travel time at signalized intersections. Yagar and Han (1994) proposed some unconditional 
priority strategies which grant green extension or red truncations when approaching buses were 
detected. Ling et al. (2004) and Hounsell et al. (2008) later developed conditional priority 
strategies to improve bus punctuality based on the priority rules and the target bus’s performance 
with respect to its schedule adherence. Besides the rule-based control logic, other research was 
conducted to minimize the total delay of detected buses (Head et al., 2006; Ma et al., 2010; Ma 
et al., 2013), the total vehicle delay of buses and passenger cars (Mirchandani et al., 2001; Li et 
al., 2011; Christofa and Skabardonis, 2011), the total person delay of buses and passenger cars 
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(Chang et al., 1996; Wu et al., 2012; Song et al., 2018), and the person delay of in-bus passenger 
delay and passenger waiting delay at next bus stop (Lin et al., 2013; Ye and Xu, 2017). Different 
from the previous methods considering delay as control objective, headway-based TSP control 
logic is to grant priority to a bus if it can improve bus regularity by considering the adjacent three 
buses belonging to the same route (Lin et al., 2017; Hu et al., 2015).  
With the recent advancement of wireless communication technology, the connected vehicle 
(CV)-based system has attracted a lot of research efforts recently. Transit systems, managed by 
public transportation agencies, have been treated as a feasible testbed of CV technology. For 
example, the Utah Department of Transportation (UDOT) launched a project in 2017 to install 
DSRC devices on 30 intersections of Redwood Road in Salt Lake City to support the CV-based 
TSP control. On the research side, a next-generation TSP strategy was proposed (He et al., 2014; 
Hu et al., 2014) to simultaneously implement coordinated-actuated signal control in CV systems. 
Later on, Hu et al. (2015) presented a person-delay-based optimization algorithm by splitting the 
green time of bus approach under the CV environment, and then extended it for multiple 
conflicting priority requests (Hu et al., 2016). In addition, other researchers demonstrated that the 
conditional signal priority can be used to improve bus reliability under different operation modes 
via a mathematical model based on Brownian motion again (Anderson, 2018). 
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3.0 OPTIMAL DYNAMIC CONTROL FOR V2V AND V2I 
DOWNLINK COMMUNICATIONS 

3.1 INTRODUCTION 

The vehicle-to-vehicle (V2V) or connected vehicle (CV) communication is often referred to as a 
device-to-device (D2D) communication network in the area of wireless communications and 
networking. Based on a practical communication protocol for V2V and V2I communications 
such as DSRC, for device 𝑖𝑖 under the assumption that the inter-updated time 𝑍𝑍𝑖𝑖 among two 
packets are independently and identically distributed (i.i.d.) following an exponential 
distribution, and the transmission slot for each device is a constant number of time slots for each 
packet. In this case, the AoI is given by 𝑐𝑐1

𝔼𝔼[𝑍𝑍𝑖𝑖
2]

𝔼𝔼[𝑍𝑍𝑖𝑖]
+ 𝑐𝑐2, where 𝑐𝑐1 and 𝑐𝑐2 are some constants. It can 

be shown that the AoI given by 𝑐𝑐1
𝔼𝔼[𝑍𝑍𝑖𝑖

2]
𝔼𝔼[𝑍𝑍𝑖𝑖]

+ 𝑐𝑐2 is a monotonic function of the system overall 
communication load in the communication networks (e.g., V2V or V2I). In order to minimize the 
AoI, we can simply minimize the communication load. In this report, we specifically focus on 
the V2V networks. However, our proposed scheme can be applied to the V2I infrastructure as 
well.  

Coded caching is a recently proposed technique which has the potential to significantly reduce 
the network peak communication load buy utilizing the device cache memory in an efficient 
manner. More specifically, coded caching exploits the coordinated or random cache placement to 
create simultaneous broadcasting opportunities, improving the transmission efficiency and thus 
reducing delay and AoI. Note that broadcasting opportunities, meaning that one packet could be 
successfully received by more than one device in a wireless D2D (V2V) network, is 
automatically provided in wireless networks. Coded caching is first proposed for the shared-link 
network (e.g., downlink for a V2I network) where a central server serves a set of devices (users), 
each equipped with a cache memory. The achievable scheme therein (i.e., coded caching) is able 
to improve the data transmission efficiency (inverse of delay, or square root of AoI) by a 
multiplicative factor which is proportional to the aggregate cache size of all the users in the 
network (See Figure 3.1). This new factor is referred to as global caching gain, in contrast to the 
conventional local caching gain. The achievable communication load of coded caching is shown 
to be exactly optimal under the assumption of uncoded cache placement and worst-case load. 
Later, the idea of coded caching is extended to many different network settings, among which 
the D2D extension is probably the most important one. While enjoying the global caching gain, 
D2D coded caching also faces the problem of exponentially high subpacketization level (i.e., the 
number of packets per file), which makes the coded caching gain less promising when applying 
to real-world systems. 
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Figure 3.1: Comparison of communication load/delay versus cache memory size for traditional unicast, 
D2D coded caching and centralized coded caching for a system with 𝑁𝑁 = 20 files and 𝐾𝐾 = 20 devices. 

In this project, we aim to minimize the overall system AoI. Meanwhile, we also guarantee 
that the proposed system is more practical by reducing the subpacketization level 
significantly in coded caching. In other words, we revisit the D2D coded caching 
subpacketization reduction problem and propose new schemes which work for general system 
parameters in a general D2D caching networks. We show that subpacketization reduction can be 
obtained for a large range of systems parameters while preserving the same (optimal) rate as the 
JCM scheme, revealing there is a fundamental difference between the share-link coded caching 
and the D2D coded caching in terms of subpacketization. More specifically, we proposed a new 
design framework called Packet Type-based (PTB) design tailored for D2D coded caching with 
reduced subpacketization level but optimal rate compared to the JCM scheme. In particular, in the 
PTB design, D2D users (or nodes) are first partitioned into multiple groups, each of which may 
or may not contain the same number of nodes. Then the corresponding packet types and 
multicasting group types are specified based on the prescribed node partition (referred to as node 
grouping). We show that certain packet types can be excluded under a given node grouping and 
we refer to this reduction gain as raw packet saving gain. Moreover, based on a careful selection 
of the transmitters within each multicasting group of different types a so-called further splitting 
ratio gain can also be obtained. While preserving the optimal rate, the joint effect of the raw 
packet saving gain and the further splitting ratio gain can lead to an order-wise or constant 
subpacketization reduction compared to the JCM scheme, where none of these gains is available 
in the JCM scheme. In fact, the PTB design problem can be cast into an integer optimization 
problem subject to node cache constraints and the design variables are the choices of possible 
transmitters within each multicasting group. Moreover, according to our knowledge, it is the first 
time in the literature showing that the employment of subpackets with heterogeneous lengths is   
a key to achieve subpacketization reduction for some system parameters. 

In order to achieve the optimal rate, the JCM scheme (Ji at al., 2016) proposed a direct 
translation from MAN scheme (Maddah-Ali and Niesen, 2014) by splitting each packet further 
into t subpackets. It turns out that when the cache placement is uncoded and the delivery scheme 
is one-shot, this translation holds in general and it seems that the design procedure for the D2D 
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coded caching scheme is 1) design a shared link coded caching scheme and 2) translate it into 
D2D coded caching scheme. As a byproduct of the PTB design, we show that the above design 
methodology is not optimal in terms of subpacketization in general. Hence, in order to achieve 
good subpackeitzations in D2D coded caching networks, a new design framework is indeed 
needed.  

The contribution of this study includes: 
 
1) A Fundamental Difference Between Shared-link (e.g., downlink a V2I network) and D2D (e.g., 
a V2V network) Coded Caching: We showed that D2D coded caching schemes with optimal rates 
but strictly lower subpacketization levels exist for general system parameters, implying that 
direct translation of shared-link schemes to D2D setting is not optimal, at least in the sense of 
subpacketization. Therefore, a new design methodology is indeed needed for the design of 
D2D coded caching schemes. 

2) A Unified Design Framework for Minimum AoI: We proposed the packet type-based (PTB) 
design paradigm which includes the following standard design steps: (1) Node Grouping: D2D 
nodes are first partitioned into multiple groups where each group may or may not contain an 
identical number of nodes (equal and unequal groupings). (2) Classification of Packet and 
Multicasting Group Types: Based on the prescribed node grouping in Step (1), packets and 
multicasting groups are specified and classified into multiple types according to their geometric 
structures; The rationale behind this classification is that different packet types can be treated 
differently, resulting in heterogeneous subpacketization for different packet types. (3) 
Determination of Local Further Splitting Ratios (FSR): For each multicasting group type, 
assuming that a certain subset of nodes is selected as transmitters and all other nodes only 
receive but do not transmit, the local FSR for each involved packet type can be correspondingly 
determined. (4) Determination of Global FSR: After obtaining the local FSR vectors for all 
packet types within each multicasting group type in Step (3), the least common multiple (LCM) 
vector of these local FSR vectors is derived, which specifies the ultimate further splitting ratio of 
all possible packet types. (5) Memory Constraint Check: Previous steps must be conducted such 
that the node cache memory constraints are satisfied regardless of the homogeneous or the 
heterogeneous subpacket length design. 

In the PTB design framework, subpacketization reduction compared to the JCM scheme consists 
of two parts (i.e., the raw packet saving gain and further splitting ratio gain). In Step (2) of the 
above design process, certain packet types can be potentially excluded (i.e., raw packets of 
certain types will not appear in the coded caching scheme) which leads to the raw packet saving 
gain. Note that in the JCM scheme, all possible packet types are employed and, hence, raw 
packet saving gain is not available. Through a careful selection of transmitters within each 
multicasting group in Step (3), local FSR vectors are obtained such that the overall FSR vector 
(LCM vector) results in a low subpacketization level. This subpacketization reduction due to 
smaller further splitting ratios of raw packets is called further splitting ratio gain. The 
subpacketization reduction of the coded caching schemes designed under the PTB framework is 
a result of the joint effect of the two kinds of gain mentioned above. Moreover, under the PTB 
design framework, coded caching schemes employing subpackets with heterogeneous lengths 
can also be designed, which gives more flexibility in satisfying the node cache memory size 
constraints. This is the very first proposal to use subpackets with heterogeneous lengths in the 



13 

design of coded caching schemes, both for the shared-link and D2D settings. In summary, the 
PTB framework presents a new perspective to understand the subpacketization problem of coded 
caching and provides important clues in designing low subpacketization-level schemes with 
optimal rate, which we believe is one significant step in addressing the fundamental limits of 
subpacketization complexity of coded caching. 

3) Construction of Multiple Classes of Rate-optimal Schemes with Low Subpacketization Levels 
for D2D (e.g, V2V) Networks: Following the design methodology of the PTB framework, several 
classes of D2D coded caching schemes were constructed with either order or constant 
subpacketzation reduction while preserving the optimal rate. More specifically, we first 
constructed a class of schemes with order reduction compared to the JCM scheme when the 
number of D2D nodes, K, and the caching parameter 𝑡𝑡 = 𝐾𝐾𝑀𝑀/𝑁𝑁,  are both even in the 
regime of large cache memory size. Nodes are divided into groups, each of which contains 
exactly two nodes, and through the transmitter selection process. A constant FSR vector is 
obtained which does not depend on K, implying that as K goes larger, order reduction is 
achievable. Second, when K is odd, we constructed a scheme with two node groups 
containing (𝐾𝐾 + 1)/2 and (𝐾𝐾 − 1)/2 nodes, respectively. Constant reduction can be 
obtained in this case. We also showed that the grouping ((K + 1)/2, (K − 1)/2) actually 
achieves the minimal subpacketization among a class of schemes with two groups in the 
node grouping. Moreover, we also discovered a new class of coded caching schemes with 
heterogeneous subpacket lengths and constant subpacketization reduction can be achieved. 

3.2 MODEL DEVELOPMENT 

Consider a D2D caching network with a user set U where |U| = K. Each file from a library of N 
files is partitioned into F subpackets, which may or may not have equal length. The system 
operates in two separate phases (i.e., the cache placement phase and delivery phase) as described 
in [8]. In the cache placement phase, each user k stores up to MF packets from the file library. 
This phase is done without the knowledge of the users’ requests. In the delivery phase, each user 
k reveals its request for a specific file 𝑊𝑊𝑑𝑑𝑘𝑘 ,𝑑𝑑𝑘𝑘 ∈ [𝑁𝑁] to other users. Let 𝒅𝒅 = (𝑑𝑑1,𝑑𝑑2, … ,𝑑𝑑𝐾𝐾) 
denote the user demand vector. Since users have already cached part of the files, the task in the 
delivery phase is to design a corresponding transmission scheme for each user based on the cache 
placement and the user demand vector so that the users’ demands can be satisfied. In this paper, 
our goal is to propose a new design framework based on combinatorial optimization such that the 
subpacketization level of each file is significantly reduced while preserving the optimal rate, 
defined as the minimum total communication load in terms of file transmissions. In the rest of 
this paper, we use 𝐹𝐹𝐽𝐽𝐽𝐽𝑀𝑀 = 𝐾𝐾𝑀𝑀

𝑁𝑁
� 𝐾𝐾
𝐾𝐾𝑀𝑀/𝑁𝑁� to represent the subpacketization level of the JCM 

scheme. 

In order to achieve the above goal, we propose a new D2D coded caching design framework 
called packet type-based (PTB) design, which classifies packets and multicasting groups into 
multiple types. We will present the PTB design framework by decomposing it into the concepts 
including Node Grouping, Packet Type, Multicasting Group Type, Further Splitting Ratio (FSR), 
Further Splitting Ratio Table (FSRT), Memory Constraint Table (MCT) and PTB Design as an 
Integer Optimization Problem. Overall, the design of D2D coded caching schemes under the 
PTB framework consists of three different phases: the PTB design phase, prefetching phase and 
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delivery phase. All the aforementioned seven key concepts regarding the PTB design framework 
are considered and conducted in the design phase, in which the file splitting and the schedule 
of the coded delivery are determined. The key idea to improve the subpacketization comes from 
the special way to do file splitting instead of simply employing all �𝐾𝐾𝑡𝑡 �

 packets and then splitting 
each packet further into t = KM/N subpackets. According to the determined file splitting strategy 
in the PTB design phase, the subpackets are then assigned and stored by the D2D nodes in the 
prefetching phase. In the delivery phase, D2D nodes form multicasting groups of certain types 
determined in the PTB design phase and the selected transmitters then send coded multicast 
messages to serve the demands of each other. For each part in the design phase, we will present a 
corresponding example to better illustrate these definitions and concepts. 

1) Node Grouping: The user set U is partitioned into m non-empty groups denoted by 
𝑄𝑄1,𝑄𝑄2, … ,𝑄𝑄𝑚𝑚 where the i-th group contains |𝑄𝑄𝑖𝑖| = 𝑞𝑞𝑖𝑖 nodes. We use a partition vector  𝒒𝒒 =
(𝑞𝑞1,𝑞𝑞2, … , 𝑞𝑞𝑚𝑚, ,0,0, . . ,0) to represent such a node grouping, satisfying 𝑞𝑞1 ≥ 𝑞𝑞2 ≥ ⋯ ≥ 𝑞𝑞𝑚𝑚 ≥ 0 
and ∑ 𝑞𝑞𝑖𝑖𝑚𝑚

𝑖𝑖=1 = 𝐾𝐾. For a specific partition, there are multiple ways to assign the set of nodes to 
different groups, but they are all considered the same partition. The number of groups m and the 
number of nodes contained in each group are parameters to be designed. Let 𝑁𝑁𝑑𝑑 denote the 
number of distinct elements in 𝒒𝒒. We define a unique set as the union of non-empty groups 
containing the same number of nodes in 𝒒𝒒. The i-th unique set, denoted by 𝑈𝑈𝑖𝑖, contains 𝜓𝜓𝑖𝑖 
groups and each group contains  𝛽𝛽𝑖𝑖 nodes. A node partition is called equal grouping is all the 
groups contains the same number of nodes. Otherwise, it is called unequal grouping. 

For example, consider the set of nodes 𝑈𝑈 = [7]. Then 𝒒𝒒 = (3, 2, 1, 1, 0, 0) is an unequal 
grouping representing a partition of the seven nodes into four groups Q1, Q2, Q3 and Q4 
satisfying |Q1| = 3, |Q2| = 2 and |Q3| = |Q4| = 1. Consider two possible assignments of the seven 
nodes to the four groups according to 𝒒𝒒, with the first assignment being 𝑄𝑄1′ = {1,2,3},𝑄𝑄2′ =
{4,5}, 𝑄𝑄3′ = {6} and 𝑄𝑄4′ = {7} and the second being 𝑄𝑄1′′ = {4,3,5},𝑄𝑄2′′ = {1,6}, 𝑄𝑄3′′ = {2} and 
𝑄𝑄4′′ = {7}. These two assignments, though different, have identical grouping structures. 

2) Packet Type: A packet type refers to a partition of 𝑡𝑡 = 𝐾𝐾𝑀𝑀/𝑁𝑁 nodes and is represented by a 
partition vector 𝒗𝒗 = (𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑡𝑡), satisfying 𝑣𝑣1 ≥ 𝑣𝑣2 ≥ ⋯ ≥ 𝑣𝑣𝑡𝑡 ≥ 0 and ∑ 𝑣𝑣𝑖𝑖𝑚𝑚

𝑖𝑖=1 = 𝑡𝑡. Different 
partitions of 𝑡𝑡 correspond to different packet types. A raw packet 𝑊𝑊𝑛𝑛,𝑇𝑇 for some 𝑇𝑇 ⊂ 𝑈𝑈 , |𝑇𝑇| = 𝑡𝑡 
refers to a packet that is cached exclusively in a set of nodes in 𝑇𝑇. Note that the definition of raw 
packets is conceptual, and further splitting of these raw packets into smaller subpackets might be 
necessary to accommodate the coded delivery phase. Each packet type may contain multiple raw 
packets. Since not all packets types can appear under a given node grouping we can exclude 
some invalid packet types, meaning that these packet types will not be used in the PTB design. 
This corresponds to the raw packet saving gain. In the delivery phase, raw packets might be 
further split into multiple subpackets, i.e., 𝑊𝑊𝑛𝑛,𝑇𝑇 = {𝑊𝑊𝑛𝑛,𝑇𝑇

(𝑖𝑖): 𝑖𝑖 = 1,2, … ,𝛼𝛼(𝒗𝒗)} where 𝒗𝒗 is the packet 
type and 𝛼𝛼(𝒗𝒗) is called further splitting ratio (FSR). Raw packets of the same type must have the 
same further splitting ratio. Note that all the raw packets of any packet type 𝒗𝒗 have the same 
further splitting ratio 𝛼𝛼𝐽𝐽𝐽𝐽𝑀𝑀 = 𝑡𝑡 in the JCM scheme. The following example illustrates the 
concept of packet types and raw packets. 

Example 3.1: (Packet Type) For (𝐾𝐾, 𝑡𝑡) = (6, 3) and 𝑈𝑈 = [𝐾𝐾], consider the (equal) node grouping 
𝒒𝒒 = (3, 3) with a specific node assignment 𝑄𝑄1 = {1, 2, 3},𝑄𝑄2 = {4, 5, 6}, which is shown in Fig. 
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1. There are two different types of (raw) packets, i.e., 𝒗𝒗1 = (3, 0), meaning picking three nodes 
from either one of the two groups, and 𝒗𝒗2 = (2,1), meaning picking two nodes from one group 
and one node from the other group. For example, the packet 𝑊𝑊𝑛𝑛,{4,5,6} which is cached by nodes 
4, 5, 6 is a type-𝒗𝒗1  packet. The packet 𝑊𝑊𝑛𝑛,{3,5,6} } which is cached by nodes 3, 5, 6 is a type-𝒗𝒗2 
packet. It can be seen that there are in total 𝐹𝐹(𝒗𝒗1) =2 type-𝒗𝒗1 packets and 𝐹𝐹(𝒗𝒗2) =18 type-𝒗𝒗2 
packets. These two packets are called raw packets since they have not been further split into 
subpackets for the purpose of code multicasting in the delivery phase. 

 

Figure 3.2: An illustration of packet types under node grouping 𝑞𝑞 = (3, 3) with node assignment 𝑄𝑄1 =
{1,2,3},𝑄𝑄2 = {4,5,6}. The red dashed circle represents a type 𝑣𝑣1 = (3, 0),  raw packet and the blue circle 
represents a type 𝑣𝑣2 = (2,1) raw packet.  

3) Multicasting Group Type: A multicasting group is a set of 𝑡𝑡 + 1 node among which each node 
of a subset broadcasts some packets needed by the remaining 𝑡𝑡 nodes. A multicasting   group type 
refers to a specific partition of  𝑡𝑡 + 1   which is represented by a partition vector 𝒔𝒔 =
(𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑡𝑡+1)where all the elements sum up to 𝑡𝑡 + 1 and are not increasing with the 
subscript index. Different partitions of 𝑡𝑡 + 1 correspond to different multicasting group 
types. A unique set 𝑈𝑈�𝑖𝑖, 𝑖𝑖 ∈ [𝑁𝑁𝑑𝑑] within 𝒔𝒔 represents the set of groups containing the same 
number of nodes. 𝑁𝑁𝑑𝑑 denotes the number of different unique sets in 𝒔𝒔. 

4) Further Splitting Ratio (FSR): The further splitting ratio of a packet type 𝒗𝒗, denoted by 𝛼𝛼(𝒗𝒗), 
means that all the raw packets of type- 𝒗𝒗 need to be split into 𝛼𝛼(𝒗𝒗) subpackets during the 
delivery phase. For a multicasting group 𝑆𝑆 of type 𝒔𝒔 containing 𝑁𝑁𝑑𝑑 different unique sets, a set of 
nodes 𝑇𝑇𝑇𝑇 ⊆ 𝑆𝑆 is selected to serve as transmitters for the coded multicasting transmissions in 𝑆𝑆. 
We can select 𝑇𝑇𝑇𝑇 in such a way that it can be expressed as a union of |𝐷𝐷𝑇𝑇| different unique sets 
where, in the multicasting group S of type 𝒔𝒔, 𝐷𝐷𝑇𝑇⊆[𝑁𝑁𝑑𝑑] is defined as the set of the indices of the 
unique sets which are selected as transmitters, i.e., 𝑇𝑇𝑇𝑇 = ⋃ 𝑈𝑈�𝑖𝑖𝑖𝑖∈[𝐷𝐷𝑇𝑇] . Denote 𝑔𝑔𝑖𝑖 = |𝑈𝑈�𝑖𝑖| as the 
number of nodes contained in the unique set 𝑈𝑈�𝑖𝑖 then we have |𝑇𝑇𝑇𝑇|  = ∑ 𝑔𝑔𝑖𝑖𝑖𝑖∈[𝐷𝐷𝑇𝑇] . Under such a 
selection of transmitters, the further splitting ratios for the involved packet types is 𝛼𝛼(𝒗𝒗𝑖𝑖) =
∑ 𝑔𝑔𝑗𝑗 − 1𝑗𝑗∈[𝐷𝐷𝑇𝑇]  if 𝑖𝑖 ∈ [𝐷𝐷𝑇𝑇] and 𝛼𝛼(𝒗𝒗𝑖𝑖) = ∑ 𝑔𝑔𝑗𝑗𝑗𝑗∈[𝐷𝐷𝑇𝑇]  if 𝑖𝑖 ∉ [𝐷𝐷𝑇𝑇]. 

Consider the multicasting group 𝑆𝑆 = {3,4,5,6} in the above example which is composed of two 
unique sets 𝑈𝑈�1 = {4,5,6},𝑈𝑈�2 = {3}. Each 𝐷𝐷𝑇𝑇⊆ [2] and 𝐷𝐷𝑇𝑇 ≠ ∅ corresponds to a specific choice 
of transmitter selections. Hence, there are three different choices which are 𝐷𝐷𝑇𝑇 = {1}, {2} and 
𝐷𝐷𝑇𝑇 = {1,2}, respectively. 
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Choice 1: DT = {1}. This means that the nodes in the first unique set (nodes 4, 5 and 6) are 
selected as transmitters (i.e., Tx) = {4, 5, 6} and node 3 will not transmit anything but only 
receive in the delivery phase. In this case, the type-𝒗𝒗1 raw packet 𝑊𝑊𝑑𝑑3,{4,5,6} needed by node 3 is 
transmitted by  nodes 4, 5 and 6. To obtain the optimal rate (or equivalently, t nodes are served 
simultaneously by one coded transmission), the packet 𝑊𝑊𝑑𝑑3,{4,5,6} needs to be further split into 
α(𝒗𝒗1) = 3 subpackets each of which is delivered by a node  {4, 5, 6}. On the other hand, the type-
v2 raw packet 𝑊𝑊𝑑𝑑4,{3,5,6}needed by node 4 is transmitted by node 5 and 6 (node 3 does not 
transmit) and, hence, needs to be further split into α(v2) = two subpackets, each of which is 
delivered by node 5 or 6. Similarly, the other two type-v2 packets 𝑊𝑊𝑑𝑑5,{3,4,6}, 𝑊𝑊𝑑𝑑6,{3,4,5} also need 
to be split into two subpackets. Since all the raw packets in the JCM scheme are further split into 
𝛼𝛼𝐽𝐽𝐽𝐽𝑀𝑀 = three  subpackets  and here we have α(v2) = 2 < αJCM = 3, less number of further 
splitting is required, which corresponds to the further splitting ratio gain mentioned previously. It 
can be seen that only the further splitting ratio gain can be obtained under this choice. 

Choice 2: DT = {2}. This means that the second unique set (node 3) is selected as the only 
transmitter (i.e., Tx) = {3}, then nodes 4, 5 and 6 will only receive but not transmit subpackets in 
the delivery phase. In this case, the type-v2 raw packet 𝑊𝑊𝑑𝑑4,{435,6} needed by node 4 is only 
transmitted by node 3. Hence, there is no need to further split it into multiple subpackets. 
Similarly, there is no need to split the other two type-v2 raw packets 𝑊𝑊𝑑𝑑5,{3,4,6}, 𝑊𝑊𝑑𝑑6,{3,4,5}. We 
use α(v2) = 1 to indicate that no further splitting is needed. However, the type-v1 raw packet 
𝑊𝑊𝑑𝑑3,{4,5,6} needed by node 3 is not transmitted by any other node. We can simply exclude this raw 
packet without sacrificing the completeness of the caching scheme because node 3’s need of 
𝑊𝑊𝑑𝑑3,{4,5,6}  is eliminated though no nodes are transmitting this packet. We use α(v1) = 0 to 
indicate that type-v1 packets are excluded. Actually, all type-v1 raw packets can be excluded 
here, which corresponds to the raw packet saving gain mentioned previously. In this case, since 
α(v2) = 1 < αJCM = 3, both the raw packet saving gain and the further splitting ratio gain are 
available. 

Choice 3 (JCM scheme): DT = {1, 2}. This means that both unique sets, U1 and U2 (i.e., all four 
nodes in S1) are selected as transmitters. In this case, any raw packet 𝑊𝑊𝑑𝑑𝑖𝑖,𝑆𝑆\{𝑖𝑖}, i∈ S, either type v1 
or type-v2, needed by node i is transmitted by the other three nodes in S. To   preserve the optimal 
rate, all these four packets should be further split into α(v1) = α(v2) = three subpackets. We can 
see that neither the raw packet saving gain nor the further splitting ratio gain are obtainable here. 
This actually corresponds to the design of the JCM scheme: For any multicasting group S, all the 
t + 1 nodes in S are selected as transmitters and a further splitting ratio of α(v) = |S| − 1 = t is 
required for any packet type v, which leads to a subpacketization level of 𝐹𝐹𝐽𝐽𝐽𝐽𝑀𝑀 = 𝑡𝑡�𝐾𝐾𝑡𝑡�. 
However, as discussed above, it is not always necessary to select all t + 1  within S to serve as 
transmitters. A selection of one or more (not all) unique sets within S as transmitters will lead to 
smaller further splitting ratios of the raw packets, providing an opportunity to reduce the 
subpacketization. The overall subpacketization reduction of the proposed design framework is 
the result of both the raw packet saving gain and the further splitting ratio gain. 

5) Further Splitting Ratio Table (FSRT): Given a node grouping 𝒒𝒒, let V, S denotes the total 
number of different valid packets types and multicasting group types, respectively. A further 
splitting ratio table is a matrix 𝜦𝜦 = [αij]S×V which specifies the local further splitting ratios of 
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the involved packet type set derived from all the different S multicasting types. More 
specifically, the i-th, i ∈ [S] row of the FSRT, which is referred to as the local further 
splitting ratio vector (local FSR vector), denoted by αi, consists of further splitting ratios 
α(𝒗𝒗j) for all packet types 𝒗𝒗j involved in multicasting group type 𝒔𝒔i and all the other entries are 
left empty. Note that a further splitting ratio of α = 0 is not the same as an empty entry. To 
determine the overall further splitting ratio for all the V types of packets, we need to derive 
the Least Common Multiple (LCM) vector αLCM (defined below) of the S different local 
further splitting ratio vectors. 

Definition 3.1: (Least Common Multiple (LCM) Vector) For a set of n row vectors A ={ai}i∈[n] in 
which |ai| = V and ai may contain ’empty’ entries. The LCM vector of A, denoted by 𝛼𝛼LCM = 
LCM(A), is defined as: ∃ z1, z2, · · · , zn which are all positive integers, such that 

                                             
[ ]
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{ }LCM
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∈∗

= = =

=
                                         (3.1) 

Where [ ] [ ] |     { } || { } | i i i i in nz arg min combine z a∈ ∈∗ = ∗  are the optimal combing coefficients. The 
combined operation returns a vector aLCM of length V whose j-th entry takes the value of the 
non-zero and non-empty value among the set of n j-th (𝑗𝑗 ∈ [𝑉𝑉]) entries of all the n vectors 
ziai, i ∈ [n]. We assume that 1) the product of any integer and an empty entry is still an 
empty entry; 2) entry ‘0’ is equal to any other entries, including non-zero entries and empty 
entries; and 3) empty entry is equal to any other zero/non-zero entries. 

For example, let us consider A = {a1,a2,a3} where a1 = (1, 2, 3, 0), a2 = (•, 4, •, 3) and a3 = (•, 0, 
2, 1).  It can be easily seen that the optimal coefficients are  z1∗ = 2, z2∗ = 1, z3∗  = 3 and aLCM = 
LCM(A) = combine ({2a1,a2,3a3}) = (2,4,6,3). 

The LCM vector may not always exist. If it exists, it must be unique. In the PTB design, the 
global splitting ratio vector, denoted by aLCM, is obtained by deriving the LCM vector of the set 
of local splitting ratio vectors {𝑎𝑎𝑖𝑖}𝑖𝑖∈[𝑆𝑆], i.e., aLCM = LCM ({𝑎𝑎𝑖𝑖}𝑖𝑖∈[𝑆𝑆]). The LCM operation of 
ensures the coded transmissions within multicasting groups of different types agree with each 
other. That is, for example, if a packet type v is involved in two different multicasting group type 
s1 and s2 which yields two distinct local FSR for 𝒗𝒗, i.e., 𝑎𝑎′(𝒗𝒗) = 1 for s1 and 𝑎𝑎′′(𝒗𝒗) = 2 for s2, 
then the LCM operations gives a global FSR of 𝑎𝑎(𝒗𝒗) = 𝐿𝐿𝐿𝐿𝑀𝑀�𝑎𝑎′(𝒗𝒗),𝑎𝑎′′(𝒗𝒗)� = 2, implying that 
type-v packets should be split into two subpackets in the final PTB design. This also means that 
each desired message of the nodes within type-s1 multicasting groups should be a concatenation 
of two type-v subpackets while in type-s2 multicasting groups the desired message is only one 
individual type-v subpacket. 
 
Continue with Example 3.1. There are S = 2 multicasting group types 𝒔𝒔1 = (3, 1) and 𝒔𝒔2 = (2, 2). 
There are also V = 2 packets types 𝒗𝒗1 = (3, 0) and 𝒗𝒗2 = (2, 1).  The corresponding involved 
packet type sets are ρ1  = {v1, v2}  and ρ2  = {v2}. The selection of transmitters is as follows. For 
𝒔𝒔1, we choose the second unique set as transmitters. We use the superscript * to mark the 
transmitters within a multicasting group type, i.e., 𝒔𝒔1 = (3, 1*). For example, in a specific type-s1 
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multicasting group S1 = {3, 4, 5, 6}, the transmitters is node 3. This selection will result in a local 
further splitting ratio vector α1 = (α(v1), α(v2)) = (0, 1). For s2, the only choice is to select all t + 
1 = 4 nodes as transmitters since there is only Nd = 1 unique set which has to be selected. This 
results in a further splitting ratio vector α2 = (•, α(v2)) = (•, 3) in which the symbol • denotes an 
empty entry since type-v1 packets do not appear in type-s2 multicasting groups. As a result, the 
FSRT is 

Table 3.1: The FSRT of Example 3.1  
FSRT 𝐯𝐯1 𝐯𝐯2 

α1 0 1 

α2 • 3 
 

from which we can easily obtain αLCM = LCM(α1, α2) = (0, 3), implying that in the PTB design, 
type-v1 raw packets are excluded while each type-v2 raw packet is further split into three 
subpackets. It can be verified that this PTB design is complete and correct, the rate is optimal 
and the required subpacketization level is 

                                                 ( ) ( ) ( ) ( )1 1 2 2 54F Fv v v vFα α= + =                                                              

while F JCM = 60 and the reduction of the six subpackets is due to the exclusion of type-v1 
packets. 

6) Memory Constraint Table (MCT): Given a node grouping q containing 𝑁𝑁𝑑𝑑 different unique 
sets, a memory constraint table is a matrix Ω = �𝜔𝜔𝑖𝑖𝑗𝑗� with 𝜔𝜔𝑖𝑖𝑗𝑗 = 𝐹𝐹𝑖𝑖(𝒗𝒗𝑗𝑗) where 𝐹𝐹𝑖𝑖(𝒗𝒗𝑗𝑗)  denotes 
the number of type 𝒗𝒗𝑗𝑗 raw packets cached by a node in the i-th unique set. Denote 𝐹𝐹𝑖𝑖 =
[𝐹𝐹𝑖𝑖(𝒗𝒗1),𝐹𝐹𝑖𝑖(𝒗𝒗2), … ,𝐹𝐹𝑖𝑖(𝒗𝒗𝑉𝑉) ] as the i-th row of Ω. Also denote the raw packet number vector as 
𝐹𝐹𝑖𝑖 = [𝐹𝐹(𝒗𝒗1),𝐹𝐹(𝒗𝒗2), … ,𝐹𝐹(𝒗𝒗𝑉𝑉) ] where 𝐹𝐹�𝒗𝒗𝑗𝑗� represents the total number of raw packets of type 
𝒗𝒗𝑗𝑗 in a PTB design. Furthermore, we define the node cache difference vector as Δ𝐹𝐹𝑖𝑖 =
[Δ𝑖𝑖1,Δ𝑖𝑖2, … ,Δ𝑖𝑖𝑉𝑉]  in which Δ𝑖𝑖𝑗𝑗 = 𝐹𝐹𝑖𝑖+1�𝒗𝒗𝑗𝑗� − 𝐹𝐹𝑖𝑖(𝒗𝒗𝑗𝑗) is the difference of the number of type-𝒗𝒗𝑗𝑗 
raw packets cached by nodes in the i-th and (i+1)-th unique sets. Assuming all the subpackets 
have the same size, the memory constraint can be expressed as 

                                 1 ,(   0 1  [ ]  )  LCM
i

TT LCM
i i dF F F i Nα α +∆ = − = ∀ ∈ −                                  (3.2) 

Since all the nodes have identical cache memory size, caching the same number of subpackets of 
equal length satisfies the memory constraint. Note that for equal node grouping, where there is 
only one unique set, the memory constraint is automatically satisfied. The exact length of the 
subpackets can be determined by the fact that each node has a cache memory size of M files. 

7) PTB Design as An Integer Optimization: With all the above definitions, under the condition of 
equal-length subpacketizations (all subpackets have identical length), we introduce the following 
integer optimization problem that determines the optimal LCM vector which results in the 
minimum F. 
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in which Φ represents the set of all possible LCM vectors derived from the S local further 
splitting vectors based on the set of all possible node grouping q and the set of all possible 
selections of transmitters within each multicasting group type under each q. Any feasible 
solution of the above optimization problem will give a valid D2D coded caching scheme and the 
optimal solution yields a scheme with minimal subapcketization level. Moreover, we can extend 
this optimization problem to the case of heterogeneous subpacket length setting by a minor 
modification to the above optimization problem formulation. 

3.3 CASE STUDY  

In this section we present our main result, which consists of three theorems, on subpacketization 
level reduction problem for D2D coded caching using the PTB design framework. For each 
theorem, one or more corresponding examples are provided to illustrate the achievability of our 
results. We will use the notation 𝑡𝑡̅ ≜ 𝐾𝐾 − 𝑡𝑡 = 𝐾𝐾(1 − 𝜇𝜇) in the following. 

Theorem 1: (Order Reduction on F) For even 𝑡𝑡̅ ≔ 𝐾𝐾 − 𝑡𝑡, where 𝐾𝐾 = 2𝑚𝑚, using the PTB design 
framework, the optimal rate of D2D caching networks is achievable and   

( )
JCM

f tF
F K t

 
= Θ − 

                                                                                                          (3.4) 

where 𝑓𝑓(𝑡𝑡̅) ≔ ∏ (2𝑖𝑖 − 1)�̅�𝑡/2
𝑖𝑖=1  is a function which depends only on 𝑡𝑡̅. Moreover, for all 𝐾𝐾 ≥ 2𝑡𝑡̅ 

and 𝑡𝑡̅ = 𝑂𝑂(𝑙𝑙𝑙𝑙𝑔𝑔𝑙𝑙𝑙𝑙𝑔𝑔𝐾𝐾), 𝐹𝐹/𝐹𝐹𝐽𝐽𝐽𝐽𝑀𝑀 vanishes as 𝐾𝐾 goes to infinity. 

Table 3.2 shows a comparison of the subpacketization level between the proposed PTB design 
for systems with 𝑡𝑡̅ = 𝐾𝐾 − 𝑡𝑡 = 2 and even 𝐾𝐾 ≥ 4, and the JCM scheme. This comparison shows 
that the PTB design of Theorem 1 can significantly reduce the subpacketization level. 

Table 3.2: Comparison of subpacketization level of the PTB design in Theorem 1  
𝐾𝐾 10 20 40 80 160 
𝐹𝐹 40 180 760 3120 12640 

𝐹𝐹𝐽𝐽𝐽𝐽𝑀𝑀 360 3420 29640 246480 2009760 
 

In the following, we highlight the implications of Theorem 1 and its connections to some prior 
works. 

1) Order reduction in large cache memory regime: From Theorem 1, it can be seen that when K 
≤ 2t is even and t  is large enough  (i.e., t = K − O(loglog K)), an order  gain in  terms of 
subpacketization can be obtained using the PTB design compared to the JCM scheme while 
preserving the optimal rate. More specifically, for a fixed t¯, it can be seen that F/F JCM = 
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Θ(1/K), implying the order gain. Note that when 𝑡𝑡̅ is kept fixed, the normalized cache size 𝜇𝜇 =
 𝑡𝑡/𝐾𝐾 = (𝐾𝐾 − 𝑡𝑡)̅/𝐾𝐾 = 1 − Θ(1/𝐾𝐾) =and hence lim

𝐾𝐾→∞
𝜇𝜇 = 1, which essentially means that the 

order gain is only obtainable in a larger cache memory regime. In fact, this order reduction is 
achieved by a specific equal node grouping method with m = K/2 groups each containing exactly 
q = 2 nodes, i.e., q = (2, 2, · · ·, 2). Order reduction can also be obtained using other equal 
grouping methods, as we will show later.  

2) Asymmetric multicast transmission matters: In the achievable scheme of Theorem 1, both the 
raw packet saving gain and further splitting ratio gain are available. The key idea behind the PTB 
design is that the enforcement of asymmetry in the coded i s  multicasting transmission ( i.e., 
only a subset of nodes within each multicasting group are selected as transmitters and all other 
remaining nodes will only receive instead of transmitting. To preserve the optimal rate, (i.e., each 
coded multicast message should be simultaneously useful for t different nodes) further splitting 
of the raw packets is necessary. The number of subpackets that each raw packet needs to be split 
into is equal to the number of transmitters which transmit the stored raw packet within     a 
particular multicasting group. Since in any multicasting group of t + 1 nodes, every t nodes share 
a raw packet which is desired by the other node (assuming no raw packet is excluded), selecting t 
nodes to transmit will result in a further splitting ratio of α = t. However, asymmetry can be 
exploited, where we can choose less than t nodes to serve as transmitters, resulting in a smaller 
further splitting ratio.  

3) Connection to JCM scheme: In the PTB design framework, if the node grouping contains only 
one unique set, (i.e., q’ = (K, 0(K−1)) or q’’ = (1(K))) then there  will  be  V  = 1  packet type and S  = 
1  multicasting  group  type,  which  are  v = (t, 0(t−1)), s = (t + 1, 0(t))  for q’ and v = (1(t)), s = 
(1(t+1)) for q’’. In both cases, there is only one unique set within the multicasting group type. 
Hence, the only unique set has to be chosen as the transmitters. The only type of raw packets has 
to be split into α = t subpackets. No packet types can be excluded and a further splitting ratio of t 
has to be enforced. This exactly corresponds to the design of the JCM scheme.  

4) Comparison to DPDA (Wang et al., 2017): The DPDA proposed several D2D coded caching 
schemes achieving a lower subpacketization level than the JCM scheme while preserving the 
optimal communication rate, and showed the subpacketization optimality via the PDA argument. 
However, DPDA design only treats four points of the caching parameter (i.e., 𝑡𝑡 = 1,2,𝐾𝐾 −
1,𝐾𝐾 − 2), which is far from a general design. Our PTB design matches these cases of DPDA and 
we can show the subpacketization optimality from the perspective of the PTB design. Therefore, 
PTB is more general than the DPDA design. More specifically, it is shown (Wang et al., 2017) 
that 1) For 𝑡𝑡 = 1,𝐹𝐹 ≥ 𝐾𝐾 (matching the JCM scheme) ; 2) For 𝑡𝑡 = 𝐾𝐾 − 1,𝐹𝐹 ≥ 𝐾𝐾(𝐾𝐾 − 1) 
(matching the JCM scheme); 3) For 𝑡𝑡 = 2,𝐹𝐹 ≥ 𝐾𝐾2/4 (lower than the JCM scheme, tight when K 
is even); 4) For 𝑡𝑡 = 𝐾𝐾 − 2,𝐹𝐹 ≥ 𝐾𝐾(𝐾𝐾 − 2) for odd K and 𝐹𝐹 ≥ 𝐾𝐾(𝐾𝐾 − 2)/2 for even K  (lower 
than the JCM scheme). These results, including the achievability and converse, can all be easily 
obtained under the PTB design framework. For example, the subpacketization  𝐹𝐹 = 𝐾𝐾2/4 when 
𝑡𝑡 = 2 can be achieved by equal node grouping 𝒒𝒒 = (𝐾𝐾/2,𝐾𝐾/2). More specifically, there are two 
possible packet types, 𝒗𝒗′ = (2,0),𝒗𝒗′′ = (1,1) where 𝒗𝒗′ = (2,0) is excluded and 𝒗𝒗′′does not need 
to be further split due to the selection of transmitters within the only multicasting group type  
𝒔𝒔 = (2, 1∗). Since the number of type-𝒗𝒗′′ packets is equal to (𝐾𝐾/2)2 = 𝐾𝐾2/4, the 
subpacketization is equal to 𝐹𝐹 = 𝐾𝐾2/4. The converse bound on the subpacketization can be 
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shown via the PTB framework from the memory constraint satisfaction argument and the 
existence of least common multiple vector of local further splitting ratio vectors. 

5) Connection to Coded Distributed Computing (CDC) (Li et al., 2017): It is shown that for 
single-round (s =1) MapReduce distributed computing, the proposed CDC scheme 
(communication- computation tradeoff) in [14] is equivalent to the JCM scheme (rate-memory 
tradeoff) for D2D coded caching. More specifically, the number of raw packets and subpackets 
in D2D coded caching correspond to the number of input data files (sub-tasks) and the number of 
intermediate values per task in CDC, respectively. As a result, the PTB design framework also 
works for the distributed computing case and can reduce the subpacketization complexity 
(number of sub-tasks per task, and the number of intermediate values per sub-task) without 
sacrificing the optimal communication load. 

Theorem 2: (Order Reduction on F) Let   𝜁𝜁(𝑡𝑡) ≜ lim
𝐾𝐾→∞

𝐹𝐹/𝐹𝐹𝐽𝐽𝐽𝐽𝑀𝑀 , 2 ≤ 𝑡𝑡 ≤ 𝐾𝐾. For (𝐾𝐾, 𝑡𝑡) =
(2𝑞𝑞, 2𝑟𝑟) with 𝑞𝑞 ≥ 𝑡𝑡 + 1, 𝑟𝑟 ≥ 1 , using the PTB design framework with the two-group equal 
grouping (i.e., 𝒒𝒒 = (𝐾𝐾/2,𝐾𝐾/2)), the optimal rate of D2D caching networks is achievable by the 
further splitting ratio vector 𝛼𝛼𝐿𝐿𝐽𝐽𝑀𝑀 = (0,1,2, … , 𝑟𝑟). When 𝑟𝑟 ≥ 2, we have 

                                                         ( ) 1

1 11
2 2ttζ −

 < − 
 

                                                        (3.5) 

We next highlight the implications of Theorem 2 as follows. 

1) Constant reduction:  Under the corresponding PTB design, a more-than-half reduction on F 
can be achieved compared to the JCM scheme. This design applies to any integer value of t as 
long as it is an even number in the range 2 ≤ t ≤ K − 2. Note that we have proved that for 𝑡𝑡 =
1,𝐾𝐾 − 1, the JCM scheme is actually optimal in terms of F in the discussions following Theorem 
1. This result also demonstrates that for even caching parameter t, the JCM scheme is not optimal 
in subpacketization in general. The achievable design employs a simple two-group equal node 
grouping 𝒒𝒒 =  (𝐾𝐾/2,𝐾𝐾/2) and the corresponding FSR vector of 𝛼𝛼 𝐿𝐿𝐽𝐽𝑀𝑀 =  (0, 1, 2,· · ·
 , 𝑟𝑟) suffices to achieve subpacketization level 𝐹𝐹 <  𝐹𝐹𝐽𝐽𝐽𝐽𝑀𝑀/2. 

2) Connection to Theorem 1: For some system parameters K and t, there can be two PTB designs 
with different F, according to Theorem 1 and Theorem 2. In fact, the PTB designs are not unique 
(i.e., for the same set of system parameters), multiple rate-optimal schemes can be designed via 
the PTB approach with different subpacketization levels since different node grouping might be 
used, different raw packet types can be excluded and different further splitting ratios can be 
chosen. The key difference is that Theorem 1 indicates an order gain in the large cache regime 
while Theorem 2 only achieves constant gain, implying that the design of Theorem 1 is better. 
However, in other cache regimes, this may not be true. We will simply choose the one that yields 
a smaller F. 

Theorem 3: (Heterogeneous Subpacketization) Let 𝜁𝜁(𝑡𝑡) ≜ lim
𝐾𝐾→∞

𝐹𝐹/𝐹𝐹𝐽𝐽𝐽𝐽𝑀𝑀 , 2 ≤ 𝑡𝑡 ≤ 𝐾𝐾. For 
(𝐾𝐾, 𝑡𝑡) = (2𝑞𝑞 + 1,2𝑟𝑟) with 𝑞𝑞 ≥ 2𝑟𝑟 + 1, 𝑟𝑟 ≥ 1 , using the PTB design framework with the two-
group equal grouping (i.e., 𝒒𝒒 = ((𝐾𝐾 + 1)/2, (𝐾𝐾 − 1)/2)) the optimal rate of D2D caching 
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networks is achievable by the further splitting ratio vector 𝛼𝛼𝐿𝐿𝐽𝐽𝑀𝑀 = (0,2,4, … , 𝑡𝑡 − 2, 𝑡𝑡, 𝑡𝑡, … , 𝑡𝑡). 
Moreover, when 𝑡𝑡 ≥ 4, we have  
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1

2 ( !)
1 1( 2)!( 1)!( )= / 2 1 1
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∑

∑
                        (3.6) 

Theorem 3 states that a constant reduction on F can be achieved when the number of nodes is 
added and the caching parameter t is even. The novelty of Theorem 3 lies in that subpackets with 
heterogeneous size are employed in the PTB design, which according to our knowledge is the 
very first approach in the literature to try heterogeneous subpacketization. Note that optimal rate 

is still preserved when using the heterogeneous subpacketization design. Since 1
𝑡𝑡
��

𝑡𝑡
𝑟𝑟�
2𝑟𝑟
− 1� < 0 

always holds under the condition of Theorem 3, the right-hand side of Equ. (3.6) is always less 
than 1, indicating a constant factor reduction. When 𝐾𝐾 → ∞, the expression of 𝜍𝜍(𝑡𝑡) is derived 
under the condition that 𝑡𝑡 = 𝐾𝐾𝑀𝑀/𝑁𝑁 is fixed. This means that the cached fraction of the file 
library is small (i.e., 𝑀𝑀/𝑁𝑁 → 0) as K approaches infinity. Hence, Theorem 3 basically says that 
there is constant reduction gain in asymptotically small cache fraction in contrast to Theorem 1, 
which characterizes an order-wise reduction in the asymptotically large fraction region. 

In the following, we provide several examples corresponding to the above theorems to show the 
supremacy of the PTB design over existing schemes. 

Table 3.3: The FSRT of Example 3.2  
FSRT 𝒗𝒗1 𝒗𝒗2 𝒗𝒗3 

𝛼𝛼1 • 1 0 

𝛼𝛼2 4 3 • 

𝛼𝛼𝐿𝐿𝐽𝐽𝑀𝑀 4 3 0 

 

Example 3.2: (Order Reduction under Equal Node Grouping) Consider the system parameters 
(K, 𝑡𝑡̅)   = (3m,3) where m ≥  𝑡𝑡̅ = 3 (K ≥ 9) and equal node grouping q = (3, 3, · · ·, 3). In this 
case, (S, V) = (2, 3). The packet types, multicasting group types and involved packet type sets 
are (the unique sets which are selected as transmitters within each multicasting group type are 
marked with the superscript*): 

( 3) (3) ( 2) (1) (1) ( 1) (1)
1 2 3

( 1) (1)*
1 1 2 3

( 2) (2)*
2 2 1 2

(3 , 2 ), (3 , 2 ,1 ), (3 ,0 )
(3 ,1 ), { , }
(3 ,2 ), { , }

m m m

m

m

v v v
s v v
s v v

ρ

ρ

− − −

−

−

= = =

= =

= =
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and the FSRT is from which we obtain αLCM = (4, 3, 0), implying that type v3 is excluded 
(raw packet saving gain) and v1, v2 have further splitting ratios of 4, 3 < αJCM = t (t = K − t̄  = 
K − 3 ≥ 6 since K ≥ 9) respectively (further splitting ratio gain). Hence, the number of 
subpackets is equal to ( ) ( ) ( ) 3

1 2 3( )[ ] ( )4,3,0 , ,   3 2 /)( ) / 3 3  ( 3TF F v F v F v K K K K= = − − = Θ in 

which 1( ) ( 3)( 6) / 6F v K K K= − − , 2( ) ( 3)F v K K= −  and 3( ) / 3F v K= . On the other hand, we 
have 4( 1)( 2)( 3) / 6 ( / 6)JCMF K K K K K= − − − = Θ . Therefore, we have  

2(2 3) 4
( 1)( 2)JCM

F K
F K K K

−  = = Θ − −  
 

implying an order gain on F of the PTB design compared to the JCM scheme. Table 3.4 
shows the comparison of subpacketizaiton level of Example 3.3 to that of the JCM scheme. 

Table 3.4: Comparison of subpacketization level of the PTB design in Example 3.2  
𝐾𝐾 9 18 36 72 144 
𝐹𝐹 162 2970 27324 233496 1928880 

𝐹𝐹𝐽𝐽𝐽𝐽𝑀𝑀 3024 12240 235620 8230320 68715504 
 

Next we consider the detailed delivery procedure for a system with K = 9, N  = 3, M  =  2 and t = 
6. Consider a specific equal-grouping assignment 𝑄𝑄1={1, 2, 3}, 𝑄𝑄2 ={4, 5, 6} and 𝑄𝑄3 ={7, 8, 9}. 
Since αLCM = (4, 3, 0), type- 𝒗𝒗3 packets are excluded and type- 𝒗𝒗1 and type- 𝒗𝒗2 packets need to 
be further split into four and three subpackets, respectively. In this case F = 270 while 𝐹𝐹𝐽𝐽𝐽𝐽𝑀𝑀 =
504. 

The cache placement is that node k stores any subpacket 𝑊𝑊𝑛𝑛,𝑇𝑇
(𝑗𝑗),𝑘𝑘 ∈ 𝑇𝑇 . Note that in this example 

the subpacketization reduction gain compared to the JCM scheme consists of two parts: 1) raw 
packet saving gain: tF( 𝒗𝒗3) = 18 subpackets and 2) further splitting ratio gain: (t − 4) F(𝒗𝒗1) + (t − 
3)F(𝒗𝒗2) = 216 subpackets. We can see that the reduction is mainly due to smaller further 
splitting ratios of type-𝒗𝒗1 and type-𝒗𝒗2 packets in this example. 

For a type-𝑠𝑠1 multicasting group 𝑆𝑆1 = [7] , node 7 is the only transmitter and it transmits three 
coded multicast messages: ⨁𝑘𝑘∈[6]𝑊𝑊𝑑𝑑𝑘𝑘,𝑆𝑆1\{𝑘𝑘}

(𝑗𝑗) , 𝑗𝑗 = 1,2,3 to all the other nodes in 𝑆𝑆1. Each node k 

recovers its desired subpackets {𝑊𝑊𝑑𝑑𝑘𝑘,𝑆𝑆1\{𝑘𝑘}
(𝑗𝑗) , 𝑗𝑗 = 1,2,3}  with the help of their cached contents 

while node 7 itself only transmits but receives nothing. For a type-𝑠𝑠2 multicasting group 𝑆𝑆2 =
[9]\{6,9}, the set of type-𝒗𝒗1 and 𝒗𝒗2 packets involved are {𝑊𝑊𝑑𝑑𝑘𝑘,𝑆𝑆2\{𝑘𝑘}

(𝑗𝑗) , 𝑗𝑗 = 1,2,3,4,𝑘𝑘 = 1,2,3} and 

�𝑊𝑊𝑑𝑑𝑘𝑘,𝑆𝑆2\{𝑘𝑘}
(𝑗𝑗) , 𝑗𝑗 = 1,2,3,𝑘𝑘 ∈ 𝑆𝑆2\𝑄𝑄1�,respectively. Denote 𝑊𝑊(𝑗𝑗) = ⨁𝑘𝑘∈[3]𝑊𝑊𝑑𝑑𝑘𝑘,𝑆𝑆2\{𝑘𝑘}

(𝑗𝑗) , 𝑗𝑗 = 1,2,3,4. 
Nodes 4, 5, 7, 8 each sends a coded multicast message as follows: 
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5 2 7 2 8 2

4 2 7 2 8 2

4 2 5 2 8 2

4 2 5 2 7 2

(1) (1) (1) (1)
4 , \{5} , \{7} , \{8}

(2) (1) (2) (2)
5 , \{4} , \{7} , \{8}

(3) (2) (2) (3)
7 , \{4} , \{5} , \{8}

(4) (3) (3) (3)
8 , \{4} , \{5} , \{7}

d S d S d S

d S d S d S

d S d S d S

d S d S d S

W W W W W

W W W W W

W W W W W

W W W W W

= ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕

 

from which we can see that all nodes can recover their desired subpackets. Since each coded 
message is simultaneously useful for t = 6 nodes, the rate is optimal. The transmission procedure 
for other multicasting groups is similar. 

We will illustrate the two-group equal grouping scheme in Theorem 2 using the following two 
examples. 

Example 3.3: Consider K = N = 6, M = 2, t = KM/N = 2 and the node grouping q = (3, 3) with a 
specific node assignment𝑄𝑄1= {1, 2, 3}, 𝑄𝑄2 = {4, 5, 6}. We have V = S = t/2 + 1 = 2. The packet 
and multicasting types are 

1 2

1 1 1

2 2 1 2

(2,0), (1,1)
(3,0), ( )
(2,1*), ( , )

v v
s v
s v v

ρ
ρ

= =
= =
= =

 

 
There are 𝐹𝐹(𝒗𝒗1) = 6 type-𝒗𝒗1 raw packets (per file) which are 

{ }, 1 2: ,| | 2 , [ ]n TW T Q or T Q T n N⊂ ⊂ = ∀ ∈  
and there are 𝐹𝐹(𝒗𝒗2) = 9 type-𝒗𝒗2 raw packets (per file) which are 

{ }, 1 2: { ', ''}, ' , '' , [ ]n TW T k k k Q k Q n N= ∈ ∈ ∀ ∈  
Therefore, there are 𝐹𝐹(𝒗𝒗1) + 𝐹𝐹(𝒗𝒗2) = 15 raw packets per file, which corresponds to the number 
of packets in the JCM scheme. There are 𝐹𝐹(𝒔𝒔1) = 2 type-𝒔𝒔1 multicasting groups 𝑆𝑆 1 =
 𝑄𝑄 1, 𝑆𝑆 2 =  𝑄𝑄 2  There are are 𝐹𝐹(𝒔𝒔2) = 18 type-𝒔𝒔2 multicasting groups each of which contains 
one node from 𝑄𝑄 1(𝑄𝑄 2) and two nodes from 𝑄𝑄 2(𝑄𝑄 1). Then the global FSR is 𝛼𝛼𝐿𝐿𝐽𝐽𝑀𝑀 = (0, 1), 
implying that type-𝒗𝒗1raw packets are excluded. Since type-𝒔𝒔1 multicasting groups only contain 
𝒗𝒗1 packets and all type-𝒗𝒗1 packets are excluded, the transmissions within each type-𝒔𝒔1 
multicasting groups become unnecessary. This is to say, type-s𝒔𝒔1 multicasting groups are also 
excluded. Type-𝒗𝒗2 packets have a FSR of 1, which means that these packets do not need to be 
further split to accommodate the coded delivery phase. Therefore, the total number of subpackets 
in the PTB design is equal to 

[ ]1 2(0,1) ( ) ( ) 9TF F v F v= + =  
Then the prefetching and delivery phases are described as follows. 

Prefetching Phase: Each node k ∈ [6] caches all the (type-𝒗𝒗2) subpackets 
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{ }, : , [6]k n TZ W k T n= ∈ ∀ ∈  

It can be seen that each node in total stores 18 subpackets, satisfying the memory constraint. 

Delivery Phase: For each type-𝒔𝒔2 multicasting group 𝑆𝑆 = {𝑘𝑘′} ∪ {𝑘𝑘′′,𝑘𝑘′′′} where node 𝑘𝑘′ belongs 
to one of the groups 𝑄𝑄 1,𝑄𝑄 2 and nodes 𝑘𝑘′′,𝑘𝑘′′′ belong to the other group, node 𝑘𝑘′ sends a coded 
multicast message 

, , \{ }
\{ '}

kn d S k
k S k

W
∈
⊕  

which is useful to both nodes 𝑘𝑘′′ and 𝑘𝑘′′′. Note that in S, nodes 𝑘𝑘′′,𝑘𝑘′′′ do not send anything. 
Hence, node 𝑘𝑘′ receives nothing. It can be seen that the desired subpacket can be successfully 
decoded. Each node k is involved in six multicasting groups, in each of which node k receives a 
different desired subpacket. Hence, each node receives six subpackets in the delivery phase of its 
desired file. Combined with the three subpackets in the cache, all nodes can recover their desired 
files. Since each coded message serves t = 2 nodes simultaneously, the rate is optimal. We have 
F = 9 while 𝐹𝐹𝐽𝐽𝐽𝐽𝑀𝑀 = 30. The reduction of 21 subpackets is due to the joint effect of raw packet 
exclusion and a smaller FSR of type-𝒗𝒗2  packets.  

This design can be generalized fully to the case q = (K/2, K/2) for arbitrary even K ≥ 4 and the 
required subpacketization is [ ] 2

1 2(0,1) ( ) ( ) / 4TF F v F v K= + = . Then  

1 1
4 1 3JCM

F K
F K

= ≤
−

 

Since 𝐾𝐾 ≥ 4, implying a constant reduction. 

Example 3.4: Consider t = 4 with q = (K/2, K/2). We have V = S = 3 and the packet and 
multicasting groups are 

1 2 3

1 1 1

2 2 1 2

3 3 2 3

(4,0), (3,1), (2, 2)
(5,0), ( )
(4,1*), ( , )
(3, 2*), ( , )

v v v
s v
s v v
s v v

ρ
ρ
ρ

= = =

= =
= =
= =

 

The global FSR vector is 𝛼𝛼𝐿𝐿𝐽𝐽𝑀𝑀 = (0,1,2). As a result, we have 

[ ]
2

1 2 3
( 2)(5 14)(0,1,2) ( ) ( ) ( )

96
T K K KF F v F v F v − −

= + + =  

On the other hand, 𝐹𝐹𝐽𝐽𝐽𝐽𝑀𝑀 = 𝐾𝐾(𝐾𝐾 − 1)(𝐾𝐾 − 2)(𝐾𝐾 − 3)/6. Since we require that 𝐾𝐾 ≥ 𝑡𝑡 + 2 = 6, 
the following bound holds 

1 
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0.3125 ( 2.8) 0.4, 6
( 1)( 3)JCM

F K K K
F K K

−
= ≤ ∀ ≥

− −
 

and lim
𝐾𝐾→∞

𝐹𝐹
𝐹𝐹𝐽𝐽𝐽𝐽𝐽𝐽

= 0.3125, which is less than one-third. Table 3.5 shows the comparison of 
subpacketizaiton level of Example 3.4 to that of the JCM scheme. 

Table 3.5: Comparison of subpacketization level of the PTB design in Example 3.4  
𝐾𝐾 6 12 24 48 96 
𝐹𝐹 24 690 13992 249504 4205184 

𝐹𝐹𝐽𝐽𝐽𝐽𝑀𝑀 60 1980 42504 778320 13287840 
 
In the following, we will illustrate the general achievable scheme for Theorem 1 and some 
examples to show that order reduction of the subpacketization level can be achieved while 
preserving the same (optimal) rate as the JCM scheme. We assume that K is sufficiently large 
while 𝑡𝑡̅ = 𝐾𝐾 − 𝑡𝑡 is kept fixed. We will show later that 𝑡𝑡  can be extended to a higher order of 
𝑡𝑡̅ = 𝑂𝑂(𝑙𝑙𝑙𝑙𝑔𝑔2𝑙𝑙𝑙𝑙𝑔𝑔2𝐾𝐾).  

For (𝐾𝐾, 𝑡𝑡̅ ) = (2𝑚𝑚, 2𝑟𝑟) with m ≥ t𝑡𝑡̅+ 1, r ≥ 1, consider the node grouping q = (2(m)) with m = K/2 
groups each containing exactly two nodes. In this case, the number of multicasting types and 
packet types are (S, V ) = (r, r + 1). More specifically, the i-th (i ∈  [r]) multicasting type si and 
the j-th (j ∈  [r + 1]) packet type vj are (transmitters are marked by the superscript*).  

 

The i-th involved packet type set is 𝜌𝜌𝑖𝑖 = {𝒗𝒗𝒊𝒊+𝟏𝟏,𝒗𝒗𝒊𝒊} and the corresoding local FSR vector is 
𝑎𝑎𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = [𝑎𝑎(𝒗𝒗𝑖𝑖),𝑎𝑎(𝒗𝒗𝑖𝑖+1)] = [2(𝑖𝑖 − 1), 2𝑖𝑖 − 1]. As a result, the global FSR vector will be 
𝑎𝑎𝐿𝐿𝐽𝐽𝑀𝑀 = (𝑎𝑎1,𝑎𝑎2, … , 𝑎𝑎𝑟𝑟+1) in which the entries are 𝑎𝑎1 = 0 (type 𝒗𝒗1 is excluded), 𝑎𝑎2 =
2𝑟𝑟+1 ∏ 𝑖𝑖𝑟𝑟−1

𝑖𝑖=1 ,𝑎𝑎𝑟𝑟 = 2(𝑟𝑟 − 1)∏ (2𝑖𝑖 − 1)𝑟𝑟−1
𝑖𝑖=1 , 𝑎𝑎𝑟𝑟+1 = ∏ (2𝑖𝑖 − 1)𝑟𝑟−1

𝑖𝑖=1  and 𝑎𝑎𝑗𝑗 = ∏ (2𝑖𝑖 −𝑟𝑟−1
𝑖𝑖=1

1) �∏ 2𝑖𝑖𝑟𝑟−1
𝑖𝑖=𝑗𝑗−1 �,∀𝑗𝑗 ∈ [3, 𝑟𝑟 − 1]. The number of subpackets required is therefore equal to 𝐹𝐹 =

𝒂𝒂𝐿𝐿𝐽𝐽𝑀𝑀𝑭𝑭𝑇𝑇 = ∑ 𝒂𝒂𝑗𝑗𝑟𝑟+1
𝑗𝑗=1 𝐹𝐹(𝒗𝒗𝑗𝑗). 

 
The entries of 𝒂𝒂𝐿𝐿𝐽𝐽𝑀𝑀 is actually strictly increasing as shown in the following lemma.  
 
Lemma 1: For the derived LCM vector 𝒂𝒂𝐿𝐿𝐽𝐽𝑀𝑀, the entry sequence {𝑎𝑎𝑗𝑗}𝑗𝑗=1,2,…,𝑟𝑟+1 is strictly 
increasing.  
 
Proof of Lemma 1: for 3 ≤ 𝑗𝑗 ≤ 𝑟𝑟 − 2, we have 𝑎𝑎𝑗𝑗+1 < 𝑎𝑎𝑗𝑗  due to  
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Also, 𝑎𝑎3 > 𝑎𝑎2 due to  

 
It can be seen that 𝑎𝑎𝑟𝑟 > 𝑎𝑎𝑟𝑟−1 due to  

 
 
Therefore, we have 𝑎𝑎𝑗𝑗+1 < 𝑎𝑎𝑗𝑗 ,∀𝑗𝑗 ∈ [𝑟𝑟]. Hence, we finish the proof of Lemma 1.  
 
To derive an upper bound on 𝐹𝐹/𝐹𝐹𝐽𝐽𝐽𝐽𝑀𝑀, we have the following definition and lemma.  
 
Definition: (Dominant Packet Type) Under a specific node grouping, the dominant packet type, 
denoted by 𝒗𝒗𝑑𝑑𝑙𝑙𝑚𝑚, is defined as the packet type containing the largest number of raw packets for 
sufficiently large 𝐾𝐾.  
 
Lemma 2: For a specific packet type 𝑣𝑣, which is a portion of 𝑡𝑡, and a given equal node grouping 
𝒒𝒒 = (𝒒𝒒(𝑚𝑚)) in which each group contains 𝑞𝑞 = 𝑀𝑀

𝑚𝑚
∈  𝕫𝕫+(𝑚𝑚 ≥  𝑡𝑡̅ + 1) nodes, the dominant packet 

type 𝒗𝒗𝑑𝑑𝑙𝑙𝑚𝑚 = ((𝒒𝒒 − 𝟏𝟏)(�̅�𝑡),𝟎𝟎(𝒎𝒎−�̅�𝑡)).  
 
Proof of Lemma 2: For the node grouping 𝒒𝒒, a packet type which is a partition of the integer 𝑡𝑡, 
can be equivalently represented by a partition of the integer 𝑡𝑡̅ = 𝐾𝐾 − 𝑡𝑡, meaning that excluding 
the 𝑡𝑡̅ nodes from 𝒒𝒒 and the remaindering 𝑡𝑡 nodes form a packet type. Let the partition  

 
satisfying   

 
and   

  
(𝑁𝑁𝑝𝑝 denotes the number of parts) represent a partition of 𝑡𝑡̅ (corresponding to the packet type). 
Then the number of type-𝑣𝑣 packets can be calculated as  
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where in (a) we let 𝐾𝐾 be sufficiently large and keep q fixed. The notations are as follows: 𝜓𝜓0 = 0 
and 𝑑𝑑𝑖𝑖 = ∑  𝜓𝜓𝑗𝑗−1𝑖𝑖

𝑗𝑗=1 . The function 𝑓𝑓 is defined as  

 
and 𝐿𝐿 is given by 

  
Which is a constant which does not depend on 𝐾𝐾.  
 
From the above equation, we see that 𝐹𝐹(𝒗𝒗) =  Θ(𝐾𝐾𝑁𝑁𝑝𝑝). Hence, the dominant type will be the 
type with maximum.  
 
Thus, we finish the proof of Lemma 2.  
 
Next, we derive a stick upper bound the ratio 𝐹𝐹/𝐹𝐹𝐽𝐽𝐽𝐽𝑀𝑀. Using lemma 1, we have 𝑎𝑎𝑗𝑗 ≤ 𝑎𝑎𝑟𝑟+1, ∀𝑗𝑗 ∈
[𝑟𝑟 + 1] . As a result, for any 𝐾𝐾 ≥ 2𝑡𝑡̅, we have  

 

It can be seen that the upper bound 
∏ (2𝑖𝑖−1)𝑡𝑡�/2
𝑖𝑖=1
𝐾𝐾−�̅�𝑡

= Θ(1/𝐾𝐾) for a fixed 𝑡𝑡̅, implying an order 
reduction of 𝐹𝐹 compared to the JCM scheme.  
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The next lemma shows that the upper bound in above equation vanishes as 𝐾𝐾 goes to infinity if 
𝑡𝑡̅ = 𝑂𝑂(𝑙𝑙𝑙𝑙𝑔𝑔𝑙𝑙𝑙𝑙𝑔𝑔𝐾𝐾). A special case is that 𝑡𝑡̅ is kept fixed as a constant when 𝐾𝐾 grows.  

Lemma 3: For 𝑡𝑡̅ = K − t = 𝑂𝑂(𝑙𝑙𝑙𝑙𝑔𝑔𝑙𝑙𝑙𝑙𝑔𝑔𝐾𝐾), the upper bound on 𝐹𝐹/𝐹𝐹𝐽𝐽𝐽𝐽𝑀𝑀 vanishes as 𝐾𝐾 goes to 
infinity.  

Proof of Lemma 3: Without loss of generality, assume for some constant 𝑐𝑐 and 𝐾𝐾 = 22𝜅𝜅 . Then  

 

Since each individual term 𝑓𝑓𝑖𝑖 satisfies 

 

As a result, we obtain 

 

Hence, we finish the proof of Lemma 3. 

From Lemmas 1-3, we finish the proof Theorem 1. Theorems 2 and 3 can be proved using 
similar approaches and thus we omit the proof of these theorems.  
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4.0 DYNAMIC SIGNAL PROGRESSION CONTROL BASED 
ON CV TECHNOLOGY 

4.1 INTRODUCTION 

With the communication optimization model introduced in Chapter 3.0, CVs can exchange real-
time information with roadside infrastructures and provide much enriched data to support various 
traffic operation and control tasks. To mitigate urban traffic congestion, optimal traffic signal 
control is one of the most promising methods by allocating green times to various vehicle 
movements and to regulate traffic flows. Currently, the most commonly used signal control 
strategies are fixed-time control, actuated control, and adaptive control. Fixed-time control 
schedules signal timing plans for different time of day based on historical data. It assumes that 
the traffic demand does not vary significantly within the entire control period, but may fall short 
of efficiency when traffic demand fluctuates quickly in practice (Feng et al., 2015). Both 
actuated control and adaptive control utilize real-time data collected from roadside sensors (e.g., 
detectors and radars) to control signals. For actuated control, several logics including green 
extension, gap out, and max out are applied to adjust signal timing. Adaptive control employs the 
collected data to predict the incoming traffic situations and make control decisions to optimize 
some objectives (e.g., minimizing delay). Although actuated and adaptive control indicates better 
effectiveness compared to fixed-time control, two limitations are revealed with them. First, the 
collected data only show instantaneous information when vehicles pass over. Vehicle states such 
as heading and acceleration cannot be obtained. Besides, the sensors can only provide traffic 
information which is measured at discrete spatial points. Second, the cost of installing and 
maintaining sensors is relatively high. If a sensor malfunction occurred, the performance of those 
two control strategies will degrade significantly (Feng et al., 2015).  

Recent years have witnessed a rapid development of CV technology. CV wireless 
communication could be able to provide enriched vehicle data including location, speed, 
acceleration, stop time, queue length, etc. With the high-resolution CV data, signal controllers 
can respond to the fluctuation of traffic condition more efficiently and adjust the signal timing 
plan accordingly. Moreover, the obtained CV trajectories, through V2I communications, allow 
the control system to better understand the OD patterns of the arterial network. Such information 
can greatly support the design of signal coordination plans to facilitate the movement of the most 
critical OD flows (or path-flows). 

4.2 SYSTEM OVERVIEW 

With the emerging and rapid development of CV technology, on-board units (OBU) are able to 
transmit messages to or receive from roadside units (RSU) through dedicated short-range 
communication (DSRC). The broadcasted messages are defined by Society of Automotive 
Engineers (SAE) (Draf and Jam, 2006), including a) intersection geometry message (MAP) 
providing road geometry; b) signal phase and timing (SPaT) message reporting real-time signal 
information; c) basic safety message (BSM) offering real-time vehicle trajectories; d) signal 
request message (SRM) indicating requested information; and e) signal status message (SSM) 
recording priority status information. Those new high-resolution data enable traffic signals to be 
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responsive to real-time changes in traffic demand patterns. Thus, traffic signals could perform 
more effectively. 

Based on SPaT and BSM, this study proposes a methodology of dynamic signal progression 
control for arterial coordination. Figure 4.1 shows the key control structure of this system, which 
includes two core functions: V2I communication and signal plan (offset) adjustment. It is 
expected that CVs will co-exist with HVs for a long time period and the market penetration of 
CVs will be low in the near future. Some researchers have been conducted to study the effects of 
low CVs penetration rates on mobility performance and test the applications with a wide range of 
penetration rates.  

Table 4.1 summarizes the minimum penetration rates of CVs for several mobility applications. 
Depending on the results shown in Table 4.1, this study assumes the CV market penetration as 
30% for providing vehicle trajectory data. As shown in Figure 4.1, the vehicle trajectory is firstly 
decoded based on the BSM to determine the critical paths. Second, the signal progression control 
algorithm functions to optimize the traffic signal timing plan based on the decomposed CVs data. 
In this study, the traffic signal timing plan will be optimized by adjusting offsets of each 
intersection along an arterial after each control period (e.g., five minutes). Notably, the length of 
the control period shall be set properly to ensure the pattern of critical paths remain unchanged 
between at least two adjacent control periods. Then the signal progression control algorithm is 
utilized to optimize the offsets for the next period based on the determined critical paths (using 
CV data) in the last control period. This study will test the proposed in Vissim, and BSM is 
generated in the driver model interface in this simulation environment.  

Table 4.1: CVs applications and corresponding minimum penetration rate 
Applications Minimum CV penetration 

rate 
Reference 

Arterial performance 
measurement 

10%-50% Li et al., 2008; Argote et al., 2015 

Traffic signal control 20%-30% Feng et al., 2015; He et al., 2012; 
Priemer et al., 2009 

Speed estimation 20% Rim et al., 2011; Goodall et al., 
2014 

Queue estimation 30% Tiaprasert et al., 2015; Ban et al., 
2011 
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Figure 4.1: Flow chart of signal progression control system 

Note that one important part of this progression control system is to determine critical paths. The 
definition of critical paths in this paper is illustrated by Yang et al. (2015), which refers to the 
routes connecting to origin-destination (OD) pairs with the highest volumes. Taking the road 
network in Chupei, Taiwan, as an example, as shown in Figure 4.2. The flow from node 6 to node 
1 shows the highest volume with 702 vph. And other paths (path2-path5) also exhibit high 
volumes. Hence, the five paths are defined as critical paths in this example network. 

 
Figure 4.2: Critical paths of the road network in Chupei, Taiwan (Yang et al., 2015) 

4.3 DYNAMIC SIGNAL PROGRESSION CONTROL 

4.3.1 Model Development 

This study adopts the bandwidth-based method to design signal coordination plans for vehicles 
traveling along an arterial. More specifically, the offsets of all intersections after each control 
period (e.g., every five minutes) to maximize the green bandwidth of all critical path-flows along 
both outbound and inbound directions of the arterial, which is denoted by Eq. (4.1).  
 
 max (∑ ∑  𝜔𝜔𝑝𝑝𝑝𝑝𝑖𝑖 (𝑗𝑗)𝑤𝑤𝑝𝑝,𝑖𝑖(𝑗𝑗) + ∑ ∑  𝜔𝜔�𝑝𝑝𝑝𝑝𝑖𝑖 (𝑗𝑗)𝑤𝑤�𝑝𝑝,𝑖𝑖(𝑗𝑗))  (4.1) 
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where 𝑗𝑗 denotes the control period, represented by index 1, 2, 3, etc. (e.g., number 1 represents 
the first control period); 𝑤𝑤𝑝𝑝,𝑖𝑖(𝑗𝑗) and 𝑤𝑤�𝑝𝑝,𝑖𝑖(𝑗𝑗) denote the green bandwidth of critical path 𝑝𝑝 for 
outbound and inbound between intersection 𝑖𝑖 and 𝑖𝑖 − 1, respectively, in seconds; 𝜔𝜔𝑝𝑝(𝑗𝑗) and 
𝜔𝜔�𝑝𝑝(𝑗𝑗) denote the weighting factor for path 𝑝𝑝. It should be noted that those factors are identified 
by traffic demands along various paths.  

The green bandwidth of path 𝑝𝑝 for outbound and inbound directions between two adjacent 
intersections are computed by Eq. (4.2) and Eq. (4.3). 

 𝑤𝑤𝑝𝑝,𝑖𝑖(𝑗𝑗) = 𝑚𝑚𝑎𝑎𝑇𝑇�𝑤𝑤𝑟𝑟,𝑝𝑝,𝑖𝑖(𝑗𝑗) − 𝑤𝑤𝑙𝑙,𝑝𝑝,𝑖𝑖(𝑗𝑗), 0� (4.2) 

 𝑤𝑤�𝑝𝑝,𝑖𝑖(𝑗𝑗) = 𝑚𝑚𝑎𝑎𝑇𝑇�𝑤𝑤�𝑟𝑟,𝑝𝑝,𝑖𝑖(𝑗𝑗) − 𝑤𝑤�𝑙𝑙,𝑝𝑝,𝑖𝑖(𝑗𝑗), 0� (4.3) 

where 𝑤𝑤𝑟𝑟,𝑝𝑝,𝑖𝑖(𝑗𝑗) and 𝑤𝑤𝑙𝑙,𝑝𝑝,𝑖𝑖(𝑗𝑗) (𝑤𝑤�𝑟𝑟,𝑝𝑝,𝑖𝑖(𝑗𝑗) and 𝑤𝑤�𝑙𝑙,𝑝𝑝,𝑖𝑖(𝑗𝑗)) denote the right bound and left bound of the 
green band of path 𝑝𝑝 for outbound (inbound), which are calculated by Eq. (4.4)-Eq. (4.7). 

 𝑤𝑤𝑟𝑟,𝑝𝑝,𝑖𝑖(𝑗𝑗) = 𝑚𝑚𝑖𝑖𝑚𝑚 (𝑡𝑡𝑟𝑟,𝑝𝑝,𝑖𝑖(𝑗𝑗) + 𝑡𝑡𝑖𝑖,𝑖𝑖+1(𝑗𝑗), 𝑡𝑡𝑟𝑟,𝑝𝑝,𝑖𝑖+1(𝑗𝑗)) (4.4) 

 𝑤𝑤𝑙𝑙,𝑝𝑝,𝑖𝑖(𝑗𝑗) = 𝑚𝑚𝑎𝑎𝑇𝑇 (𝑡𝑡𝑙𝑙,𝑝𝑝,𝑖𝑖(𝑗𝑗) + 𝑡𝑡𝑖𝑖,𝑖𝑖+1(𝑗𝑗), 𝑡𝑡𝑙𝑙,𝑝𝑝,𝑖𝑖+1(𝑗𝑗)) (4.5) 

 𝑤𝑤�𝑟𝑟,𝑝𝑝,𝑖𝑖(𝑗𝑗) = 𝑚𝑚𝑖𝑖𝑚𝑚 (𝑡𝑡𝑟𝑟,𝑝𝑝,𝑖𝑖+1(𝑗𝑗) + 𝑡𝑡𝑖𝑖,𝑖𝑖+1(𝑗𝑗), 𝑡𝑡𝑟𝑟,𝑝𝑝,𝑖𝑖(𝑗𝑗)) (4.6) 

 𝑤𝑤�𝑙𝑙,𝑝𝑝,𝑖𝑖(𝑗𝑗) = 𝑚𝑚𝑎𝑎𝑇𝑇 (𝑡𝑡𝑙𝑙,𝑝𝑝,𝑖𝑖+1(𝑗𝑗) + 𝑡𝑡𝑖𝑖,𝑖𝑖+1(𝑗𝑗), 𝑡𝑡𝑙𝑙,𝑝𝑝,𝑖𝑖(𝑗𝑗)) (4.7) 

where 𝑡𝑡𝑙𝑙,𝑝𝑝,𝑖𝑖(𝑗𝑗) and 𝑡𝑡𝑟𝑟,𝑝𝑝,𝑖𝑖(𝑗𝑗) denotes the start and end of the green band for critical path 𝑝𝑝 at 
intersection 𝑖𝑖, which are illustrated in Figure 4.3; 𝑡𝑡𝑖𝑖,𝑖𝑖+1(𝑗𝑗) denotes the travel time from 
intersection 𝑖𝑖 to intersection 𝑖𝑖 + 1.  

 
(a) Illustration of green band for an outbound path-flow 
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(b) Illustration of green band for an inbound path-flow 

Figure 4.3: Illustration of green band for both outbound and inbound directions 

Figure 4.3 shows that the start and end of the green band for each path can be computed 
depending on the signal phase plan, offsets and green timings of intersections, as shown in Eq. 
(4.8) and Eq. (4.9). 

 𝑡𝑡𝑙𝑙,𝑝𝑝,𝑖𝑖(𝑗𝑗) = ∑ ∑ 𝛽𝛽𝑚𝑚,𝑝𝑝,𝑖𝑖 ∗ 𝜑𝜑𝑚𝑚,𝑛𝑛 ∗ 𝑔𝑔𝑖𝑖,𝑚𝑚(𝑗𝑗)𝑛𝑛𝑚𝑚 + 𝜃𝜃𝑖𝑖(𝑗𝑗)  (4.8) 

 𝑡𝑡𝑟𝑟,𝑝𝑝,𝑖𝑖(𝑗𝑗) = ∑ ∑ 𝛽𝛽𝑚𝑚,𝑝𝑝,𝑖𝑖 ∗ 𝜑𝜑𝑚𝑚,𝑛𝑛 ∗ 𝑔𝑔𝑖𝑖,𝑚𝑚(𝑗𝑗)𝑛𝑛𝑚𝑚 + ∑ 𝛽𝛽𝑚𝑚,𝑝𝑝,𝑖𝑖 ∗ 𝑔𝑔𝑖𝑖,𝑚𝑚(𝑗𝑗) +𝑚𝑚 𝜃𝜃𝑖𝑖(𝑗𝑗) (4.9) 

where, 𝛽𝛽𝑚𝑚,𝑝𝑝,𝑖𝑖 is a binary variable to indicate the phase allocated to critical path 𝑝𝑝 at intersection 𝑖𝑖 
(it equals to 1 if path 𝑝𝑝 receives green time in phase 𝑚𝑚 at intersection 𝑖𝑖, and 0 otherwise); 𝜑𝜑𝑚𝑚,𝑛𝑛 is 
a binary variable to determine the sequence of phases (it equals to 1 if phase 𝑚𝑚 is before phase 𝑚𝑚, 
and 0 otherwise); 𝑔𝑔𝑖𝑖,𝑚𝑚(𝑗𝑗) indicates the green time allocated to phase 𝑚𝑚 for intersection 𝑖𝑖; and 
𝜃𝜃𝑖𝑖(𝑗𝑗) denotes the offset of intersection 𝑖𝑖 at 𝑗𝑗𝑡𝑡ℎ control period, in seconds. 

Note that if the green band for a path is not continuous between intersections along an arterial, as 
shown in Figure 4.4, vehicles may need to stop several times when traveling along this path. It 
will exert negative impacts on the effectiveness of the coordination system. To ensure the 
continuity of the green band for a path along multiple intersections. The following constraints 
need to be satisfied: 

 𝑏𝑏𝑙𝑙,𝑝𝑝,𝑖𝑖(𝑗𝑗) < 𝑏𝑏𝑟𝑟,𝑝𝑝,𝑖𝑖+1(𝑗𝑗) − 𝑡𝑡𝑖𝑖,𝑖𝑖+1(𝑗𝑗) (4.10) 

 𝑏𝑏𝑟𝑟,𝑝𝑝,𝑖𝑖(𝑗𝑗) > 𝑏𝑏𝑙𝑙,𝑝𝑝,𝑖𝑖+1(𝑗𝑗) − 𝑡𝑡𝑖𝑖,𝑖𝑖+1(𝑗𝑗) (4.11) 

 𝑏𝑏�𝑙𝑙,𝑝𝑝,𝑖𝑖+1(𝑗𝑗) < 𝑏𝑏�𝑟𝑟,𝑝𝑝,𝑖𝑖(𝑗𝑗) − 𝑡𝑡𝑖𝑖,𝑖𝑖+1(𝑗𝑗) (4.12) 

 𝑏𝑏�𝑟𝑟,𝑝𝑝,𝑖𝑖+1(𝑗𝑗) > 𝑏𝑏�𝑙𝑙,𝑝𝑝,𝑖𝑖(𝑗𝑗) − 𝑡𝑡𝑖𝑖,𝑖𝑖+1(𝑗𝑗) (4.13) 
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(a) Non-continuous green band of an outbound critical path for three adjacent intersections 

 
(b) Non-continuous green band of an inbound critical path for three adjacent intersections 

Figure 4.4: Non-continuous green band of a critical path for three adjacent intersections 

Eq. (4.14) is to ensure the offset change within a range at each control period. 
 
 𝜃𝜃𝑖𝑖−1(𝑗𝑗) − ∆𝜃𝜃𝑖𝑖 ≤ 𝜃𝜃𝑖𝑖(𝑗𝑗) ≤ 𝜃𝜃𝑖𝑖−1(𝑗𝑗) + ∆𝜃𝜃𝑖𝑖 (4.14) 

where ∆𝜃𝜃 denotes the maximum offset difference of two consecutive control periods for 
intersection 𝑖𝑖, in seconds. 
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4.3.2 Solution Algorithm 

In this study, a solution algorithm depending on dynamic programming (DP) is developed to 
solve the proposed model shown in Eqs. (4.1)-(4.14). The main principle of the DP algorithm is 
that the decision problem is broken into a set of manageable decision stages and optimal 
decisions are made in a recursive manner. The basic elements for dynamic programming are 
stages, state variables, decision variables, and value functions. In this study, the stage is defined 
as the index of intersections, represented by  {1,2,3, … ,𝑁𝑁𝑖𝑖}. The state variable is defined as the 
feasible new offset of each control period at each intersection, the feasible solution is denoted as 
follows: 

 𝑆𝑆𝑖𝑖(𝑗𝑗) = {𝜃𝜃𝑖𝑖(𝑗𝑗 − 1) − ∆𝜃𝜃𝑖𝑖 ,𝜃𝜃𝑖𝑖(𝑗𝑗 − 1) − ∆𝜃𝜃𝑖𝑖 + 1, … ,𝜃𝜃𝑖𝑖(𝑗𝑗 − 1) + ∆𝜃𝜃𝑖𝑖  } (4.15) 

The value function, 𝑉𝑉𝑖𝑖(𝜃𝜃𝑖𝑖), can be calculated by Eq. (4.16) 

 𝑉𝑉𝑖𝑖(𝜃𝜃𝑖𝑖) = 𝑉𝑉𝑖𝑖−1(𝜃𝜃𝑖𝑖−1∗ ) + 𝐵𝐵𝑖𝑖(𝜃𝜃𝑖𝑖)  (4.16) 

where,  𝜃𝜃𝑖𝑖−1∗  indicates the optimal offset determined at stage 𝑖𝑖 − 1; B(𝜃𝜃𝑖𝑖) denotes the total green 
bandwidth of all critical paths at stage 𝑖𝑖 when the offset involves 𝜃𝜃𝑖𝑖 (i.e. the total green 
bandwidth between intersection 𝑖𝑖 − 1 and intersection 𝑖𝑖), which could be calculated by Eq. 
(4.17). 

  𝐵𝐵𝑖𝑖(𝜃𝜃𝑖𝑖) = ∑ 𝛿𝛿𝑝𝑝,𝑖𝑖−1,,𝑚𝑚𝑝𝑝 𝛿𝛿𝑖𝑖,𝑝𝑝,𝑚𝑚𝜔𝜔𝑝𝑝(𝑗𝑗)𝑏𝑏𝑝𝑝,𝑖𝑖(𝑗𝑗) + ∑ 𝛿𝛿𝑝𝑝,𝑖𝑖−1,𝑚𝑚𝑝𝑝 𝛿𝛿𝑝𝑝,𝑖𝑖,𝑚𝑚𝜔𝜔�𝑝𝑝(𝑗𝑗)𝑏𝑏�𝑝𝑝,𝑖𝑖(𝑗𝑗)  (4.17) 

where 𝛿𝛿𝑝𝑝,𝑖𝑖,𝑚𝑚 is a binary variable to identify the green time for paths at each intersection (it equals 
to “1” if green time is allocated to path 𝑝𝑝 in phase 𝑚𝑚 at intersection 𝑖𝑖, and “0” otherwise).  

Based on the defined elements for dynamic programming, the solution algorithm is summarized 
as follows: 

 
Step 1: define 𝑖𝑖 = 1, 𝜃𝜃1(𝑗𝑗) = 0, and 𝑉𝑉𝑖𝑖(0) = 0; 

Step 2: 𝑖𝑖 = 𝑖𝑖 + 1; update value function with Eq. (16) and determine the optimal value function 

            𝑉𝑉𝑖𝑖�𝜃𝜃𝑖𝑖∗(𝑗𝑗)� = 𝑚𝑚𝑖𝑖𝑚𝑚𝜃𝜃𝑖𝑖(𝑘𝑘){𝑉𝑉𝑖𝑖−1�𝜃𝜃𝑖𝑖−1∗ (𝑗𝑗)� + 𝐵𝐵𝑖𝑖(𝜃𝜃𝑖𝑖(𝑗𝑗))|𝜃𝜃𝑖𝑖(𝑗𝑗) ∈ 𝑆𝑆𝑖𝑖(𝑗𝑗)}; Find the optimal 
solution at this stage, denoted as 𝜃𝜃𝑖𝑖∗(𝑗𝑗) 

Step 3: if 𝑖𝑖 < 𝑁𝑁𝑖𝑖 

                go to step 2; 

            else 

                trace back to find the optimal solution for each stage. 
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4.4 NUMERICAL EXAMPLES 

4.4.1 Experimental Design 

To illustrate the applicability and evaluate the effectiveness of the proposed progression control 
system, an arterial simulation model with three intersections is established in VISSIM to perform 
experimental tests. The basic layout and signal plan of these three intersections are shown in 
Figure 4.5.  

Key parameters of the proposed coordination control system are defined as follows: 

1) The three intersections have the same cycle 
length which is 130 seconds; 
2) The original offsets for those three intersections 
are 0 seconds, 6 seconds and 14 seconds, respectively; 
3) The maximum offset difference between two 
consecutive control period is 6 seconds; 
4) The average vehicle speed traveling along this 
arterial is 55 km/h; 
5) The progression weighting factors for the 
critical paths at each control period is determined by the traffic flow along each path. 
More specifically, the weighting factor of one critical path is calculated by dividing the 
traffic flow along that path by the traffic demand of all determined critical paths. 

 

 
Figure 4.5: Illustration of the test arterial 
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The simulation runs 3,600 seconds and the CV penetration rate is assumed as 30% in VISSIM. In 
this simulation scenario, the length of control periods is set as 10 minutes, which means that the 
offsets of those three intersections change every 10 minutes based on the determined critical 
paths utilizing the CV trajectory data. The critical paths of each control period during the 
simulation are shown in Table 4.2. 
 
Table 4.2: Critical path of each time period determined by CV trajectory data 

Time 

(Sec) 
0-600 600-1,200 1,200-1,800 1,800-2,400 2,400-3,000 3,000-3,600 

Critical 
path 

Node 1 to10 

Node 1 to 14 

Node 1 to 16 

Node 15 to 3 

Node 1 to 10 

Node 1 to 14 

Node 1 to 16 

Node 15 to 3 

Node 15 to 2 

Node 1 to 10 

Node 1 to 14 

Node 1 to 16 

Node 15 to 3 

Node 15 to 2 

Node 1 to 10 

Node 1 to 14 

Node 1 to 16 

Node 11 to 2 

Node 15 to 2 

Node 1 to 10 

Node 1 to 14 

Node 1 to 16 

Node 11 to 2 

Node 15 to 2 

Node 1 to 10 

Node 1 to 14 

Node 1 to 16 

Node 11 to 2 

Node 15 to 2 

 
Table 4.2 shows that there are six most common critical paths during the simulation period. For 
simplicity of analysis, they are defined as path 1 to path 6 in this study, as shown in Table 4.3. 
 
Table 4.3: Illustration of critical paths during the simulation period 

Critical path number Critical path illustration 

Path 1 Node 1 to Node 16 

Path 2 Node 1 to Node 14 

Path 3 Node 1 to Node 10 

Path 4 Node 11 to Node 2 

Path 5 Node 15 to Node 2 

Path 6 Node 16 to Node 3 

 

4.4.2 Results Analysis 

Figure 4.6 (a)-(f) shows the travel time of vehicles along the six critical paths under two 
scenarios. The first one is the benchmark in which the offsets of the three intersections are pre-
set within a coordinated actuated signal system and the other is that the offsets of the three 
intersections are optimized depending on the proposed progression signal control algorithm. 
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(a) The travel time of Path 1 depending on simulation time 

 
 

 
(b) The travel time of Path 2 depending on simulation time 

 

 
(c) The travel time of path 3 depending on simulation time 
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(d) The travel time of path 4 depending on simulation time 

 
 

 
 

(e) The travel time of path 5 depending on simulation time 
 

 
(f) The travel time of path 6 depending on simulation time 

Figure 4.6: The travel time of critical paths depending on simulation time 
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 It is observed that the proposed model can produce much lower travel time along path 1 compared 
to the fixed signal coordination plan, as evidenced by results in Figure 4.6 (a). This is because path 
1 is always a critical path during the entire simulation period. The dynamic signal progression 
function can effectively adjust the offsets to provide progression priority for the movement along 
this path. Similar observations could be found for path 2 and path 3, as shown in Figure 4.6 (b) 
and (c), since the two paths are also the critical paths during the simulation period and they share 
most green phases with path 1.  

Figure 4.6 (d) shows that the travel time difference between the two signal control systems is not 
significant before 1,800 seconds. The travel time along this path based on the proposed control 
system is even higher than that with the fixed coordination system. Such a phenomenon can be 
attributed to the fact that path 4 is not the critical path during the period before 1,800 seconds. 
Although the traffic demand of this path in this period is low, the progression offered to other 
critical paths may cause higher travel time of it. However, progression is provided to this path 
due to high traffic demand after 1,800 seconds. Thus, the travel time is lower compared to the 
fixed signal coordination plan. Path 5 has a similar fluctuation pattern; while it is not the critical 
path before 600 seconds, but the progression is provided to this path after 600 seconds.  

As shown in Figure 4.6 (e), the travel time along path 6 with the proposed system is lower than 
that with the fixed coordination system before 1.800 seconds because the traffic demand along this 
path is high and thus the movement along this path receives the progression. But after that time no 
progression is provided to this path due to lower traffic demand. Therefore, the travel time is higher 
compared with the fixed coordination system.  

In conclusion, the proposed coordination control system exhibits a better performance in 
reducing vehicle travel times along those critical paths. To further evaluate the proposed system, 
other operational performances with different measurement of evaluations (MOEs) are tested. 
Table 4.4 summarizes the average delay and the average number of stops for both critical paths 
and the entire network. It shows that the proposed system, as expected, can reduce the average 
delay and the average number of stops. In detail, the average delay and the average number of 
stops reduced by about 13% and 10%, respectively. It also shows that the proposed system can  
reduce the average delay and number of stops for the entire network. This may due to the fact 
that the traffic volume along those critical paths is relatively high, reducing the delay of those 
critical paths could result in delay reduction for the entire network significantly. 

Table 4.4: Arterial and network performance with various control plan 

MOEs Fixed coordination plan Proposed coordination 
plan 

Average critical path delay (Sec) 84.03 73.84 

Average number of stops for critical paths 1.63 1.47 

Average network delay (Sec) 54.06 50.10 

Average number of stops for network 1.00 0.97 

 



42 

5.0 SMART CONTROL FOR IMPROVING BOTH SAFETY 
AND OPERATIONAL BENEFITS 

5.1 INTRODUCTION 

Besides the mobility benefit brought by the dynamic signal progression, as introduced in Chapter 
4.0, how to effectively design traffic signal control systems to improve the safety of urban arterials 
at the same time has long been recognized as a vital issue by the traffic community. With the recent 
advancements in wireless communications and computing techniques, CV technology has reached 
a level of maturity and further sheds new light on real-time signal control. V2V and V2I 
communication platforms allow CVs and roadside infrastructure to exchange real-time traffic data 
(Cho et al., 2009). Deployments of such technology have shown great promise in crash avoidance, 
injury prevention, and congestion relief at intersections. With a high penetration rate of CVs within 
the traffic, it is possible to remove traffic signals completely at intersections and only utilize CV 
data as input of signal control. However, it can be expected that both CVs and HVs will co-exist 
on the road in a long time period (Huang et al., 2018). Hence, how to deal with such mixed traffic 
patterns, with fusion of CV information and traffic sensor data, in both safety and mobility control 
functions become an urgent task at the current stage. 

 In daily operations, signalized intersections may experience two types of crashes: side-angle crash 
and rear-end crash. As reported in the literature (Gazis et al., 1960), trapping vehicles within the 
dilemma zone where vehicles can neither stop before or pass the stop line safely, is one of the most 
common causes that lead to side-angle crashes. By extending the yellow time, the dilemma zone 
can be eliminated. However, a longer yellow time may create an “indecision” zone where drivers 
are not able to make the right pass/stop decisions. For protecting drivers from becoming trapped 
in dilemma/indecision zones, existing efforts include both proactive and reactive control methods. 
The core logic of proactive control is to either provide advanced warning message to drivers to 
reduce their speed (Zimmerman et al., 2012; McCoy and Pesti, 2003) or/and adjust signal green 
times (early termination or extension) before max-out to prevent trapping vehicles into dilemma 
zones (Bonneson et al., 1977; Zegeer, 1977). Different from proactive control, reactive protection 
strategies aim to prevent side-angle crashes when vehicles fail to stop safely before a signal alters 
to the following phase. All-red extension is a commonly used reactive protection function that 
offers extended all-red intervals to accommodate red-light-running vehicles (Zhang et al., 2012).  
Based on field collected or simulated data, existing studies have reported the effectiveness of both 
proactive and reactive dilemma zone projection strategies in reducing red-light-running vehicles 
(Jahangiri et al., 2016; Gates, 2007) and number of side-angle crashes at intersections (Hurwitz et 
al., 2016; Chang et al., 2012). However, preventing rear-end crashes with real-time signal control, 
in contrast, remains  a challenging issue in the literature (Park et al., 2016). Although field 
experiments (Hurwitz et al., 2016) showed signal green-extension has some potentials in reducing 
rear-end crash rate, a more effective strategy on affecting driver behaviors has not been fully 
studied yet. 

In regard to improving arterial mobility performance, existing operational measures can be divided 
into two categories: real-time signal control and green light optimized speed advisory (GLOSA). 
In the first category, the main principle is to make real-time adjustments to intersection signal 
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timing according to collected traffic data. Actuated and adaptive control models (15) have been 
widely studied and implemented in practice. Under a CV environment, enriched real-time data 
from CV trajectories can also enhance the prediction/estimation of traffic flow so as to improve 
systems’ mobility performance (Feng et al., 2015; Beak et al., 2017; He et al., 2012; Priemer et 
al., 2009; Lee et al., 2013; Goodall et al., 2013; Guler et al., 2014; Yang et al., 2016). The second 
category, GLOSA, is to suggest advisory speeds for approaching vehicles to stay in the progression 
band, where the arterial can be running with either a pre-timed signal coordination plan or 
coordinated-actuated signal with green extensions. Notably, the advisory speeds can be passed to 
vehicles by V2I and variable speed limit (VSL) technologies under a mixed CV and HV traffic 
pattern. One  such application named Application for the Environment: Real-Time Information 
Synthesis Program was initiated by USDOT (24). With CV technology, each vehicle can receive 
Signal Timing and Phase (SPaT) data from roadside unite (RSU) and revise its own speed profile 
within the control boundary (Xia et al., 2013). Also, such speed harmonization can help reduce 
fuel consumptions by 7% to 13% (Katsaros et al., 2011). Unlike the CV technologies, which targets 
for individual drivers, VSL signs can broadcast advisory speeds to all incoming vehicles. 

In summary, despite promising efforts that have been placed on improving either intersection 
safety or arterial mobility, existing control models for these two purposes are often carried out 
with separate devices and sensors. Integration of one set of equipment to concurrently satisfy 
both safety and mobility needs has not been well addressed yet. In recent years, Park et al. (2017) 
proposed a system that integrates the dilemma zone protection with a VSL-based speed 
harmonization function. Their simulation experiments confirmed the effectiveness of the 
proposed system on offering protection to  red-light-running vehicles, and on improving traffic 
mobility with respect to fewer stops, reduced stop delays, and less fuel consumption. The shared 
utilization of deployed hardware devices also allows responsible agencies to best use available 
real-time signal operational resources. This study will follow the same line and extend the 
system’s capability into the CV environment. The contributions of the new system are three-fold: 
1) it fuses real-time data from both roadside microwave sensors and CVs to estimate queue 
evolutions at intersections; 2) it integrates efficiency improvement function into the dilemma 
zone protection system by optimizing a signal coordination plan and vehicle advisory speeds; 
and 3) it offers solutions to prevent potential rear-end crashes at intersections. 

5.2 SYSTEM ARCHITECTURE 

Figure 5.1 shows the overview of the proposed system architecture that contains five key components: 1) 
long-range microwave detector for tracking the speeds and locations of all vehicles within the detection 
zone; 2) RSU for supporting V2I communications; 3) VSL signs for providing advisory speed for 
incoming HVs to ensure safe stops or smooth progressions along the arterial; 4) in-cabinet computer for 
processing collected data, operating embedded algorithms, and making control decisions; and 5) signal 
controller for providing current SPaT and receiving instructions for an all-red extension or offset 
adjustment from an in-cabinet computer.  

 



44 

 
Figure 5.1: Overview of the proposed integrated signal control system 

Figure 5.2 illustrates the data flowchart of the proposed system. The long-range microwave sensor 
can detect the speeds and locations (i.e., distances to the stop line) of both HVs and CVs within its 
detection zone. However, lane-based information (how vehicles distributes among different lanes) 
is usually not obtainable. RSU will collects CV trajectories in real time and send advisory speeds 
back to CVs when necessary. The signal controller would provide SPaT information to determine 
when and how to activate control modules including dilemma zone protection, real-time queue 
evolution estimation, real-time signal control, and rear-end crash prevention. Detailed information 
regarding the design of each module will be introduced in the following section. 
 

 
Figure 5.2: Data flow of the proposed system 

 

5.3 CONTROL MODULES AND MODEL DEVELOPMENT 

Module 1: Dilemma Zone Protection 

This module is used to monitor all vehicles within the detection zone and provide an all-red 
extension to those trapped in the dilemma zone. In a previous study, Park et al. (2017) utilized the 
following logistic regression expression to predict each vehicle’s passing probability at the onset 
of a yellow interval: 
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where vi(t) and di(t) are the speed and location (distance to the stop line) of vehicle i at time t; β0, 
β1, and β2 are parameters calibrated with field data. When Ppass(i,t) ≥0.5, vehicle i is identified as 
passing vehicle; otherwise it is identified as stopping vehicle.  

However, in real-world applications, observations showed that some vehicles may change their 
pass/stop decision during the yellow interval. Hence, prediction executed at the onset of a yellow 
interval may fall short of accounting for such behavior. To address this issue, this study aims to 
predict vehicles’ passing probability at ε seconds before the end of a yellow interval, where ε 
indicates the time needed for data transition and all-red extension activation. An extension of Eq. 
(5.1) is formulated as follows: 

0 1 2( ) ( )
1( , ) ( , ( ))

1 i ipass iv t d tP i t Max t
e ε εε εβ β β δ− − −=

−
                                                (5.2) 

where δi(tε) is a binary variable which indicates whether vehicle i intends to accelerate: 

1 ( ) ( 1)
( )

0 . .
i i

i

if v t v t
t

o w
ε ε

εδ
≥ −

= 


                                                (5.3) 

By introducing δi(t), the system can monitor whether a vehicle changes its initial stopping 
decision to passing during a yellow interval. Given the vehicles’ passing probabilities, speeds and 
locations, the system can estimate their required passing time by di(tε) / vi(tε). Then the required 
all-red extension time, ARE, can be calculated by: 

( )max{ }
( )

i

i
i

d tARE AR
v t

ε σ= − − +                                                 (5.4) 

where AR is the pre-set all-red time and σ is additional all-red protection time to overcome 
potential estimation error of vehicle passing time. 

Module 2: Queue Length Estimation 

As accumulated queueing vehicles during a red interval can greatly affect the effectiveness of 
signal progression and increase the potential for rear-end collisions with short sight distance, this 
module aims to predict the lane-based queue evolution at the onset of the green signal and estimate 
the required clearance time. Utilizing the microwave sensor and V2I technology, Figure 5.3 shows 
available real-time information within the detection range (e.g., 900 feet), including trajectories of 
CVs and HVs. Notably, microwave sensors will detect the speeds and locations (distances to the 
stop line) of HVs but cannot identify their lane distribution. 

 



46 

 

Figure 5.3: Vehicle trajectory information within the detection zone  

This study divides the detection range into queueing zone and arriving zone. The length of a 
queueing zone can be estimated by identifying the location of queueing vehicles which have zero 
speeds. However, due to the lack of HV lane distribution data, the first step to estimate lane-based 
queue evolution is to assign queueing HVs to different lanes. As the locations of CVs provide 
direct observations of queueing vehicles, this model divides the queuing zone into a set of cells by 
treating locations of CVs and stop lines as boundaries. Also defining h as the average vehicle gap 
in the queue, which is calibrated by field data, HVs can be distributed in each cell by the following 
optimization model based on their locations, di(t). 
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where gi denotes the distance between HV i and its following vehicle; φij equals “1” if HV i is 
assigned to lane j. Notably, the first set of constraints of the optimization model (5.6) determines 
the actual gaps of vehicles on each lane, the second set of constraints is to ensure each vehicle can 
only be assigned to one lane, and the objective function is to minimize total square of differences 
between actual gap and average gap. Then the queue length on each lane, qj, can be obtained. If 
there is no CV in the queuing zone, the lane assignment of HVs becomes an open problem which 
has no unique solutions. In such case, for safety concerns, we assume the queue lengths of all lanes 
equal max(di(t)| ∀ i). 

As the physical queue length (distance from the end of queue to stop line) will still increase for a 
few seconds after the onset of a green signal, the required queue clearance time, τj, on each lane j 
can be estimated by solving the following equation: 

j j j j jqυ τ λ τ= +                                                                              (5.7) 

where υj and λj are the discharging shockwave speed and arrival rate of lane j calculated from 
previous signal cycles. 

Module 3: Signal Coordination and Speed Harmonization 

This module aims to improve the operational efficiency of the arterial by better coordinating 
intersections and harmonizing vehicles’ speeds. Given the estimated queue clearance time, the 
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control objective of this module is to minimize the stopped delay of upstream arriving vehicles 
due to initial queues at each intersection, along both outbound and inbound direction. For 
convenience of discussion, offset of intersection i, denoted as θi, is defined as its green onset time 
difference compared with its downstream intersection along the outbound direction. Then the 
stopped delay of the first arriving vehicle at intersection i, along outbound direction, ζout,i, can be 
estimated by: 

             
, ( )

, ( )
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max { }
max( max { } , 0)out

out

out i j j jj i
out i i jj i

out i

L q

v

λ τ
ζ θ τ ∈Ψ

∈Ψ

− +
= + −                                     (5.8) 

where vout,i, and Lout,i are the advisory speed and link length between intersection i and its 
downstream intersection along the outbound direction, and Ψout(i), denotes the lane group along 
the outbound direction at intersection i. Similarly, the stopped delay of the first arriving vehicle 
along the inbound direction, ζin,i, can be estimated by: 
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Then the real-time optimization model for Module 3 can be formulated as follows: 
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where decision variables iθ
− , ,out iv− , and ,in iv−  denote the offset, outbound direction advisory speed, 

and inbound advisory speed in the last signal cycle; θ∆  and v∆ denote the maximal allowable 
differences of offset and advisory speed, respectively, between consecutive cycles. Notably, due 
to the limited searching space of the optimal solution, the above optimization model can be easily 
solved in real time. 

Module 4: Rear-end Crash Prevention 

For preventing potential rear-end crashes at intersections, this module aims to address the 
following three cases: 

Submodule 1 – vehicles are arriving with insufficient sight distance while the intersection has an 
uncleared initial queue after the onset of green. 

To deal with this case, the proposed system will utilize the VSL sign to offer the advisory speed 
for HVs to prepare to stop. Given the lane-based speed evolutions estimated by Module 2 and the 
location of VSL sign, dVSL, the advisory speed can be determined by the following expression: 
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For CVs, the advisory speed will be sent via V2I communication channels. 

Submodule 2 – vehicles are arriving with insufficient sight distance while intersection has 
uncleared initial queue after onset of red. 

To deal with this case, the proposed system will utilize the VSL sign to offer advisory speed for 
HVs to prepare to stop. The advisory speed will be changed over time and is calculated based on 
the current queue length q(t): 

 
2( )( ) ( )*

2VSL t
vsl td q t vsl t p

a
− = +                                                          (5.12) 

Notably, the current queue length q(t) equals the last stopped vehicle’s distance to the stop line. 
For CVs, the advisory speed will be sent via V2I communication channels. 

Submodule 3 – some vehicles within the detection zone are predicted to be stopping during yellow 
and all-red time. 

Recall that Eq. (5.1) to predict the passing/stopping behavior of each detected vehicle at the onset 
of a yellow signal. By identifying the location, denoted as ds, and speed, denoted as vs, of the last 
stopping vehicles, the advisory speed for ensuring a safe stop can be estimated by solving the 
following equation: 
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−

− = +                                                          (5.13) 

where a is the field-observed deceleration rate and pt is the drivers’ perception time 

 
5.4 SYSTEM CONTROL LOGIC AND ACTIONS 

To integrate those four control modules for concurrently improving efficiency and safety 
performance of arterial intersections, Figure 5.4 illustrates the system control logic by choosing 
different control objectives during yellow,  red and green time. By defining a set of control 
scenarios the system may encounter in practice, this section will discuss the control actions in 
response to each scenario. 
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Figure 5.4: System control actions based on traffic signal status 

Actions During Yellow and Red Intervals 

When vehicles are arriving during yellow and red intervals, the proposed system may encounter 
the following two scenarios. 

Scenario 1: vehicles are arriving during yellow and all-red time 

Vehicles arrived during yellow and all-red time may neither stop before or pass the intersected 
area safely due to two reasons: 1) the yellow settings are too short and the vehicles are trapped in 
a dilemma zone; and 2) the drivers are in an indecision zone and make wrong “pass” decisions. 
Hence, the proposed system will take the control actions of “All-red Extension” and “Advisory 
Speed for Safe Stop” following several key steps: 

Step 1: collect the speed and location of all vehicles within the dilemma zone detection range at ε 
seconds before the end of yellow signal; 

Step 2: calculate the vehicles’ passing probability using Eq. (5.2) and activate the submodule 3 of 
module 3. If all probabilities are below 0.5, stop; otherwise move to Step 3; 

Step 3: use Eq. (5.4) to estimate the required all-red extension time by calculating the largest 
passing time of vehicles. If the obtained ARE is zero, stop; otherwise, extend the all-red time by 
ARE seconds. 

Scenario 2: vehicles are arriving during the red interval 

Vehicles arriving during the red signal interval must join the end of stopping queues at 
intersections. Due to improper alignment design of intersections or dark/light conditions, the 
approaching vehicles may not have sufficient sight distance to observe the stopping queue ahead. 
Hence, if the vehicles are travelling at a high speed, it can lead to potential rear-end collisions. To 
reduce such risk, the proposed system will take the control action of “Advisory Speed for Safe 
Stop” with the following steps: 

Step 1: activate module 2 to estimate the queue length at the beginning of the red interval; keep 
updating the queue length based on the information of arriving vehicles; 

 

Signal 
Status

Yellow & 
Red

Green

 Protect vehicles in dilemma zone

Improve Safety

Mitigate potential rear-end crashes

Promote Signal Progression

Improve Mobility

Control Objectives Control Actions

All-red Extension

Advisory Speed for Safe Stop

Advisory Speed for Progression

Real-time Signal Coordination

No Action
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Step 2: activate the submodule 2 of module 3. 

Actions During Green Interval 

When vehicles are arriving during yellow and red intervals, the proposed system may encounter 
the following three scenarios: 

Scenario 4: vehicles are arriving at the beginning of the green interval 

Vehicles arriving at the beginning of the green interval may be delayed since the intersection needs 
to take a few seconds to discharge vehicles queued during the red interval. Without sufficient sight 
distance, vehicles traveling at high speeds may crash with the vehicles stopping ahead. Under such 
a scenario, the proposed system will activate submodule 1 of module 3 for providing advisory 
speed to the approaching vehicles. 

Scenario 5: vehicles are arriving during the green interval 

During the signal green time, the main control objective is to facilitate signal progression along 
the arterial. For such a need, the proposed system will take the actions of “Advisory Speed of 
Progression” and “Real-time Signal Coordination” with the key steps described as follows: 

Step 1: If the last time of adjusting signal offsets happened within five minutes ago, set Δθ as zero; 
otherwise; set Δθ as five seconds; 

Step 2: estimate the queue clearance time using Eq. (5.7); 

Step 2: optimize the offsets and vehicles’ advisory speeds using the optimization model listed in 
Eq. (10); 

Step 3: provide advisory speed to HVs and CVs by VSl and V2I, respectively. 

Scenario 6: vehicles are arriving at the end of the green interval 

Vehicles arriving at the end of the green interval may encounter a yellow signal when they get 
close to the intersection. Hence, the following steps of action shall be taken: 

Step 1: collect the vehicles’ speeds and locations; 

Step 2: estimate the vehicles’ arrival time at the signal stop line. If the arrival time is within a 
yellow and all-red interval, take the same actions as Scenario 1; otherwise, take the same actions 
as stated in Scenario 5.  

5.5 NUMERICAL EXAMPLES 

Simulation Platform Set-up 

For evaluating the proposed system’s capability on improving both arterial safety and mobility, 
this study selects a segment on Redwood Road in Salt Lake City. As shown in Figure 5.5, the 
arterial segment includes five intersections and it is a part of the CV corridor operated by UDOT. 
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All intersections are installed with DSRC RSUs for supporting V2I communications. The 
prevailing speed is set as 45mph and yellow timing is three seconds.   

 

 
Figure 5.5: Overview of the study site 

Table 5.1 summarizes the intersection turning volumes collected at the arterial on Feb. 15, 2018. 
The collected data are further used for simulation calibrations. In this study, our research team 
employed VISSIM as the unbiased simulation tool for system evaluations. Through a VB.NET 
developed VISSIM-COM interface, Figure 5.6 shows the architecture of the VISSIM platform. By 
defining two vehicle groups, one represents HVs and the other represents CVs, the program detects 
and records the real-time locations and speeds of vehicles within the detection range. The obtained 
trajectory data, along with Signal Phase and Timing (SPaT) information, will be sent to the 
computational program by an interval of one second. Depending on the current signal status (i.e., 
red, green, or yellow and all-red), the embedded modules will take proper actions and provide 
feedback control to the signal controllers and vehicles via VISSIM-COM. 

Table 5.1: Summary of the collected intersection volumes (veh/hr) 

Intersection 
EB WB NB SB 

L T R L T R L T R L T R 

1  
116 36 152 212 40 24 164 508 104 28 664 128 

304 276 776 820 

2  
32 24 44 84 4 148 52 700 8 36 632 56 

100 236 760 724 

3  
188 132 112 128 168 164 32 704 68 176 700 112 

432 460 804 988 

4  
140 316 100 192 184 80 164 716 208 192 748 140 

556 456 1088 1080 

5  
200 124 76 68 232 268 280 672 116 116 844 60 

400 568 1068 1020 
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Figure 5.6: Overview of the VISSIM simulation platform  

Notably, one of the key features of the proposed system is providing advisory speeds to both CVs 
and HVs through V2I communication and VSL, respectively. In this study, we assume that HVs 
may or may not follow the VSL, represented by a compliance rate, but CVs will follow the 
advisory speed they received. In the simulation platform, such actions are replicated by the 
following steps:  
Step 1: break the simulation process; 
Step 2: identify the type of a coming vehicle. If it is a CV, change its speed according the output 
of control modules; otherwise move to step 2; 
Step 3: use a random number generator to determine whether the HV will follow the instruction of 
VSL; 
Step 4: change the HV’s freeway flow speed if it is a complying vehicle; and  
Step 5: continue the simulation. 
Measures of Effectiveness (MOEs) 
In the simulated scenarios, 10% of vehicles are assumed to be CVs and the rest of them are HVs. 
Also, HVs’ compliance rate to the VSL sign is assumed be 40%. Since the proposed system is 
unique in adopting one set of hardware to support both safety and mobility control functions, the 
measures of effectiveness shall cover both aspects. 
Safety MOEs: 

• Average number of vehicles trapped in the dilemma zone per signal cycle; 
• Average number of potential side-angle crashes per signal cycle measured by vehicle trajectories; 
• Average number of potential real-end crashes per signal cycle measured by the number of hard-
braking vehicles (deceleration rate > 10ft/s2); and 
• Average number of red-light-running vehicles per signal cycle. 

Mobility MOEs: 
• Average number of stops; 
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• Average of vehicle delay where delay is defined as the difference between actual travel time and 
free flow travel time (using the original desired speed). 

Based on the MOEs defined above, this study tests the following scenarios for comparisons: 
 Base Scenario: the arterial is under the control of pre-timed traffic control system; 

 Scenario 1: the arterial intersections are equipped with a dilemma zone protection system (DZPS); 
and 

 Scenario 2: the arterial is under the control of the proposed system. 

Results Analysis 
By simulating the arterial network over a two-hour period, Table 5.2 summarizes the resulting 
MOEs under different scenarios. By comparing the safety MOEs between Base Scenario and 
Scenario 1, it can be observed that implementing DZPS can greatly reduce the average number of 
potential side-angle crashes (-84.7%). However, the performance differences between these two 
scenarios, in terms of average number of vehicles in the dilemma zone, average number of 
potential rear-end crashes, and average number of red-light-running vehicles, are not significant. 
This is due to DZPS activating the all-red extension function once some vehicles cannot safely 
pass the intersection. Hence, taking the all-red extension action can greatly reduce the potential for 
side-angle crashes. However, since the approaching vehicles will not receive advance notice 
regarding the signal status in both scenarios, the performance on the other safety MOEs are quite 
similar. In contrast, Scenario 2 with the proposed system can greatly outperform the Base Scenario 
in reducing vehicles in the dilemma zone (-22.2%), number of side-angle crashes (-84.7%), 
number of rear-end crashes (-55.5%), and number of red-light-running vehicles (-20.4%). Such 
comparisons can prove the effectiveness of the proposed functions on providing advisory speed to 
stop. 
Regarding the mobility MOEs, this study examines both average number of stops and average 
vehicle delay over the entire arterial. The comparison between Base Scenario and Scenario 1 
reveals that implementing DZPS will slightly deteriorate the traffic congestion, evidenced by the 
increased number of stops (+2.3%) and delay (+9.4). This is caused by the intersection capacity 
reduction due to granted all-red extensions. However, with the proposed signal coordination and 
speed harmonization functions, Scenario 2 can greatly improve the arterial’s mobility 
performance. 
Table 5.2: The system’s safety and mobility performance under different scenarios 

MOEs Base Scenario Scenario 1 Scenario 2 

Safety MOEs Ave # of vehicles in the 
dilemma zone 1.13 1.12 (-0.6%) 0.88 (-22.2%) 
Ave # of potential side-angle 
crashes 0.85 0.13 (-84.7%) 0.13 (-84.7%) 
Ave # of potential rear-end 
crashes 3.21 3.19 (-0.6%) 1.43 (-55.5%) 
Ave # of red-light-running 
vehicles 0.49 0.49 (-0.0%) 0.39 (-20.4%) 

Mobility MOEs Ave # of stops along the 
studied arterial 25.8 26.4 (+2.3%) 16.7 (-35.3%) 
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Ave vehicle delay (seconds) 
over the entire arterial 135.7 148.9 (+9.4%) 112.7 (-17.0%) 

Sensitivity Analysis on CV Penetration Rate 

As CV penetration rate also plays a key role in affecting the proposed system’s performance, this 
study further conducts a sensitivity analysis to analyze its impact on reducing the probability of 
occurring rear-end crashes. As shown in Figure 5.7, when the CV rate is below 20%, the resulting 
average number of potential rear-end crashes is around three vehicles per signal cycle. However, 
after the rate reached 20%, the corresponding number has been greatly reduced to 1.9 vehicles per 
signal cycle. By further examining the simulation animations, it has been found that the speed 
control of CVs can concurrently affect the speed of HVs as they are sharing the roadway. Hence, 
one can treat 20% as a critical CV rate to maximize the system’s benefit in the studied case. 

 
Figure 5.7: Average number of potential rear-end crashes with different CV rates 

Intersections with short sight distance 
To further evaluate the capability of Module 4 in reducing the potential of occurring rear-end 
crashes at intersections with short sight distance, this study further simulates the following three 
scenarios and evaluates the corresponding safety performance of the arterial: 

 Scenario 1: all intersections are with sufficient sight distance; 

 Scenario 2: all intersections have a sight distance of 250 feet; and 

 Scenario 3: all intersections have a sight distance of 100 feet. 

Based on the results from Table 5.3, it can be observed that shorter sight distance can greatly 
increase the risk of occurring rear-end crashes, evidenced by the largest number of hard-braking 
vehicles in Scenario 3. The comparison between “No protection” and “With proposed system” 
reveals that the proposed queue estimation module and rear-end prevention module can effectively 
provide optimal advisory speeds and make approaching vehicles be well-prepared to stop before 
getting close to the intersection.   
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Table 5.3: The system’s safety performance under different scenarios 

Scenarios Total # of hard-braking vehicles 

No Protection With proposed system Improvement 

Scenario 1 304 41  -86.5% 

Scenario 2 431 93  -78.4% 

Scenario 3 751 105  -86.0% 

 



56 

6.0 MULTIMODAL TRAFFIC SIGNAL CONTROL FOR 
CONNECTED BUSES 

6.1 INTRODUCTION 

Besides the CV-based system introduced in Chapter 4.0 and 5.0, transit systems, managed by 
public transportation agencies, have been treated as a feasible testbed of CV technology. For 
example, UDOT launched a project in 2017 to install DSRC devices on 30 intersections of 
Redwood Road in Salt Lake City to support the CV-based TSP control. On the research side, a 
next-generation TSP strategy was proposed (He et al., 2014; Hu et al., 2014) to simultaneously 
implement coordinated-actuated signal control in CV systems. Later on, Hu et al. (2015) 
presented a person-delay-based optimization algorithm by splitting the green time of bus 
approach under the CV environment, and then extended it for multiple conflicting priority 
requests (Hu et al., 2016). In addition, other researchers demonstrated that the conditional signal 
priority can be used to improve bus reliability under different operation modes via a mathematical 
model based on Brownian motion again (Anderson and Daganzo, 2018). 

Despite great efforts that have been devoted to TSP controls, those aforementioned methods are 
not suitable to be applied at intersections with median stations. In practice, many critical issues 
associated with the real-time signal control for connected buses remain to be addressed. For 
instance, the signal controllers may receive multiple priority requests from both directions within 
one signal cycle. Since those buses locate at different links, how to grant the signal priority in 
response to multiple bus requests, considering the potential impacts on both travel time saving 
and remaining capacity of nearside stations, will thus be a complex issue. The traditional TSP 
strategy may reduce the bus delay in one direction but at the cost of increasing risks to traffic 
safety and security in the other direction. To extend a new control system for this case, this study 
intends to address the scenario where the control system needs to determine how to dynamically 
adjust signal timing for controlling the connected buses which will enter (from the outbound 
direction) or leave (from the inbound direction) the nearside station. Key issues to be covered in 
this study include: (1) accounting for the uncertainty of bus dwelling time at nearside stations 
when granting signal priority to the buses from the inbound direction; (2) suppressing the 
arriving buses from the outbound direction by signals if queue spillover at downstream stations is 
detected; and (3) concurrently optimizing the total intersection performance considering both 
buses  and passenger cars. 

6.2 PROBLEM NATURE 

Figure 6.1 shows an example at a TSP-controlled intersection with a nearby median station. When 
detecting the arrival of buses from both directions, the control system makes a priority decision 
and grants extra green time to both through directions as they share the same phase. Hence, 
although the near-side directional bus could pass the intersection without stopping by a red signal, 
the far-side bus will join the end of queue and wait for the clearance of the far-side station. 
Consequently, it can result in queue spillover and block the intersection.  
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To deal with the potential bus queue spillover, this study presents a novel priority suppression 
strategy of including green truncation and red extension. As shown in Figure 6.2, when detecting 
the approaching buses to the fully occupied far-side station, the system would activate the 
suppression control by truncating green time. Notably, when the buses approaching the far-side 
station are stopped by a red signal from green truncation, the bus flow in the opposite direction 
would experience additional delays. Hence, to coordinate all approaching buses from these two 
directions, this study aims to develop a novel control method that can concurrently avoid the 
spillback and reduce bus delay at the intersections.  

Recognizing those vital research issues aforementioned at those intersections, the research 
objectives of this study are to prevent the presence of queue spillback and reduce the travel delay 
of CVs by proposing an effective signal priority strategy. Based on the real-time bus arrival 
information, the proposed strategy will dynamically adjust the current signal timings of the two 
directions, respectively. The detailed control logic along with the operational strategies will be 
provided in the following sections. 

 
Figure 6.1: Bus operations under traditional TSP control with green extension 

 

 
Figure 6.2: Bus operations under novel signal suppression control with green truncation 
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6.3 MODEL DEVELOPMENT 

System Framework 

This study proposed a novel real-time signal control system to account for the unique operational 
characteristics of intersections with median bus stations. Figure 6.3 illustrates the key control 
structure of the proposed system, which includes two core functions: vehicle-to-infrastructure 
(V2I) communication and signal timing adjustment. The model assumes that the locations of all 
buses are equipped with onboard units (OBUs) for providing their trajectories, and that the signal 
controllers are able to provide varying priority or suppression times. Based on the bus trajectories 
and their operation schedules, the control module simultaneously makes the control decisions for 
two directions. Before the end of green time, two possible control strategies may be implemented: 
green extension (grant priority to all buses) and green truncation (suppress the outbound 
approaching buses). Similarly, two other strategies, red truncation (grant priority to all buses) and 
red extension (suppress the outbound approaching buses), might be selected before the end of the 
red phase. Detailed control logic with respect to various traffic conditions will be discussed in 
the follows sub-sections. 

 
Figure 6.3: The demonstration of system control logic 

Signal Control Strategies 

Based on the detected buses locations, the signal control module is designed to make the priority 
decisions. Two control strategies could be found in the traditional TSP systems, green extension 
and red truncation, which are designed to provide extra green time to those approaching buses 
and progress buses to discharge the intersection without stops. In the proposed real-time 
multimodal signal control systems, two additional novel suppression control strategies are 
presented to prevent the queue spillback due to the overcapacity of near-side stations: green 
truncation and red extension. In summary, the potential control strategies with respect to different 
approaching directions are listed in Table 6.1. 
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Table 6.1: The control strategies and the corresponding control objectives 

Strategies Approaching 
directions 

Objectives 

Green 
extension 

Inbound 

Minimize bus delay through the 
station and intersection 

Outbound 

Red 
truncation 

Inbound 

Outbound 

Green 
truncation Outbound Prevent the queue spillback caused 

by the overcapacity at the station 

Red 
extension Outbound Prevent the queue spillback caused 

by the overcapacity at the station 

Note that the most essential control objective of the proposed system in this study is to implement 
the suppression control strategies (green truncation and red extension) to avoid the overflow at 
bus stations and the occurrence of queue spillback. Hence, the priority control strategies are 
activated only if the potential queue spillback is not predicted at the station. For the case that the 
bus exclusive lane and other through lanes use separate signal lights, the suppression control will 
be only activated on the bus signal light at the outbound direction. Figure 6.4 shows an illustrative 
control status of signals during the suppression time. 

 
Figure 6.4: The demonstration of signal control status during suppression time 

Signal Control Logics 

To simplify the discussion, one can assume there are two signal statuses: green and red for both 
near-side and far-side directions. The entire decision-making process for TSP in response to 
multiple requests includes the following steps.  

Step 1: Collect connected bus location and speed data via V2I communications and record the 
current signal timing plan at the target intersection. 
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Step 2: Estimate the maximal allowable duration for priority controls (green extension or red 
truncation) and suppress controls (green truncation or red extension) in terms of the traffic 
condition at the major and minor roads. 

To limit the impact of priority/suppress control on other passenger-cars, the maximum allowable 
priority or suppress time is determined by the current v/c ratio on the crossing street and the major 
road: 
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where, v1 and c1 represent the bus volume and capacity of the bus exclusive lane in the outbound 
direction of the major road, respectively; v2 and c2 denote the passenger car volume and capacity 
of the crossing street, respectively; 1, 2, and g g

n nt t  are the green duration of the major road/crossing 

street phase in cycle n without the priority, respectively; , , ,  and GE RT RE GT
n n n nt t t t  are the duration of 

signal adjustment in green extension/red truncation/red extension/green truncation in the two 
intersection major approaches; and β is the maximum allowed (v/c) ratio in the signalized 
intersection after priority. Additionally, the minimum green time of each phase needs to be set 
such as to ensure the pedestrian can go through the intersection. 

Step 3: Detect the approaching and dwelling buses around bus stops and calculate their current 
locations a few seconds (the sum of communication time and reaction time plus the maximal 
allowable duration) prior to the end of a green phase or a red phase. 

Step 4: Estimate the potential benefits if granting the priority or suppression to a different number 
of detected buses.  

The purpose of this step is to estimate the resulting benefits if a priority or suppression control 
for a specified length is granted to the major road. Depending on selected criterions, one can 
estimate the delay from the perspective of the bus passengers, and possibility of queue spillback 
caused by bus overflow at the station. However, this study does not consider the passenger car’s 
delays due to difficulty of data collection in the current CV control framework. Since the 
objectives of the proposed control are to prevent the overflow at bus stations and reduce bus travel 
delay, the first step to develop the control logic is to compute the resulting travel time of each 
connected bus, given the current bus locations, if granted a priority or suppression. 
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 Through V2I communication, the system can record the number of approaching buses and 
estimate their arrival time based on their locations and speeds. For outbound direction, one can 
describe bus arrivals at the stop line as follows: 

{ },1 ,2 ,( , ) , ,...,A S E a a a mT t t t t t=
                                                                           (6.3) 

where, ( , )A S ET t t  represents the set of bus arrival times during the time interval [ , ]S Et t ; and ,a it  
denotes the arrival time of the ith bus; m is the total number of detected buses. 

Then the system would calculate the occupancy of detectors at the inbound/outbound direction 
before the switch of signal phases and estimate the duration of priority control at the major road 
in Figure 6.3. 

Step 4.1: If 1,
g
nt nT t= + , based on the detected bus arrival information, one can calculate the 

required green extension time for the inbound direction buses as follows:  

* *
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where, t denotes the current time; T is the length of signal cycle; tM1 is the average dwelling time 
of the inbound buses which might be estimated by the historical data; Δt1 is the average travel 
time from the station to the stop line of the nearby intersection. In Equations (6.5-6.6), one can 
assume that the average dwelling time is more than the duration of maximum allowed green 
extension. 

In contrast with the inbound direction, the required duration of green extension for the outbound 
direction buses can be determined by: 
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where, 2t∆  denotes the average travel time from the V2I communication boundary and stop line; 

2Mt  is the average dwelling time of the outbound buses; and *
21t is the second minimum element 

in dataset ( , )GE
A nT t t t+ . 

Step 4.2: If [( 1) , ( 1) ]RT
nt n T t n T∈ + − + , based on the detected bus arrival information, one can 

estimate the duration of red truncation in the inbound direction as follows: 
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Similarly, the duration of outbound red truncation can be expressed by using the following 
equation: 
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Step 4.3: If ( 1)t n T= + , the duration of red extension is obtained by: 

1, 1,min(( 1) -min ( ( , )), ) ( ) 1 and ( ( , ))>0 
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Step 4.4: If 1, 1,[ , ]g GT g
n n nt nT t t nT t∈ + − + , based on the detected bus locations, compute the required 

duration of the green truncations strategy in the outbound direction using the following equation: 
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where, *
30t  is the second minimum element in dataset 1,( , )g

A nT t nT t+ . 

Note that the suppression control strategies will not be activated at the inbound direction. 

Step 5: Execute the TSP control strategy.  

Note that Step 4 will be executed multiple times within one signal cycle. Hence, the previous four 
strategies may be provided in one signal cycle for two directions. Hence, additional constraints 
will be considered after the second control strategy is provided during the identical signal cycle: 
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• To limit the traffic disruption to the crossing street, red truncation and green extension 
cannot be activated concurrently in one signal cycle for each direction; 

• To reduce bus travel time and queue spillback as much as possible, the inbound and 
outbound directions are separately controlled; and 

• To maintain the consistence of signal phases, using both green truncation and green 
extension (red truncation and red extension) for the outbound direction in one signal cycle is 
also prohibited.  

Then the final optimal decision would be sent to the local signal controllers or control center to 
execute the dynamic control, including either the extended green duration for the priority phase 
and the green time reduction for the non-priority approach. 

6.4 NUMERICAL EXAMPLES 

Experimental Design 
To illustrate the applicability and efficiency of the proposed real-time multimodal signal control 
strategy, this study has employed VISSIM as an unbiased tool for performance evaluation. Using 
the VISSIM-COM interface, this study developed an integrated program to simulate bus 
operations and actual signal controllers by VB.NET and MYSQL database. During the 
simulation, the program detects and records the real-time bus locations, automatically estimates 
the arrival time of each connected bus, and in real time adjusts the signal timings in terms of 
detected buses arrivals. Figure 6.5 shows the flow chart of the entire simulator and dynamic signal 
adjustments for the developed TSP operations in this study.  

To evaluate the effectiveness of the proposed real-time signal control system for bus operations, 
this study has selected an intersection with two bus exclusive lanes constructed in the middle of 
the arterial as a test case. The key traffic and geometric parameters of this study site are listed 
below: 

1) The target median station is located beside the intersection; 

2) One road (Road 1) has four two-way passenger-car lanes, and two two-way bus exclusive 
lanes; 

3) The other road (Road 2) has four two-way passenger-car lanes; 

4) The target intersection is selected to offer real-time TSP controls based on the proposed 
model; 

5) There are two bus routes in two directions; 

6) Average bus dwelling time at the station is set to be 30s; 

7) The mean headway of bus routes is about three minutes, and the observed variance on the 
target arterial ranges from about 2.5 minutes; 
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8) The average travel speed of buses is set to be 40km/h; and 

9) The duration of the simulation time is 4,500 seconds. 

 
Figure 6.5: Flow chart of simulation evaluation 

Experimental Results 
For control efficiency and convenience of case illustration, this study evaluates the proposed strategy with 
the following three scenarios: 

• Scenario 1: no TSP control (No TSP); 

• Scenario 2: unconditional TSP control to all requested bus vehicles with 10s for green 
extension (Unconditional TSP);  

• Scenario 3: proposed TSP control with maximum 10s for green extension and green 
truncation (Dynamic TSP). 

Several MOEs are selected for model evaluation: bus queue length, the number of vehicle stops, 
average vehicle delay, and vehicle stops delay. Figure 6.5 has compared the results among 
different controls. Some key findings from simulation results are summarized below: 

1) The proposed control can outperform the other two methods in terms of reduction in the 
maximal bus queue length at the outbound bus station every  five-minute interval, due to priority 
strategies restriction in Figures 6.6 - 6.7. Moreover, the frequency of bus overflow at the outbound 
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bus station under three controls is 7, 8, and 5, respectively, when the outbound bus queue length 
equals or is greater than a threshold of three buses. Also, the possibility of bus overflow under 
unconditional TSP control is greater than others because it offers much more green time to 
discharge buses  into the outbound station. One can obtain the same findings based on reduction 
in the number of bus stops in Fig. 8. The probability of having bus overflow under the scenario 
of real-time TSP control is 37.5% less than the one with the unconditional control. 

2) Because the developed real-time multimodal signal control method concurrently considers the 
impacts of signal priority and suppression on buses and passenger cars, it also achieves a better 
performance than the other two methods with regard to reduction in bus passenger delay and 
passenger-car user delay (See Figure 6.9). This proposed control can significantly reduce the 
average stop delay and stops because in the priority-suppression control cases overflowed buses 
block other directional traffic flows and waste some green signal time. Particularly, the 
unconditional TSP case provides extra green time to bus vehicles without considering the 
capacity of the downstream station, which it has inevitably produced much more possibility of 
queue spillback  (See Figure 6.7) and thus increased the potential occurrence of traffic accidents. 
Hence, one should recognize the limitation of traditional TSP control strategy in such cases. 

 
Figure 6.6: Max queue length at the outbound bus station 

 
Figure 6.7: The number of queuing vehicle at the outbound bus station 
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Figure 6.8: The number of stops at the outbound bus station 

 
(A) Average delay of different directions 

 
(B)  Average delay of the entire network  

 
(C) Average stopped delay 

 
(D) Average # of stops 

Figure 6.9: Simulation results of different directions under different control methods 

Sensitivity Analysis 
Note that the prevention of queue spillback is the most important issue in terms of traffic safety 
and security at the bus stations near intersections. Thus, to evaluate the reliability and 
effectiveness of the proposed dynamic controls, this study has tested the proposed model’s 
sensitivity with respect to the maximal duration of priority-suppression green signals from 4s to 
18s with 2s time step. As shown in Figure 6.10, regardless of the maximal duration of priority-
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suppression time, the proposed real-time strategy can always reduce the occurrence of station 
overflow and bus average delay on the entire network, respectively. 
However, the proposed controls yield a more significant reduction in overflow occurrence and 
bus delay if the maximal duration of priority-suppression time is set to be about 12s-14s, and 
such benefits will decrease with the maximal priority-suppression duration. Thus, the comparison 
between different priority-suppression times reveals that an overflow occurrence reduction can 
be achieved with the proposed strategy under the scenario of having a large priority-suppression 
duration. When the maximal duration is much less, this control strategy has not enough 
adjustment time to block much more buses into the station. Vice versa, the case of having much 
more adjustment time accumulates more buses into the next signal cycle and leads to station 
overflow. 

 
(A) Number of events on the number of queuing buses no less than 3 

 
(B) Average bus delay on the entire network 

Figure 6.10: Performance indexes under No TSP and Dynamic TSP controls 
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7.0 CONCLUSIONS 

7.1 KEY FINDINGS 

In summary, this project developed a comprehensive CV-based traffic signal control system that 
can 1) reduce the CV communication delay when the system is dealing with a large number of 
CVs; 2) coordinate the CV flows along multiple critical paths by optimizing the intersection 
offsets; 3) improve both mobility and safety at intersections concurrently with optimal traffic 
signal timings; and 4) accommodate the operation of connected buses under a multimodal 
control environment. 

In the Module 2 – communication network optimization, we focused on the minimization of 
Age of Information, which is equivalently to solve a subpacketization reduction problem for 
D2D coded caching while achieving the optimal rate. We first developed the packet type-
based (PTB) design framework, where the subpacketization reduction problem can be 
formulated as an integer optimization problem with node memory constraints and proper 
restrictions on the set of candidates further splitting ratio vectors. Each feasible solution of 
the optimization problem corresponds to a valid PTB design of caching schemes. Then we 
focused on some special cases of node grouping (i.e., equal grouping method and certain 
unequal grouping methods), and proposed several classes of PTB design with constant or 
order reduction of subpacketization which comes from a combination of the raw packet 
saving gain and the further splitting ratio gain. The result showed that the previously well-
known JCM scheme is not optimal in terms of subpacketization in general. We also came up 
with the concept of heterogeneous subpacket size to deal with node memory satisfaction 
under unequal node grouping. With the proposed PTB design the subpacketization 
complexity can be significantly reduced, which makes the employment of D2D coded 
caching techniques more practical. 

With the development of wireless technology in Module 2, vehicles can communicate with each 
other and with infrastructures in the CV environment. Data collected from CVs can provide more 
enriched real-time information. Hence, an adaptive traffic signal control system under the CV 
environment can be more efficient than the traditional systems based on in-pavement loop 
detectors or radar sensors. This project proposed a signal progression control system to control 
signals dynamically, which aimed to coordinate multiple critical paths along an arterial. This 
control system was implemented in the CV environment. To reflect the current reality of low 
market penetration, the CV penetration rate was assumed as 30% in this study. Since the traffic 
demand may fluctuate during the coordination period, the critical paths were updated every 10 
minutes based on the data collected from CVs. After determining critical paths, a model was 
constructed to offer a progression band for them. The objective of this model was to maximize 
the green bandwidth of those critical paths by adjusting offsets of intersections along the arterial. 
Then an algorithm solution based on dynamic programming was proposed to solve this model. 
To illustrate the effectiveness and potential of the proposed signal control system, an 
experimental simulation test was conducted in VISSIM. Results revealed that the vehicle travel 
times along those critical paths are reduced compared with the fixed coordination control system. 
And the proposed control system can reduce average delay and number of stops for both critical 
paths and the entire tested network. 
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In Module 3, this project developed an integrated system that can concurrently improve urban 
arterial mobility and safety performance, grounded on the same set of hardware equipment. Four 
control modules, dilemma zone protection, queue length estimation, signal coordination, speed 
harmonization, and rear-end crash prevention are integrated into the system to achieve three 
control objectives: proactively preventing rear-end collision, reactively protecting side-street 
traffic from red-light-running vehicles, and effectively facilitating speed harmonization along 
local arterials. Depending on the vehicle arrival time and the corresponding signal status (i.e., 
green, red, yellow and all-red), the system will take corresponding actions to either prevent 
crashes or improve signal progression. Selecting a segment of Redwood Road in Salt Lake City 
as our study site, our research team built a simulation platform in VISSIM. Through the 
VISSIM-COM interface, data were exchanged between outside computational VB.NET 
programs and the simulation model. Results from extensive experiments confirmed the 
effectiveness of the proposed system in both reducing potential intersection crash rates and 
improving arterial progression efficiency. The proposed control framework also proved the 
effectiveness of using dilemma zone protection sensors for traffic mobility improvement. 

Under the multimodal environment, this project presented a real-time control system for the 
connected bus system of having medium-island bus stations near signalized intersections. The 
proposed model aims to prevent the queue spillback caused by bus overflow at the station, and 
reduce the bus travel time and the number of stops along the arterials as much as possible. Due to 
the limited storage capacity of bus stations, the conventional TSP strategy often fails to offer 
efficient control since high bus arrivals can form a long queue and cause a queue spillback to the 
neighboring signalized intersection. In response to such situations, the proposed dynamic control 
has integrated both priority control and suppression control strategies, where the former control 
is implemented to reduce the bus travel time and the latter one is adopted to prevent the bus 
queue spillback. Using simulation results, the proposed strategy has shown its promise in 
reducing total bus delay and queue spillback occurrence around the station. Our further 
exploration with simulation experiments for sensitivity analysis also found that the proposed 
method can be most effective with a large duration of priority and suppression green signal. 
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