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Abstract  

The choice of the best set of universal ternary 
gates for quantum circuits is an open problem. We 
create exact minimum cost ternary reversible gates 
with quantum multiplexers using the method of 
iterative deepening depth-first search (IDDFS) [25]. 
Such search is better for small problems than 
evolutionary algorithms or other search methods. 
Several new gates that are provably exact minimum 
cost have been discovered. These gates are next used 
as library building blocks in the minimization of 
larger ternary quantum circuits like highly testable 
GFSOP cascades [15,16] (that generalize ESOP) as 
well as the wave cascades [24] generalized to ternary 
logic. They are useful to design oracles for multi-
valued algorithms such as Deutsch-Jozsa [26] and 
Grover. 

1. Quantum Gates and Circuits built 
from cascaded ternary quantum 
Multiplexers 

 

The research on designing best gates for ternary 
quantum circuits is very new and no efficient synthesis 
methods exist. To discover good sets of universal 
gates, several approaches were used, such as 
evolutionary algorithms, but they did not lead to 
satisfactory results. Practically, the evolutionary 
algorithms, even working for a long time, do not give 
warranty that the solution is exact minimum. We used 
also other well-known methods for solving 
combinatorial problems: a) simulated annealing, b) 
bacteria foraging, c) probabilistic generation, d) A* 
search and similar search algorithms, e) scattered 
search, f) Tabu Search, g) Particle Swarm 
Optimization (PSO) [23], genetic algorithms [22], but 

so far with no particular successes over methods 
presented here, so that this paper focuses on 
exhaustive search. Let us also observe, that the search 
for the best gates is performed only once in order to 
create a gate that is next used repeatedly in libraries.  
       We can allow thus our computer to spend much 
time, even days and weeks, to find the exact minimum 
solution. Exhaustive search [3,20] has been already 
used before in reversible logic design, but there are 
many ways how the exhaustive search can be 
organized, and they differ in time and memory usage. 
We investigated several types of exhaustive search 
strategies to particular quantum circuit structures. We 
found that for this kind of problems the A* algorithm 
known from AI operates very similarly to breadth first 
search. Our IDDFS search is similar but is easy to 
program and uses less memory, thus allowing to 
minimize larger circuits.  
     Ternary quantum macros – conceptual gates can be 
implemented using   quantum multiplexers [21] as 
primitives, which themselves are composed from 
Muthukrishnan-Stroud (M-S) gates [2]. The quantum 
multiplexer concept [21] (called also the mux), used 
also by several other authors, is a convenient 
intermediate notation to synthesize both binary and 
multiple-valued (mv) quantum circuits. Therefore, this 
synthesis will be performed in terms of quantum 
multiplexers and their argument single qudit functions. 
(Qudits are quantum bits with radices higher than 2. 
Qutrit is a qudit used in ternary logic.) There exist 
several different more or less regular structures that 
describe how these gates can be cascaded.  We will 
find exact minimum solutions to some well-known 
operators and also to new gates in order to form 
libraries of universal gates for mv quantum circuit 
synthesis.  The exhaustive search creates the gate as a 
cascade starting from input signals of the function and 
next adds sequentially quantum mux after quantum 
mux to create the logic outputs of the cascade. The 
first practical goal of the exhaustive search approach 
proposed here is to find the realizations of all 2-qudit-



gates and determine their minimum costs and the best 
efficiencies. Efficiency can be defined in terms of how 
many ancilla qudits are used to realize a function. The 
optimally designed gates presented in this paper are 
next used as the building blocks of larger gates in 
systematic synthesis methods which are extensions 
and generalizations of the previous logic synthesis 
methods used in reversible and quantum circuits 
[1,3,4,6,12,13,14,15,16,17,19,24].  Alternately, one 
can use the exhaustive method to synthesize small 
circuits. Exhaustive search can be also used as a part 
of more sophisticated  hybrid synthesizers [20]. The 
method searches exhaustively until the given circuit is 
found for which is next proven that within given 
constraints (like size and gate types) it is not possible 
to find a better realization of the given function F. In 
addition, in another variant, we used adaptations of 
exhaustive methods to find useful solutions with no 
assurance of circuit’s minimality, but with taking into 
account important practical constraints such as a user-
specified limited number of ancilla bits.  

2. Quantum Ternary Gates and 
Structures 
 
Figures 2.1, 2.4 and 2.8 show different cascade 

implementations with two by two ternary quantum 
multiplexers. The small boxes at the left of mux 
symbol taken from classical logic represent arbitrary 
single qutrit unitary operators, but in this paper these 
operators are in addition permutative. The quantum 
multiplexer operates as follows: depending on a value 
0, 1, and 2 of the control qutrit, the respective input 
with number 0, 1 and 2, respectively (counted from 
top) is selected and sent to the output. Thus respective 
operator fi is executed on the controlled qutrit. Fig. 
2.1a is a cascade of two multiplexers where A is the 
controlling qutrit and is passed through without any 
change. B is the controlled data qutrit on which the 
functions are applied. In the case of the Fig. 2.1a, 
controlled qutrit B would be manipulated always in 
pairs of f0 and f3, f1 and f4 or f2 and f5. Therefore this 
implementation is not very useful, because the 
manipulations could be restricted to one multiplexer; 
e.g. assuming f0 = +1 and f3 = +1 could be realized by 
only using f0 = +2. Operations +1 and +2 are 
implemented as cyclical shifts by 1 and by 2, 
respectively in one-qutrit operations. In Fig. 2.1b let us 
look at the first multiplexer. On the second multiplexer 
bit A is used as data input and bit B is the control 
input. Assume   functions f0,  f1,  f2,  f3,  f4 and f5 to be 
defined as f0 = +1, f1 = 01, f2 = +2, f3 = 02, f4 = +2, f5 = 
12. The circuit and the resulting ternary map are 
shown in Fig. 2.2. Operation 01 is a permutation of 

values 0 and 1 in single qutrit, operations 12 and 02 
are implemented analogously. (These operations are 
realized internally by combinations of X, Y and Z 
rotation operators [27,7] in data inputs of M-S gates 
[2]). It should be noticed that the ratio of symbols “0”, 
“1” and “2” in both Karnaugh maps are 1:1:1. If we 
would continue the cascade using this structure we 
would only get result with always the same amounts of 
symbols zero, one and two. Therefore this structure is 
also not sufficient to scale up to an arbitrary quantum 
circuit. The SWAP gate was proven to be in the 
minimum set of universal gates [11] and can be easily 
build from other sets of universal gates. It is the 
hypothetical crossing of wires that allows one to 
realize many small gates that are difficult to realize 
without it. A realization was shown in [9] and is 
represented in Fig. 2.3. Each intermediate function is 
shown by a ternary map with A as rows and B as 
columns. This gate has high importance in ternary 
quantum circuit synthesis which has been not yet 
recognized by the published synthesis papers. This 
gate is necessary for mapping to ion trap technology 
quantum circuits and other technologies with linear 
layout of qudits (with every qudit having at most two 
neighbors). We can explain this property on an 
example as follows.  

  
          

 
Fig. 2.1: First two structures based on 
cascaded quantum multiplexers  

Assume that in a quantum array a wire in qudit 2 from 
top goes through Feynman gate in which qudit 1 
controls qudit 3. This is not realizable in these 
technologies and requires two SWAP gates to be 
added between qudits 1 and 2, before and after the 
Feynman gate. Thus, instead of synthesizing without 
taking care of the no-crossing condition and next 
adding SWAP gates, another method can be invented 
where the no-crossing condition is build into the cost 
function and thus the number of crossing wires is 
reduced from the very design principle [23]. However, 
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complete removal of SWAP gates is in general not 
possible. Various variants of SWAP gate (see below) 
are therefore used in our improved ternary MMD-like 
synthesizer, a successor to the program presented in 
[9]. 

 
 
 

                                                     

 

 

Figure 2.2: Example of calculating 
intermediate ternary maps for part of the 
circuit from Fig. 2.1 b 
 

 

Fig. 2.3. The  structure of the Ternary SWAP gate 
 
The next realization of a quantum circuit using the 
structure in Fig. 2.4a is more promising than the 
previous two from Fig. 2.1. Now we have two control 
qudits A and B and an additional static input (ancilla 
qudit) with the state |0〉. The control qudits alternate in 
their application on the static input qudit. However, in 
this structure, constant ancilla inputs are introduced, 
and the number of ancilla qudits depends on the 
number of variables N. Ancilla qudits do not influence 
the logic of the output, but only facilitate the reversible 

implementation. These ancilla bits are, for the 
realization of reversible functions, unnecessary, and 
introduce extra qudit implementation overhead. The 
problems of minimizing the number of ancilla bits 
have been discussed in [19]. 
 
 

 

 
 

 

Figure 2.4: Second two structures based on 
cascaded quantum multiplexers.  
 
The motivation for the approach presented here is the 
realization of an arbitrary logic function through a 
series of cascaded gates, with the goal of minimizing 
the number of ancilla lines, while introducing greater 
freedom in the number of necessary stages. The 
amount of ancilla lines can only be hypothesized and 
depends always on the function to be realized. 
Muthukrishnan and Stroud [2] formulated a relation 
between the amount of data qudits and number of 
ancilla qudits for M-S gates only. To reuse the ancilla 
bits one implements mirror gates. The implementation 
of mirror gates has the goal to restore the ancilla qudit 
to the initial state, 0, 1 or 2. The mirror gates use 
always the inverse operations. The Table 2.1 shows 
the corresponding inverse functions to the single-qutrit 
functions. Mirrors are used in mv wave cascades and 
quantum realizations of GFSOP with various kinds of 
Toffoli- and Feynman-like gates [15,16,17]. They 
allow to fold wires that start and end (thanks to mirror) 
with constants. Mirror quantum multiplexers X and Y 
have inverse singl-qudit functions fi in all their data 
inputs. 
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Table 2.1: Inverse functions for each single 
qutrit function  

single qudit functions inverse single qudit functions

+1 --> +2 
+2 --> +1 
01 --> 01 
02 --> 02 
12 --> 12 
 
An example of the structure shown in Fig. 2.4a by 
assuming data input = 0  is shown in Fig.  2.5. 

 
 
Figure 2.5.: Example of a promising 
implementation with ternary multiplexers 

The circuit as in Fig. 2.5 is not limited to the ratio 
1:1:1 of symbols zero, one and two anymore. 
Therefore, functions that are not balanced [8] can be 
also built. The maps of intermediate functions in Fig. 
2.5 are not balanced. The last map has two”0”, 
four“1” and three “2”. This led to our conjecture that 
all combinations of the 2-qudits gates can be realized 
using this structure, given a finite number of 
multiplexers. The generalization of this structure to a 
given number (>2) of qudits and ancilla qudits means 
that it has a potential to feasibly realize all n-qudit 
functions. But the proof of the last assumption exceeds 

the scope of this paper. The reader is referred to 
[11,19] for more information. 

 

               Figure 2.6: Example of Figure 2.4 b 
At a closer look, the single-qudit-gate +1 applied to 
input A shifts down the functions 01, 02 and +2 by 
one at the last multiplexer in the circuit. The same 
result can be achieved by selecting the order +2, 01 
and 02. Therefore the single qudit function, +1 in this 
case, can be left out. The resulting circuit is in Fig. 2.7.  

 
Figure 2.7: A realization of the example of 
Figure 2.4 b with fewer gates 
The structure given in Fig. 2.4b contains only a little 
change to the structure of Fig. 2.4a. Now the control 
inputs and the static data input can be manipulated by 
applying single-qudit-functions like +1, +2, 01, 02 and 
12. The application of these functions is only 
favorable when there are more than two multiplexers 
in the series (example in Fig. 2.6).

 

 
                      Figure 2.8: One more structure based on cascaded quantum multiplexers 

      The last type of circuit structure is introduced in 
Fig. 2.8. This structure is derived from the structure in 
Fig. 2.1b and is the most universal one out of the five 

general structures depicted in Figures 2.1, 2.4 and 2.8. 
The number of qudits is free to choose, as well as the 
number of ancilla qudits. Inputs A to Z are qudits that 
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control the multiplexer at the static qudit, and can also 
be manipulated by other qudits. The structures shown 
in Fig. 2.4a and Fig. 2.8 are the most desirable and 
capable to build quantum circuits based on quantum 
multiplexers. The drawback may be the need to 
employ additional ancilla qudits, but the ancilla bits 
allow to realize initially non-reversible functions and 
decrease the number of muxes so they provide a 
worthy design trade-off.  In the two variable case it is 
possible to create every possible logic function with at 
most one constant-input |0〉, |1〉 or |2〉 [6]. To reuse the 
ancilla qudit, a mirror circuit with inverse operations is 
required. The structure in Fig. 2.4b is capable to create 
every two-qudit ternary gate. Building upon this, we 
can generalize the structure to use more than two-qudit 
circuit, e.g. to use three variables. The extension to 
three variables can be explained as shown in Fig. 2.9. 
The first ternary map is a two ternary qudit map with 9 
(=32) cells presenting all combinations of two ternary 
variables. By converting it to three ternary variables 
the ternary map is extended to 27 (=33) cells. The 
contents of the first map with 9 cells is now the 
contents of the first column in the second map. One 
can see that if we want to change the cell containing 9, 
the function should only operate on a=2 and b=2, and 
will impact only the values in the last row.  These 
properties are utilized in the new heuristic ternary 
minimizer. 

 
 
 
 
 
 
 
 
 
 

Fig. 2.9: Explanation of the convergence from 
two to three variables 

3. Experimental Results of the search  
 

     The goal of the exhaustive Iterative Deepening 
Depth-First (IDDFS) search [25] was to find a set of 
the best realizations for 2-qudit-gates by using the 
multiplexer implementation shown in the previous 
section.  As an example we present synthesis of 
cascades as in Fig. 3.1. The new interface [23] allows 
for a larger variety of segments and theoretically 
unlimited number of qudits and muxes. At the 
beginning, the number of multiplexers in series was 

set to one. For one multiplexer the algorithm found 
only 27 unique results. This is clearly not enough. This 
was, in fact, expected because only 216 = (6) 3 
functions can be realized with one multiplexer.  
     The second search was made with two ternary 
multiplexers in series. There are 3 out of 6 possible 
operations on each multiplexer. This results in 216 
(=63) combinations per multiplexer. By connecting 2 
multiplexers in sequence, 46,656 (=2162) results can 
be calculated. The exhaustive search algorithm 
permuted all operations (+0, +1, +2, 01, 12, 20) on two 
multiplexers. The control variables were chosen to be 
“A” for the first and “B” for the second multiplexer. 
The result showed that only 891 unique results were 
found.  
 

   

         Figure 3.1: The Gate-Viewer Front End 
      

     The second bar in the diagram in Fig. 3.2 shows 
that it is possible to find only 891 out of 19,683 = 39 
(all ways of placing three symbols in nine cells of 
ternary map) possible unique solutions. The detailed 
distribution can be found in [22]. To find more 
solutions, the number of multiplexers was set to three 
and the order of control variables was “A”,”B” and 
“A”. We will denote this order as ABA. A total 
number of 10,077,696 = 216 3 results could be 
calculated but it was not sufficient to generate all 
19683 unique solutions. The total number of unique 
results found was 14,013. 
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Result distribution for a circuit with 1,2 and 3 multiplexers
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Fig. 3.2: Diagrams of unique solutions for 1, 2 
and 3 multiplexers in series. Only 5670 
functions cannot be realized with 3 
multiplexers. 

     The third bar in the diagram in Fig. 3.2 reveals that 
a very large number of functions can be found using 
three multiplexers in sequence. But still realizations of  
5670 functions are missing. Therefore the circuit was 
extended by another multiplexer. The structure was 
again chosen to be similar to Fig. 2.4a and the order of 
the control variables is of type “ABAB”. The structure 
in Fig. 2.4a with four multiplexers is capable to 
provide all unique solutions for any 2-qutrit ternary 
operator.  

 
Distribution of operations over number of gates
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Fig. 3.3: Histogram distribution of operations 
(+1, +2, 01, 02 and 12) used to implement  two-
input ternary operator gates. 

     The detailed distributions of single-qubit operations 
for cascades with three and four multiplexers were 
analyzed in [22]. The total number of single-qudit-
operations on all multiplexers was counted and the 
solution with the minimum amount of single qudit 
operations was saved. The maximum number of 
operations used was found to be 6 for all 2-qudit gates 
(Fig. 3.3). Only the operation functions (+1, +2, 01, 02 
and 12) were taken into account. The “wire” or “+0” 
gate does not produce any cost.  Observe that there 
were only 3650 functions with minimal solutions of 6 
multiplexers. More statistical results are in [22]. 

 
4. The exact minimum ternary gates 

 

Besides the statistics, the explorations made with 
the exhaustive algorithm are even more useful. The 
building blocks of a quantum circuit are quantum 
gates. Therefore, a few interesting gates to build a 
quantum circuit will be presented and their properties 
will be discussed here. Every quantum circuit is 
reversible and made of reversible quantum gates. A 
reversible circuit is one that has the same number of 
inputs and outputs and is a one-to-one mapping, or a 
so called onto function (bijection), between vectors of 
input and output values. Such circuits are operationally 
the same as “permutative” quantum circuits; every 
quantum circuit is reversible [14], and subclasses of 
quantum circuits are binary and ternary reversible 
circuits. Another general property of some quantum 
gates is universality [18], which means that in order to 
build an arbitrary quantum circuit, the used gates need 
to be universal. An example of a universal binary gate 
set are Toffoli, NOT and Controlled-NOT. We design 
their ternary counterparts. It was recently shown in 
[11] that the following ternary gates: SWAP, NOT and 
1-Controlled-NOT are universal for the realization of 
arbitrary ternary n-qudit reversible circuits without 
ancilla qudits. This result is interesting as it is different 
than for binary case where there are no universal one-
qubit and two-qubit sets of permutative gates and one 
has to resort to truly quantum gate primitives such as 
CV [7] to build universal gates such as the Toffoli 
gate. This result points also to the usefulness of the 
exact minimum realizations found here for ternary 
quantum synthesis. 
     Min, Max and 2-input ternary operations. In 
classical binary logic AND and OR are well known 
gates. As a standard, in multiple-valued logic domain 
AND is replaced by the MIN gate and OR is replaced 
by the MAX gate.  The MIN gate is the arithmetic 
minimum and the MAX gate is the arithmetic 
maximum of integers being their arguments. When the 
respective maps were entered into the exhaustive 
search algorithm the results were that both quantum 
gates need 6 single-qudit operations. The algorithm 
found these solutions with the order “DCDC” of the 
control variables. An interesting fact to notice is that 
the order can also be switched to “CDCD” order and 
no changes are made on the single-qudit operations 
and the gate outputs the same result. This results from 
the symmetry of maps (order of arguments can be 
changed) and from the reversibility (see Figs 4.1, 4.2 
and 4.3). 

 



  
    Fig. 4.1: Realization of the Ternary Min gate  

with control order of “DCDC”    

 

 
 

Fig. 4.2.: Realization of the Ternary Min gate 
with control order of “ABAB” 

 
 

   Fig. 4.3: Realization of the Ternary Max gate 
with control order of “CDCD” 

      Any unitary matrix represents a quantum gate. If a 
unitary matrix has only one “1” in every column and 
the remaining elements are “0”’s, then such a matrix 
is called a permutation matrix. The set of output 
vectors of such a permutation gate is simply certain 
permutation of the set of input vectors. A practical 
realization of mv Feynman gate was shown in [2]. The 
exhaustive algorithm found first the minimal 
realization based on the multiplexer structure for 2-
qudits (+ 1 ancilla qudit) gates. The cost function for 
mux cascades was defined by the total number of 
single-qubit operations used. For the ternary Feynman 
realization only two multiplexers and 4 single-qudit-
functions are needed and one ancilla qudit. Since the 
Feynman gate is a permutation gate, based on results 
from [11] the algorithm was used to search for a 
solution without any ancilla qudits. Fig. 4.4 illustrates 
such a solution. Instead of using 2 multiplexers and 4 
single-qudit operations, only one mux and 2 single-
qudit operations (+1 and +2) are required. The mux 
number is one and the cost is 2 operations. 
Interestingly, the number of muxes of the ternary 
Feynman gate, which is one, is the same as for binary 
Feynman gate. Some gates and their costs are 
summarized in Table 4.1. 

 
 

Fig. 4.4: Ternary Feynman gate realization 
using 1 quantum multiplexer  and 2 single 
qudit operations 

 

Table 4.1: Overview of Ternary Quantum 
gates realizations, number of multiplexers 
and their costs 

Gate Multiplexer Cost 
Min 4 6 
Max 4 6 
Feynman 1 2 
Galois multiplicati 4 6 

 

Galois Gates. The ternary Feynman gate can be 
viewed as Galois Field 3 Addition whereas both inputs 
A and B are added up. Ternary Galois Field (TGF, or 
GF(3)) consists of the set of elements }2,1,0{=T  and 
two basic operations – addition (denoted by +) and 
multiplication (denoted by ⋅ or absence of any 
operator). Muthukrishnan and Stroud [2] found a 
relation between the number of qudits and the number 
of required ancilla qudits; this formula is based in the 
M-S-Gates, which are different from the universal 
multiplexer used in the present research, 

)2()]2/()2[( >−−= ddnr . The number of ancilla 
qudits is r, whereas n is the number of data qudits and 
d is the radix of the logic. For ternary logic d is 3. For 
example a system with 7 qudits needs 5 ancilla qudits 
to perform its logic function. In terms of the 
MIN/MAX architecture, the approach needed 1 ancilla 
qudit. The formula by M-S would result with r = 0, 
means no ancilla qudits are needed for a 2 qudit gate 
realization. The formula proposed by M-S is only 
valid for an n-qudit circuit using Muthukrishnan and 
Stroud gates. General formulae of how many ancilla 
qudits are needed are not known. This is always 
dependent on the functions that are being realized. 
      Efficient methods for representing and minimizing 
Ternary Galois Field Sum of Products (TGFSOP) 
expressions are very important. Such expressions can 
be either realized directly in quantum cascades or 
become a starting point of factorization processes 
leading to factorized cascades and wave cascades 
[24,15]. These methods are not a subject of this paper 
and can be studied for example in [16,4].  It should be 
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stressed however, that the results of this paper 
contribute the cheapest gates to be used in Galois Field 
Sum of Product (GFSOP) and factorized GFSOP 
cascades. 
     The other GF(3) operation is the Galois 
Multiplication. Where Galois addition replaces EXOR, 
the Galois multiplication can replace Boolean AND in 
the multivalued domain [9] and is therefore a very 
important approach to quantum circuit design but it is 
only one method of AND replacement and not a 
unique ternary gate that can be used for this task. 
  

 
 

 

Fig. 4.5.: Galois multiplication; a) symbol. 
b) ternary map 

 

If input A = 2 and B = 2 then the output R yields to R 
= 2 ⊗ 2 = 1 as the result of modulo 3 product. The 
realization of the Galois multiplication in our approach 
is in Fig. 4.6.  

 

Fig. 4.6: Realization of Galois field 
multiplication 
For the realization of the Galois Field multiplication 
operation 4 multiplexers with 6 single-qudit operations 
are needed.  
      SWAP gates. Another challenging quantum gate 
is the SWAP gate. It is not a single-output function 
like min and is thus more difficult to find. The 2-qudit 
SWAP gate exchanges two qudits. It has no 
counterpart in the classic electrical domain, because it 
is simply done by crossing wires within two layers of 
metalization. In the domain of quantum computing a 
“crossing” of wires is not possible. If the prototype of 
a SWAP gate for 2 qudits is developed, it can be used 
for circuit with n-qudits. The swapping is then just 
performed between 2 qudits within this circuit. A 
general approach to swap a given number of qudits 
might be interesting. There are, for example, 6 
possible input/output combinations for a 3-qudit 
SWAP. Only 2 combinations are real 3-qudit SWAP 

gates and all swaps can be build with only 2 swap 
gates.  
       A new gate was discovered by our program, we 
call it the 2-qutrit Inverse SWAP gate. For the 2-qudit 
SWAP gate, the exhaustive search found a realization 
that requires 3-multiplexers and 7 single qudit 
operations (Fig. 2.3). Therefore we expected to find a 
solution using 3 multiplexers as well. The realization 
found by the algorithm is illustrated in Fig. 4.7. It is 
the minimum cost solution of the 2-qutrit Inverse 
SWAP gate. More realizations of the SWAP gate can 
be found in [22]. Khan et al. found a solution for the 
2- qudit  SWAP gate in [17], our solution made with 
the exhaustive search algorithm is the same and could 
not be improved. Interestingly, both in binary and 
ternary cases the SWAP gate has three muxes. 
 

Fig. 4.7: Realization of the 2-qudit ternary 
Inverse SWAP gate using 3 multiplexers 

 

         We have found an efficient way to realize and 
implement all two-qudit ternary quantum gates by 
having at most one ancilla qudit. The ancilla qudit is 
the only drawback of this type of synthesis. On some 
functions that are not reversible the ancilla qudit is 
needed in any case, and thus should not be viewed as a 
weakness of our approach.  
      Toffoli Gates. One could derive from the structure 
of the Toffoli gate that might not require an ancilla 
qudit. With our algorithm an implementation of the 
Toffoli as Controlled-Controlled-NOT gate with 3 
data qudits and without any ancilla qutrits is possible. 
Toffoli is known as universal [11,1] and is therefore 
another important gate. Yang et al. [11] show that 
SWAP, Not and Controlled-Not are universal for the 
realization of arbitrary ternary n-qudit reversible 
circuits without an ancilla qudit. From the Toffoli 
gate, which is a 2-Controlled-Not, it is possible to 
build up an n-qudit Controlled-Not. The Toffoli gate is 
a controlled-controlled-NOT gate and its 
diagrammatic representation is as in Fig. 4.8:  
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 Fig.4.8: Symbol of Ternary Toffoli gate and 
its function 

This gate flips the qudit C, if and only if the qudits A 
and B are both “2” and leaves C alone if they aren’t. 
The controlling qudits “A” and “B” remain unchanged 
and are simply mapped to the output. The algorithm 
found 7128 ways to realize the Toffoli gate. One of the 
minimal solutions is shown in Fig. 4.9. The cost of this 
realization is 4; meaning only four single qudit 
operations are needed.  Interestingly, in terms of the 
number of quantum multiplexers this gate needs only 
4 muxes, while the binary Toffoli gate needs 2 
Feynman gates, 2 Controlled-V and one Controlled-V+ 
for a total of 5 muxes (Controlled-V is also called 
Controlled-Square-Root-of-NOT, Controlled-V+ is its 
hermitian [7,27]). Another interesting Toffoli-like 
ternary gate is in Galois Logic [15,16,21] and uses 
Galois multiplication and Galois addition.  

 

 
 
 
Fig. 4.9.: Ternary Toffoli (2-controlled-NOT) 
gate; minimal solution using  quantum 
multiplexers  

       For the ternary 2-qudit logic, Kerntopf et al. [18] 
found that there are 1680 reversible functions. The rest 
(18,003) out of the 19683 functions are non reversible. 
This means that for the majority of the 2-qudit gates 
the realizations that use an additional ancilla qudit are 
needed. Our algorithm calculates and displays all 
possible 2-qudit quantum gates with minimum cost 
and can therefore be a foundation on which to build 
larger quantum circuits. The exhaustive algorithm 
produced a library containing all 2-qudit gates, their 
structure and the single qudit operations that are 
needed. Realization of ternary Controlled-NOT gate is 
shown in Fig. 4.10. 

 

 
Figure 4.10: Realization of the Ternary 
Controlled-NOT gate 

      M.H.A. Khan and M. Perkowski proposed a 
ternary 3*3 Toffoli gate in [10]. Their realization 
needed 5 multiplexers and one ancilla qudit to perform 
the ternary Toffoli. The realization that was found by 
the exhaustive algorithm needs only 4 multiplexers 
and no ancilla qudit is needed. Thus garbage is 
avoided and the cost is minimized using this version of 
the Toffoli gate. The realization is illustrated in Fig. 
4.9. This result alone shows that an exhaustive 
program can be truly useful in research as it found a 
better solution than that found by “hand and eye” 
method by two experienced researchers in the field 
and published in an international conference and next 
a journal. Denler et al. [19] found 12 ternary gates to 
be sufficient to build up every quantum gate. Those 
gates and all 5 single qudit gates where used by the 
GA.   
      The border line of this approach is the number of 
multiplexers. For a given quantum gate structure with 
4 multiplexers the algorithm needs around eight hours 
to compute all different combinations 
( 336,782,176,2216 4 = ) using a computer with a 2,4 
Ghz CPU. Adding more and more multiplexers, the 
time just increases exponentially to compute the 
quantum gate. A five multiplexer quantum gate search 
needs around 4 days to compute only 6% of all 
solutions. This is not acceptable anymore. At this 
point the Genetic Algorithm, similar approaches, and 
probabilistic adaptations of our IDDFS search start to 
be used [22,23,25,7]. The drawback is only, that for 
these approaches there is neither a guarantee for a 
solution nor a guarantee for the minimal solution.  

 
5. Conclusion and Future Research 

 
       Designing a cascade of reversible (“quantum 
permutative”) gates is one of the fundamental 
problems in quantum computing, as such cascades are 
used in logic blocks in oracles of Grover algorithm, in 
arithmetic part of Shor algorithm and in other quantum 
circuits and algorithms. Various Ternary permutative 
gates and synthesis methods can be used to create such 
cascades. The choice of gate types and their realization 
with quantum-realizable primitives are thus of basic 
importance to multi-valued quantum logic synthesis 
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algorithms. In this paper exact minimum gates to be 
used in various types of ternary reversible cascades 
were found for the first time. Some statistics have been 
also found that will be useful in next algorithms 
creation. 
          We showed that exhaustive search makes it 
possible to generate all possible ternary two-variable 
output functions, using, at worst, one ancilla qudit and 
only four quantum multiplexers. Exact minimum 
solutions have been found in particular for the ternary 
MIN, MAX, Feynman, Galois addition and Galois 
multiplication, Toffoli, and swap gates, including the 
new Inverse Swap Gate. Many more such 
generalizations are possible [22,23]. We found two 
ternary generalizations of Feynman and two 
generalizations of Toffoli, both useful as building 
blocks for various types of quantum cascades. Using 
this method, the ternary Toffoli gate has been realized 
for the first time with 4 quantum muxes equipped with 
4 single qudit operations. The program proved also 
that all 2-qudits gates can be realized within at most 4 
quantum muxes and only one ancilla qudit. The 
method allows to investigate trade-offs between the 
number of gates and ancilla bits. For instance, a circuit 
without ancilla bits may be theoretically realizable but 
would likely be much longer than a circuit with one 
ancilla bit. This question is a difficult one and open to 
future research. For instance, in [11] we proved that 
ternary SWAP, NOT and 1-Controlled-NOT gates are 
universal for realization of arbitrary ternary n-qudit 
reversible circuits without ancilla qudits. We also 
demonstrated that all even ternary n-qudit reversible 
circuits can be constructed by ternary NOT and ternary 
1-Controlled-NOT. Moreover the method is 
constructive, which means that it can be programmed 
to obtain the circuit for any number of qudits. 
However, the circuits according to [11] seem to be 
unnecessarily long.  Our new method will allow to 
compare circuits with the minimum number of ancilla 
bits with those that have few more ancilla bits. Other 
approaches, not presented here for a lack of space 
were based on various evolutionary and Nature-
mimicking paradigms [23,7]. Although these methods 
found several large circuits as well as circuits 
presented here, they were not able to find any new 
realization of a universal quantum gate of the smallest 
cost. For instance, none of the methods did deliver 
results for 3 qudit gates like the 3-qudit SWAP and 
ternary Fredkin gates yet.  The iterative deepening 
depth-first search method is more practical for these 
tasks than biology-mimicking methods and its 
potential has been not yet recognized  in quantum 
circuits community. It can be combined with A* 
search algorithm by adding a heuristic evaluation 
function, which is one of our current goals. 

      All the presented methods have been extended to 
quaternary logic. An interesting open problem is to 
extend them to arbitrary radix. 
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