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ABSTRACT

The type of heat treatment process used is mainly determined by its cooling

mode. Hardening is a metal heat treatment during which the most critical operation

is cooling. Most quenchants used for steel hardening are vaporizable liquids, such

as water, petroleum oils, emulsions, aqueous polymer solutions, or brines. Testing

methodologies that include ISO 9950, Industrial Quenching Oils-determination of

Cooling Characteristics-Nickel-alloy Probe Test Method, and ASTM Standards:

D6200, Standard Test Method for Determination of Cooling Characteristics of

Quench Oils by Cooling Curve Analysis, D6482, Standard Test Method for

Determination of Cooling Characteristics of Aqueous Polymer Quenchants by

Cooling Curve Analysis with Agitation (Tensi Method), D6549, Standard Test Method

for Determination of Cooling Characteristics of Quenchants by Cooling Curve

Analysis with Agitation (Drayton Unit), and D7646, Standard Test Method for

Determination of Cooling Characteristics of Aqueous Polymer Quenchants for

Aluminum Alloys by Cooling Curve Analysis, are typically used to evaluate the

cooling characteristics of these quenchants or processes. The cooling time–

temperature curves obtained by these methodologies traditionally involve three

stages of cooling. However, the relationship between this model and heat

treatment, especially between hardening theory and practice, has not been

satisfactory. Therefore, it is necessary to better understand the relationship

between cooling theory and metallurgical behavior to create a new cooling model

that achieves zero distortion, zero dispersion of quality, and zero pollution, which
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are concepts proposed in the “Heat Treating Industry Vision 2020 “and the “Heat

Treating Technology Roadmap 2004” by the ASM Heat Treating Society and

Materials Treating Institute. The relationship between the physical metallurgical

phenomenon of phase transformation of a steel workpiece during quenching after

being austenitized and the actual cooling conditions in engineering practice were

analyzed and discussed in this report. Additionally, the development of advanced

cooling technologies and related quenching equipment are discussed. The evolution

from cooling model research to cooling engineering construction represents

important progress in heat treatment practice.

Keywords

steel heat treatment, hardening, distortion control, interface modeling, cooling medium, cooling

engineering, quenching equipment

Introduction

The classical cooling model for vaporizable quenchants utilizes three stages of cooling.

However, the relationship between this model and heat treatment, especially between

hardening theory and practice, has not been satisfactory as will be explained.

Therefore, it is necessary to better understand the relationship between cooling theory

and metallurgical behavior to create a new cooling model to achieve the goals of

“Zero distortion,” “Zero dispersion of quality,” and “Zero pollution” that have been pro-

posed by the Heat Treating Industry Vision 2020 and the Heat Treating Technology

Roadmap 200 initiated and issued by the ASM Heat Treating Society and Materials

Treating Institute [1–4].

As for the cooling models, the first model is related to pure cooling. Originally, the

cooling models for a vaporizable liquid coolant were established to account for the heat

transfer that occurs when a hot solid object is immersed into a coolant that is typically

characterized by three-stage cooling, which, however, is not related to steel hardening. The

most important key issue relative to heat transfer upon steel quenching is the effect of the

bulk coolant that surrounds the workpiece during quenching. Therefore, a three auxiliary

interface model is suggested in addition to the main cooling interface models [5].

The second kind of model should be the steel hardening process itself. Traditionally,

two hardening models, i.e., time-temperature-transformation (TTT) and continuous cool-

ing transformation (CCT), account for the metallurgical phenomena for non-equilibrium

processes and exclude the complicated and nonlinear factors that affect steel transforma-

tion upon quenching. Therefore, a series of relatively small test specimens is typically

designed to avoid the volume effect. Unfortunately, there is no direct relationship between

these models and hardening of the steel workpiece. Of course, distortion induced by

stresses during quenching are not included in this model. Consequently, the actual hard-

ening of a steel workpiece requires new models to guide heat treating practice.

Thus, a third kind of model for real heat treating practice should be developed for

quench-hardening that establishes the concept of cooling engineering and connects the

cooling process involved in steel hardening to the two inherently unrelated models to solve

the issues of hardenability, distortion, and quenching efficiency of steel workpieces.

Different cooling engineering to utilize the cooling characteristics based on the cooling
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model of vaporizable quenchants at different stages is discussed. The relationship between

the physical metallurgical phenomenon of phase transformation of a steel workpiece dur-

ing quenching after austenization and the actual cooling conditions in engineering practice

was analyzed and will also be discussed here in addition to the importance of the develop-

ment of advanced cooling technology and quenching equipment. Finally, included in this

discussion, is the evolution from cooling model research to cooling engineering construc-

tion as it represents important progress in heat treatment practice.

Discussion

Heat treatment is one of the most important processes in steel manufacturing that involves

changing the microstructure of the workpiece to provide the most suitable mechanical

properties and service performance for as long as possible compared with other processing

technology. Heat treatment should not change the workpiece geometry, designed size, or

overall chemical composition. Quench processing is one of the most important compo-

nents of the heat treatment operation.

Quenching may result in a completely different structure than what existing before

heating in order to obtain a structure that produces optimal performance. With the devel-

opment of the science and technology of quenching, the peculiar influence of the quench-

ing agent on the overall quenching effect has been extensively explored. Since the 20th

century, the development of materials science and engineering, together with the develop-

ment and application of other new technologies, has resulted in notable progress in under-

standing the impact of quenchant media selection on the resulting material properties

since the 1970s and 1980s, and some works are summarized in Refs. [6–21]. However,

until now, the use of the research results of the heat treatment cooling process to system-

atically solve practical engineering problems is still in development. With the development

of the International Federation for Heat Treatment and Surface Engineering (IFHTSE)

and other national work on quench-cooling technology and distortion control technology,

the heat treatment quench-cooling problem as a systematic engineering problem is now

readily recognized.

Since the cooling process of quenching is so important, it is necessary to study the

various factors associated with it; the most fundamental and most important aspect is the

discussion of the research and cooling model of the cooling process as well as the cooling

requirements for the optimal transformation of steel microstructure and incidental prob-

lems of the cooling process, including distortion control. This work is critical in view of the

inevitable future automation of unmanned robot operations where cooling engineering

and quenching automation are under current development.

Measurement of Cooling Curves and
Three-Phase Model

Steel quenching media selection has been of interest since ancient times and is still

studied today [22,23]. Thus, the study of quenching has long been known to begin with

the cooling media.

The Quenching and Cooling (Q&C) Committee of IFHTSE, which was chaired by

Bozidar Liščić for many years, developed a standardized laboratory cooling curve analysis

test that made it possible to effectively compare results obtained in different laboratories.
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In 1985, the Q&C Committee developed the draft standard ISO/DIS9950, Determination

of Industrial Quenching Oil-Cooling Characteristics-Laboratory Test Method, which sub-

sequently became ISO 9950, Industrial Quenching Oils-determination of Cooling

Characteristics-Nickel-Alloy Probe Test Method [24]. The draft standard was based on

the Laboratory Test for Assessing the Cooling Characteristics of Industrial Media, pub-

lished in 1982 by the Engineering Department’s Quenching Media Group at the Wolfson

Heat Treatment Center of University of Aston, Birmingham, United Kingdom.

Subsequently, ASTM published an equivalent standard designated ASTM D6200,

Standard Test Method for Determination of Cooling Characteristics of Quench Oils by

Cooling Curve Analysis [25].

The ISO 9950 and ASTM D6200 standards both utilize 12.5 by 60-mm cylindrical

Inconel 600 probes with a Type K thermocouple inserted to the geometric center. Other

ASTM cooling curve standards that were later developed that utilize the same 12.5 by

60-mm Inconel 600 probe include: ASTM D6482, Standard Test Method for

Determination of Cooling Characteristics of Aqueous Polymer Quenchants by Cooling

Curve Analysis with Agitation (Tensi Method) [26] and ASTM D6549, Standard Test

Method for Determination of Cooling Characteristics of Quenchants by Cooling Curve

Analysis with Agitation (Drayton Unit) [27]. Fig. 1a shows an ISO 9950 standard

Inconel 600 probe. Fig. 1b shows the Chinese silver probe (SH/T 0220-1992, Heat

Treatment Oil Cooling Characteristics Test Method), which is mainly used to test the cooling

characteristics of industrial quenching oil and was later extended to test organic aqueous

solution quenching media [28]. The introduction of ISO standard probes in China has made

reference to the establishment of a new standard, that is, the laboratory method for deter-

mining the cooling characteristics of industrial quenching oils, JB/T 7951-2004, Industrial

Quenching Oil. Determination of Cooling Characteristics. Nickel-Alloy Probe Test Method, a

lab method that uses nickel alloy probes to test cooling characteristics of industrial quench-

ing oil [29]. At present, the latter testing methodology is becoming more dominant.

The purpose of the probes illustrated in Fig. 1 is to obtain a standardized cooling

curve of the quenching medium being measured. Fig. 2 shows a typical cooling

FIG. 1 (a) Diagrams of the Inconel 600 probe and (b) a silver probe for measuring cooling curves of quenchants.
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time–temperature curve and a cooling rate curve obtained for a vaporizable quenchant

that is characterized by three characteristic cooling phases [30].

It is important to note that such cooling curves obtained under laboratory testing

conditions do not necessarily relate to the actual heat transfer of the cooling process

of an actual component in an industrial heat treating shop, though they do permit com-

parison of heat transfer characteristics under standard laboratory conditions. Essentially,

these testing methods comparatively assess the physical heat transfer when a hot object

without an internal heat source is being immersed into a vaporizable cooling medium.

These laboratory testing procedures are useful for research, quenchant development,

and quality control. However, they do not necessarily relate to actual quenching experience

in the heat treating shop. For this reason, the currently most often encountered cooling

model for vaporizable quenchants should be re-examined for its applicability (using small

probe cooling curve data) for industrial quenching process understanding and design.

Three-Phase Cooling Model and Main-Auxiliary
Interface Model upon Surface Cooling

THE BASICS OF THE THREE-PHASE MODEL

Fig. 3 shows the phenomenon observed in the immersion of a hot object into a vaporizable

cooling medium, as shown in this figure: a cooling curve and a cooling rate curve [30].

Obviously, the cooling curve can be divided into three different heat transfer stages,

namely, Stage A, vapor blanket cooling (film boiling) phase; Stage B, nuclear boiling cool-

ing stage, and Stage C, convective cooling phase.

As shown in Fig. 3, Stage A indicated on the curve is termed the vapor blanket cool-

ing stage. During this first stage, upon initial immersion of the hot metal into the vapor-

izable liquid quenchant, a certain amount of liquid that is adjacent to the metal surface

vaporizes and forms a continuous film or blanket of vapor around the cooling metal.

Cooling proceeds through this film mainly by radiation and, consequently, a slow cooling

rate is the result.

FIG. 2 (a) Typical cooling time–temperature curve and (b) cooling-cooling rate curves using an Inconel 600 probe.
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The second stage of cooling, Stage B, as indicated on the curve in Fig. 3, is the

nucleate (violent) boiling stage where the continuity of the vapor blanket is lost.

A certain amount of the vapor migrates into the liquid and condenses; new liquid rushes

in and vapors at the hot object surface extract an amount of heat equal to the heat of

vaporization of the liquid and is subsequently condensed in the body of the quenchant.

This action is typically relatively violent and results in a rapid extraction of heat from the

cooling surface at a rate largely dependent on the amount of liquid material that is

vaporized.

When the temperature of the surface of the hot object becomes lower than the boiling

point of the liquid, vapor can no longer form, and the second stage of cooling is completed.

Cooling from this point on is designated Stage C, as indicated on Fig. 3, and occurs by

conduction and convection. This cooling process produces a much slower rate of cooling

than the preceding nucleate boiling stage. The rate of cooling here depends largely on the

specific heat of the quenchant, its thermal conductivity, and the degree of agitation of the

quenching bath.

There are many different opinions on the interpretation of the cooling curve for

vaporizable cooling medium with phase changes, but these three phases can be considered

to be the most relevant, and they represent the classical theoretical interpretation of the

quenching process [31].

ESTABLISHMENT OF MAIN-AUXILIARY INTERFACE MODEL

Upon immersion, these three phases are actually in a closed cooling environment

surrounded by a body of cool media at the cooling interface. Therefore, the three-phase

heat transfer coefficient is extremely difficult to calculate. Today, the various methods of

calculating the heat transfer coefficient are debated continuously, and in the meantime,

even the results obtained are still difficult to apply in heat treatment.

Analysis of the cooling mode occurring on the steel surface upon immersion quench-

ing will now be addressed with the objective of modification of the cooling model. Fig. 4

shows the surface cooling interface model based on the three-phase theory when a hot steel

is immersion-quenched into a vaporizable quenchant in a stationary state.

According to the main-auxiliary interface model of the cooling interface shown in

Fig. 4, it can be seen that when hot (austenitized) steel is immersion-quenched into a

FIG. 3

Cooling mechanisms.

LUO AND TOTTEN ON QUENCHING OF STEEL

Materials Performance and Characterization

 

Copyright by ASTM Int'l (all rights reserved); Mon Jan 28 12:10:41 EST 2019
Downloaded/printed by
George Washington Univ (George Washington Univ) pursuant to License Agreement. No further reproductions authorized.



cooling medium, which is with a phase change, surface cooling is actually separated from

the quenching medium itself as a result of vapor phase formation. Thus, the cooling front

is formed just on the surface of the steel, i.e., the main cooling interface forms between

solid surface and vapor phase. Because the vapor is fairly steady, which is due to the

internal heat source effect of a hot workpiece, a second heat transfer interface is formed

between the vapor phase and the quenchant, which is termed the auxiliary interface.

Remarkably, the vapor on the main interface surrounded by the outside quenchant is

not so free as in open conditions, which becomes the main feature of so-called pool cool-

ing, the confinement effect of the surrounding media cannot be neglected. From this

model, the role and the mechanism of the main and that of the auxiliary heat transfer

interface are completely different.

In Stage A of the vapor blanket cooling, the main interface is a solid-vapor interface

but the auxiliary interface is a vapor-liquid interface. From the main and auxiliary interface

of the cooling diagram, the main interface is vapor-solid cooling, the essence of which is

gas phase cooling within the bulk liquid. The surrounding gas layer is not static and should

have all of the cooling characteristics of a single gas-phase fluid, but its pressure is affected

by the surrounding cooling media and the immersion depth of the steel in the quenching

tank. Although the boundary of the auxiliary interface (vapor-liquid interface) does exist

and can be observed experimentally, the calculation method is not very clear. However, the

dominant heat transfer process during Stage A cooling is at the steel surface, and the main

role of the cooling medium is that it is the source of the vapor. Notably, this is very differ-

ent from the pure vapor phase cooling in an open system since the cooling capacity is

much lower.

During Stage B of nuclear boiling, the main interface is a solid-bubble interface, but

the auxiliary interface is the bubble-liquid interface. The vapor-liquid interface in Fig. 4a

is now destroyed, as shown in the main-auxiliary interface in the cooling diagram. The

cooling main interface evolved into a vapor and liquid dual-phase flow cooling mode, but

in essence, it is gas-liquid dual-phase flow cooling when surrounded by the bulk liquid.

FIG. 4 The main-auxiliary interface model based on a three-stage model upon quenching.
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At this time, the auxiliary interface becomes difficult to determine, so the calculation

method will be discussed subsequently.

In Stage C of convective cooling, the main interface is a solid-liquid interface, but

the auxiliary interface is a turbulent flow–laminar flow interface. From the diagram, it

appears that the auxiliary interface nearly disappears. But, in fact, there is a turbulent-

laminar interface. However, at this time, the main interface completely transitions into

single-phase (liquid phase) cooling, which is the actual situation during “immersion-bath”

cooling in production quenching tanks. However, because of the viscous characteristics

of a body of fluid, the effect of the boundary layer on cooling must be considered at

this stage so the influence of various hydrodynamic factors on the cooling effect cannot

be neglected, and the importance of stirring and its control on cooling uniformity

becomes substantial.

REVELATION OF THE MAIN-AUXILIARY INTERFACE MODEL

The main-auxiliary interface model shows that the three-stage model is independent but

not free and open and it is also largely influenced by the external viscous cold fluid and the

gravitational pressure head. The cold fluid that surrounds the main cooling interface is not

directly involved in the cooling for all three stages but instead limits the full interaction of

the cooling capacity of each characteristic stage of the three-phase theory, Therefore, the

three-stage theory of immersion quenching must be liberated from the outer regions in

order to thoroughly understand immersion quenching.

In view of the main-auxiliary interface model based on the three-stage theory of the

cooling process, the cooling media or cooling methods that exhibit one cooling stage can

be conveniently controlled by manual intervention. Moreover, no matter what stage, only

when solving the constraints of the surrounding fluid can the cooling model truly reflect

the cooling characteristics of the quenchant or cooling method.

It is understood that the fewer the cooling phases involved in the entire cooling proc-

ess, the better the uniformity and stability of the cooling process. However, there are still

many factors that influence the quenching process. For example, the physical properties of

the medium, which include density, specific heat, thermal conductivity, etc., will directly

affect the heat transfer coefficient; temperature difference of the cooling couple, together

with the latent heat of the steel part during phase transformation, will affect the kinetic

process. Other factors include the condition of the surface of the part to be quenched, such

as heat transfer area, surface cleanness, and geometrical shape, will influence the heat

transfer. The static/kinetic factors of the cooling fluid itself, such as concentration, viscos-

ity, temperature, pressure, flow rate, flow volume, angle, flow pattern, and boundary layer,

also affect the heat transfer efficiency.

Based on the new concept of cooling uniformity requirements, why should the proc-

ess with only one cooling stage be the easiest to adjust or control? The essence of the

cooling process lies in Newtonian cooling—a linear cooling process that is relatively easily

regulated to adjust cooling speed. However, it should be noted that at this time, even if the

cooling is stable, the cooling rate is still constantly changing with the temperature differ-

ence of the cooling couple. Instead, it is more stable and is mainly controlled by the tem-

perature difference and the physical properties of the cooling medium. Thus, a series of

single-phase cooling modes can be derived, such as convection cooling, i.e., gas quenching,

lead bath cooling, nitrate salt bath, and fluidized bed, or direct rupture of the surrounding

fluid region, using such a process as spray cooling, so that cooling is intermediate between

the boiling phase and convection phase.
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Concept Cooling Models and Actual
Quench-Cooling

The cooling models that are closely related to the physical metallurgical phenomena of

steels are TTT diagram and CCT diagram. The most important control factor of TTT

diagram is a series of supercooled degrees between A1 and the fixed temperature upon

transformation; the most important control factor of the CCT diagram is a series of preset

constant cooling rates. The common denominator of the two models is that the cooling

method determines the phase transformation process of steel, and the other is that this

process is totally unrelated to the three-stage cooling model.

It is known that the microstructure of materials may have special properties when far

from the thermodynamic equilibrium state. The essence of heat treatment is to study

various metallurgical phenomena of an alloy system deviating from the equilibrium state

when the thermodynamic environment changes and cooling is the most commonly used

method to affect the deviation. In this sense, both TTT and CCT are physical metallurgical

cooling models.

The main objective of heat treatment of steel is that when the iron-carbon alloy

system is heated, the homogeneous austenitic structure, which depends on the diffusion

process, will form in a process of energy accumulation. But phase transformation upon

quenching will deviate greatly, depending on the extent from the equilibrium of the

system, i.e., the cooling intensity.

Therefore, if the quenching process is to obtain a nonequilibrium microstructure

during an instantaneous process, it must make full use of the energy of the alloy system

to meet the mutual adaptation between structure and energy. In this process, cooling

becomes an issue of system engineering. At this time, in addition to the microstructure

evolution within the alloy system, the thermodynamic and kinetic problems of the steel

component to be cooled are highlighted as the main contradiction restricting the entire

process. Therefore, the consistency between phase transition (physical metallurgy) and

cooling kinetics (engineering) must be solved.

Fig. 5 provides a schematic diagram of the establishment of TTT and CCT diagrams.

Both TTT and CCT diagrams reveal the isothermal transition kinetics and continuous

cooling kinetics of austenite, respectively, which becomes the most important guide

for designing the heat treatment process of steels. However, test results of the quenching

medium’s cooling characteristics lead to another issue, that is, almost no cooling speed

mode or distribution of an actual workpiece in the entire process of quenching is con-

sistent with the conditions of the cooling rate that was used to establish the TTT/CCT

diagram.

It can be seen from Fig. 5a that the transformation of a steel specimen in the TTT

diagram is an isothermal process depending on Δt, the temperature difference between A1

and the transformation temperature for target products. If now the latent heat is neglected,

the cooling rate upon transforming should be zero; so far, there is no information or

regulation that can be used on the determination of the cooling rates before the specimens

reach the designed isothermal cooling temperatures. In the CCT diagram, the transfor-

mation process of the steel specimen after being austenitized is a continuous cooling

transformation process where each cooling curve in the diagram is predetermined using

constant cooling transformation speeds and recording only the starting and ending

points of the phase change and resulting hardness. Because the types of the cooling
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transformation processes of austenite is set to conduct the physical metallurgical study of

steels, all of the internal and external interference factors are shielded in order to extract

the characterization method, which is difficult to achieve in the actual quenching operation

of steel parts. Therefore, they should be called “cooling concepts.”

During an actual industrial immersion quench-cooling process, workpieces are not

cooled as modeled by either TTT or CCT processes. Fig. 6 shows cylindrical probes that

measure the cooling rate change of a steel workpiece when immersed in a vaporizable

quenching medium. Fig. 6a shows a laboratory cooling model of a vaporizable quenchant.

It can be seen that the cooling rate of an actual object during quenching changes within a

large range of decreasing temperatures, and the surface temperature of a workpiece

fluctuates greatly as shown in Fig. 6b. Thus, such a cooling characteristic curve cannot

represent the cooling rate for any actual steel part upon quenching. Therefore, the cooling

FIG. 5 Cooling curves in (a) TTT diagram and (b) CCT diagram.

FIG. 6 (a) Cooling characteristic variation with temperature and (b) surface temperature fluctuation of a workpiece upon cooling.
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behavior and transformation behavior of an actual workpiece when quenching in this kind

of medium requires a more comprehensive representation.

Fig. 7 shows that in an actual quenching process, cooling exhibits dynamic character-

istics. In the cited study [32], the authors measured the dynamic cooling behavior of

conventional carbon steel bars that were 5∼8 mm in diameter and were equipped with

a center thermocouple into tap water, 5 % brine, and 0.5 % aqueous solution of carbox-

ymethy cellulose (CMC), a water-soluble polymer, to evaluate the cooling rate variation

with respect to time.

Fig. 7a shows the instantaneous cooling curve that was obtained when quenching a

6.5-mm probe into a vaporizable liquid medium, which, in this case, was tap water [33].

The waveform of the signal potential fluctuation shows the characteristic time domain

during the quenching process, which indicates the changes that occur in the cooling proc-

ess with respect to time. According to the principle of dynamic measurement, the dynamic

cooling curve should reveal the rate of change of the cooling rates. A complete oscillation

waveform for a dynamic curve is equivalent to the process of an increasing and decreasing

cooling rate-time diagram where each +/− variation from zero means the direction of the

cooling rate curve is reversed. Several oscillations over zero indicates the strong dynamic

changes in cooling rate that are measured by the probe in the high-temperature range. On

the dynamic curve, the vapor blanket stage and the bubble boiling stage cannot be sep-

arated completely, indicating the instability of the cooling process in the high-temperature

stage. As the oscillations tend to flatten, cooling enters the convection phase, and the

dynamic characteristics decrease, but the cooling rate is still changing. Therefore, the

dynamic cooling rate test can detect the instantaneous change of the cooling rate in a

quench-cooling process to some extent. Because the probe diameter is relatively small

and can be cooled entirely during the quenching process while being monitored, the mea-

sured results can explain, to some extent, the cause of the fluctuation of the surface cooling

curve measured by Liščić in Fig. 6b [32].

To clarify the problem, a comparison between cooling time–temperature curves, cool-

ing rate curves and their dynamic characteristics for different cooling modes are summa-

rized in Table 1.

FIG. 7

A typical dynamic cooling curve

measured with a Ф6.5-mm rod

in (a) tap water, (b) 5 % brine,

and (c) 0.5 % CMC aqueous

solution.
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Table 1 shows that the cooling mechanism of the three cooling models is different just

as the results of the cooling process are completely different. Because of a mass (volume)

effect, wall thickness difference, medium characteristics for real workpieces during an

immersion-quenching process, including all three cooling stages, the workpieces will

experience complex cooling rate changes, and the resulting stress that changes the

quench-related distortion would be expected. Therefore, in order to solve the distortion

problem, which may occur during immersion quenching, with three-stage cooling, it is

necessary to simplify the complex heat transfer phenomenon, which is beneficial for both

cooling and distortion control.

During the actual steel-quenching operation, an important consideration is to guar-

antee the shape and size of the parts within a specified range, in addition to obtaining a

martensitic microstructure. Therefore, it is necessary to associate the cooling mode or

cooling medium characteristics with the effect of thermal stress and transformation stress

on distortion during the quenching process that relates to “cooling uniformity.”

Therefore, when distortion must be considered in the quenching process, it must be

considered from two aspects, i.e., material nature and cooling coordination. The former is

used to improve the stability of the austenite by selecting the alloy system so that the steels

with higher hardenability are applied to parts that are consistent with the service require-

ments, and the latter is to select a cooling medium with as low a quench severity as possible

to reduce the complex stresses during the phase transformation. If there are no suitable

materials to ensure the required size precision for the parts to be quenched, then the only

recourse is the selection of a cooling medium of optimal severity. In this case, the hardness

must be limited, rather than the highest hardness, which may be obtained when using

quenching media with relatively high quench severity. According to the three-stage cool-

ing model and the main-auxiliary interface cooling model of vaporizable quenching

medium, and in search for a moderate and effective quench-cooling medium or method,

it is necessary to develop and optimize each cooling stage of the three-stage heat transfer

model. Therefore, it is not sufficient to simply immerse workpieces into water when

quenching in the heat treat shop, but quenching methods or devices must be appropriately

designed to achieve the desired hardness with minimal distortion.

AIR COOLING/FAN (BLOWER)-COOLING

This process is primarily used for quenching high-alloy distortion-free steel and high-

pressure gas quenching of alloy steel in vacuum furnace systems. Previously, it was

necessary to use the low-vapor pressure vacuum quenching oil for quenching in the

low-pressure carburizing process, but now it is possible to utilize high-pressure nitrogen

or helium injection methods so that carburized workpieces can be quenched fast and

TABLE 1
The function characteristics of different cooling models.

Cooling Mode Cooling Curve Cooling Rate Curve Dynamic Feature

TTT T= f(τ)=Δt v= T 0 = 0 /

CCT T= f(τ)= −cτ v= T 0 = c v 0 = 0

ACT T= f(τ)= f(x,y,z, τ) v= f 0(x,y,z, τ) v 0 = f ”(x,y,z, τ)

Note: TTT= Time-Temperature-Transformation curve; CCT = Continuous Cooling Transformation curve;
ACT =Actual Cooling Transformation curve; T= the relationship between temperature and time; τ= time, s;
Δt= temperature differential between austentizing temperature and transformation temperature; v= cooling rate,
°C/s; T’ = the derivative of temperature-time function, °C/s; c= a certain constant cooling rate, °C; x,y,z= a certain
position coordinate in a workpiece being quenched.
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uniformly to inhibit deformation or cracking. This process provides a good example of

the use of a single gas phase on the free interface without the constraints of an auxiliary

interface and the surrounding bulk liquid. Fig. 8 shows the cooling curves for different

cooling curves obtained for high-pressure gas quenching, which have obvious character-

istics of a single convection cooling stage [34].

SALT BATH QUENCHING BASED ON CONVECTION COOLING

When molten salt baths are used as a cooling medium, they do not exhibit a phase change

during the quenching process and therefore are suitable for some specialized heat treat-

ment operations. For “clean” heat treatment production, fundamental changes for on-site

management of these facilities are necessary. Nevertheless, molten salt quenching provides

a good example of the use of the principle of conduction and convection directly on the

free main interface during the cooling process.

Other methods, including molten metal baths, are also used for single-phase cooling.

Fig. 9 illustrates the cooling curve of a molten lead patenting bath with a single convection

cooling phase, where the cooling speed is continuous, and a low quench severity transition

with decreasing temperature.

FLUIDIZED BED

Fluidized bed cooling is a man-made two-phase flow because it can obtain a pseudo lique-

faction effect, which can also be considered as a type of single-phase cooling medium

where its cooling capacity, adaptability, and applicability possess considerable develop-

ment potential. Fig. 10 shows an application of a fluidized bed. Fig. 10a is the patenting

treatment of high-strength steel wire using fluidized bed cooling whose cooling curve,

Fig. 10b, exhibits single-phase cooling characteristics [35,36].

Evolution from Cooling Model to Cooling
Engineering Characterized by Cooling Uniformity

According to the cooling uniformity requirements on quench-hardening of steel, and on

the basis of the understanding of the cooling model and cooling characteristics of

FIG. 8

Cooling curves of different

kinds of high-pressure gas

quenching.
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vaporizing quenchants, engineering application research is developing and is mainly

aimed at the controllability of cooling. Therefore, the new cooling engineering model

should focus on the consistency of microstructure transformation and distortion control

on quenching instead of simply looking for the so-called best quenching media that con-

forms to the three-stage cooling model.

From the comparison of cooling curves and characteristic curves of TTT, CCT, and

Actual Cooling Transformation (ACT) summarized in Table 1, it can be known that the

cooling mode determines the transformation behavior of steel. However, in the actual

workpiece quenching process, the specific components of quenching transformation

FIG. 9

Cooling curve and cooling

characteristic curve of steel

wire during patenting in

lead bath.

FIG. 10 Schematic of a wire patenting process using a fluidized bed: (a) wire patenting line and (b) cooling characteristic of

fluidized bed.
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(ACT) law upon cooling is very different from those of the construction conditions of TTT

or CCT diagrams. In the future, it will be important to deepen the general understanding

of the cooling transformation law of specific components according to the combination of

available cooling media and technology in order to solve the problems of cooling uniform-

ity and to minimize or eliminate the cracking, distortion, unreasonable residual stress, and

uneven hardness of the parts during the quench-cooling process; that is, the ultimate uni-

formity of the quenching process must be pursued.

One of the most influential factors of quenching uniformity is the design of a quench-

ing cooling system rather than simple quenching medium selection. George Totten, one of

the authors of this article who used to be the chairman of the quenching cooling and

distortion control board of the IFHTSE, believes quenching is still a “black hole” in heat

treatment, in which there is still too much to be known [37]. He emphasized that agitation

of quenchant is one of the most important research fields in the design of quenching cool-

ing systems. Therefore, the design of a good mixing system for the cooling process of

specific components may be one of the most promising ways to achieve homogeneous

quenching effects. He also pointed out that research on fluid type, fluid concentration,

agitating rate, quenching chute design, and quenching intensity of agitator and other var-

iables would be continued, which implies that the quenching device design has the same

importance as the quenching medium development.

THEORY EXPLORATION AND TESTING TECHNOLOGY

The standard probes currently in use can measure and compare the static cooling char-

acteristics of a cooling medium. However, the test results are not necessarily related to the

actual quenching effect of the steel workpieces under production quenching conditions in

the workshop. Actually, there is no “typical” cooling curve in a real quenching process. An

objective of the quenching process is to achieve stability of the geometry shape and size of

the components to be quenched and the heat flux at the cooling interface, which are both

dependent on the heat transfer mode and control throughout the quenching process.

Development of a new quench-cooling theory and model, and making use of quenching

medium characteristics, is important for the advanced heat treatment technologies.

Therefore, the research on basic theory and model of quench-cooling engineering is re-

lated to the following:

• The transformation behavior and latent heat of austenitic phase transformation of
different steel grades under actual cooling conditions;

• The influence of the cooling characteristics of the quenching medium on the hard-
ening quality of the workpiece to be quenched;

• The effects of concentration, temperature, and agitation of aqueous polymer quen-
chants on quenching intensity;

• The development of new cooling media;
• The internal stress measurement and control of quenching intensity of a workpiece

during quenching; and
• Computer simulation of quenching processes and establishment of appropriate

mathematical models.

The development and optimization of these factors are vitally important for perfect-

ing quenching processes, minimizing distortion and cracking of workpieces, and improv-

ing the overall quality of workpieces after quenching. In order to understand the

synergistic behaviors of quenchant on an actual component during an actual industrial
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workshop quenching process, a methodology of quenchant characterization has been pro-

posed by Liščić and Kobasko and Liščić, respectively, in Refs. [38,39]. Fig. 11 illustrates the

probe developed by Liščić for quenchant characterization, which is called the Liščić/
Petrofer probe.

The Liščić/Petrofer probe is a solid cylinder with a 50-mm diameter and 200-mm

length. Fig. 11a shows the schematic of the probe with the handle, and Fig. 11b is a photo

of the probe itself. The ratio between length and diameter, L/D= 4:1, ensures that the heat

dissipation through both ends of the probe is negligible so that in the cross section at the

half length of the probe where the thermocouples (TCs) are positioned, only radial heat

flow exists. This is a prerequisite for 1-D heat transfer calculations. Because of its cylin-

drical shape, the Liščić/Petrofer probe is applicable for heat transfer calculations of axially
symmetric workpieces with diameters between 20 and 100 mm [38]. The Liščić/Petrofer
probe is constructed of INCONEL 600, a nickel-chromium austenitic alloy, which, during

heating and cooling, does not undergo structural transformation and is oxidation resistant

[39]. The probe is instrumented with three sheathed and grounded TCs: one is placed

1 mm below the surface, the second one is placed 4.5 mm below the surface, and the third

one at the center of the cross section at the half length of the probe. The curves for heat flux

density and heat transfer coefficient at different temperatures or times on the surface can

be calculated. Under the heat flux curve, the area within a certain time interval represents

the heat discharged from the probe quenching, which can be used as a criterion for evalu-

ating the quenching intensity of real workpieces.

FIG. 11

(a) Sketch of the Liščić/Petrofer

probe with the handle, and

(b) photo of the Liščić/Petrofer

probe.
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RELATIONSHIP BETWEEN COOLING PERFORMANCE TEST RESULTS AND HEAT

TREATMENT EFFECT

The cooling characteristics of the cooling medium under laboratory testing conditions can

be evaluated using a nickel alloy probe (Inconel 600) or a silver probe such as that de-

scribed in the Japanese standard K 2243, Heat Treating Fluids [40,41] or ASTM D7646,

Standard Test Method for Determination of Cooling Characteristics of Aqueous Polymer

Quenchants for Aluminum Alloys by Cooling Curve Analysis [42]. In this way, the cooling

performance test results of different quenching agents under standard (nonindustrial)

conditions can be compared, but the correlation between the cooling rate of industrial

quenching equipment with different degrees of agitation has not been established.

Therefore, in the international heat treatment industry, the correlation of the cooling char-

acteristics measured by the laboratory standard probe method with the actual quenching

effect under real quenching conditions is yet unresolved, although various attempts have

been made to resolve it.

Fig. 12 illustrates the results of a study by Segerberg to try to link the upper and lower

characteristic points on a cooling characteristic curve obtained by the ISO 9950 testing

procedure with the average cooling rate at the nose of the CCT diagram to express

the quenching or cooling capacity of quenching oils. Eq 1 is the regression equation

obtained after testing a wide variety of petroleum quenching oils [43].

HP = 91.5 + 1.34Tvp + 10.88CR − 3.85Tcp (1)

where:

HP= quenching hardening ability, a dimensionless parameter reflective of the

as-quenched hardness;

Tvp= upper characteristic point, °C;

CR= the average cooling rate between 500°C∼600°C, °C/s; and

FIG. 12

Illustration of the characteristic

parameters obtained from a

standard cooling time–

temperature curve.
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Tcp= the next characteristic transition temperature for the transition of nucleate

boiling to convective cooling, °C.

The objective of Segerberg’s work was to establish a connection between the data

obtained from the cooling curve measurement and the hardening effect of the steel com-

ponents after quenching. Segerberg used a carbon steel for his hardness correlation work.

Subsequent to this work, Zeng [44] and Chen and Zhou [45] performed additional studies

on the Segerberg correlation. Chen and Zhou, for example, showed that the Segerberg

correlation provided better agreement with test results than the transition temperature

from the vapor blanket cooling stage (full-film boiling) to the nucleate boiling stage

and the maximum cooling rate. The hardening power equation also provided better agree-

ment with respect to hardness for carbon steel than for alloy steel. As a result of their work,

a set of revised hardening power (HPC) equations for carbon and alloy steels was devel-

oped. Eqs 2–4 were developed for plain carbon steels:

HPC = 10½Vm − 0.25ðTm − 550Þ� + 10V300, whereTm > 550°C (2)

HPC = 10ðVm − 0Þ + 10V300, where 500°C ≤ Tm ≤ 550°C (3)

HPC = 10½Vm − 0.25ð500 − TmÞ� + 10V300, whereTm < 500°C (4)

For these equations,

HPC= Corrected Segerberg HP value;
Vm=maximum cooling rate, °C/s;
Tm= temperature at the maximum cooling rate, °C; and
V300= Cooling rate at 300°C.

A second set of regression equations was developed for alloy steels:

HPC = 10½Vm − 0.25ðTm − 500Þ� + 10V300, whereTm > 500°C (5)

HPC = 10ðVm − 0Þ + 10V300, where 450°C ≤ Tm ≤ 500°C (6)

HPC = 10½Vm − 0.25ð450 − TmÞ� + 10V300, whereTm < 450°C (7)

These equations show that there is an alloy-dependent optimal quenching temper-

ature range. These revised equations were reported to be superior to Segerberg’s original

Hardening Power Equation for unagitated petroleum quenchants (Eq 1).

DEVELOPMENT OF NEW COOLING TECHNOLOGY

At the present time, current research related to quench-cooling technology involves the

study of computational fluid dynamics (CFD) and digital simulation technology [46].

Fig. 13 illustrates the results of a CFD study of the simultaneous velocity and temper-

ature distribution in a quenching tank with heating and stirring systems. The objective of

this study was to determine the source of nonuniform quenching results being obtained.

A 3-D flow field distribution of quenching medium in the quenching tank was calculated

and the “effective quenching zone” [47] in the quenching tank was determined by ana-

lyzing the flow characteristics of the cooling medium in the quenching tank and the

influence of the agitation device (a single top-entering impeller) on the flow field dis-

tribution. Ideally, in the effective quenching zone, a uniform area of flow cooling would

ensure that the workpiece obtained the required microstructure and properties that
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would result in improved quenching quality. The simulation of the cooling medium flow

field in the 3-D quenching tank provided the overall distribution of velocity vector and

flow field at any position in the tank and also provided a useful reference for determining

the effective quenching area of the quenching tank in the quenching operation. The

impact of this study was to not only show the nonuniformity of flow present in the tank,

which led to the wide distribution of as-quenched results, but also to show the impact if

the main-auxiliary interface model considered making improvements in the accuracy of

the simulation.

While the previous example is a relatively early example of the use of CFD analysis to

troubleshoot a poorly performing small quenching system, this methodology is now be-

coming increasingly common for use in quench system optimization and design. CFD

analysis was used to develop optimal racking configuration for a system used for the

quenching of carburized AISI 8620 steel pinions by identifying several locations where

the flow could be improved and to produce improved hardness uniformity [48]. Chen

utilized an ultrasonic Doppler velocimeter to measure the flow rate of quenchant in a large

tank with draft-tube agitators. CFD analyses were then performed to simulate the optimal

flow distribution by the baffle positioning in the quench zone [49]. In a different study,

Bineli et al. developed two models of agitation for an industrial rectangular quench tank;

one system had a submerged agitation system located on the bottom of the tank, and the

other had the addition of a lateral flow arrangement [50]. This simulation involved

determining the cooling profile and heat transfer coefficient of the parts being quenched

to determine the agitation system that will produce the greatest flow uniformity which, in

turn, would produce optimal mechanical properties of the parts. Banka et al. used CFD

analysis to study water flow fields and surface heat transfer rates for a gear that was in-

tensively quenched. This work first involved determination of the quenchant temperature

FIG. 13 CFD diagram in quenching chute with heating and agitation system.
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and heat transfer coefficients along the gear surfaces for use in predicting the fixture sys-

tem placement to produce optimal uniformity in the metallurgical, stress, and distortion

responses of the gear [51].

CFD simulation was used to develop an analytical equation for cooling time evalu-

ation for the process of quenching semiaxles and cylindrical forgings in an agitated water

tank. The advantage of CFD technology is that it does not require knowledge of the heat

transfer coefficients at the surface of steel parts. The results of this work showed that a

generalized correlation can be used to calculate the cooling time for both simple and com-

plicated configurations [52]. Nonuniform agitation will produce unacceptable nonuniform

as-quenched properties. Heat transfer coefficient variation produced in a quench tank has

been examined by quench process simulation using CFD analysis. In this study, the au-

thors proposed process variations that would yield optimal quench uniformity [53].

Based on fluid dynamics and stress control research, i.e., the results of quenching

technology, intensive quenching methods are being developed by Kobasko, Aronov,

and Powell [54]. Fig. 14 shows an intensive quenching device used for shaft components.

In this case, intensive quenching methodology utilized a high-pressure spray-quenching

medium where the aqueous quenchant is strongly sprayed directly on the workpiece sur-

face by controlling the pressure, flow, and proportion of the spray-quenching medium.

According to the physical metallurgical transformation principle and stress state of the

workpiece and adjustment of the cooling process time, the method can create uniform

cooling and produce a greater hardened depth, more uniform surface hardness, and min-

imal distortion for high-quality workpieces by obtaining maximum consistency between

the material properties and quenching cooling effect, all while minimizing distortion. One

quench process design method by which this is accomplished is by eliminating vapor blan-

ket formation (film boiling) and minimizing nucleate boiling and facilitation of convective

cooling—a single-phased process.

Generally, the intensive quenching processes are classified into three major categories

[55,56]:

FIG. 14

A typical intensive quenching

system for shaft-like

components.

LUO AND TOTTEN ON QUENCHING OF STEEL

Materials Performance and Characterization

 

Copyright by ASTM Int'l (all rights reserved); Mon Jan 28 12:10:41 EST 2019
Downloaded/printed by
George Washington Univ (George Washington Univ) pursuant to License Agreement. No further reproductions authorized.



(1) IQ-1: Controllable three-stage cooling (program-controlled three-stage cooling);
(2) IQ-2: Controllable post–two stages of cooling (inhibiting vapor blanket boiling,

only bubble boiling and convection stages);
(3) IQ-3: Controllable convection cooling (a single phase of forced convection).

Fig. 14 illustrates an intensive quenching device suitable for the quenching of shaft

components.

According to Kobasko’s IQ principles, computer modeling and simulation may be

used for process design. The simulation program utilizes finite element methodology

to analyze the change of temperature field and stress field during the quenching process

and the time of obtaining maximum surface compressive stress is calculated. The calcu-

lation results include temperature field, microstructure field, stress field, distortion distri-

bution, and quenching cooling process [57].

QUENCHING DEVICE DESIGN (DIGITAL, CONTROLLABLE, AUTOMATIC,

AND FLEXIBLE)

Modern quench-cooling system designs not only involve cooling medium selections but

also complete system designs. Special attention should be paid to the actual conditions of

quenching components and their cooling requirements in order to achieve a controllable

quenching effect. This effect includes the controllable cooling process, the maximum

material properties, ultra-performance for service, and a full guarantee of component di-

mensional accuracy to meet the current and future demands for advanced manufacturing

goals. Fig. 15 shows a quenching device for inner ring hardening of a precision heavy-duty

bearing [58].

The bearing ring quenching device shown in Fig. 15 utilizes the Bernoulli principle of

hydromechanics as shown in Fig. 16, which illustrates the flow diagram of fluid in a closed

tube. Because the volume of the fluid in the closed tube cannot be compressed with the

change of the section of the passage, the kinetic energy, potential energy, and pressure

energy contained in the fluid will be definite but internally self-adjusting. However,

because of the viscous nature of fluids, there is an unavoidable loss of energy that needs

to be specially accounted for in the design for the closed passageway. According to the

analysis of the quenching medium flow shown in Fig. 16, the design principle of the flow

path of the cooling program is embodied by adjusting the flow of the cooling medium and

the channel gap.

FIG. 15

Specially designed hardening

apparatus for bearing of rail

vehicle.
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The Bernoulli equation (Eq 8) shows the conservation of energy principle for flowing

fluids. The term “Bernoulli effect” refers to the lowering of fluid pressure in regions where

the horizontal flow velocity is increased. Eq 8, the Bernoulli equation, provides insight into

the balance between pressure, flow velocity, and elevation:

1
2
ρυ2 + ρgh + P = const: (8)

where:

ρ= the density of the fluid, kg/m3;

υ= flow rate, m/s;

g= gravitational acceleration, m/s2;

h= height of the fluid (from a reference point), m; and

p= fluid pressure, MPa.

Thus, for a horizontal water pipe with a changing diameter, regions where the

water is moving fast will be under less pressure than regions where the water is moving

slowly.

Fig. 17 is a special pressure quenching machine for advanced car gear hardening,

and its cooling is controlled by the coordinated stress control of fluid movement

direction [59].

FIG. 16

Fluid flow pattern in a closed

tube with section area changes:

(a) Bernoulli flow diagram and

(b) simulation diagram.

FIG. 17

Press quenching for bevel gears

and the quenchant flow route:

1. Sealing shell, 2. Outer ring die,

3. Inner ring die, 4. Workpiece,

5. Universal lower die, and

6. Expanding mandrel.
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CONTROLLABLE QUENCH-COOLING TECHNOLOGY

Controllable quenching technology is a relatively new research area for quenchants and

quench-cooling technology. It has been found that there are many ways to adjust the cool-

ing process, and computer programmed automatic control technology is a critically im-

portant element in controllable cooling process development. Fig. 18 provides a schematic

diagram of the cooling curve of surface, subsurface, and core of a large material section

upon quenching and its simulation results [60]. The comparison between conventional

quenching and controllable quenching is summarized in Table 2.

ENGINEERING DESIGN OF QUENCH-COOLING FACILITY—INTEGRATION,

INTELLECTUALIZATION, MATCHING, SERIALIZATION

Integration means that some features are grouped together rather than one device with

only a single function. Intelligence refers to making use of artificial intelligence and digital

technology so that the system has a sensitive response to operation parameters changes,

the effective judgment, adjustment, and implementation abilities during the quenching

work, as well as the data access. Matching must meet the cooling requirements of

the quenching process, in line with the production rhythm and productivity, and be able

to be embedded in standard or nonstandard heat treatment production line. Serialization

FIG. 18

Cooling curves at different

positions upon precooling and

controlled-loop cooling during

quenching.

TABLE 2
Comparison between traditional quenching and controlled quenching.

Item Conventional Controllable

Medium Water, oil, brine, salt bath Air, water

Cooling model Three stages Controlled fluid; controlled single-phase fluid; or controlled multiphase cooling

Operation Hand-working, Quenching chute;

Interrupted, Mechanical moving;

Agitation;

Computer simulation; Real-time measurement and control; Coolant selection; Multifactor

control-flow, pressure, cooling speed, flow mode; Specially designed quenching device

Stress Control Complex stress; Cracking Residual compressive stress; Cracking-free

Distortion Control Difficult to control, Rely on correction Using additional devices to control

Application Widely used Developing, currently subject to a certain limit
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refers to the plan of the main types, parameters, dimensions, and basic structure of

facilities based on the study of the development of quench-cooling technology and the

prediction of its development trend.

Fig. 19 shows a multipurpose quench-cooling system with high performance, low

energy consumption, and intelligent control [61] that is mainly used to quench disk

or shaft components. On the basis of computer simulation of the cooling process, through

programming control, it can realize accurately timed switching, complete combined

quenching in real time, meet the cooling intensity requirement of each stage of the quench-

ing process of specific parts, and control the degree of distortion within the permitted

range. Basic functions of the system include immersion cooling, spray cooling, water-mist

cooling, high-pressure air cooling, or a combination of some functions of these cooling

methods.

The engineering method holds that the most critical and unique task of an engineer is

to find, understand, and combine the limitations of actual conditions to achieve satisfac-

tory results. In many cases of heat treatment, the equipment is designed to meet not only

technical requirements but also other conditions, such as manufacturing conditions. In

this way, modern heat treatment engineers should not only understand the basic principles

and requirements of material heat treatment but also have extensive peripheral engineer-

ing experience in regards to material properties and sources required for equipment,

parameter testing and process control, physical or technical limitations, feasibility of future

improvements, and other factors, such as cost, availability, production effects, and

applicability.

Conclusions

In metal (steel) heat treatment, it is relatively easy to meet the physical metallurgical

requirements of the materials themselves, but the quench-cooling technology require-

ments for various non-equilibrium transformation products are the essence of modern

FIG. 19

Schematic diagram of a type of

multipurpose quenching

system.
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heat treatment engineering. It is practical to solve quench-cooling problems and to design

and develop systems required to meet the needs of advanced manufacturing industry by

conducting system research from pure model analysis to “engineering” applications.

Three-stage theory on vaporizable quenchants during immersion quenching is a pure

heat transfer model. TTT and CCT behaviors are physical metallurgical models. It is the

actual model to combine the heat transfer model with quenching effect or metallurgical

transformation model so that quench-cooling engineering can be achieved. Its core is

controlled quench-cooling technology.

At present, the controlled quench-cooling technology is still in the primary stage. The

corresponding basic theory has yet to be developed and improved, and numerical

simulation of a large number of basic data and industrial large data need to be contin-

uously supplemented. Digitally controlled quench-cooling technology is an important task

in the research of quench-cooling technology.

There is no “best” quenching medium in heat treatment, only the best cooling tech-

nology. But a good cooling technology without modern equipment as a guarantee isn’t

industrially practical. Only by deepening the collective understanding of the physical

metallurgy models and the “cooling engineering” concepts in metals heat treatment

and establishing the appropriate facility support can the consistency of the quality of heat

treatment products be achieved.

Finally, it is good to be aware of the damage that can be done to the practice by a too

liberal and often unnecessary use of hypothetical models and concepts and an overexploi-

tation of theoretical terminology [22].
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[36] Liščić, B, Tensi, H. M., and Luty, W., Theory and Technology of Quenching, Springer-
Verlag Berlin, Heidelberg, Germany, 1992, 484p.

[37] Totten, G. E., Luigi, L. M., Albano, L. L. M., and Lauralice, C. F. C., “Into the ‘Black
Hole’ of Heat Treating: Brine Quenching,” presented at the Fifth International
Conference on Heat Treatment and Surface Engineering in Asia, Hangzhou, China,
Nov. 12–14, 2016, Chinese Heat Treatment Society, Beijing, China, pp. 18–29.
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