
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

1-1-2011

Factoring Semiprimes Using PG2N Prime Graph Factoring Semiprimes Using PG2N Prime Graph

Multiagent Search Multiagent Search

Keith Eirik Wilson
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Wilson, Keith Eirik, "Factoring Semiprimes Using PG2N Prime Graph Multiagent Search" (2011).
Dissertations and Theses. Paper 219.
https://doi.org/10.15760/etd.219

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F219&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/219
https://doi.org/10.15760/etd.219
mailto:pdxscholar@pdx.edu

Factoring Semiprimes Using PG 2
N Prime Graph Multiagent Search

by

Keith Eirik Wilson

A thesis submitted in partial fulfillment of the

requirements for the degree of

Master of Science

in

Computer Science

Thesis Committee:

Bryant York, Chair

Bart Massey

Thomas Shrimpton

Portland State University

c©2011

Abstract

In this thesis a heuristic method for factoring semiprimes by multiagent

depth-limited search of PG 2
N graphs is presented. An analysis of PG 2

N graph

connectivity is used to generate heuristics for multiagent search. Further

analysis is presented including the requirements on choosing prime num-

bers to generate ’hard’ semiprimes; the lack of connectivity in PG 1
N graphs;

the counts of spanning trees inPG 2
N graphs; the upper bound of aPG 2

N graph

diameter and a conjecture on the frequency distribution of prime numbers

on Hamming distance.

We further demonstrated the feasibility of the HD2 breadth first search

of PG 2
N graphs for factoring small semiprimes. We presented the perfor-

mance of different multiagent search heuristics in PG 2
N graphs showing that

the heuristic of most connected seedpick outperforms least connected or

random connected seedpick heuristics on small PG 2
N graphs of size N ≤ 26.

The contribution of this small scale research was to develop heuristics for

seed selection that may extrapolate to larger values of N .

i

This Thesis is Dedicated to Paula Holm Jensen

ii

Acknowledgements

I would like to thank Dr. Bryant York, my adviser these past few years for his

patience and ability to clearly explain mathematical ideas.

I would also like to thank Dr. Bart Massey and Dr. Thomas Shrimpton for serving

on the thesis committee. Their enthusiasm and insightful comments brought a

focus to this work which I would not have found on my own.

In addition I’d like to acknowledge the contributions of the students who have

worked on this material with Dr. York over the years; Chandler York, Qing Yi,

Adam Ingram-Goble, Yan Chen and David Rosenbaum.

I am glad to have had the opportunity to carry this research a little further for-

ward.

I would also like to thank Paula Holm Jensen for her support and encouragement.

Others who have supported me in this work include Dr. William Black of Col-

orado State University for his help with statistical theory; Alan Bahm, Jamie Sharp,

Josh Triplett for their curiosity and questions about prime number graphs and

all my friends who have patiently listened to me talk about ’that prime number

thing’ over the past year.

iii

Table of Contents

Abstract i

Dedication ii

Acknowledgements iii

1 Introduction 1

1.1 Hamming distance (HD) . 2

1.2 Definitions . 4

1.2.1 Integer Graphs . 6

1.2.2 Prime Number Graphs . 6

1.2.3 Additional Notation and Summary Table 7

1.3 Previous Work on Prime Number Graphs and Factoring 8

1.4 Related Work . 9

1.4.1 Number Field Sieves . 9

1.4.2 Elliptic Curve Method . 10

1.4.3 Pollard rho method for factoring 12

1.4.4 Hamming Graphs . 12

2 Background 14

2.1 Prime Number Graphs . 14

iv

2.1.1 Connectivity in Prime Number Graphs 16

2.2 Spanning Trees in Prime Number Graphs. 20

2.3 York’s Conjecture . 24

2.4 Counting Prime Numbers: PNT-The Prime Number Theorem 25

2.5 On the Distribution of Prime Numbers based on Hamming distance 26

2.6 Upper Bound for PG 2
N Diameter . 29

2.7 Implications . 32

3 Search Methodology 34

3.1 The Basic Search Paradigm . 34

3.2 Complete Search . 36

3.3 Multiagent Depth Limited Search . 36

3.4 Feature Analysis for Development of Heuristics 38

3.4.1 PG 2
N Vertex Degree Frequency Analysis 38

3.4.2 Connectivity Analysis . 43

3.5 Heuristic Multiagent Search for Prime Factors 45

3.6 Preparation of Testcases for Experimentation 46

3.6.1 Analysis of Factored RSA Semiprimes 46

3.6.2 Analysis of Smartly Generated Small Challenge Numbers . . 48

3.6.3 Designing ’Hard’ Semiprimes for PG 2
N HD2∗ Search 50

v

4 Experimental Results 51

4.1 Independent Multiagent Limited Depth BFS 51

4.2 Results for Connectivity Heuristics 54

5 Conclusions 61

6 Future Work 62

6.1 Extrapolation . 62

6.2 Exploring Alternate Compute Architectures 63

6.3 Pruning . 64

7 References 65

Appendices 68

A Size of PG 2
N Graphs 69

B Rabin-Miller Algorithm 70

C Independent Limited BFS Results with Five Agents 71

D Heuristic Comparison Table Experiment Results 77

E Development Tree For Prime Graph Investigation 80

E.1 Source Code Management . 80

E.2 Development Tree - Goals . 80

vi

E.3 Grouping Source By Language Type, Not Task 80

E.4 Separating Data from Code . 80

E.5 Development Tree - Structure . 81

E.6 C/C++ Justification . 81

E.7 Python . 81

E.8 R . 81

E.9 C/C++ Status . 81

F Hardware 84

G Disk Resources 85

vii

List of Tables

1 Summary of Notation . 7

2 Smallest Isolated Prime in PG 1
N Graphs 16

3 PG 2
N Spanning Tree Counts . 21

4 PG 2
N Path Lengths to Factor 523 in Graph For S=523*541=282,943 . 21

5 Dub versus Actual PG 2
N Graph Diameter 31

6 PG 2
N Graph Node Degree Analysis . 38

7 Sample Connected Prime Numbers in PG 2
30 43

8 Smartly Generated Small Test Numbers 48

9 Selected Independent Limited BFS Results 53

10 Vertices in PG 2
N . 69

11 Independent Limited BFS Results with Five Agents 71

12 PG 2
N Random Pick Heuristic Sweep 77

13 PG 2
N Most Connected Heuristic Sweep 78

14 PG 2
N Least Pick Heurisitic Sweep . 79

viii

List of Figures

1 Three Dimensional Binary Hypercube[19] 3

2 Path in steps of HD = 1[19] . 3

3 Step of HD = 2[19] . 3

4 Step of HD = 3[19] . 3

5 PG 1
5 [19] . 15

6 PG 2
5 [19] . 15

7 Adjacency Matrix for PG 1
5 and PG 2

5 [19] 15

8 PG 1
N Average Component Size . 17

9 PG 1
N Statistics . 18

10 PG 1
N and PG 2

N Edgecount Statistics 19

11 PG 2
10 Spantree Starting at 3 . 22

12 PG 2
10 Spantree Starting at 171 . 23

13 Hamming Distance vs. Number of Primes 28

14 Histograms of Prime Numbers in
{

(2, 2N) | Nǫ [2, 16]
}

. 29

15 Hamming distance one connections. 30

16 Odd worst case longest path section (N=7). 30

17 Even worst case longest path section (N=8). 30

18 Exploring PG 2
N Graph Plies From Spantree Root At HD=0 33

19 Basic Algorithm for Prime Factoring 35

ix

20 Graph Node Degree Histogram For PG 2
30 40

21 Plot and Fit of Mean Graph Node Degree For PG 2
30 42

22 Analysis of Solved RSA Challenge Numbers[20] 47

23 Analysis of Smartly Generated Challenge Numbers[20] 49

24 Execution Time . 55

25 Depth of Search . 56

26 Percent of Vertices Searched for Successful Factoring 58

27 Percent of Vertices Searched Failed Factoring 60

28 Rabin-Miller Primality Test . 70

29 Directory Tree Structure for pgdev 82

x

1 Introduction

”God does not play dice with the universe, but something strange is go-

ing on with the prime numbers.” -Paul Erdős [16]

Counting is arguably one of the most enthusiastic and earliest mathematical ac-

tivities in human history. We count in music, in trade, in games asking how

many?–how long?–how far?–how often? And other questions too many to enu-

merate. The counts of things are represented by whole numbers, called inte-

gers. Someone, somewhere, started asking questions about counting and inte-

gers: how many?–how long?–how far?–how often? One of these questions about

the integers remains a puzzle to this day: Is there a pattern to the prime numbers?

Most integers are equal to some set of smaller integers multiplied together. We

call these smaller integers factors. Some integers are not the result of multiplying

any set of smaller integers. These integers are called prime numbers. As it turns

out, all integers that are not prime numbers can be found by multiplying together

two or more prime numbers. Each of these prime numbers is called a prime

factor of an integer. This discovery has a name called The Fundamental Theorem

of Arithmetic. (See Gauss [8, p.6])

In this thesis we will define and discuss two graph structures, integer graphs and

prime number graphs. These are graphs constructed by an adjacency relation

based on Hamming distance between the binary representation of the vertex

sets.

This thesis describes and discusses the performance of an algorithm for find-

ing the factors of integers comprising exactly two prime numbers. These in-

tegers are called semiprimes. The method used by this algorithm is computa-

1

tional graph search over prime number graphs. In this thesis we are concerned

with the problem of factoring semiprimes using multiagent parallel neighbor-

hood graph search. We present heuristics for choosing the start point or seed for

each neighborhood search; the connectivity analysis motivating these heuristics

and the experimental results using multiagent neighborhood search to find fac-

tors of semiprimes.

In the remainder of this section we will summarize the definitions and symbols

used throughout this work. In section 2 we cover the background ideas used in

this research; in section 3 the search methodology and the multiagent search al-

gorithms at the core of this thesis. In section 4 we describe our experimental re-

sults; in section 5 we present our conclusions and in section 6 our plan for future

work.

1.1 Hamming distance (HD)

Hamming distance[9] is a metric from information theory. The Hamming dis-

tance (HD) between two strings is the number of positions in which the bit strings

differ. It is a method to calculate how far one string is from another.

A geometric interpretation of Hamming distance can be seen in the example of

the binary hypercube. In Figure 1 each of the vertices is assigned a three digit

binary number. The numbers are assigned in such a way that each vertex is HD =

1, away from every adjacent vertex. Vertex 101 is HD=3 away from vertex 010.

A step of HD = 1 is equivalent to traversing an edge of the hypercube. A path

between 101 and 010, stepping by HD = 1 is shown in red in Figure 2.

2

•000

•001

•010
•100

•101

•
110

•011

•111

Figure 1: Three Dimensional Bi-
nary Hypercube[19]

•000

•001

•010
•100

•101

•
110

•011

•111

Figure 2: Path in steps of HD =
1[19]

•000

•001

•010
•100

•101

•
110

•011

•111

Figure 3: Step of HD = 2[19]

•000

•001

•010
•100

•101

•
110

•011

•111

Figure 4: Step of HD = 3[19]

However, if the step is HD = 2 then each step traverses a plane on the hypercube.

For instance traveling between 101 and 110, stepping by HD = 2 is shown in red

in Figure 3.

If a step is HD = 3 then each step traverses through the volume of the hypercube

as shown in Figure 3 between points 101 and 010.

In higher dimensions, similar arguments are made. Using a gray code, an n-digit

binary number is assigned to each vertex of an n-dimensional binary hypercube.

3

1.2 Definitions

A semiprime, S = p1p2, is a composite integer comprising two prime numbers

(p1 and p2) multiplied together.

There are several abbreviations regarding Hamming distance.

• HD refers to the concept of Hamming distance.

• HD1 refers to a Hamming distance = 1.

• HD2 refers to a Hamming distance = 2.

• HD2∗ refers to a Hamming distance≤ 2.

A more detailed discussion of Hamming distance appears in section 1.1.

A graph is a mathematical structure defined as an ordered pair G = (V,E) of

disjoint sets, V and E. Set V is the set of vertices or nodes in the graph and E is

the set of edges connecting vertices as unordered pairs from the set V × V .

In a graph each pair of connected vertices (a, b) can be either ordered or un-

ordered. In a directed graph each pair of vertices is ordered with an edge in the

direction from a to b. The edges between connected vertices in a graph are also

called arrows. In an undirected graph each pair of vertices is unordered, and the

edges have no direction.

A path in a graph is a sequence of vertices where each vertex has an edge con-

necting it to the next vertex in the sequence.

A complete graph is a graph in which every vertex is adjacent to every other vertex

in the graph — i.e. connected to every other vertex by a path of length 1. In

4

a connected graph there exists a path (not necessarily of length 1) from every

vertex to every other vertex in the graph. An unconnected graph is a graph which

is not connected — i.e. there exists at least one pair of vertices (v1 and v2) such

that there is no path (sequence of edges in the graph) connecting v1 and v2. A

connected component is a subset of the vertices and subset of the edges in a

graph that form a connected graph. The number of connected components in

an unconnected graph is at least two and is less than or equal to the number of

vertices in the graph.

The degree of a vertex in an undirected graph is the number of vertices to which

it is connected.

”On a graph G, the distance between two points is the length of a

shortest path joining them. If no points join them then the distance is

inf. For a connected graph, for all points u, v and w,

1. d(u, v) ≥ 0, with d(u, v) = 0 ⇐⇒ u = v

2. d(u, v) = d(v, u)

3. d(u, v) + d(v, w) = d(u, w)” (Harary [11])

The diameter d(G) of a connected graph G is the length of the longest shortest

path between two vertices.

In this thesis we use integer graphs, prime number graphs and associated nota-

tion developed by Dr. Bryant York[22]. They are defined here for reference.

5

1.2.1 Integer Graphs

ZGk
N denotes the graph formed by connecting every integer in the open interval

(2, 2N) with every other integer that is within Hamming distance k.

An integer graph ZG k
N is a graph:

ZG k
N = (V,E)

where:

k,N ∈ Z, k < N

V =
{

v | v ∈
(

2, 2N
)

, v ∈ Z
}

E = {(a, b) | a ∈ V, b ∈ V, 0 < Hamming distance(a, b) ≤ k}

Example: ZG 2
20 is the graph of integers on the interval (2, 220) connected

by a Hamming distance≤ 2.

1.2.2 Prime Number Graphs

PGk
N denotes the graph formed by connecting every prime number in the open

interval (2, 2N) with every other prime that is within Hamming distance k.

A prime number graph PG k
N is a graph:

PG k
N = (V,E)

where:

k,N ∈ Z, ; k < N

V =
{

v | v ∈
(

2, 2N
)

, v is prime.
}

E = {(a, b) | a ∈ V, b ∈ V, 0 < Hamming distance(a, b) ≤ k }

6

Example: PG 2
20 is the graph of prime numbers on the interval (2, 220)

connected by a Hamming distance≤ 2.

1.2.3 Additional Notation and Summary Table

The HD2∗ Corona is the first ply of prime numbers connected to a prime in a

PG 2
N graph. The Prime Index, i, is the index of the prime in the sequence of

prime numbers. For example, prime number 3 has index 1.

The probability of search success is γ (gamma) which is the result of searching

a PG k
N graph for a factor of a semiprime. Gamma is the number of successful

factor searches divided by the number of attempted factor searches.

Table 1: Summary of Notation

Symbol Definition

m Number of Agents
γ Probability of Search Success
S The Semiprime to be Factored
Scsq The Ceiling of the Square Root of S
Sfsq The Floor of the Square Root of S
N Number of Bits in Scsq: N = log2 Scsq

D(G) Graph Diameter
Dub PG 2

N Graph Diameter Upper Bound
Pi The Prime Number at Prime Index i
HD Hamming distance
HD2∗ Hamming distance≤ 2
ZG k

N Graph of Integers on the open interval
(

2, 2N
)

and HD = k
PG k

N Graph of Prime Numbers on the open interval
(

2, 2N
)

and HD = k

7

1.3 Previous Work on Prime Number Graphs and Factoring

Professor Bryant York has been researching prime number graphs for over a

decade. The people who have worked with Professor York and their contributions

are listed here in chronological order.

• The idea of HD Prime Number Graphs was invented by Professor Bryant
York in 1999 while homeschooling his son, Chandler York.

• The initial histograms of Hamming distances of all prime numbers in (2, 210)
from a given prime in (2, 210) were generated by Chandler York in an APL
program in 2000.

• In 2000 Professor York wrote the first HD BFS search in APL and factored
many small semiprimes (< 25 bits).

• In 2002 Professor York rewrote the HD BFS search in Lisp to take advantage
of bignums.

• In 2002 Qing Yi (a graduate student of Professor York) converted Professor
York’s HD BFS search code to C and verified the factoring of small
semiprimes (< 25 bits).

• In 2004 Adam Ingram-Goble (a graduate student of Professor York)
re-implemented Qing Yi’s C code in Java. He was unable to demonstrate
that this code factored small semiprimes successfully.

• In 2006 Yan Chen (while a graduate student at PSU) generated the first set of
small challenge numbers. Yan Chen rewrote Qing Yi’s C code using the gmp
library and also rewrote it in R. He verified that the technique factored small
semiprimes (< 25 bits). Yan Chen also suggested the use of Bloom filter as
the hashing mechanism and implemented it.

• In 2007 Yan Chen conducted the first analysis of RSA numbers in terms of
HD1 and HD2 coronas.

• In 2009 David Rosenbaum (while an undergraduate at PSU) implemented a
parallel HDBFS in lisp on the multiprocessor Sun Solaris machine, but did
not complete factoring experiments.

8

1.4 Related Work

Contemporary factoring techniques rely on analytic methods based on the math-

ematics of number theory. They are much more mature and effective than fac-

toring by graph search. Factoring by graph search has been introduced as a novel

method of factoring which with further research may become useful as a factor-

ing method or provide insights into the PG k
N graph family.

Two contemporary methods of factoring are considered sub-exponential meth-

ods (graph search is an exponential method). Examples of the first methods are

the Quadratic Sieve (QS) and Number Field Sieves (NFS) [18][6] methods. The

second is the Elliptic Curve Method [14]. In addition to these sub-exponential

methods there are Monte Carlo methods such as the Pollard rho method[17] for

factoring.

1.4.1 Number Field Sieves

One way to find a prime factor of an integer n, is to divide n by all the prime

numbers less than the square root of n. Now the problem is to find all these prime

numbers. Sieving is one way to do this. For example, the sieve of Eratosthenes is a

method of finding primes starting from the prime number 2. First ’write down’ all

the integers from 2 to some maximum integer (such as less than the square root

of n). Then circle 2 and cross off all the multiples of 2 (4, 6, 8 and so on). Then

circle the first unmarked number, 3, and cross off all the multiples of 3. Find

the next unmarked number, circle it and cross off all of its multiples. Continue

until there are no more unmarked numbers. The circled numbers are the prime

numbers.

9

This could be a lengthy procedure if n is a very large integer. We may have to

check all the prime numbers less than the square root of n. What if we only

needed to check some subset of these prime numbers, some subset less than Y?

An integer is called Y-smooth if it is a multiple of prime numbers less than some

number Y.

Sieving methods such as the Quadratic Sieve and Number Field Sieves begin by

trying to find a value for Y that is as small as possible and significantly less than

the square root of a number n to reduce the number of candidates to test as a

factor. Other techniques are applied to further reduce the size of the set of factors

less than Y. An analogy for sieving is to imagine we are pushing the integers less

than the square root of n through finer and finer sieves until relatively few prime

numbers remain for trial division of n.

For a discussion of sieving methods methods please see Crandall and Pomerance

[6, p261] and Pomerance [18].

1.4.2 Elliptic Curve Method

Another way to factor an integer is to use the Elliptic Curve Method (ECM).

[10] [23]

”The Lenstra elliptic curve factorization (Lenstra [14]) or the elliptic curve fac-

torization method (ECM) is a fast, sub-exponential running time algorithm for

integer factorization which employs elliptic curves. For general purpose factor-

ing, ECM is the third-fastest known factoring method. The second fastest is the

multiple polynomial quadratic sieve and the fastest is the general number field

sieve. It is named after Hendrik Lenstra.” [21]

10

The elliptic curve method works using the following basic idea. For a given prime

number p and the set of integers modulo p, define a field (Fp) with addition and

multiplication defined modulo p. An elliptic curve E over Fp is defined by an

equation of the form y2 = x3 + ax+ b, where a, b ∈ Fp satisfy

4a3 + 27b2 6= 0 (mod p). A pair (x, y) where x, y ∈ Fp is a point on the curve where

(x, y) satisfies the equation y2 = x3 + ax + b. The point at infinity,∞, is also said

to be on the curve. The set of all points on E is denoted by E(Fp) and they form

an additive Abelian group with a suitable addition defined, with∞ serving as the

identity element.

Lenstra elliptic curve factorization (to factor an integer n) works by picking a ran-

dom elliptic curve over Z/nZ of the form y2 = x3 + ax + b (mod n); then picking

a non-trivial point P = (x, y) on the curve with random non-zero coordinates.

Next, pick a random non-zero a (mod n) and compute b = y2 − x3 − ax (mod n).

The next step of the algorithm is to compute certain k multiples of P using the

elliptic curve group addition rule. The formulas for the group addition of two

points P and Q on the elliptic curve effectively encode the ”slope” of the line

joining P and Q and thus involve division between residue classes modulo n.

This division is implemented by an extended Euclidean algorithm for the great-

est common divisor computation. If the result is a slope of the form u
v

where

gcd(u, n) = 1 and v = 0 (mod n), this means that the result of addition is the point

at infinity and thus the elliptic curve is not a group (mod n). More importantly,

gcd(v, n) is a non-trivial factor of n. [23]

This algorithm basically works by trying random elliptic curves and starting points

until the above condition is met.

ECM differs in complexity from Number Field Sieves in that the complexity is

11

related primarily to the size of the least prime factor of the number we are at-

tempting to factor, and only weakly on the size of the number itself [6, p335]. For

further explanation please see Hankerson et al. [10] or Crandall and Pomerance

[6].

1.4.3 Pollard rho method for factoring

There are also ”heuristic methods using deterministic sequences”[6][17] where a

random function f is created from a set S → S. A sequence is created by iterating

the function a number of times. Since the setS is finite, a repetition or cycle in the

sequence eventually appears, even if the initial seed of the function is random.

Choice of the function and length of the iteration aims to create a sequence that

reveals a non-trivial factor of some number n. Again, Crandall and Pomerance [6,

p229] has an excellent discussion of these types of Monte Carlo methods.

1.4.4 Hamming Graphs

The author conducted an extensive literature search and was unable to find ref-

erence to the graph structures for PG k
N or ZG k

N presented herein.

The nearest idea was that of Hamming graphs as defined in Jamison and Matthews

[13]. The authors define Hamming graphs as ”Cartesian powers of complete

graphs.” Their notation is to ”...let H(q, n) denote the n-fold Cartesian product of

a complete graph Kq with itself...H(q, n) is an n-tuple whose entries come from

a fixed set of q symbols-the vertices of Kq. Two words are adjacent if and only if

they differ in exactly one place.”

The author has extended the idea to integer Hamming graphs, similar to H(2, n)

12

in the notation of Jamison and Matthews [13]. The distinction between H(2, n)

graphs and ZG k
N is that ZG k

N graphs are not complete as is required of H(2, n)

graphs. The author adopted the notation, ZG k
N , for the family of integer graphs

with adjacency relation HD ≤ k for consistency with Professor York’s PG k
N nota-

tion.

13

2 Background

This section presents some background ideas for multiagent prime number graph

search. Several topics are covered including a deeper discussion of prime graphs

with examples; a discussion of spanning trees in graphs and why they are impor-

tant in this work; a discussion of the Prime Number Theorem and how we will

apply it; a conjecture on the frequency distribution of prime numbers by Ham-

ming distance, a conjecture on the connectivity of PG 2
N graphs and a proof of the

upper bound of the diameter of PG 2
N graphs.

2.1 Prime Number Graphs

Every PG 2
N graph is non-empty and unique due to Bertrand’s postulate[7]1 which

states that if n is an integer, n > 3, then there always exists at least one prime

number p, n < p < 2n− 2. Since each prime number graph adds prime numbers

from an interval (2N , 2N+1) and (2N − 2 −N) < (2N+1 − 2N) at least one prime is

added to each successive PG 2
N graph.

Figures 5 and 6 are examples of PG 1
5 and PG 2

5 [24]

All PG 1
N graphs are subgraphs of PG 2

N graphs. The qualitative difference is that

PG 2
N graphs have many more edges. Figure 7[24] shows the adjacency matrices

for the PG 1
5 and PG 2

5 graphs as an example.

1Proven by Chebyshev as the Bertrand-Chebyshev theorem in 1850 and by Ramanujan in 1919.

14

Figure 5: PG 1
5 [19] Figure 6: PG 2

5 [19]

Figure 7: Adjacency Matrix for PG 1
5 and PG 2

5 [19]

15

2.1.1 Connectivity in Prime Number Graphs

PG 1
N graphs may have isolated nodes. The first non-trivial2 unconnected PG 1

N

graph is PG 1
7 which contains an isolated vertex representing prime 127.3

N Smallest Isolated Prime

2 3 (trivial)
3 -
4 -
5 -
6 -
7 127
8 127
9 173
10 173
11 173
12 251
13 251
14 373
15 373

Table 2: Smallest Isolated Prime in PG 1
N Graphs

An unconnected graph is a graph with more than one connected component. An

unconnected graph may have components numbering from two to the number

of vertices in the graph, each component containing one vertex to the number of

vertices in the graph minus one or |V | − 1.

2PG k
2

graphs contain only one vertex and are in a sense trivially unconnected.
3Prime curio: 127 is also a Mersenne prime of the form 2N − 1

16

As an example, the figure 8 [24] shows the average size of the connected com-

ponents of PG 1
N graphs as N increases. It appears that the average size of an

component in a PG 1
N graph may be converging to a number near 6.6 as N gets

large. While this plot is introduced here an empirical observation about PG 1
N

graphs there are no hypotheses about why it has the shape that it does. This is an

area for future research.

Figure 8: PG 1
N Average Component Size

Figure 9 [24] shows statistics for PG 1
N graphs. The column ’Bits’ represents the

number of bits in the binary representation N . Also shown are the number of ver-

tices in each graph size, the number of edges, the number of graph components,

the maximum and minimum component size and the average component size

plotted above. Through N = 6 the number of graph components remains con-

stant at one, that in this range the graphs are connected. After N = 6 the number

of graph components increases for every increase in N . An implication from this

17

trend is that we don’t expect the PG 1
N graphs to begin to become connected at

N > 23. The only way to show this trend continues for all N is to find an analytic

proof, which is a area for future research. Another implication is that if we wish

to search this graph for a prime factor, beginning from one vertex represented by

a prime number and following a path through an PG 1
N graph, we would only be

able to reach vertices (prime numbers) in the component where we started. What

we would like is to have a connected graph of prime numbers, so we could search

from a vertex to any other vertex in a connected prime number graph, something

that isn’t possible for PG 1
N graphs.

Figure 9: PG 1
N Statistics

PG 2
N graphs are more richly connected. We investigated by exhaustive enumera-

18

tion graphs up to size PG 2
27 and found no graph to have isolated vertices. Figure

10 [24] shows comparison of the relative connectedness ofPG 1
N andPG 2

N graphs.

For example PG 2
20 has an order of magnitude more edges than PG 1

20 . Is it pos-

sible that the PG 2
N graphs are connected graphs? The idea that PG 2

N graph are

connected is one we will address after we introduce spanning trees.

Figure 10: PG 1
N and PG 2

N Edgecount Statistics

19

2.2 Spanning Trees in Prime Number Graphs.

A tree is a special graph in which every two vertices are connected by exactly

one simple path between them.[11] A path is simple when there are no repeated

vertices on the path.

A spanning tree t(G) of a graph G is a tree that contains all the vertices in G and

therefore has |E| = |V | − 1. In other words the edges of a spanning tree are a

subset of the edges of the graph that connect all the vertices. There can be many

spanning trees in a graph.

Connected graphs always have at least one spanning tree. Breadth first search

(BFS) from any vertex in a spanning tree in a connected graph is complete, in

that the search will visit every vertex in the graph. If the search visits every vertex

in a PG 2
N graph containing all the factors of a semiprime S, then a factor of S will

be found. This algorithm for searching a prime number graph is guaranteed to

visit every prime in the graph.

The growth in the number of spanning trees inPG 2
N graphs, by Kirchhoff’s Matrix-

Tree Theorem [11] are shown in Table 3. 4

In Figure 11, the graph for PG 2
10 is shown as an adjacency matrix. The prime

numbers are indexed from 1 to 171, as there are 171 prime numbers in (2, 210).

Each ’△’ represents a connection between two prime numbers. Each ’∗’ is a edge

of the spanning tree starting at Pi = 1. In Figure 12, the spanning tree begins

at Pi = 171. These examples show that starting from a different root vertex, it is

possible to find a different spanning tree.

4The PG 2

N
graphs are not complete graphs so we may not use Cayley’s formula[3]: |t(G)| =

|V ||V |−2

20

Table 3: PG 2
N Spanning Tree Counts

N Number of Spanning Trees Vertices in PG 2
N

3 3 3

4 45 5

5 132775 10

6 6.46E12 17

7 6.02E26 30

8 6.85E53 53

9 4.58E104 96

10 4.58E196 171

Table 4 shows the path length through the graph starting from either P1 or P171.

If we were to search this graph for a factor of a semiprime, where would we want

to begin a search for a factor in this case? Starting a search from P1 results in a

shorter path length which is less work. We will address searching a graph for a

factor further in Section 3.

Table 4: PG 2
N Path Lengths to Factor 523 in Graph For S=523*541=282,943

Root Pi Factor HD Path Length

3 1 523 2 1

1021 171 523 7 4

21

Figure 11: PG 2
10 Spantree Starting at 3

22

Figure 12: PG 2
10 Spantree Starting at 171

23

2.3 York’s Conjecture

York’s Conjecture: PG 2
N graphs are connected.

Dr. Bryant York has conjectured[24] that PG 2
N graphs are connected (See Section

1.2) for all N ≥ 2. One implication of this is that a complete spanning tree search

of a PG 2
N graph is guaranteed to find a factor of a semiprime of size 2N bits.

More formally this conjecture is that the set of prime numbers P on the open in-

terval (2, 2N), N ≥ 2 form a connected graph PG 2
N where adjacency is determined

by the relation Hamming Distance ≤ 2 when the prime numbers are represented

in base 2.

24

2.4 Counting Prime Numbers: PNT-The Prime Number Theorem

The exact count of prime numbers less than some integer x is called the prime

counting function π(x). The Prime Number Theorem [12] shows that the com-

plexity of π(x) is O(ln(x)). [7]

π(x) ∼ x

ln(x)
(1)

In the limit this is the exact count of prime numbers:

lim
x→∞

π(x)
x

ln(x)

= 1 (2)

Thus, π(2N) − 1 gives us the number of prime numbers in the interval (2, 2N)

which are the number of vertices, |V |, in a PG 2
N graph. We will need to approxi-

mate the number of vertices in PG 2
N in order to develop graph search algorithms

for very large N . Using the Prime Number Theorem, the approximate number of

vertices, |V |, in a PG 2
N graph is:

|V | ∼ 2N

ln (2N)
∼ 2N

N
(3)

Equation 3 shows the growth in the size of PG 2
N graphs is O(2N).

25

2.5 On the Distribution of Prime Numbers based on Hamming distance

An integer is binomially distributed from the other integers in a range [0, 2N) by

Hamming distance.

Let N ∈ Z
+ represent the string length of the binary representation of an integer.

The count of integers from HD = 0 to HD = N from a given integer on the

interval [0, 2N) follows the following binomial sequence:

{(

N

0

)

,

(

N

1

)

,

(

N

2

)

, . . . ,

(

N

N − 1

)

,

(

N

N

)}

This median of the distribution is near ⌈N
2
⌉, since the largest binomial term in the

sequence is
(

N

⌈N

2
⌉

)

.

If we define an event, zk, as the event where we choose an integer HD = k away

from some reference integer (e.g. the N-bit integer represented by all 1s in base

2), the probability of zk such that
∑N

0 zi = 1, is:

zk =

(

N

k

)

2N
, k ∈ [0, N] (4)

As an example, consider the case of ZG 2
N graphs. These comprise all the integers

on the range (2, 2N). The probability of picking an integer in ZG 2
N , HD ≤ 4 from

some reference integer (e.g. the N-bit integer which is all 1s described above) is:

z4 ∼
(

N
4

)

2N
, N ≥ 4

This is the approximate probability because ZG 2
N graphs do not include the inte-

gers 0,1 or 2, but the error of this approximation decreases as N gets large.

26

Conjecture: The prime numbers, P+ ⊂ Z+, are a uniformly scaled distribution

of the integer binomial distribution by Hamming distance on the interval (2, 2N),

from a given prime number. There are π(2N) prime numbers numbers in the same

range.

This conjecture implies a scaled version of Equation 4.

If we define an event, pk, as the event where we choose an prime HD = k away

from some reference prime (e.g. the prime number 3 in N-bits), the probability

of pk such that
∑N

0 pi = 1 is:

pk ∼
(

N

k

)

π(2N)
, k ∈ [0, N] (5)

As an example, consider the case of PG 2
N graphs. These comprise all the prime

numbers on the range (2, 2N). The probability of picking a prime inPG 2
N , HD ≤ 4

from some reference prime (e.g. the prime number 3 in N-bits) is:

p4 ∼
(

N
4

)

π(2N)
, N ≥ 4

This median of the distribution is near ⌈N
2
⌉, the same as the median for the inte-

ger binomial distribution. This follows from our conjecture that the prime num-

bers are a uniformly scaled version of the integer binomial distribution.

Figure 13 shows how prime numbers are distributed based on Hamming distance

from one prime, P . For a given prime P , there is one prime HD = 0 from P , the

prime itself. At HD = N , with N the number of bits in the binary representa-

tion, there is no prime, which is the one’s complement of the number P , an even

number. The largest concentration of prime numbers lies in the blue shaded area

centered around ⌈N
2
⌉.

27

•
0

P

⌈N
2
⌉

N

No Primes At HD = N
Ones Complement

• HD

Count

Figure 13: Hamming Distance vs. Number of Primes

If S = p1p2 is an N-bit semiprime, ⌈
√
S⌉ represents the approximate center of

the conjectured binomial distribution of prime numbers in the interval (2, 2N).

One factor will be less than ⌈
√
S⌉ and one will be greater.5 Since we are choosing

prime numbers from this distribution at random Hamming distances, we can

use a normal approximation to this conjectured binomial distribution. If we use a

normal approximation to this binomial distribution, approximately 68% of prime

numbers are within one standard deviation (σ) of the center of the distribution.

In Figure 14 we show the surface created from the actual HD histograms of each

of the 6541 prime numbers on the interval (2, 216) from every other prime number

in (2, 216). The surface appears visually to be approximating a normal distribution

which empirically supports the conjecture that the prime numbers are a scaled

binomial distribution by Hamming distance on the integers.

5The degenerate cases of semiprimes that are perfect squares are excepted.

28

Figure 14: Histograms of Prime Numbers in
{

(2, 2N) | Nǫ [2, 16]
}

2.6 Upper Bound for PG 2
N Diameter

When searching a graph, it is useful to know the diameter of the graph in order

to know the maximum number of plies to expand. Expanding plies beyond the

diameter of the graph requires redundant work.

Every two prime numbers connected to a third prime by HD = 1 are connected

by HD = 2. This connectivity rule is not true in the general case.

As can be seen in Figure 15, every pair of HD = 1 adjacent vertices is equivalent

to one HD = 2 hop.

29

a b c d e f

2

1 1 1 1 1

Figure 15: Hamming distance one connections.

Not all prime number graphs are HD1 connected as shown in section 1.2.2 and

in Table 2. For example, PG 1
8 is not HD1 connected because prime 127 is not

connected to any prime in PG 1
8 by HD1.

Assuming PG 2
N graphs are connected, our argument for the upper bound on di-

ameter is as follows. Some vertices in the graph are not connected by HD = 1.

The worst case odd length path appears in Figure 16. The worst case even length

path appears in Figure 17. Note in the example b and c are connected by HD = 1,

and a and b are connected by HD = 3, which is outside the adjacency condition.

In this case, the only path available is the HD = 2 path on a and c. A longest

shortest path—the graph diameter—would alternate between HD = 2 hops and

HD = 1 hops.

a b c d e f g

2

1

13

2

1 1

Figure 16: Odd worst case longest path section (N=7).

a b c d e f g h
1

2

1

13

2

1 1

Figure 17: Even worst case longest path section (N=8).

30

Since all prime numbers in the graph are odd numbers (the prime ’2’ is not a

member of the PG k
N interval) the least significant bit must be ’1’ and inverting

this bit would create an even number which is not in anyPG 2
N graph. This implies

that in PG 2
N graphs the maximum Hamming distance between any two vertices

(prime numbers) is N − 1.

An upper bound on the graph diameter would be a path with the maximum pos-

sible number of HD = 2 hops (edges) in N − 1 plus the number of HD = 1 hops.

This leads to the following formula for the PG 2
N graph diameter upper

bound Dub :

Dub = ⌈
N

2
⌉+ ((N + 1) mod 2) (6)

Some typical values are:

N Dub Actual D(PG 2
N)

5 3 2
6 4 3
7 4 3
8 5 3
9 5 4
10 6 5
11 6 6
12 7 7
13 7 7
14 8 7
15 8 7

Table 5: Dub versus Actual PG 2
N Graph Diameter

31

2.7 Implications

In multiagent search we start multiple agents in different neighborhoods of a

PG 2
N graph by starting each agent at the root of separate spanning trees. Each

spanning tree root represents the HD = 0 point of a distribution from the span-

ning tree root to one of two factors. As each neighborhood search explores plies

from the spantree root, it increases the probability of finding prime numbers (See

Figure 18). Each agent only searches this distribution to a limited depth before

beginning a new search in a different neighborhood of the graph from a different

spantree root.

This neighborhood search method may represent a viable way to scale prime fac-

tor search to large PG 2
N graphs without incurring the resource costs of complete

search. The reason for this is the size of the PG 2
N graphs grow exponentially in N

and searching the entire distribution would be equivalent to visiting every vertex

in the graph. Because different spantree root vertices are at different path lengths

in the graph from a factor, starting a search in a new graph neighborhood after

an unsuccessful limited depth search in the current graph neighborhood may re-

veal a path to a factor within the search depth from the new spantree root. This

process can be repeated over many agents and many starting vertices, up to the

number of vertices in a PG 2
N graph. We have already shown the number of span-

ning trees in a PG 2
N graph is equal to or larger than the number of vertices in a

PG 2
N graph (See Table 3).

If the PG 2
N graphs are connected, then theoretically complete BFS search will

succeed in factoring a semiprime given enough resource (just as in sieving). The

issue is how much resource (space and time) will be required. Prime graph mul-

tiagent limited depth search offers the possibility of substituting neighborhood

32

•
0

Spantree Root

plies+
P

⌈N
2
⌉

N
• HD

Count

Figure 18: Exploring PG 2
N Graph Plies From Spantree Root At HD=0

search (or many parallel neighborhood searches) for global search. The critical

issue is to determine if there are heuristic methods for identifying seed locations

(spanning tree roots) for neighborhood search that increase the probability of

success based on features of the prime number graphs.

In the next section we will discuss the details of our search methodology.

33

3 Search Methodology

3.1 The Basic Search Paradigm

For our prime number graph search we follow a basic generate-and-test

paradigm. Starting from the binary representation of a given prime we generate

all of the integers which are adjacent to the given prime by HD2∗. The test com-

ponent requires that we apply a primality test to each of these candidates. In our

case we use the Rabin-Miller[5][6] algorithm. Rabin-Miller is known to produce

false positives with some probability. However, our search is robust enough to

tolerate this type of redundancy. The search algorithm builds a BFS tree from

the candidates. Non-prime numbers are eliminated from the candidate list by

the Rabin-Miller test. The time complexity of Rabin-Miller is O(k log3 n) where

k is the number of trials and n is the size of the integer under test. The accu-

racy of the test increases with the number of trials k. The deterministic primality

test referred to as AKS [1], has complexity of AKS is approximately O(log6(n))(See

Lenstra [15]). This is slower than Rabin-Miller. Further information on the Rabin-

Miller algorithm is in Appendix B.

In Figure 19 we give the sequential version of the basic algorithm. This is a basic

BFS search modified for prime number graph search where the initial search be-

gins near the ⌈
√
S⌉. This approach does not scale to large N so we have decided

to pursue parallel search techniques in the development of our algorithm.

34

INPUT: S a semiprime:
primeFound← FALSE
frontierQueue← EMPTY
Scsq = ⌈

√
S⌉

if isProbablePrime(Scsq) then
if S modulo Scsq = 0 then
factora← Scsq

factorb← S
factora

primeFound← TRUE
end if

end if
if primeFound = FALSE then
N = log2(Scsq)
seedList = {Pi | log2(Pi) ≤ N, Pi is ProbablePrime,HD(Scsq, Pi) ≤ 2}

push(frontierQueue, seedList)
repeat
nut = dequeue(frontierQueue)
if NOT visited(nut) then

if S modulo nut = 0 then
factora← nut
factorb← S

factora

primeFound← TRUE
else
nextGen = {Pi | log2(Pi) ≤ N, Pi is Prime,HD(nut, Pi) ≤ 2}
push(frontierQueue, nextGen)

end if
end if

until primeFound OR isEmpty(frontierQueue)
end if
Exit

Figure 19: Basic Algorithm for Prime Factoring

35

3.2 Complete Search

Complete search of a connected graph is a search that visits every vertex in the

graph. Complete searches of PG 2
N graphs will find factors of a semiprime, assum-

ing the graphs are connected. As has been shown however (See Equation 3, the

size of the PG 2
N graphs grows exponentially with N . The goal of this thesis is to

present an algorithm that may not depend on visiting every vertex in a graph or

even a majority of the vertices in a PG 2
N graph to reveal a factor of a semiprime.

Because the complete sequential search approach does not scale to large N , we

chose to investigate a parallel heuristic search approach, Multiagent Depth Lim-

ited Search.

3.3 Multiagent Depth Limited Search

Multiagent search begins multiple searches in parallel at different start vertices,

each searching to a limited depth, choosing a new start or seed vertex and search-

ing again, until a prime factor is found or some search limit has been reached.

Members of each new ply of the graph search are distributed throughout the dec-

imal space (2, 2N). Each agent would have a maximum search depth less than or

equal to the diameter of the graph (See Section 2.6). A BFS depth limited search

with search depth equal to the diameter of the graph and perfect cycle checking

would be equivalent to a complete search.

Using a multiagent BFS depth limited search (parallel neighborhood searches)

may alleviate the memory costs associated with large frontier queues and visited

lists. By searching to a limited depth in one neighborhood of the graph, then

starting a new search in another neighborhood of the graph, the size of the fron-

36

tier queues are limited proportional to |V | in the graph neighborhood.6 The min-

imization of resource usage using multiagent search may allow the algorithm to

scale to a large numbers of agents in order to explore prime number graphs on

the order of PG 2
64 or larger.

The implication of multiagent search is that each agent searches a tail of the dis-

tribution of prime numbers by Hamming distance in the PG 2
N graph. Each new

seed is the root of a specific spanning tree and will search only some depth across

the distribution from HD = 0 (the root) to HD = search depth. The larger the

search depth, the more prime numbers will be searched in a spanning tree asso-

ciated with the root vertex and the greater the resources will be needed in terms

of time and memory (space).

In addition, an implementation may choose to have the different concurrent

agents share information about vertices that have already been searched. This

would reduce redundant search efforts as the search neighborhood of each agent

may overlap.

Choosing the start points or seeds of search wisely may increase our chances of

beginning a search at the root of a spanning tree close to a factor of a semiprime

or to find adjacent prime numbers more quickly. In this thesis we will explore

the idea of choosing seeds based on the connectivity of a vertex in a graph as an

adjunctive part of our multiagent prime number graph search algorithm.

The next section discusses the analysis of graph vertex degrees for PG 2
N graphs

and presents the connectivity features which inspired our connectivity based

heuristics.

6 The number of vertices searched |V | is equal to bd where d is the depth and b is the branching
factor.

37

3.4 Feature Analysis for Development of Heuristics

3.4.1 PG 2
N Vertex Degree Frequency Analysis

Each vertex in a PG 2
N graph has an associated vertex degree.7

As an experiment, the degree of each vertex of PG 2
N graphs from N = 3 to N = 34

was counted. This is possible because we are able to enumerate every prime in

each of these graphs. The results are in Table 6. This table shows that the average

degree of a vertex is increasing over N . We will use tables like this, on prime

number graph sizes we can realize, to build a basis for extrapolation to prime

number graph sizes where we cannot physically enumerate every vertex.

Table 6: PG 2
N Graph Node Degree Analysis

N mean median std. min max (N+1)/(2ln2)

3 2.0 2.0 0.0 2 2 2.89
4 3.2 3.0 0.4 3 4 3.61
5 5.8 6.0 0.75 5 7 4.33
6 7.53 7.0 1.19 5 9 5.05
7 9.8 10.0 2.14 5 14 5.77
8 12.42 12.0 3.01 5 18 6.49
9 14.08 14.0 3.12 6 21 7.21
10 15.77 16.0 3.54 6 23 7.93
11 17.45 17.0 4.21 6 28 8.66
12 18.94 19.0 4.74 3 33 9.38
13 20.71 21.0 4.98 4 38 10.1
14 22.39 22.0 5.21 6 40 10.82
15 23.97 24.0 5.58 6 44 11.54
16 25.69 26.0 5.96 7 48 12.26
17 27.45 27.0 6.16 6 56 12.98
18 29.06 29.0 6.41 5 58 13.71

Continued on next page. . .

7See section 1.2.

38

Table 6 – continued

N mean median std. minbin maxbin (N+1)/(2ln2)

19 30.74 31.0 6.65 2 63 14.43
20 32.45 32.0 6.94 2 65 15.15
21 34.09 34.0 7.18 4 69 15.87
22 35.77 36.0 7.41 5 75 16.59
23 37.45 37.0 7.64 4 79 17.31
24 39.1 39.0 7.85 6 84 18.03
25 40.76 41.0 8.04 6 90 18.76
26 42.45 42.0 8.25 3 96 19.48
27 44.13 44.0 8.45 3 102 20.2
28 45.81 46.0 8.64 4 103 20.92
29 47.48 47.0 8.83 4 106 21.64
30 49.17 49.0 9.02 3 111 22.36
31 50.83 51.0 9.19 3 118 23.08
32 52.53 52.0 9.38 4 119 23.8
33 54.18 54.0 9.55 4 122 24.53
34 55.82 56.0 9.72 4 126 25.25

End

A histogram of the vertex degrees for PG 2
30 is plotted in Figure 20.

39

Figure 20: Graph Node Degree Histogram For PG 2
30

4
0

The average degree of a vertex in a PG 2
N graph from N = 3 to N = 30 is plotted in

Figure 21. A least squares linear fit to this data returns a function to be used in ex-

trapolation to the average vertex degree for PG 2
N for larger graphs. This equation

in N is:

average degree = 1.726 ∗N − 2.209 (7)

We are developing this algorithm as a basis for extrapolation. By removing the

data for N = 31 to N = 34 from the curve fit data we will be able to test our

extrapolation methods based on data for N ≤ 30 and measure our extrapolated

performance on PG 2
N graphs from N = 31 to N = 34. Without this ’reserve data’

we would not be able to test how well our ideas for extrapolation perform. This

thesis presents a basis for this future extrapolation work. 8

The average vertex degree information will allow us to create heuristics for seed

or start point selection in multiagent neighborhood search beyond the size of

PG 2
N graphs we can enumerate. The question that we will be asking is whether

starting a neighborhood search with vertices that have higher than average con-

nections will lead to a shorter path than those with less than average connections.

8This is similar to the technique in adaptive systems of having both a training set and a test set
before extrapolating to intractably large data sets.

41

5 10 15 20 25 30
−1.5

−1

−0.5

0

0.5

1

1.5
residuals

5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45

50

N

de
gr

ee

mean degree for node in pg2n

y = 1.726*x − 2.209 data 2

 linear

Figure 21: Plot and Fit of Mean Graph Node Degree For PG 2
30

4
2

3.4.2 Connectivity Analysis

In Table 7 are shown samples of the vertex degrees for sample vertices in PG 2
30 .

Which of these prime numbers is a better choice for the start of a neighborhood

search? This differential between the most and least connected seeds is the ba-

sis of most connected, least connected and random connected seed pick heuristics

described in the next section. The most connected vertex in PG 2
30 has 111 neigh-

bors, while the least connected vertex has only 3 neighbors. The difference in

vertex degree between the most connected and least connected vertices is com-

pelling because it may indicate there exist densely connected regions of the graph

and sparsely connected regions of the graph.

Table 7: Sample Connected Prime Numbers in PG 2
30

Degree Prime Index Prime

111 723 5479
109 658 4933
108 8370 86113

...
...

...
5 37027930 715795123
4 19631044 366302549
3 37029520 715827883

How many prime numbers would we expect to find if we chose integers from at

random from an interval (2, 2N)?

The number of integers connected to a node in a ZG 2
N graph is:

|W | = N +

(

N

2

)

=
N(N + 1)

2

The probability of randomly selecting a prime number, pr(P) from a set of inte-

gers on the interval [0, 2N] is:

43

pr(P) ∼ π(2N)

2N

If a set of the same size as |W | of integers above were chosen randomly, the ex-

pected number of prime numbers in the set would be:

pr(P)× |W | =
π(2N)
ln 2N ×N(N + 1)

2N+1

Note, from the prime number theorem,

π(x) ∼ x

ln(x)

Using this approximation:

π(2N) ∼ 2N

ln 2N
=

2N

N ln 2

pr(P)× |W | ∼ 2N(N + 1)

2N+1 ln 2
=

N + 1

2 ln 2
∼ N

2

Table 6 shows the observation that the average degree of a node in a PG 2
N graph

is significantly larger than this number, the result of choosing integers randomly.

This observation implies that PG 2
N graphs are highly connected and supports the

idea of using a search heuristic which is a function of the degree of a node in a

PG 2
N graph.

44

3.5 Heuristic Multiagent Search for Prime Factors

Search heuristics for multiagent search are concerned with choosing the seeds

for each depth limited search. The goal of these heuristics is to minimize the

path length to a factor, from the start vertex of a search.

Table 6, lists the results of an analysis of the graph vertex degree of the vertices in

PG 2
N graphs. The higher the degree of a vertex the greater the connectivity of the

vertex in the graph. Creating seed selection heuristics based on connectivity is a

direct result of this analysis. Since this analysis is limited to PG 2
N graphs where

all the prime numbers are known, techniques for extrapolation of vertex degree

are necessary when N is too large to calculate the degree of every vertex in the

graph. In the case where the graph is too large these heuristics would have to base

their selection criteria on the extrapolated average connectivity and choose seeds

based on whether they were larger or smaller then the averages. The linear curve

fit from Equation 7 and Figure 21 could be used to accomplish this extrapolation.

Most Connected

In the most connected heuristic, vertices are chosen as seeds beginning with the

most connected, or highest vertex degree. The hypothesis here is that the more

connected vertices would search more prime numbers in a single ply, and reduce

the depth of plies to search for a factor.

Least Connected

In the least connected heuristic, vertices are chosen as seeds beginning with the

least connected, or least vertex degree. The hypothesis here is that the least

connected prime numbers would search more sparsely connected regions of the

graph, increasing the chance of investigating prime numbers not yet seen in the

45

search.

Random Connected

In the random connected heuristic, prime numbers are chosen as seeds at ran-

dom from from the interval (2, 2N). If neither most or least connected heuristics

can outperform this method of choosing random vertices, then the heuristics are

not helpful.

In the next section we will discuss the analysis we performed in order to develop

’hard’ semiprimes, that is semiprimes that are hard to factor, in order to test the

performance of our algorithm.

3.6 Preparation of Testcases for Experimentation

In order to test our algorithms we needed to construct semiprimes which are dif-

ficult to factor but on a scale where we could get results in a reasonable time. We

studied the features of RSA Laboratories challenge semiprimes so that we could

construct smaller semiprimes of comparable difficulty.

3.6.1 Analysis of Factored RSA Semiprimes

The RSA Laboratories Challenge numbers9 were designed to be the hardest type

of semiprime to factor. We analyzed the factored semiprimes in order to discover

some common features and connectivity characteristics of the factors in order to

design difficult test cases for our algorithm. Figure 22 shows some of the features

of these numbers.

9http://www.rsa.com/rsalabs/node.asp?id=2093

46

Figure 22: Analysis of Solved RSA Challenge Numbers[20]

In the figure C1 and C2 are the HD1 and HD2 prime coronas of each of the factors

of the numbers listed in the RSA column. One feature to note are the small HD1

coronas of these numbers, some of which are isolated HD1 prime numbers. The

HD2 coronas are much larger, however they are less than what we would expect

from the average degree formula in Equation 7. For example, the extrapolated

average degree for RSA640, a 640 bit number, with factors of 320 bits, is 561. Both

factors for RSA640 are in PG 2
320 and have degrees of 136 or fewer.

Also note that the factors are frequently within ten percent of the square root of

the semiprime S number. Using factors close in magnitude to the square root of

47

S is intended to make factoring by sieving difficult, by using factors as large as

possible.

Picking large factors, with relatively low connectivity as in the RSA640 example

are two aspects of designing difficult to factor semiprimes. We have to design our

testcases with these ideas in mind.

3.6.2 Analysis of Smartly Generated Small Challenge Numbers

Table 8 lists the test cases we used in exploring PG 2
N graph factoring algorithms.

Table 3 shows a sample of small challenge numbers we used. We generated our

small challenge numbers using the features from our analysis of the RSA num-

bers. The resulting analysis appears in Figure 23.

The analysis in Figure 23 is a similar to the analysis done for the RSA numbers. As

in the RSA numbers, our numbers are near Scsq and have relatively low connec-

tivity in the graph. The data in Figure 23 shows that we approximate the quality

of the RSA Laboratories analysis Figure 22, but there are relatively few factored

RSA numbers. In this sense, the RSA factor analysis is a guide to how we design

our hard to solve semiprimes.

Table 8: Smartly Generated Small Test Numbers

N Semiprime Factor A Factor B Filename

24 9990157 3119 3203 sm1-24

25 32639989 5507 5927 sm2-25

26 55127929 7247 7607 sm3-26

27 119094961 10559 11279 sm4-27

28 220023049 14303 15383 sm5-28

Continued on next page. . .

48

Table 8 – continued

N Semiprime Factor A Factor B Filename

29 526612501 22739 23159 sm6-29

30 571077781 23159 24659 sm7-30

31 1298487901 34583 37547 sm8-31

32 3130236121 55103 56807 sm9-32

64 17017141319541425869 4293845903 3963146723 sm10-64

Figure 23: Analysis of Smartly Generated Challenge Numbers[20]

49

3.6.3 Designing ’Hard’ Semiprimes for PG 2
N HD2∗ Search

As in the generation of the smartly generated semiprimes, similar thought has

gone into the generation of the testcases for designing semiprimes for multiagent

nearest neighbor search. We call these prime numbers ’hard’ semiprimes.

The following describes the processes we used to construct hard semiprimes.

• Choose factors beyond a Hamming distance of one or two from a factor
near Scsq. Choosing factors within a Hamming distance of one or two from
a factor near Scsq, will require searching only the first ply of the graph from
the Scsq.

• A ’hard’ semiprime has factors that are not too close in HD to Scsq but not so
far that the factors are in the ’tails’ of the distribution.

• The test cases created for this thesis chose semiprimes with factors from the
intervals, where Dh represents Hamming distance:

(
Dh

4
,
Dh

4
+ (0.25 ∗ Dh

4
))

and

(
3Dh

4
− (0.25 ∗ 3Dh

4
),
3Dh

4
).

Choosing semiprimes with factors as described above creates a reasonable set of

testcases for factoring. We have generated at least one hundred testcases for each

graph size for 10 < N < 34.

50

4 Experimental Results

An exploratory experiment demonstrated the viability of multiagent search using

the small set of smart semiprimes in Table 8. Factors up to 32 bits were success-

fully factored in this early exploration.

4.1 Independent Multiagent Limited Depth BFS

This was a preliminary experiment to test the viability of using multiple agents

to search a prime number graph for factors of a semiprime. For each graph size

only one semiprime was tested with only one seed per agent, while the depth of

search and the number of agents were varied. The question we were trying to

answer was whether this type of search would work at all.

The purpose of this experiment is to explore factoring semiprimes of size N = 24

to N = 32 bits from the set of test semiprimes (See Table 8). Using independent

agents, which have no shared data structures, search in the space with each agent

starting at a unique, maximally connected seed prime.

The variables for each run are, the test semiprime, the maximum number of plies

to expand during the BFS and the number of search agents to create.

For the purposes of BFS search, cycle checking was implemented with a local

Bloom filter [2]. A Bloom filter was used to gain experience with the behavior and

implementation of this data structure with the intention that it would be useful

in scaling to large PG k
N graphs. Each agent maintained an independent frontier

queue.

The largest graph available at the time of this preliminary experiment from which

51

to choose seeds was PG2
22. Further work has been done since (See 6). This was

sufficient to test the idea that is was possible to use multiagent search to find

factors of a semiprime.

As can be seen from the spanning tree graph (Figures 11 and 12), choosing a seed

creates an entry into a new spanning tree. Choosing the most connected seeds

involves the following two steps.

The search begins by creating one seed per agent using depth-limited BFS neigh-

borhood search. Each agent maintains a local frontier queue. Cycle checking

is done through the use of a global probabilistic hash table. Before each prime

number in the next ply is added to the frontier queue, it is checked against the

global hash table. If the prime number has already been visited, then it will not

be added to the frontier queue. Either this agent or another has already searched

the graph from this vertex.

Our preliminary experiment performed a limited BFS over semiprimes from 24 to

32 bits in length. The number of agents ranged from 1 to 5 and number of search

levels ranged from 1 to 5. The seeds were chosen from PG 2
22 , which is the largest

graph vertex degree dataset available at the time.

The only search heuristic used was the choice of starting seeds. In this experi-

ment, the prime with the highest degree was chosen first from our list of most

connected primes in PG 2
22 followed by the next highest degree prime, up to the

number of agents searching the graph.

Result: Each of the test prime numbers were successfully factored with this sim-

ple seed choice heuristic and no pruning of the search space during breadth first

search. All of the factors were found at four plies of the initial search seed or fewer.

52

If every factor were to have been found at the fourth ply, given an vertex degree av-

erage of 39 (See Table 6) then the search would have visited approximately 14% of

the graph for PG 2
24 .

The results shown in Table 9 using five agents support the conjecture that search

based factoring algorithms over PG k
N graphs can be successful for small N . The

full table can be found in Appendix C.

Table 9: Selected Independent Limited BFS Results

N Num. Max. Found Seed HD A B S = A * B
Agents Ply Ply (sd,Fs)

24 5 2 2 59 4 3119 3203 9990157
25 5 5 2 7573 4 5507 5927 32639989
26 5 5 1 7573 2 7607 7247 55127929
27 5 5 2 59 4 10559 11279 119094961
28 5 5 2 7573 4 15383 14303 220023049
29 5 5 3 7573 6 22739 23159 526612501
30 5 5 4 7573 8 23159 24659 571077781
31 5 5 3 7573 6 34583 37547 1298487901
32 5 5 3 7573 6 56807 55103 3130236121

End

Next we discuss the results of testing the three search heuristics over different

graph sizes, using the hard semiprimes we created as testcases. (See Section

3.6.3)

53

4.2 Results for Connectivity Heuristics

This section summarizes the results of testing the connectivity heuristics we pro-

posed in Section 3.5. In contrast to the preliminary test of the previous section,

this test factored more than one semiprime at each graph size and heuristic.

Each of the heuristics were tested at a fixed number of seeds, agents and depth of

search (plies) on PG 2
N graphs from N = 10 to N = 26. The results of each test are

averaged over 40 samples (attempted factorings). Studying the behavior of this

algorithm with graphs we can physically realize may help us extrapolate to larger

graph sizes, where the graph is too large to enumerate.

Figure 24 shows the relative performance of the three connectivity heuristics in

average seconds aggregated for successful or failed factoring. The top portion of

the figure shows the percentage of successful factoring attempts (’Gamma’, γ). As

in Figure 26 the most connected heuristic is showing a trend of outperforming the

other connectivity heuristics. This result is aggregated for successful and failed

factoring. Here, the most connected heuristic is attractive because if the search

is going to fail, the most connected heuristic will fail faster on average.

The search does succeed 100% of the time until we get to a N > 23. At this point

we start to see a decline in the performance of the multiagent graph search fac-

toring algorithm. We expect the algorithm to begin to fail at some size because

we have fixed the number of start seeds, the depth of search and the number of

agents. When these limits have been reached, the search stops.

Observation: In Figure 24, in the region of N > 23 the heuristic of most connected

pick outperforms random pick and least connected pick by 30% in terms of seconds

at N = 26.

54

Figure 24: Execution Time

Next, we compare the heuristics based on what ply on average a factor is found

during search. One of the goals of these heuristics is to bias the search towards

finding a spantree root within a neighborhood equal to the search depth, of a

factor. Figure 25 compares the average ply searched and a trend is again seen for

most connected pick. It is not a large advantage but it is consistent. The correla-

tion between the two plots of the figure support consistent results overall as the

most connected pick heuristic runs faster and searches to a smaller depth over-

all. This correlation increases confidence that the experiments for comparing

heuristics for PG 2
N graph search were executed in a consistent manner.

55

Observation: The heuristic of most connected pick shows a slight performance ad-

vantage over the other heuristics in terms of average depth of search.

Observation: Visually, there is a correlation between time of search and depth of

search in Figure 25. The most connected pick heuristic also outperforms at larger

N in Figure 26. This consistent result increases confidence in our test methodology

and execution.

Figure 25: Depth of Search

Next we examine the number of vertices visited as a percentage of the total graph

vertices. This is the best performance metric for this algorithm. It is not affected

56

by other processes running on the machine which degraded the accuracy of our

metric of seconds and has a larger range than the depth of search metric. There

are two two plots, successful factoring totals and failed factor totals.

Any heuristic that searches a quantity of vertices more than fifty percent of the

prime numbers in the graph is less efficient than just searching for a factor by trial

division of all prime numbers either less than or greater than the square root of the

semiprime.

As can be seen in the Figure 26, which is the percentage of total vertices searched

for successful factorings, a performance difference begins to appear between

each of the heuristics chosen as N increases. The most connected heuristic is

consistently searching a smaller percentage of the graph than either least con-

nected or random connected. This figure, however, is only accounting for suc-

cessful search.

Observation: In Figure 26, in the region of N > 23 the heuristic of most connected

pick outperforms random pick and least connected pick while searching between

fifteen and twenty percent of the total vertices in a PG 2
N graph.

Figure 27 is the plot of percentage of total vertices searched for failed searches.

At N > 23 is where search begins to fail for some samples. At N = 26 the per-

centage of vertices searched for failed factoring attempts reaches as high as 60%.

Factoring is still succeeding 95% of the time, so this only represents a few data

points.

This observation that failed factoring attempts search many more vertices in the

graph is possibly due to the small sample size (forty samples) for the experiment

which is a small sample relative to the size of the search space,
(

π(2N)
2

)

. It may be

57

Figure 26: Percent of Vertices Searched for Successful Factoring

that when search fails, a much larger number of vertices are searched than when

search succeeds. It may be that these few failures are the result of some especially

difficult to factor semiprimes. This will have to be investigated and to do so will

require many more samples of failed factorings. If these failures are due to some-

thing unique about the sample semiprimes, the investigation of these samples

may provide insight useful for extrapolation to larger PG 2
N graphs. Working with

graphs of a size we can realize allows us to perform these investigations where

with larger graphs will be difficult or impossible to reconstruct the sequence of

58

events leading to the result.

Search succeeds approximately better than 95% of the time in this region of the

plot, at a fixed number of seeds, agents and depth of search. Figure 26 does show

a possible trend for most connected search having the best performance. Fig-

ure 27 is a result that will need further research before a clear conclusion can be

made.

Observation: When search fails, the number of vertices visited shows a marked

relative increase as a percentage of the vertices in the graph, relative to successful

searches.

59

Figure 27: Percent of Vertices Searched Failed Factoring

60

5 Conclusions

• An analysis of the PG 2
N graph vertex degrees showed that the average vertex

degree fit a linear function over N :

average degree = 1.726 ∗N − 2.209 (8)

• In a preliminary experiment testing factoring by neighborhood search, each
of the test prime numbers were successfully factored with a simple seed
choice heuristic and no pruning of the search space during breadth first
search. All of the factors were found within four plies of the initial search
seed (Section 4).

• The heuristic of most connected pick outperforms random pick and least
connected pick while searching between fifteen and twenty percent of the
total vertices in a PG 2

N graph (Figure 26).

• The heuristic of most connected pick outperforms random pick and least
connected pick by 30% in terms of seconds at N = 26 (Figure 24).

• The heuristic of most connected pick shows a performance advantage over
least connected and random connected pick heuristics in terms of average
depth of search (Figure 25).

• When search fails, the number of vertices visited increases as a percentage
of the vertices in the graph (Figure 27), relative to successful searches (Fig-
ure 26).

• Visually, there is a correlation between time of search and depth of search in
Figure 25. The most connected pick heuristic also outperforms at larger N
in Figure 26. This consistent result increases confidence in our test method-
ology and execution.

• The upper bound for the diameter of a PG 2
N graph is:

Dub = ⌈
N

2
⌉+ ((N + 1) mod 2) (9)

61

6 Future Work

6.1 Extrapolation

All the experiments so far have been run using lists of prime numbers contained

in eachPG 2
N under investigation. We would like to run experiments beyondPG 2

34

which will require estimations of average vertex degree in the graph, the number

of start seeds required to reach a minimum factor performance and the number

of plies each neighborhood search should expand.

In our experiments, the best performing seed pick heuristic was found to be most

connected. In order to use this heuristic in searching larger graphs N > 34, we

will need to choose seed vertices in the graph based on an average graph vertex

degree. Using the linear fit from Equation 7, we will consider choosing prime

numbers in these PG 2
N graphs with greater than the average vertex degree or

some factor greater than the average degree.

Future work would explore the performance of this algorithm by changing the

value of the number of seeds (m) at different values of N . The resulting table

would be similar to the table of Appendix C without changing the number of

plies expanded. This new table would represent γ as a function of m, and N .

The number of experiments required would be the number of values of m times

the number of values of N times the number of experiments at each (m,N) pair.

Further work would include changing the value of the number of plies expanded

pl creating (m,N, pl) triples, increasing the total number of experiments by pl. A

sensitivity analysis could be performed to investigate which of these parameters

has the greatest effect on the success of factoring. Resources beyond what were

available for this thesis would have to be available.

62

Compute resources will also have to be extrapolated from further experiments

to determine the number of processors, cores, threads (agents) and depending

on the machine architecture how to manage local and global memory. The pur-

pose of the experiments in this thesis was to build a foundation for this type of

extrapolation by working from relatively small N .

If we wanted to factor a number of 128 bits, a search of PG 2
64 would be neces-

sary. In order to use the degree based seedpick heuristics, extrapolation of what

the average degree in a PG 2
64 would be would be necessary. For example, choos-

ing seeds less than this value would be similar to the least connected seedpick

heuristic, since is is not realistic to search the graph to find a complete order of

the seeds by connectivity.

6.2 Exploring Alternate Compute Architectures

This thesis demonstrates an algorithm based on shared memory multiprocessor

and multicore machines.

One possibility is to explore data parallel solutions (or SIMD) on contemporary

GPU architectures. An example is the operation of expanding the next ply of

search through xor masking of the current prime. This operation can be done

using xor function with the current prime and a vector of pre-calculated masks

as the function input. This would create a new vector, which could be input to

a data parallel version of Rabin-Miller or equivalent to create the next ply of the

search. Now, each ply is a vector which can be input to a data parallel function

which performs trial division of the current semiprime which we are attempting

to factor.

63

Any implementation of this type of algorithm will need to manage a frontier

queue and a visited queue. It is possible that these queues will need to be man-

aged in host memory, not in the local GPU memory and any computational per-

formance gains may be lost to data management overhead. Any future work in

this area will need to investigate this issue.

6.3 Pruning

The upper bound diameter of a PG 2
N graph is been shown by Equation 6. We

hypothesize that an algorithm could use this to reduce redundant search. By

adding the distance from the first selected seed prime (or anchor prime) to the

current seed prime the search could be limited not to search beyond the diame-

ter of the graph from this first selected seed (or anchor). As neighborhood search

progresses, each expanded ply increases the distance towards or away from the

maximum diameter of the current graph, as measured from the anchor prime.

Not allowing any neighborhood search to proceed beyond the distance from the

anchor prime to the upper bound of the PG 2
N graph may allow an opportunity

for pruning the search.

64

7 References

[1] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. Primes is in p. Ann. of

Math, 2:781–793, 2002. 34

[2] Burton H. Bloom. Space/Time Trade-offs in Hash Coding with Allowable

Errors. Communications of the ACM, 13(7):422–426, 1970. ISSN 0001-0782.

doi: http://doi.acm.org/10.1145/362686.362692. 51

[3] Arthur Cayley. A Theorem on Trees. Quarterly Journal of Pure and Applied

Mathematics, 23:376–378, 1889. 20

[4] Rosetta Code. Millerrabin primality test — wikipedia, the free encyclopedia,

2011. URL http://rosettacode.org/wiki/Miller-Rabin_primality_test.

[Online; accessed 5-April-2011]. 70

[5] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford

Stein. Introduction to Algorithms, second edition. The MIT Press, Cam-

bridge, MA, USA, 2001. 34, 70

[6] Richard Crandall and Carl B. Pomerance. Prime Numbers: A Computational

Perspective. Springer Science+Business Media, Inc., New York, NY, USA,

2005. springeronline.com. 9, 10, 12, 34, 70

[7] John Derbyshire. Prime Obsession: Bernhard Riemann and the Greatest Un-

solved Problem in Mathematics. Penguin, New York, NY, USA, 2004. 14, 25

[8] Carl Friedrich Gauss. Disquisitiones arithmeticae. Springer, New York, NY,

65

http://rosettacode.org/wiki/Miller-Rabin_primality_test

USA, 1986. Translated by Waterhouse, William C. From the Latin edition of

1870 edited by E.C.J. Schering. 1

[9] R W. Hamming. Error Detecting and Error Correcting Codes. The Bell System

Technical Journal, 29(2):147–160, 1950. 2

[10] D. Hankerson, A. Menezes, and S. Vanstone. Guide to Elliptic Curve Cryptog-

raphy. Springer-Verlag, New York, 2004. 10, 12

[11] Frank Harary. Graph Theory. Addison-Wesley Publishing Company, Read-

ing, MA, USA, 1969. 5, 20

[12] Julian Havil. Exploring Euler’s Constant. Princeton University Press, Prince-

ton, NJ, USA, 2003. www.pupress.pnnceton.edu. 25

[13] Robert E. Jamison and Gretchen L. Matthews. Distance k Colorings of Ham-

ming Graphs. In Proceedings of the Thirty-Seventh Southeastern Interna-

tional Conference on Combinatorics, Graph Theory and Computing. Congr.

Numer. 183, 2006. 12, 13

[14] Hendrik W. Lenstra, Jr. Factoring Integers with Elliptic Curves. The Annals

of Mathematics, 126:649–673, 1987. 9, 10

[15] Hendrik W. Lenstra, Jr. Primality testing with gaussian periods. In

Proceedings of the 22nd Conference Kanpur on Foundations of Soft-

ware Technology and Theoretical Computer Science, FST TCS ’02, pages

1–, London, UK, 2002. Springer-Verlag. ISBN 3-540-00225-1. URL

http://portal.acm.org/citation.cfm?id=646840.708803. 34

[16] Dana Mackenzie. Mathematics: Homage to an itinerant master. Sci-

66

http://portal.acm.org/citation.cfm?id=646840.708803

ence, 275(5301):759, 1997. doi: 10.1126/science.275.5301.759. URL

http://www.sciencemag.org/content/275/5301/759.short. 1

[17] J. Pollard. A Monte Carlo method for factorization. BIT Numerical Mathe-

matics, 32:918–924, 1975. 9, 12

[18] Carl Pomerance. A Tale of Two Sieves. Notices Amer. Math. Soc, 43:1473–

1485, 1996. 9, 10

[19] c©2007 Bryant York. Used by permission. ix, 3, 15

[20] c©2009 Bryant York. Used by permission. x, 47, 49

[21] Wikipedia. Lenstra Elliptic Curve Factorization, 2011. URL

https://secure.wikimedia.org/wikipedia. 10

[22] Bryant York. Notes on Prime Number Graphs. 1999-2011. 5

[23] Bryant York, 2011. Personal correspondence and notes of Bryant York. 10,

11

[24] Bryant York and Keith Wilson. Prime number graphs, self similarity, and fac-

toring (unpublished). Ninety Minute Technical Seminar at Portland State

University, January 2010. 14, 17, 19, 24

67

http://www.sciencemag.org/content/275/5301/759.short
https://secure.wikimedia.org/wikipedia

Appendices

68

A Size of PG 2
N Graphs

Table 10: Vertices in PG 2
N

N | PG 2
N |

3 3
4 5
5 10
6 17
7 30
8 53
9 96
10 171
11 308
12 563
13 1027
14 1899
15 3511
16 6541
17 12250
18 22999
19 43382
20 82024
21 155610
22 295946
23 564162
24 1077870
25 2063688
26 3957808
27 7603552
28 14630842
29 28192749
30 54400027
31 105097564
32 203280220
33 400072673
34 803536681

End

69

B Rabin-Miller Algorithm

The Rabin-Miller test is more accurately called a ’compositeness’ test in that it is
trying to find a witness that divides the input number. If it does, then the algo-
rithm returns false. [4] [6] [5]

INPUT: N > 3, an odd integer to be tested for primality;
INPUT: k, a parameter that determines the accuracy of the test;
OUTPUT: composite if n is composite, otherwise probably prime
write n− 1 as 2st with t odd by factoring powers of 2 from n− 1
loop

repeat k times:
pick a random integer a in the range [2, n− 2]
x← at mod n
if x = 1 or x = n− 1 then

do next loop
end if
for r = 1 . . . s− 1 do
x← x2 mod n
if x = 1 then

return composite
end if
if x = n− 1 then

do next loop
end if

end for
return composite

end loop
return probably prime

Figure 28: Rabin-Miller Primality Test

70

C Independent Limited BFS Results with Five Agents

Table 11: Independent Limited BFS Results with Five

Agents

N Num. Max. Found Seed HD A B S = A * B

Clusters Ply Ply (seed,Fs)

24 1 1 nf nf nf nf nf 9990157

24 2 1 nf nf nf nf nf 9990157

24 3 1 nf nf nf nf nf 9990157

24 4 1 nf nf nf nf nf 9990157

24 5 1 nf nf nf nf nf 9990157

24 1 2 nf nf nf nf nf 9990157

24 2 2 nf nf nf nf nf 9990157

24 3 2 2 41 4 3119 3203 9990157

24 4 2 2 41 4 3119 3203 9990157

24 5 2 2 59 4 3119 3203 9990157

24 1 3 nf nf nf nf nf 9990157

24 2 3 nf nf nf nf nf 9990157

24 3 3 2 41 4 3119 3203 9990157

24 4 3 2 41 4 3119 3203 9990157

24 5 3 2 41 4 3119 3203 9990157

24 1 4 nf nf nf nf nf 9990157

24 2 4 nf nf nf nf nf 9990157

24 3 4 2 41 4 3119 3203 9990157

24 4 4 2 41 4 3119 3203 9990157

24 5 4 2 59 4 3119 3203 9990157

24 1 5 nf nf nf nf nf 9990157

24 2 5 nf nf nf nf nf 9990157

24 3 5 2 41 4 3119 3203 9990157

24 4 5 2 41 4 3119 3203 9990157

24 5 5 2 59 4 3119 3203 9990157

25 1 1 nf nf nf nf nf 32639989

25 2 1 nf nf nf nf nf 32639989

25 3 1 nf nf nf nf nf 32639989

25 4 1 nf nf nf nf nf 32639989

25 5 1 nf nf nf nf nf 32639989

25 1 2 nf nf nf nf nf 32639989

25 2 2 2 7573 4 5507 5927 32639989

25 3 2 2 7573 4 5507 5927 32639989

25 4 2 2 7573 4 5507 5927 32639989

25 5 2 2 7573 4 5507 5927 32639989

Continued on next page. . .

71

Table 11 – continued

N Num. Max. Found Seed HD A B S = A * B

Clusters Ply Ply (seed,Fs)

25 1 3 nf nf nf nf nf 32639989

25 2 3 2 7573 4 5507 5927 32639989

25 3 3 2 7573 4 5507 5927 32639989

25 4 3 2 7573 4 5507 5927 32639989

25 5 3 2 7573 4 5507 5927 32639989

25 1 4 nf nf nf nf nf 32639989

25 2 4 2 7573 4 5507 5927 32639989

25 3 4 2 7573 4 5507 5927 32639989

25 4 4 2 7573 4 5507 5927 32639989

25 5 4 2 7573 4 5507 5927 32639989

25 1 5 nf nf nf nf nf 32639989

25 2 5 2 7573 4 5507 5927 32639989

25 3 5 2 7573 4 5507 5927 32639989

25 4 5 2 7573 4 5507 5927 32639989

25 5 5 2 7573 4 5507 5927 32639989

26 1 1 nf nf nf nf nf 55127929

26 2 1 1 7573 2 7607 7247 55127929

26 3 1 1 7573 2 7607 7247 55127929

26 4 1 1 7573 2 7607 7247 55127929

26 5 1 1 7573 2 7607 7247 55127929

26 1 2 nf nf nf nf nf 55127929

26 2 2 1 7573 2 7607 7247 55127929

26 3 2 1 7573 2 7607 7247 55127929

26 4 2 1 7573 2 7607 7247 55127929

26 5 2 1 7573 2 7607 7247 55127929

26 1 3 nf nf nf nf nf 55127929

26 2 3 1 7573 2 7607 7247 55127929

26 3 3 1 7573 2 7607 7247 55127929

26 4 3 1 7573 2 7607 7247 55127929

26 5 3 1 7573 2 7607 7247 55127929

26 1 4 nf nf nf nf nf 55127929

26 2 4 1 7573 2 7607 7247 55127929

26 3 4 1 7573 2 7607 7247 55127929

26 4 4 1 7573 2 7607 7247 55127929

26 5 4 1 7573 2 7607 7247 55127929

26 1 5 nf nf nf nf nf 55127929

26 2 5 1 7573 2 7607 7247 55127929

26 3 5 1 7573 2 7607 7247 55127929

26 4 5 1 7573 2 7607 7247 55127929

26 5 5 1 7573 2 7607 7247 55127929

Continued on next page. . .

72

Table 11 – continued

N Num. Max. Found Seed HD A B S = A * B

Clusters Ply Ply (seed,Fs)

27 1 1 nf nf nf nf nf 119094961

27 2 1 nf nf nf nf nf 119094961

27 3 1 nf nf nf nf nf 119094961

27 4 1 nf nf nf nf nf 119094961

27 5 1 nf nf nf nf nf 119094961

27 1 2 nf nf nf nf nf 119094961

27 2 2 nf nf nf nf nf 119094961

27 3 2 nf nf nf nf nf 119094961

27 4 2 2 59 4 10559 11279 119094961

27 5 2 2 59 4 10559 11279 119094961

27 1 3 nf nf nf nf nf 119094961

27 2 3 nf nf nf nf nf 119094961

27 3 3 3 41 6 10559 11279 119094961

27 4 3 3 41 6 10559 11279 119094961

27 5 3 2 59 4 10559 11279 119094961

27 1 4 nf nf nf nf nf 119094961

27 2 4 4 7573 7 10559 11279 119094961

27 3 4 3 41 6 10559 11279 119094961

27 4 4 3 41 6 10559 11279 119094961

27 5 4 3 41 6 10559 11279 119094961

27 1 5 nf nf nf nf nf 119094961

27 2 5 4 7573 7 10559 11279 119094961

27 3 5 3 41 6 10559 11279 119094961

27 4 5 3 41 6 10559 11279 119094961

27 5 5 2 59 4 10559 11279 119094961

28 1 1 nf nf nf nf nf 220023049

28 2 1 nf nf nf nf nf 220023049

28 3 1 nf nf nf nf nf 220023049

28 4 1 nf nf nf nf nf 220023049

28 5 1 nf nf nf nf nf 220023049

28 1 2 nf nf nf nf nf 220023049

28 2 2 2 7573 4 15383 14303 220023049

28 3 2 2 7573 4 15383 14303 220023049

28 4 2 2 7573 4 15383 14303 220023049

28 5 2 2 7573 4 15383 14303 220023049

28 1 3 nf nf nf nf nf 220023049

28 2 3 2 7573 4 15383 14303 220023049

28 3 3 2 7573 4 15383 14303 220023049

28 4 3 2 7573 4 15383 14303 220023049

28 5 3 2 7573 4 15383 14303 220023049

Continued on next page. . .

73

Table 11 – continued

N Num. Max. Found Seed HD A B S = A * B

Clusters Ply Ply (seed,Fs)

28 1 4 nf nf nf nf nf 220023049

28 2 4 2 7573 4 15383 14303 220023049

28 3 4 2 7573 4 15383 14303 220023049

28 4 4 2 7573 4 15383 14303 220023049

28 5 4 2 7573 4 15383 14303 220023049

28 1 5 nf nf nf nf nf 220023049

28 2 5 2 7573 4 15383 14303 220023049

28 3 5 2 7573 4 15383 14303 220023049

28 4 5 2 7573 4 15383 14303 220023049

28 5 5 2 7573 4 15383 14303 220023049

29 1 1 nf nf nf nf nf 526612501

29 2 1 nf nf nf nf nf 526612501

29 3 1 nf nf nf nf nf 526612501

29 4 1 nf nf nf nf nf 526612501

29 5 1 nf nf nf nf nf 526612501

29 1 2 nf nf nf nf nf 526612501

29 2 2 nf nf nf nf nf 526612501

29 3 2 nf nf nf nf nf 526612501

29 4 2 nf nf nf nf nf 526612501

29 5 2 nf nf nf nf nf 526612501

29 1 3 nf nf nf nf nf 526612501

29 2 3 3 7573 6 22739 23159 526612501

29 3 3 3 7573 6 22739 23159 526612501

29 4 3 3 7573 6 22739 23159 526612501

29 5 3 3 7573 6 22739 23159 526612501

29 1 4 nf nf nf nf nf 526612501

29 2 4 3 7573 6 22739 23159 526612501

29 3 4 3 7573 6 22739 23159 526612501

29 4 4 3 7573 6 22739 23159 526612501

29 5 4 3 7573 6 22739 23159 526612501

29 1 5 nf nf nf nf nf 526612501

29 2 5 3 7573 6 22739 23159 526612501

29 3 5 3 7573 6 22739 23159 526612501

29 4 5 3 7573 6 22739 23159 526612501

29 5 5 3 7573 6 22739 23159 526612501

30 1 1 nf nf nf nf nf 571077781

30 2 1 nf nf nf nf nf 571077781

30 3 1 nf nf nf nf nf 571077781

30 4 1 nf nf nf nf nf 571077781

30 5 1 nf nf nf nf nf 571077781

Continued on next page. . .

74

Table 11 – continued

N Num. Max. Found Seed HD A B S = A * B

Clusters Ply Ply (seed,Fs)

30 1 2 nf nf nf nf nf 571077781

30 2 2 nf nf nf nf nf 571077781

30 3 2 nf nf nf nf nf 571077781

30 4 2 nf nf nf nf nf 571077781

30 5 2 nf nf nf nf nf 571077781

30 1 3 nf nf nf nf nf 571077781

30 2 3 nf nf nf nf nf 571077781

30 3 3 nf nf nf nf nf 571077781

30 4 3 nf nf nf nf nf 571077781

30 5 3 nf nf nf nf nf 571077781

30 1 4 nf nf nf nf nf 571077781

30 2 4 4 7573 8 23159 24659 571077781

30 3 4 4 7573 8 23159 24659 571077781

30 4 4 4 7573 8 23159 24659 571077781

30 5 4 4 7573 8 23159 24659 571077781

30 1 5 nf nf nf nf nf 571077781

30 2 5 4 7573 8 23159 24659 571077781

30 3 5 4 7573 8 23159 24659 571077781

30 4 5 4 7573 8 23159 24659 571077781

30 5 5 4 7573 8 23159 24659 571077781

31 1 1 nf nf nf nf nf 1298487901

31 2 1 nf nf nf nf nf 1298487901

31 3 1 nf nf nf nf nf 1298487901

31 4 1 nf nf nf nf nf 1298487901

31 5 1 nf nf nf nf nf 1298487901

31 1 2 nf nf nf nf nf 1298487901

31 2 2 nf nf nf nf nf 1298487901

31 3 2 nf nf nf nf nf 1298487901

31 4 2 nf nf nf nf nf 1298487901

31 5 2 nf nf nf nf nf 1298487901

31 1 3 nf nf nf nf nf 1298487901

31 2 3 3 7573 6 34583 37547 1298487901

31 3 3 3 7573 6 34583 37547 1298487901

31 4 3 3 7573 6 34583 37547 1298487901

31 5 3 3 7573 6 34583 37547 1298487901

31 1 4 nf nf nf nf nf 1298487901

31 2 4 3 7573 6 34583 37547 1298487901

31 3 4 3 7573 6 34583 37547 1298487901

31 4 4 3 7573 6 34583 37547 1298487901

31 5 4 3 7573 6 34583 37547 1298487901

Continued on next page. . .

75

Table 11 – continued

N Num. Max. Found Seed HD A B S = A * B

Clusters Ply Ply (seed,Fs)

31 1 5 nf nf nf nf nf 1298487901

31 2 5 3 7573 6 34583 37547 1298487901

31 3 5 3 7573 6 34583 37547 1298487901

31 4 5 3 7573 6 34583 37547 1298487901

31 5 5 3 7573 6 34583 37547 1298487901

32 1 1 nf nf nf nf nf 3130236121

32 2 1 nf nf nf nf nf 3130236121

32 3 1 nf nf nf nf nf 3130236121

32 4 1 nf nf nf nf nf 3130236121

32 5 1 nf nf nf nf nf 3130236121

32 1 2 nf nf nf nf nf 3130236121

32 2 2 nf nf nf nf nf 3130236121

32 3 2 nf nf nf nf nf 3130236121

32 4 2 nf nf nf nf nf 3130236121

32 5 2 nf nf nf nf nf 3130236121

32 1 3 nf nf nf nf nf 3130236121

32 2 3 3 7573 6 56807 55103 3130236121

32 3 3 3 7573 6 56807 55103 3130236121

32 4 3 3 7573 6 56807 55103 3130236121

32 5 3 3 7573 6 56807 55103 3130236121

32 1 4 nf nf nf nf nf 3130236121

32 2 4 3 7573 6 56807 55103 3130236121

32 3 4 3 7573 6 56807 55103 3130236121

32 4 4 3 7573 6 56807 55103 3130236121

32 5 4 3 7573 6 56807 55103 3130236121

32 1 5 nf nf nf nf nf 3130236121

32 2 5 3 7573 6 56807 55103 3130236121

32 3 5 3 7573 6 56807 55103 3130236121

32 4 5 3 7573 6 56807 55103 3130236121

32 5 5 3 7573 6 56807 55103 3130236121

End

76

D Heuristic Comparison Table Experiment Results

numsamples: 40

maxply: 4

maxN : 26

maxagents: 7

seedpickH: RANDOMPICK

Table 12: PG 2
N Random Pick Heurisitic Sweep

N Plys Seeds Agents SuccProb AvgVerts AvgSecs AvgSeeds AvgPly

10 4 4000 7 1.0 49.58 0.0 15.88 0.875
11 4 4000 7 1.0 98.6 0.0 11.23 1.325
12 4 4000 7 1.0 103.3 0.0 8.275 1.35
13 4 4000 7 1.0 156.89 0.025 10.55 1.45
14 4 4000 7 1.0 432.35 0.0 9.55 1.95
15 4 4000 7 1.0 908.78 0.025 12.225 2.075
16 4 4000 7 1.0 1507.73 0.025 12.6 2.325
17 4 4000 7 1.0 3275.6 0.1 26.6 2.75
18 4 4000 7 1.0 5554.23 0.1 7.35 2.9
19 4 4000 7 1.0 9494.83 0.25 22.675 2.875
20 4 4000 7 1.0 21121.45 0.7 70.075 3.275
21 4 4000 7 1.0 36249.33 2.65 11.65 3.3
22 4 4000 7 1.0 66799.45 9.25 9.875 3.55
23 4 4000 7 1.0 122712.5 22.025 12.65 3.725
24 4 4000 7 1.0 243172.15 50.775 15.775 3.8
25 4 4000 7 0.95 358584.42 91.075 14.342 3.737
26 4 4000 7 1.0 873473.05 234.325 52.8 3.85

End

77

numsamples: 40

maxply: 4

maxN : 26

maxagents: 7

seedpickH: MOSTCONNECTEDPICK

Table 13: PG 2
N Most Connected Heuristic Sweep

N Plys Seeds Agents SuccProb AvgVerts AvgSecs AvgSeeds AvgPly

10 4 4000 7 1.0 60.23 0.0 11.05 1.5
11 4 4000 7 1.0 118.7 0.0 8.9 1.5
12 4 4000 7 1.0 181.55 0.0 13.15 2.2
13 4 4000 7 1.0 209.8 0.0 9.2 1.6
14 4 4000 7 1.0 524.8 0.0 10.05 2.075
15 4 4000 7 1.0 706.23 0.0 7.825 2.125
16 4 4000 7 1.0 1972.78 0.025 14.075 2.775
17 4 4000 7 1.0 3130.0 0.025 13.325 2.925
18 4 4000 7 1.0 4649.85 0.125 28.775 2.7
19 4 4000 7 1.0 12382.0 0.325 39.25 3.25
20 4 4000 7 1.0 16749.98 0.425 103.25 3.15
21 4 4000 7 1.0 21238.95 1.225 80.175 3.075
22 4 4000 7 1.0 84364.48 11.05 41.775 3.35
23 4 4000 7 1.0 108049.13 16.4 46.075 3.65
24 4 4000 7 0.975 172139.46 34.05 165.846 3.436
25 4 4000 7 1.0 272057.08 57.525 66.475 3.625
26 4 4000 7 0.975 661163.67 171.35 99.59 3.667

End

78

numsamples: 40

maxply: 4

maxN : 26

maxagents: 7

seedpickH: LEASTCONNECTEDPICK

Table 14: PG 2
N Least Pick Heurisitic Sweep

N Plys Seeds Agents SuccProb AvgVerts AvgSecs AvgSeeds AvgPly

10 4 4000 7 1.0 37.2 0.0 8.775 0.85
11 4 4000 7 1.0 78.18 0.0 9.975 1.45
12 4 4000 7 1.0 131.8 0.0 9.375 1.75
13 4 4000 7 1.0 189.08 0.0 11.675 2.025
14 4 4000 7 1.0 600.025 0.0 7.725 2.725
15 4 4000 7 1.0 833.28 0.0 9.1 2.975
16 4 4000 7 1.0 1233.55 0.05 36.825 2.725
17 4 4000 7 1.0 2591.83 0.075 131.425 3.2
18 4 4000 7 1.0 6595.525 0.15 95.775 3.575
19 4 4000 7 1.0 10514.28 0.2 176.375 3.625
20 4 4000 7 1.0 20165.75 0.6 86.825 3.775
21 4 4000 7 1.0 36666.43 2.425 141.175 3.85
22 4 4000 7 1.0 71958.15 10.5 199.775 3.8
23 4 4000 7 1.0 152047.1 27.575 236.45 3.775
24 4 4000 7 1.0 216741.5 43.5 313.6 3.85
25 4 4000 7 1.0 356325.15 81.025 447.5 3.8
26 4 4000 7 0.95 859133.74 242.1 943.868 3.868

End

79

E Development Tree For Prime Graph Investigation

Summary of structure for prime graph investigation development environment10

E.1 Source Code Management

The source code management system chosen is ’git.’ This is a distributed source
code mangement system in common use at Portland State.

Git Source Code Management. (http://git-scm.com)

The repository is called ’pgdev.git’ and is located on my home machine ’magpie’.
To clone a local copy:

git clone git+ssh://magpie/vc/git/pgdev.git

Access to magpie is controlled by ssh public key.

E.2 Development Tree - Goals

E.3 Grouping Source By Language Type, Not Task

Source code is grouped by language type, not task. This enables and encourages
the reuse of components in multiple tools sharing the same language.

E.4 Separating Data from Code

Large files of source data are required in this investigation. Keeping this infor-
mation out of the code develpment subtree will prevent duplication and allow
future modifications to how the data is managed separate from the source code.
For example, the file primes3-32.txt is a 2GB+ file of all the primes less than 232.
Having this file available decreases the runtime of many analysis by not having to
generate primes every execution. Other large files include complete graph repre-
sentations for PG 2

N in multiple formats.

10This repository is only for development. There is another repository for M.S. research and
writing.

80

http://git-scm.com

E.5 Development Tree - Structure

The root of the development tree is called ’pgdev’ as shown in Figure 29. The
diagram shows how the different source material is partitioned.

Each first level (gray) and second level (red) node of the tree are directories. Below
that are directories or files as appropriate.

E.6 C/C++ Justification

C/C++11 offers the widest application of the tools investigated12 with clear access
to multithreading and GPU programming. Other languages will also be used but
the bulk of development exists today in C/C++.

E.7 Python

Python is used for:

• Scripting and batch control.

• Analysis using the numpy and scipy libraries.

• Plots and figures using the matplotlib libraries.

• Graph analysis using the python networkx libraries.

E.8 R

R is a contemporary statistical analysis package.

The R Project. (www.r-project.org)

E.9 C/C++ Status

Current work is increasing use of C++ container classes and iterators such as
queue and vector, where previous work used C and custom data structures with
pointers.

11Using gcc
12Python, Haskell and C/C++ were all considered

81

http://www.r-project.org

pgdev

CodeHaskell

Python APL

C/C++

libs

tools

R

Data
pg2-

stats

primes3-

32
degree-

statsDocs

latex

devtree
This document
is here.

Figure 29: Directory Tree Structure for pgdev

82

The restrained use of C++ STL will create safer, more readable code and also be
more portable over time.

The gmp header gmpxx.h is necessary when compiling C++ with the GMP Bignum
library.

83

F Hardware

gottbrath.cs.pdx.edu:

• Four Intel R© Xeon R© E7310 CPUs @ 1.60GHz

• Each cpu has 4MB of L2 cache.

• Each cpu has four cores for a total of sixteen processors.

• Thirty-two gigabytes of RAM

• SAS Disk(s): 2 Mirrored Seagate R© ST9146802SS/10,000 RPM/300MBPS/3.8
MS Seek

bailin.cs.pdx.edu:

• Four Intel R© Xeon R© E7310 CPUs @ 1.60GHz

• Each cpu has four cores for a total of sixteen processors.

• Sixteen gigabytes of RAM

• SAS Disk(s): 2 Mirrored Seagate R© ST9146802SS/10,000 RPM/300MBPS/3.8
MS Seek

magpie:

• One Intel R© CoreTM i7 930 CPU @ 2.80GHz

• Each cpu has 8MiB of L2 cache and 64KiB of L1 cache.

• Each cpu has four cores for a total of four processors.

• Each core has hyperthreading capabilities for a total of eight logical proces-
sors.

• Six gigabytes of RAM.

84

G Disk Resources

A 100 gigabyte research space has been set up at /stash/yorkrsch on the cs.pdx.edu
research data server. Members of group ’yorkrsch’ have access to this space and
it is backed up according to The CAT (http://cat.pdx.edu) policy. A copy of the
code repository is regularly pulled to the kwilson/Projects/msthesis directory.

A 100 gigabyte partition has been created for group yorkrsch on each of the SAS
disks on gottbrath and bailin (See Appendix F on page 84).

85

http://cat.pdx.edu

	Factoring Semiprimes Using PG2N Prime Graph Multiagent Search
	Let us know how access to this document benefits you.
	Recommended Citation

	Abstract
	Dedication
	Acknowledgements
	Introduction
	Hamming distance (HD)
	Definitions
	Integer Graphs
	Prime Number Graphs
	Additional Notation and Summary Table

	Previous Work on Prime Number Graphs and Factoring
	Related Work
	Number Field Sieves
	Elliptic Curve Method
	Pollard rho method for factoring
	Hamming Graphs

	Background
	Prime Number Graphs
	Connectivity in Prime Number Graphs

	Spanning Trees in Prime Number Graphs.
	York's Conjecture
	Counting Prime Numbers: PNT-The Prime Number Theorem
	On the Distribution of Prime Numbers based on Hamming distance
	Upper Bound for pg2n Diameter
	Implications

	Search Methodology
	The Basic Search Paradigm
	Complete Search
	Multiagent Depth Limited Search
	Feature Analysis for Development of Heuristics
	pg2n Vertex Degree Frequency Analysis
	Connectivity Analysis

	Heuristic Multiagent Search for Prime Factors
	Preparation of Testcases for Experimentation
	Analysis of Factored RSA Semiprimes
	Analysis of Smartly Generated Small Challenge Numbers
	Designing 'Hard' Semiprimes for PG2NHD2* Search

	Experimental Results
	Independent Multiagent Limited Depth BFS
	Results for Connectivity Heuristics

	Conclusions
	Future Work
	Extrapolation
	Exploring Alternate Compute Architectures
	Pruning

	References
	Appendices
	Size of pg2n Graphs
	Rabin-Miller Algorithm
	Independent Limited BFS Results with Five Agents
	Heuristic Comparison Table Experiment Results
	Development Tree For Prime Graph Investigation
	Source Code Management
	Development Tree - Goals
	Grouping Source By Language Type, Not Task
	Separating Data from Code
	Development Tree - Structure
	C/C++ Justification
	Python
	R
	C/C++ Status

	Hardware
	Disk Resources

