
Portland State University Portland State University 

PDXScholar PDXScholar 

Computer Science Faculty Publications and 
Presentations Computer Science 

2010 

Solving Continuous Linear Least-Squares Problems Solving Continuous Linear Least-Squares Problems 

by Iterated Projection by Iterated Projection 

Ralf Juengling 
Portland State University, ralf-juengling@gmail.com 

Follow this and additional works at: https://pdxscholar.library.pdx.edu/compsci_fac 

 Part of the Theory and Algorithms Commons 

Let us know how access to this document benefits you. 

Citation Details Citation Details 
Juengling, Ralf, "Solving Continuous Linear Least-Squares Problems by Iterated Projection" (2010). 
Computer Science Faculty Publications and Presentations. 216. 
https://pdxscholar.library.pdx.edu/compsci_fac/216 

This Technical Report is brought to you for free and open access. It has been accepted for inclusion in Computer 
Science Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if 
we can make this document more accessible: pdxscholar@pdx.edu. 

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/compsci_fac
https://pdxscholar.library.pdx.edu/compsci_fac
https://pdxscholar.library.pdx.edu/compsci
https://pdxscholar.library.pdx.edu/compsci_fac?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F216&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F216&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/compsci_fac/216
https://pdxscholar.library.pdx.edu/compsci_fac/216?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F216&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:pdxscholar@pdx.edu


Solving Continuous Linear Least-Squares Problems
by Iterated Projection

by Ralf Juengling

Department of Computer Science, Portland State University
PO Box 751 Portland, OR 97207 USA

Email: juenglin@cs.pdx.edu

Abstract

I present a new divide-and-conquer algorithm for solving continuous linear least-squares

problems. The method is applicable when the column space of the linear system relating

data to model parameters is “translation invariant”. The central operation is a matrix-

vector product, which makes the method very easy to implement. Secondly, the structure

of the computation suggests a straightforward parallel implementation.

A complexity analysis for sequential implementation shows that the method has the

same asymptotic complexity as well-known algorithms for discrete linear least-squares. For

illustration we work out the details for the problem of fitting quadratic bivariate polyno-

mials to a piecewise constant function.

1 Introduction

The linear least-squares problem is to determine the parameter values β∗ for a function f that
minimizes the sum of squared differences between data values {di} and function values {f(xi;
β)} for corresponding points {xi},

β∗= argminβ

∑

i=1

m

(di− f(xi; β))
2
. (1)

The problem is a linear least-squares problem if the model f is linear in the parameters, that is,

f(x; β) =
∑

k=1

n

βk fk(x).

A classical way of determining β goes as follows:
1. Express (1) in matrix form,

β∗=min
β
‖d−Aβ‖, (2)

where

A=









f1(x1) f2(x1) � fn(x1)
f1(x2) f2(x2) � fn(x2)
 
 

f1(xm) f2(xm) � fn(xm)









, (3)

and d is the vector of data values.
2. Construct and solve the so called normal equations

ATAβ = ATd. (4)

Assuming m > n (more data values than parameters) and that A has full rank, the solution to
(4) may be written in terms of the pseudoinverse A+ of A,

β = (ATA)−1ATd = A+d. (5)

Geometrically speaking, d̃ = Aβ is the point in the range of A closest to d in the Euclidean
norm. The pseudoinverse projects d to the solution β, which may be thought of as the “coordi-

nates” of d̃ in the column space of A.
In the following we consider the continuous, linear version of problem (1),

β∗= argminβ

∫

Ω

(

d(x)−
∑

k

βk fk(x)
)2

dx. (6)

1



Note that in the continuous setting we assume there is a “data function” d(x), defined over some
domain Ω. An example is single-band image data, which is often interpreted as a piecewise con-
stant function over the image domain [3].

Section 4 introduces the key ideas of the new method and explains its prerequisites. Section
4 gives the algorithm and discusses its computational merits. As an example, in Section 5 I work
out the elements of the algorithm for the problem of fitting a bivariate quadratic polynomial.
The method for solving (6) that I call iterated projection works for any dimension of Ω, but for
the sake of clear exposition I assume Ω has dimension 2 and Ω =Ω2h = [− h, h]× [− h, h].

2 Linear Least-Squares by Iterated Projection

Figure 1. Domain Ω with coordinate origin at center (a). Ω partitioned into four subdomains Ω1, Ω2,

Ω3, Ω4 in clockwise order (b), next finer partition (c), finest partition at which the data function d may

be accurately represented over the subdomains (d). A local coordinate system is centered on each subdo-

main (only shown for upper left subdomains in (b) and (c)).

Recall that the pseudoinverse in (5) projects the data directly onto a solution vector. With
iterated projection we also obtain the solution by projection. However, instead of directly pro-
jecting the data we project solutions of intermediate least-squares problems. Imagine we parti-
tion Ω into four equally sized subdomains Ω1, � , Ω4 as shown in Figure 1b, and that we are able
to solve (6) for each subdomain, with solutions β1

∗, � , β4
∗. Can we compute the solution β∗ for Ω

from the four solutions β1
∗, � , β4

∗ for Ω1, � , Ω4? As we will see below, the answer is yes, under
certain circumstances.

With “problem (6) for subdomain Ωi” we mean that the integral in (6) is over Ωi instead of
Ω, and that the coordinates are with respect to a coordinate system centered on Ωi (cf. Figure
1b). But centering the coordinate systems with respect to each Ωi means the four integrals are
over the same set of points Ωh = [− h/2, h/2]× [− h/2, h/2]. These are important aspects of iter-
ated projection: the problems corresponding to the four subdomains are four instances of the
same problem (only the data term in (6) is different), as well as similar to the original problem
(Ω =Ωh instead of Ω =Ω2h).

A few more bits of notation are necessary to define the intermediate problems more pre-
cisely. We denote the coordinates (with respect to Ω2h) of the four subdomain’s coordinate ori-
gins by x1

0, � , x4
0 and the solutions corresponding to the four subdomain problems by β1

∗, � , β4
∗,

respectively. In the continuous setting β∗ are the coordinates of a function closest to d in the
space F2h of functions over Ω2h that is spanned by {fk|Ω2h

}k=1� n. Likewise, the solution βi
∗ for

subdomain Ωi are the coordinates of a function closest to x� d(x + xi
0), in the space Fh of func-

tions over Ωh spanned by {fk|Ωh
}k=1�n. We can use the space Fh to construct another space of

functions over Ω2h,

F̃2h =
{

f : Ω2h→R
∣

∣ x� f(x+ xi
0)∈Fh for all x∈Ωh and i= 1� 4}.

Note that F2h has dimension n, whereas F̃2h has dimension 4× n. The answer to our question is
that we can construct a solution β∗ for (6) from the solutions βi

∗ for the subdomains if F2h is a
subspace of F̃2h,

F2h⊂ F̃2h. (7)

2 Section 2



2.1 The Subspace Property

When does the “subspace property” (7) hold for a set of functions {fk}? What we must verify is
that for any set of parameters β there are parameters β1,� , β4 such that

∑

k

βk fk(x− xi
0)=

∑

k

βi,k fk(x), ∀x∈Ωh, i= 1,� , 4. (8)

In other words, relation (7) holds when the space of functions (over R2) spanned by {fk} is
translation-invariant . Examples are the spaces of polynomials of any finite order, or the space of
functions spanned by sine-cosine pairs with same wave number.

2.2 Solving the Linear Least-Squares Problem

We want to obtain the linear least-squares solution β∗ on Ω = Ω2h from the solutions β1
∗, � , β4

∗

for Ω’s subdomains Ω1, � , Ω4, respectively. As we said above, we obtain β∗ by projecting the

solutions β1
∗, � , β4

∗. Let a function f̃ ∈ F̃2h be parameterized by β̃ ∈R4×n, β̃T =
(

β1
T β2

T β3
T β4

T
)

,

where βi corresponds to the part of f̃ covering subdomain Ωi, and let f ∈ F2h be parameterized

by γ ∈Rn. The projector from F̃2h onto F2h we seek maps β̃ to the vector

β∗= argminγ

∑

i

∫

Ωh

(

∑

l

βi,l fl(x)−
∑

k

γk fk(x− xi
0)
)2

dx. (9)

Assume, for the moment, we know the projector, a n × (4 n)-matrix, and call it Rh. Using
Rh, the solution to problem (6) is

β∗= Rh β̃
∗
=
(

Rh,1 Rh,2 Rh,3 Rh,4

)









β1
∗

β2
∗

β3
∗

β4
∗









(10)

(Rh,i denotes the obvious n × n submatrix of Rh). Equation (10) expresses the central idea and
operation of the iterated projection algorithm: obtain solutions to smaller versions of the linear
least-squares problem first, then derive the solution to the original problem by a simple matrix-
vector product. The solutions to the smaller problems are obtained in the same way, by pro-
jecting solutions for sub-subdomains, using a similar projection operator Rh/2. The resulting
algorithm is recursive. The recursion ends at subdomains over which the data function d is an
element of the space spanned by {fk} over that domain, or when d may be approximated in
that space with negligible error (Figure 1d).

2.3 The Projection Operator

We now turn to the problem of determining the projection matrix Rh used in (10). There are
different ways of deriving Rh. In this section I describe one way, and in Section 5 I demonstrate
another way by example.

To begin note that when subspace property (7) holds, for every element β in the range of Rh

there is one vector β̃ for which (9) is exactly zero. If this is the case, then β̃ and β =Rh β̃ repre-
sent the same function over Ω2h. We denote Ph the (4 n)× n-matrix that maps β (representing a

function in F2h) to the vector β̃ representing the same function in F̃2h,

β̃ = Ph β =











Ph,1

Ph,2

Ph,3

Ph,4











β. (11)

Determining Ph for a particular set of functions {fk} is just another way of confirming that the
subspace property (7) holds. Ph is relevant here because concrete expressions for it are easy to
derive, and we can express Rh in terms of Ph (below).

Linear Least-Squares by Iterated Projection 3



The second ingredient we need is the inner product on the parameter space of F2h that cor-
responds to the “least-squares” (Euclidean) norm,

〈f , g〉
2h

=

∫

Ω2h

f(x) g(x) dx (12)

=

∫

Ω2h

(

∑

k

βk fk(x)
)(

∑

l

γl fl(x)
)

dx

= βT













∫

Ω2h
f1f1

∫

Ω2h
f1f2 � ∫

Ω2h
f1fn

∫

Ω2h
f2f1

∫

Ω2h
f2f2 

 
 ∫

Ω2h
fn−1fn

∫

Ω2h
fnf1

∫

Ω2h
fnf2 � ∫

Ω2h
fnfn













γ

= βT Q2h γ.

Q2h is the Gram matrix of the functions {fk}. Inner products corresponding to the subdomain-
function spaces are defined in the same way,

〈f |Ωh
, g |Ωh

〉
h
= βi

T













∫

Ωh
f1f1

∫

Ωh
f1f2 � ∫

Ωh
f1fn

∫

Ωh
f2f1

∫

Ωh
f2f2 

 
 ∫

Ωh
fn−1fn

∫

Ωh
fnf1

∫

Ωh
fnf2 � ∫

Ωh
fnfn













γi = βi
T Qh γi. (13)

With Ph and Qh we can express the least-squares property (9), which is the defining property of
Rh, without using integrals

Rh β̃ = argminγ

∑

i

∫

Ωh

(

∑

l

βi,l fl(x)−
∑

k

γk fk(x− xi
0)
)2

dx

= argminγ

∑

i

∫

Ωh

(

∑

l

βi,l fl(x)−
∑

k

(Phγ)i,k fk(x)
)2

dx

= argminγ

∑

i

(βi− (Phγ)i)
T
Qh (βi− (Phγ)i) (14)

Since the sum in (14) is quadratic in γ we can set its gradient w.r.t γ to zero and solve for γ to
find the minimizer. The result is the following expression for Rh,

Rh =

(

∑

i=1

4

Ph,i
T Qh Ph,i

)−1
(

Ph,1
T Qh Ph,2

T Qh Ph,3
T Qh Ph,4

T Qh

)

. (15)

3 Computational Characteristics

The following algorithm Iterated_Projection_LSQ is a very simple instance of iterated
projection; it requires that the data function is piecewise constant over square regions of a reg-
ular partition of Ω into m × m = 2l × 2l regions (cf. Figure 1d). Not included in the algorithm
description is the construction of the projection matrices Rh. These are assumed to have been
precomputed for all relevant scales prior to calling Iterated_Projection_LSQ.

Iterated_Projection_LSQ(D, h)

Input. D: m×m data matrix, h: scale of domain

Output. β∗: least-squares solution over domain Ω = [− h, h]× [−h, h]

Steps.

1. If m = 1:

2. β∗← project constant function d(x) =D1,1 (Section 2.2)

3. else:

4. partition D, D =
(

D1 D2

D4 D3

)

4 Section 3



5. βi
∗← Iterated_Projection_LSQ(Di, h/2), for i =1,� , 4

6. β∗←Rh









β1
∗

β2
∗

β3
∗

β4
∗









(Equation 10)

3.1 Computational Complexity of Iterated Projection

Algorithm Iterated_Projection_LSQ is formulated for two-dimensional domains. However,
adapting the algorithm to domains of different dimensionality is straightforward and we discuss
computational complexity for the general case (d dimensions). In the general case

• D is assumed to have md entries and is partitioned into 2d parts in Step 4,

• the projection matrix Rh is of size n× 2d n,

• the depth of the recursion l = log2 m is independent of d.

We assume that analytical expressions for Rh are available, thus, precomputing the projection
matrices means evaluating those expressions for all l scales. Assuming that the amount of com-
putation for evaluating each Rh-entry is independent of h, precomputing the projecting matrices
requires O(log2 m× 2d×n2) operations and O(log2 m× 2d×n2) space.

Computing β∗ in Step 2. requires O(n) operations per entry of D, or O(md × n) operations

total. Computing β∗ in Step 6. requires a matrix-vector product of O(2d× n2). Step 6 is carried

out
∑

i=0
l−1 (2d

)i
=

2d×l − 1

2d − 1
times, resulting in a total operation count of O

(

2d×log2m × n2
)

or

O(md×n2) for Step 6.
Steps 5. and 6. together may be organized in a loop over all Di. In that case the amount of

space required by iterated projection (in addition to the space required for the projection
matrices) is proportional to n and proportional to the depth of the recursion, O(log2 m×n).

3.2 Comparison to Classical Linear Least-Squares Algorithms

In discrete linear least-squares problems, the problem domain Ω has been abstracted away and
its dimension usually plays no part in a complexity analysis. Instead, the complexity of those

algorithms are expressed in the size of matrix A in (4), say M × n [4]. Setting M = md for com-

parison, the cost of iterated projection is O(M × n2) operations, and O
(

2d

d
× log2 M × n2

)

units

of space (ignoring space required for entering the problem).
A classical algorithm for solving the normal equations (4) is Cholesky factorization,

Cholesky_LSQ(A, d)

Input. A: M ×n model matrix, d: M data vector

Output. β∗: least-squares solution argminβ‖Aβ − d‖2
Steps.

1. Compute B = ATA

2. Compute y = AT d

3. Factorize B, B = RT R (R upper triangular)

4. Solve RT x= y

5. Solve R β∗= x

The costs of these steps are, respectively, O(M × n2), O(M × n2), O(n3), O(n2), and O(n2)
operations. In most situations where iterated projection is applicable we could carry out Step 1.
and Step 3. of Cholesky_LSQ in advance, and the asymptotic cost would be dominated by
Step 2., O(M ×n2). Storing the Cholesky factors requires O(n2) units of space.

Other classical algorithm’s complexity characteristics are essentielly the same ([4], Chapter
11), and we conclude that the asymptotic computational cost of iterated projection is the same
as the cost of well-known algorithms for discrete linear least-squares.

Computational Characteristics 5



4 Discussion

I have presented a new idea, iterated projection, for computing the solution to continuous linear
least-squares problems. The idea is to project the data—which is thought of as a function—into
a sequence of function spaces of decreasing dimensionality. The final projection in this sequence
is into the space in which the solution is sought.

As discussed in Section 3.2, iterated projection is asymptotically as efficient as other linear
least-squares algorithms. However, Iterated_Projection_LSQ is a strikingly simple algo-
rithm, consisting essentially of a single operation (the matrix-vector product in Step 6) and is
arguably easier to accelerate by special hardware. Secondly, the way the computation is orga-
nized in Iterated_Projection_LSQ makes it easy to distribute the work among multiple
processors.

Classical linear least-squares algorithms and iterated projection do not solve exactly the
same problem. The former solve the problem

Find β∗ such that ‖d−Aβ‖2 is minimal for β = β∗, (16)

iterated projection solves the problem (with f linear in β)

Find β∗ such that

∫

Ω

(

d(x)−
∑

k

βk fk(x)
)2

dx is minimal for β = β∗. (17)

In practice problem (17) is often approximated by a problem of the form (16), obtained through
sampling d and f at selected points {xi} (cf. (1) to (3) in Section 1). In such situations, and
when the subspace property (7) holds, iterated projection is a compelling alternative to discrete
linear least-squares algorithms. It may give exact solutions (except for rounding errors), and it
may require less computation when d is of appropriate form (e.g., functions in finite-element
spaces; Step 2 in Iterated_Projection_LSQ needs to be adapted accordingly).

Another interesting aspect of iterated projection is that, since no linear system needs to be
solved, the problems of underdetermined or singular systems do not occur. This recommends
iterated projection for problems like least-squares based image reconstruction and segmentation
[1, 2], where small regions often lead to underdetermined or singular least-squares problems.

5 Appendix–Iterated Projection with Quadratic Polyno-
mials

In this appendix we derive the projection matrix Rh for problem (17) with {fk} given as

f1(x) = 1

f2(x) = x1

f3(x) = x2

f4(x) =
1

2
x1

2 (18)

f5(x) = x1 x2

f6(x) =
1

2
x2

2.

At first we verify that the space spanned by f1,� ,f6 is translation invariant. Let β represent any

such function, f(x; β) =
∑

k=1
6

βk fk(x), x0 be the origin of another coordinate system, and
f ′(x′; β ′) denote the representation with respect to the coordinate system centered at x0. Func-
tion f ′ is the same as f if their values and that of all their derivatives are identical at any point.
Choose x0 as that point and write down the identities to obtain β ′ in terms of β and x0.

β1
′ = β1 + β2 x1

0 + β3 x2
0 +

β4

2

(

x1
0
)2

+ β5 x1
0 x2

0 +
β6

2

(

x2
0
)2

β2
′ = β2 + β4 x1

0 + β5 x2
0�

To derive matrix Ph in (11) we set x0 to
(

−h

2
,

−h

2

)

,
(

h

2
,

−h

2

)

,
(

h

2
,

h

2

)

, and
(

−h

2
,

h

2

)

, respec-

tively, and obtain

6 Section 5



Ph,1 =























1
− h

2

− h

2

h2

8

h2

4

h2

8

1
− h

2

− h

2

1
− h

2

− h

2

1
1

1























Ph,2 =























1
h

2

− h

2

h2

8

− h2

4

h2

8

1
h

2

− h

2

1
h

2

− h

2

1
1

1























Ph,4 =























1
− h

2

h

2

h2

8

− h2

4

h2

8

1
− h

2

h

2

1
− h

2

h

2

1
1

1























Ph,3 =























1
h

2

h

2

h2

8

h2

4

h2

8

1
h

2

h

2

1
h

2

h

2

1
1

1























.

Matrix Qh in (13) can be seen to be

Qh =

























h2 1

24
h4 1

24
h4

1

12
h4

1

3
h4

1

24
h4 1

320
h6 1

576
h6

1

144
h6

1

24
h4 1

576
h6 1

320
h6

























(19)

These are the ingredients needed to derive Rh via (15).

5.1 Deriving Rh by QR Factorization
One algorithm for solving least-squares problem is by QR factorization. It consists of computing
the (reduced) QR factorization of A in (4), A = Q R, by which we obtain an orthonormal basis
for the column space of A. Next, the data vector is expanded in that orthonormal basis, and,
finally, an expansion in the basis of interest (the columns of A) is obtained by solving a trian-
gular system.

I now show how to derive Rh by applying essentially this algorithm, but in the continuous
setting. The polynomials (18) do not form an orthogonal basis with respect to the inner product
(12), otherwise Qh in (19) were diagonal. An orthornomal basis for the space spanned by (18)
are the Legendre polynomials up to order two. Defined over Ω = [− h, h]× [− h, h], these are

φ1(x) =
1

h

1

2

φ2(x) =
1

h2

3
√

2
x1

φ3(x) =
1

h2

3
√

2
x2

φ4(x) =
1

h3

5
√

4

(

3 x1
2− h2

)

φ5(x) =
1

h3

3

2
x1 x2

φ6(x) =
1

h3

5
√

4

(

3 x2
2− h2

)

.

The “QR factorization” of A=
(

f1 f2 f3 f4 f5 f6

)

over Ω is

(

f1 f2 f3 f4 f5 f6

)

=
(

φ1 φ2 φ3 φ4 φ5 φ6

)





























2h
1

3
h3 1

3
h3

2

3
√ h2

2

3
√ h2

2

3 5
√ h3

2

3
h3

2

3 5
√ h3





























= Φ C

Appendix–Iterated Projection with Quadratic Polynomials 7



The product Rh β̃ may now be expressed as

Rh β̃ = C−1
∑

i=1

4 (
∫

Ωi

ΦT
(

f1 f2 f3 f4 f5 f6

)

dx

)

βi

= C−1
∑

i=1

4











〈φ1, f1〉h/2 〈φ1, f2〉h/2 � 〈φ1, f6〉h/2

〈φ2, f1〉h/2 〈φ2, f2〉h/2 

 
 〈φ5, f6〉h/2

〈φ6, f1〉h/2 〈φ6, f2〉h/2 � 〈φ6, f6〉h/2











βi

= C−1
(

R̃h,1 R̃h,2 R̃h,3 R̃h,4

)

β̃ ,

hence Rh =
(

C−1R̃h,1 C−1R̃h,2 C−1R̃h,3 C−1R̃h,4

)

. Evaluating the integrals in R̃h,i we get

R̃h,1 =





























1

2
h 0 0

1

4 8
h3 0

1

4 8
h3

− 3
√

4
h

3
√

2 4
h2 0 − 3

√

9 6
h3 0 − 3

√

9 6
h3

− 3
√

4
h 0

3
√

2 4
h2 − 3

√

9 6
h3 0 − 3

√

9 6
h3

0 − 5
√

1 6
h2 0

5
√

4 8 0
h3 0 0

3

8
h − 1

1 6
h2 − 1

1 6
h2 1

6 4
h3 1

9 6
h3 1

6 4
h3

0 0 − 5
√

1 6
h2 0 0

5
√

4 8 0
h3





























R̃h,2 =





























1

2
h 0 0

1

4 8
h3 0

1

4 8
h3

3
√

4
h

3
√

2 4
h2 0

3
√

9 6
h3 0

3
√

9 6
h3

− 3
√

4
h 0

3
√

2 4
h2 − 3

√

9 6
h3 0 − 3

√

9 6
h3

0
5

√

1 6
h2 0

5
√

4 8 0
h3 0 0

− 3

8
h − 1

1 6
h2 1

1 6
h2 − 1

6 4
h3 1

9 6
h3 − 1

6 4
h3

0 0 − 5
√

1 6
h2 0 0

5
√

4 8 0
h3





























R̃h,4 =





























1

2
h 0 0

1

4 8
h3 0

1

4 8
h3

− 3
√

4
h

3
√

2 4
h2 0 − 3

√

9 6
h3 0 − 3

√

9 6
h3

3
√

4
h 0

3
√

2 4
h2 3

√

9 6
h3 0

3
√

9 6
h3

0 − 5
√

1 6
h2 0

5
√

4 8 0
h3 0 0

− 3

8
h

1

1 6
h2 − 1

1 6
h2 − 1

6 4
h3 1

9 6
h3 − 1

6 4
h3

0 0
5

√

1 6
h2 0 0

5
√

4 8 0
h3





























R̃h,3 =





























1

2
h 0 0

1

4 8
h3 0

1

4 8
h3

3
√

4
h

3
√

2 4
h2 0

3
√

9 6
h3 0

3
√

9 6
h3

3
√

4
h 0

3
√

2 4
h2 3

√

9 6
h3 0

3
√

9 6
h3

0
5

√

1 6
h2 0

5
√

4 8 0
h3 0 0

3

8
h

1

1 6
h2 1

1 6
h2 1

6 4
h3 1

9 6
h3 1

6 4
h3

0 0
5

√

1 6
h2 0 0

5
√

4 8 0
h3





























.

Multiplying R̃h,i by C−1 we finally arrive at the four components of Rh,

Rh,1 =



























1

4

5

6 4
h

5

6 4
h

1

1 2 8
h2 0

1

1 2 8
h2

− 3

8

1

h

1

1 6
0 − 1

6 4
h 0 − 1

6 4
h

− 3

8

1

h
0

1

1 6
− 1

6 4
h 0 − 1

6 4
h

0 − 1 5

3 2

1

h
0

1

6 4
0 0

9

1 6

1

h2
− 3

3 2

1

h
− 3

3 2

1

h

3

1 2 8

1

6 4

3

1 2 8

0 0 − 1 5

3 2

1

h
0 0

1

6 4



























Rh,2 =



























1

4
− 5

6 4
h

5

6 4
h

1

1 2 8
h2 0

1

1 2 8
h2

3

8

1

h

1

1 6
0

1

6 4
h 0

1

6 4
h

− 3

8

1

h
0

1

1 6
− 1

6 4
h 0 − 1

6 4
h

0
1 5

3 2

1

h
0

1

6 4
0 0

− 9

1 6

1

h2
− 3

3 2

1

h

3

3 2

1

h
− 3

1 2 8

1

6 4
− 3

1 2 8

0 0 − 1 5

3 2

1

h
0 0

1

6 4



























Rh,4 =



























1

4

5

6 4
h − 5

6 4
h

1

1 2 8
h2 0

1

1 2 8
h2

− 3

8

1

h

1

1 6
0 − 1

6 4
h 0 − 1

6 4
h

3

8

1

h
0

1

1 6

1

6 4
h 0

1

6 4
h

0 − 1 5

3 2

1

h
0

1

6 4
0 0

− 9

1 6

1

h2

3

3 2

1

h
− 3

3 2

1

h
− 3

1 2 8

1

6 4
− 3

1 2 8

0 0
1 5

3 2

1

h
0 0

1

6 4



























Rh,3 =



























1

4
− 5

6 4
h − 5

6 4
h

1

1 2 8
h2 0

1

1 2 8
h2

3

8

1

h

1

1 6
0

1

6 4
h 0

1

6 4
h

3

8

1

h
0

1

1 6

1

6 4
h 0

1

6 4
h

0
1 5

3 2

1

h
0

1

6 4
0 0

9

1 6

1

h2

3

3 2

1

h

3

3 2

1

h

3

1 2 8

1

6 4

3

1 2 8

0 0
1 5

3 2

1

h
0 0

1

6 4



























.

A Matlab implementation of iterated projection based on these results is available for
download from ftp://ftp.cs.pdx.edu/pub/juenglin/iterated_projection/examples.tar.

Bibliography

[1] P. J. Besl and R. C. Jain. Segmentation through variable-order surface fitting. IEEE Transactions on

Pattern Analysis and Machine Intelligence , 10(2):167–192, March 1988.

[2] T. Kanungo, B. Dom, W. Niblack, and D. Steele. A fast algorithm for MDL-based multi-band image seg-

mentation. In Proceedings of the Conference on Computer Vision and Pattern Recognition , pages 609–

616, Los Alamitos, CA, USA, 1994. IEEE Computer Society Press.

[3] Y. G. Leclerc. Constructing simple stable descriptions for image partitioning. International Journal of

Computer Vision , 3:73–102, May 1989.

[4] L. N. Trefethen and D. Bau. Numerical Linear Algebra . SIAM, Philadelphia, PA, 1997.

8 Section


	Solving Continuous Linear Least-Squares Problems by Iterated Projection
	Let us know how access to this document benefits you.
	Citation Details

	Untitled

