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1. Introduction 

The mosquito Aedes aegypti (Diptera: Culicidae) is the vector of several arboviruses that 

significantly impact the global burden of disease, including dengue (DENV), chikungunya 

(CHIKV), and Zika (ZIKV). The diseases brought on by these arboviruses have garnered 

considerable attention in the last few decades. The incidence of the geographical spread of 

human disease caused by these viruses has increased dramatically within their range, in 

addition to occurring in new geographical locations (Kraemer et al., 2015). Notable 

outbreaks include the major ZIKV outbreak in the Americas in 2014 (Chang et al., 2016), the 

CHIKV outbreak on Réunion Island in 2005 (Borgherini et al., 2007), and a severe DENV 

outbreak in Rio de Janeiro in 2002 (Nogueira et al., 2005). A troubling concern is the vector’s 

ability to adapt effectively to varying environmental conditions (Mohammed & Chadee, 

2011.)  Indeed, the mosquito has evolved remarkably quickly into a competent vector. It is 

thought to have evolved from a zoophilic treehole ancestral mosquito named Aedes aegypti 

formosus in Sub-Saharan Africa (Powell & Tabachnick, 2013; Brown et al., 2014), and was 

introduced into the New World with the slave trade, from which it immediately spread 

globally (Brown et al., 2014). As the vector is poikilothermic, it was able to respond rapidly 

to the changes in the environment and eventually settled into empty natural niches 

(Mohammed & Chadee, 2011; Powell & Tabachnick, 2013). In time, the Ae. aegypti’s 

peridomestic habits and endophagic disposition established it as an opportune vector for 

emerging tropical diseases (Moncayo et al., 2004). 

Currently affecting millions of people globally, these tropical infectious diseases are among 

the most critical global health concerns. Present efforts to reduce the incidence of these 

infectious diseases center around vector control, including larvicide application, indoor 

residual spraying (IRS), and mosquito surveillance (Lippi et al., 2019). Except for yellow 

fever (YFV), presently, there is no vaccine for the arboviruses that the Ae. aegypti mosquito 

transmits (Kantor, 2018), which impairs efforts to decrease the significant disease burden it 

imposes. As such, monitoring the current range and predicting changes in the distribution 

of the vector is a crucial strategy for effective disease control planning (Messina et al., 2015). 

While a considerable level of interest has been invested in this emerging field of research, it 

was not clear from an exploratory literature search whether South America is represented 

at the same levels as the African and Southeast Asian regions. DENV, CHIKV, and 

lymphatic filariasis, all transmitted by the Ae. aegypti mosquito, are classified by the World 

Health Organization (WHO) as neglected tropical diseases (NTD) (World Health 

Organization, n.d.). Although the UN did not include NTDs in the Millennium 

Development Goals (MDGs), they were subsequently included in the Sustainable 

Development Goals (SDGs) as measurable targets, with the purpose of ending epidemics 

(Vanderslott, 2019). In South America, the burden of disease from these arboviruses has 

significantly impeded economic development and represents significant opportunity costs. 

Therefore, it is imperative that this region not be overlooked (Franco-Paredes et al., 2007). 

1.1. Vectorial Capacity 



  

 

A limiting factor in the Ae. aegypti’s geographic distribution has been its inability to tolerate 

temperatures below 15°C (Brady et al., 2013); therefore, it has predominantly settled in 

tropical and subtropical regions (Weaver, 2014). Recent reports predict that global 

temperatures will increase between 1.4-5.8°C, and in Latin America between 1.0-4.0°C by 

2050 (Intergovernmental Panel on Climate Change, 2007). Consequently, a growing concern 

is how it will impact the vectorial capacity of the mosquito. In addition to range, 

temperature plays a pivotal role in a variety of characteristics of the Ae. aegypti: frequency 

of blood meals (Scott et al., 2000); sex ratio in larvae (Mohammed & Chadee, 2011); 

development duration (Farjana et al., 2011); population density (El Moustaid & Johnson, 

2019); pathogen transmission (Reinhold et al., 2018); and adult survival rate (Culbert et al., 

2019). Thus, it is crucial to examine how increasing temperatures may potentially affect Ae. 

aegypti’s competence as a vector. 

The Ae. aegypti mosquito transmits arboviruses, or “arthropod-borne viruses,” which are 

predominantly RNA genomes that have a high rate of mutation and thus evolve rapidly. 

Temperature can impact the rate at which viruses replicate in the mosquito’s midgut, 

shortening the extrinsic incubation period (EIP) and reaching the salivary glands at an 

accelerated rate (Winokur et al., 2020). Additionally, Ae. aegypti mosquitoes can transmit 

DENV, ZIKV, and CHIKV vertically; that is, infected female mosquitoes can pass the viruses 

on to their progeny (Alonso-Palomares et al., 2019). This ability has contributed to the 

maintenance of viruses during inter-epidemic periods (Lequime & Lambrechts, 2014). 

1.2. Blood Feeding 

Given that the mode of disease transmission in the Ae. aegypti mosquito is through blood-

feeding, it is essential to understand what factors affect the frequency of blood meals. The 

Ae. aegypti mosquito is highly anthropophilic; therefore, it feeds predominantly on humans 

(Liebman et al., 2014) and seldom supplements blood meals with plant sugar (Scott et al., 

2000). Attempts to understand which members of the population are more likely to be bitten 

by the mosquito have remained inconclusive. However, factors that appear to increase the 

likelihood of bites include larger body size, due to increased heat signature and CO2 

production, as well as decreased human movement (Liebman et al., 2014).  

Compared to other mosquito species that typically ingest one blood meal per ovarian cycle, 

the female Ae. aegypti mosquito is unique in that it will ingest multiple blood meals 

throughout a gonotrophic cycle (Scott et al., 2000). This behavior is known as multiple 

feeding, and as the number of blood meals increases, the rate of transmission for vector-

borne pathogens can potentially exponentially increase as well (Scott & Takken, 2012). There 

is a negative relationship between body size and multiple feedings; that is, smaller females 

will require more blood meals to improve their fecundity, thereby increasing their contact 

with hosts (Farjana & Tuno, 2013). Previous studies have established a negative relationship 

between temperature and body size due to shortened development time (Mohammed & 

Chadee, 2011; Tun-lin et al., 2000), suggesting that an increase in temperature would 

eventually lead to an increase in the frequency of blood meals. Female Ae. aegypti 



  

 

mosquitoes were found to partake in higher instances of blood-feeding between 26°C and 

35°C (Reinhold et al., 2018). This is especially disconcerting when considering that as 

temperatures pass 25°C, the sex ratio in Ae. aegypti larvae show significantly more females 

emerging (Mohammed & Chadee, 2011). An increase in the number of smaller females 

requiring a higher frequency of blood meals would ostensibly lead to heightened contact 

with hosts, consequently increasing the likelihood of pathogen transmission. Indeed, 

increased contact between humans and Ae. aegypti populations have been associated with 

the dramatic rise in the incidence rate of DENV and YFV in recent decades (Monath, 1994).  

1.3. Development 

Aside from the previously established negative relationship with body mass, increasing 

temperatures have further effects on the development of the Ae. aegypti mosquito. The eggs 

of the Ae. aegypti have a unique property in that they hatch simultaneously when exposed 

to water, as opposed to irregularly, as is the case in other species of mosquitoes. This 

property lends itself well to rapid population growth and will likely aid the Ae. aegypti in 

establishing colonies in new niches. Indeed, data suggests it may be able to find success in 

areas where the temperature is in the range of 25-35°C (Farjana et al., 2011). The rate at which 

females lay eggs increases as temperatures rise, leading to a more substantial amount of 

eggs being laid more frequently (Yang et al., 2009). 

The adult mortality rate begins to increase exponentially at 35°C, suggesting that it may be 

the upper limit for the vector. Similarly, at 25°C, larvae begin to experience higher mortality 

rates. The probability of surviving from egg to adulthood diminishes past 25°C and vanishes 

completely upon nearing 40°C (Moustaid & Johnson, 2019).   

Mosquitoes use a variety of methods to locate a host, such as thermal and chemical 

detection, and as such, flight activity is intrinsically linked to their success in blood-feeding. 

Data suggests that the temperature range in which the female Ae. aegypti can fly sustainably 

is 15-35°C, with the optimal temperature appearing to be around 21°C (Reinhold et al., 2018). 

Humidity has been shown to have little to no effect on flight performance (Rowley & 

Graham, 1968). This illustrates a broad spectrum of temperatures in which the female Ae. 

aegypti can fly reliably in pursuit of blood meals. Female Ae. aegypti mosquitoes use a specific 

frequency of wing-beats to attract a mate, and this frequency has likewise been shown to 

vary with ambient temperature. Notably, there is a linear relationship, with frequency 

increasing between 8-13Hz for every degree °C and male Ae. aegypti were shown to react 

more favorably to higher frequencies (Villarreal et al., 2017). This implies adaptability to 

improve the chances of mating during times of abiotic stress in order to increase fitness.  

1.4. Spatial Distribution 

The natural niche of the Aedes aegypti mosquito has primarily been dictated by its inability 

to survive below 10°C and above 40°C (Reinhold et al., 2018). This has historically afforded 

regions outside of that range inherent protection; however, reports suggest that temperate 

zones formerly outside the endemic range are among the most at risk of being negatively  



  

 

impacted by climate change (Rohr et al., 2011). In the past century, a 30% increase in CO2 

production raised global surface temperatures by 0.5°C (Wigley et al., 1992). Minimum 

temperatures are increasing disproportionately, and current climate change predictions 

expect this trend to continue. Such scenarios could increase the epidemic potential in regions 

previously unburdened by disease (Patz et al., 1998). The Ae. aegypti mosquito primarily 

resides within latitudes 32° N to 32° S, and projection models estimate that that will soon 

expand to 35° N to 35° S (Alaniz et al., 2018). Current statistical models predict the Ae. aegypti 

mosquito will be able to establish itself in at least three new countries by 2080, bringing its 

spatial distribution to 159 countries total (Kraemer et al., 2019). This would potentially put 

49% of the global population at risk of arboviral transmission (Kraemer et al., 2019). Given 

the mosquito’s peridomestic preferences and ability to lay eggs in small amounts of water, 

it will not be much affected by changing precipitation levels or decreased vegetation 

(Kraemer et al., 2015). Previous studies have established that domestic water storage 

practices are more significant predictors of mosquito reproduction than rainfall (Southwood 

et al., 1972). 

Presently, an estimated 100 million people are infected annually by the Ae. aegypti mosquito 

(Messina et al., 2019), and this number is predicted to increase to close to a billion by the end 

of the century (Ryan et al., 2019). The population at risk may be significantly lowered if 

climate policy, such as the Paris Agreement (UNFCCC), is enforced to limit global warming 

to below 2°C (Liu-Helmersson et al., 2019). Reducing the emission of greenhouse gases will 

limit the increase of the Ae. aegypti’s expansion, and in turn, limit the burden of disease in 

the areas it inhabits (Kraemer et al., 2019). 

2. Methods 

2.1. Search Criteria 

We conducted a systematic search in the PubMed database for articles that assessed the 

relationship between temperature and the vectorial capacity of the Aedes aegypti mosquito. 

Search parameters specified English or Spanish languages and publication dates between 

January 1, 1988, and March 30, 2020. We developed the search strategy using the 

synonymous search terms provided in Appendix 1. Studies that did not include climate 

change as an element of analysis were excluded. Studies before 1988 were excluded to 

restrict the results to the current era of climate change, which is defined as the year the 

Intergovernmental Panel on Climate Change (IPCC) first convened (Huq & Toulmin, 2006). 

Studies without full-text availability were not excluded. We used Zotero to manage studies 

and data. 

2.2. Study Design 

For this study, we utilized a systematic map approach to assess the current state of research 

on this topic and followed the recommendations made by the Social Care Institute for 

Excellence (Bates et al., 2007) as well as the Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses (Moher et al., 2009). The search strategy was not limited by 



  

 

article study design. Studies were only eligible for inclusion if they met the following 

criteria: the study population was the Aedes aegypti mosquito; the effect of climate change 

on the Aedes aegypti was examined; and the outcome was an influence on the mosquito’s 

vectorial capacity. 

2.3. Data Extraction 

One reviewer (LM) screened titles and abstracts using DistillerSR, then screened the 

included full-text articles. One reviewer (LM) subsequently extracted the geographical 

region and country the study was based in, the study characteristics, then evaluated the 

quality of the study and recorded the data in a standard form. Only studies that evaluated 

climate change’s potential effect on the Ae. aegypti population were used in the analysis, 

while studies that only focused on temperature outside of the context of climate change 

were excluded. All articles were grouped according to the region in which the study 

occurred.  

3. Results 

Our initial search in PubMed yielded 1058 articles after the removal of duplicates, and 503 

remained after the full-text screening (Figure 1).  Only 83 articles met the inclusion criteria 

and were subsequently included in the analysis (Table 1). [Appendix].  

 

Figure 1: PRISMA flowchart of studies included in analysis 

 



  

 

Although our inclusion criteria set the publication date to be from 1988 to 2020, most of the 

included studies were published in late 2000 and on. Fig. 2 illustrates the quantity of 

included studies per publication year. There was a significant increase in the number of 

studies published on this topic in 2019.  

 

Figure 2: Publication dates and quantity of studies included in analysis 

Asia and North America were the regions with the highest number of published articles (n= 

23, 28%; n= 15, 18%), followed by Europe (n= 14; 17%). [Figure 3]. In South America, most of 

the studies were on Brazil or Argentina (n= 2; 20%), but overall only five of thirteen countries 

in South America were represented in the literature [Figure. 4]. The Ae. aegypti mosquito is 

endemic in thirteen South American countries (Leta et al., 2018), yet no literature was 

included in the analysis that focused on eight of those countries. This leaves 62% of South 

America unrepresented. The areas in South America most heavily impacted by the Ae. 

aegypti are Brazil, Colombia, and Venezuela (Torres & Castro, 2006), yet Colombia and 

Venezuela were not well represented in the literature.  

 

Figure 3: Spider map of geographical regions represented in included studies 



  

 

 

Figure 4: Spider map of South American countries represented in included studies 

4. Discussion 

The use of spider maps is an effective tool for summarizing the relative proportions of a 

measure across multiple dimensions.  The spider maps included here illustrate, clearly, that 

the intellectual production on this important issue is limited.  The results of a systematic 

review of the literature are quickly illuminated through these illustrative methods. As 

represented in Fig. 3, the literature is produced in only some regions of the world.  This is 

important because climate change is predicted to disproportionately impact developing 

countries, and thus it is critical to understand how these areas will be affected by this topic 

(United Nations, 2019). In Fig. 4 we see that though South America suffers a significant 

burden of disease from this vector, the scientific work on the topic is limited.  The spider 

map can quickly convey the gaps in knowledge and unmet need that faces South America. 

With 70% of the global dengue burden affecting Asia, it was not surprising that the area 

would be well represented in the literature (Bhatt et al., 2013). Conversely, despite Aedes-

borne arboviruses ravaging many areas of Africa, they were poorly represented in the 

literature (Weetman et al., 2018). This may be due to several factors, including the 

misclassification of many fevers as malaria in regions where the public health infrastructure 

lacks resources (Stoler et al., 2013). North America and Europe both had strong 

representation in the current literature, despite not being under significant threat from the 

Aedes aegypti mosquito yet, compared to the other regions (CDC, 2020). South America was 

not far ahead of neighboring regions Central America and the Caribbean, which had similar 

numbers of literature captured, although it should be noted that South America is the sub-

region most impacted by the Ae. aegypti in Latin America and the Caribbean (LAC) (Torres 

& Castro, 2006). 

While under-represented in the literature, it is worthwhile to establish estimates of the 

impact of these infectious diseases. It is difficult to find statistics on South America alone, as 

the continent is generally grouped together with the other components of LAC when 

publishing reports. In 2016, the Americas reported 2.38 million cases of dengue, of which 



  

 

1.5 million were reported in Brazil alone (WHO, 2020). The economic cost this burden of 

disease presents on the health care systems in this region is significant. In 2010, the total cost 

induced by dengue fever alone in South America was approximately USD 1.4 billion 

(Shepard et al., 2011). The 2009 epidemic in Argentina cost approximately USD 10.7 million 

(Cafferata et al., 2013). The public healthcare systems in LAC are overburdened and 

overstressed, in addition to being largely underfunded. With these systems already 

overwhelmed by ongoing health emergencies due to tuberculosis (TB), DENV, and YFV, an 

increase in the burden of disease will strain the capabilities of LAC healthcare (Litewka & 

Heltman, 2020).  

Several of the diseases the Aedes aegypti transmits have been classified as NTDs due to their 

strong correlation with poverty (WHO, 2010); therefore, it is essential to note that poverty is 

high in LAC, with approximately 30.8% of the population living below the poverty line, and 

11.5% living in extreme poverty (ECLAC, 2019). Furthermore, 76.8% of the population falls 

into low-income to lower-middle-income brackets (ECLAC, 2019). These numbers are 

comparable in South America, with 23.3% and 6.4% of its population living in poverty and 

extreme poverty, respectively (CEPAL, 2019). That translates to around 184 million people 

living in poverty in that region (ECLAC, 2019). While regions such as Africa or Asia also 

have high instances of poverty, LAC is unique in that it has the highest income inequality 

in the world (Belizán et al., 2007). The impact of the COVID-19 pandemic on the region is 

expected to result in the worst recession in a century, leading to further inequality (United 

Nations, 2020).   

The burden of disease in South America is confounded with high poverty rates and the 

inequality affecting vulnerable populations. In particular, indigenous populations tend to 

be disproportionately affected by vector-borne infectious diseases that arise during conflict 

(Hotez et al., 2008). The healthcare systems in LAC are segmented and fractured, which 

poses a major obstacle in increasing access to healthcare, particularly for those from lower 

socioeconomic status (Frenk & Gómez-Dantés, 2018). In many LAC countries, healthcare for 

those living in poverty is provided by a Ministry of Public Health, which is often poorly 

financed and historically has provided lower quality of care compared to the services 

provided by the private sector (Cotlear et al., 2014). With the COVID-19 pandemic expected 

to impact the most disadvantaged populations disproportionately, reform will be necessary 

to prepare for future crises (Busso & Messina, 2020).  

 5. Limitations    

This study was limited by restricting the search to a single database and would benefit from 

an expanded search into multiple databases. In particular, a cursory search into Spanish 

language databases during the literature review found several studies that were not 

captured in PubMed. In addition, much of the data was constricted by the grouping of South 

America into LAC, and searches in Spanish had to be made in order to find the necessary 

conclusions.  

6. Conclusion    



  

 

By the end of the century, if nothing is done to limit climate change, it is predicted that close 

to a billion people annually are at risk of being infected by the Aedes aegypti mosquito (Ryan 

et al., 2019). Much of this will occur in developing countries, impacting agriculture, water 

availability, increasing the incidence of vector-borne diseases, and damage the GDP 

(Ravindranath & Sathaye, 2002). With its high rate of poverty and inequality, South America 

will be especially vulnerable to the expanded range and improved vector capacity of 

the Aedes aegypti mosquito. Compared to regions such as Asia or North America, South 

America does not appear to be as well represented in the current literature on this topic. It 

is clear from our results that more research is needed to be conducted on South America in 

order to fully understand how this region, in particular, will be affected in the coming 

century.   
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Supplementary panel 1: Search strategy in PubMed 

Climate Change 

1. climate change (MeSh term (Medical Subject Headings)) AND aedes aegypti 

(key word) 

2. climate change (MeSH term) AND dengue (MeSH term) 

3. climate change (MeSH term) AND zika virus (MeSH term) 

4. climate change (MeSH term) AND chikungunya fever (MeSH term) 

5. climate change (MeSH term) AND chikungunya virus (MeSH term) 

6. climate change (MeSH term) AND yellow fever (MeSH term) 

7. climate change (MeSH term) AND yellow fever virus (MeSH term) 

Aedes Aegypti 

1. aedes aegypti (key word) AND temperature (key word) 

2. aedes aegypti (key word) AND vector capacity (key word) 

3. aedes aegypti (key word) AND vector competence (key word) AND 

temperature (key word) 

4. aedes aegypti (key word) AND vector competence (key word) 

5. aedes aegypti (key word) AND spatial distribution (key word) 

 

 

  



  

 

Supplementary panel 2: Details of 81 publications included in systematic map and analysis  
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