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Topological and thermodynamic factors that influence
the evolution of small networks of catalytic RNA species

JESSICA A.M. YEATES,1 PHILIPPE NGHE,2 and NILES LEHMAN1

1Department of Chemistry, Portland State University, Portland, Oregon 97207, USA
2Laboratoire de Biochimie, École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), PSL Research University,
CNRS UMR 8231, 75231 Paris, France

ABSTRACT

An RNA-directed recombination reaction can result in a network of interacting RNA species. It is now becoming increasingly
apparent that such networks could have been an important feature of the RNA world during the nascent evolution of life on
the Earth. However, the means by which such small RNA networks assimilate other available genotypes in the environment to
grow and evolve into the more complex networks that are thought to have existed in the prebiotic milieu are not known. Here,
we used the ability of fragments of the Azoarcus group I intron ribozyme to covalently self-assemble via genotype-selfish and
genotype-cooperative interactions into full-length ribozymes to investigate the dynamics of small (three- and four-membered)
networks. We focused on the influence of a three-membered core network on the incorporation of additional nodes, and on
the degree and direction of connectivity as single new nodes are added to this core. We confirmed experimentally the
predictions that additional links to a core should enhance overall network growth rates, but that the directionality of the link
(a “giver” or a “receiver”) impacts the growth of the core itself. Additionally, we used a simple mathematical model based on
the first-order effects of lower-level interactions to predict the growth of more complex networks, and find that such a model
can, to a first approximation, predict the ordinal rankings of nodes once a steady-state distribution has been reached.

Keywords: catalytic RNA; ribozymes; networks; Azoarcus; recombination

INTRODUCTION

The properties of RNA that allow it to fold, form transient nu-
cleotide pairs, and to catalyze chemical reactions make this
molecule a good model system to study abiogenesis (Joyce
2002; Higgs and Lehman 2015). In fact, it is the plasticity in
these functions that allowRNA to form complex reaction net-
works, where a variety of catalysts and substrates interact in a
dynamic fashion that mimics the lack of organized individu-
ality that would have characterized the primordial soup.
Mechanisms by which discordant collections of molecules
could have coalesced into a system of reduced entropy such
as a collective autocatalytic set (CAS) would have been critical
to the formation of nascent living systems (Jain and Krishna
1998;Hordijk et al. 2012; Steel et al. 2013). Yet, froman exper-
imental standpoint, thesemechanisms have been inadequate-
ly studied and are generally uncharacterized.

Previously, we used the ability of fragments of the Azoarcus
group I intron ribozyme to spontaneously self-assemble into
covalently contiguous ribozymes to show that both simple
and complex RNA-based reaction networks can arise
(Vaidya et al. 2012). These networks can be created in large

part because of our ability to manipulate the sequence of
the 3-nucleotide (nt) internal guide sequence (IGS), whose
propensity to bind to a complementary 3-nt triplet (termed
a “tag”) in another RNA molecule determines the rate at
which self-assembly from fragments into ribozymes takes
place (Hayden and Lehman 2006; Draper et al. 2008; Yeates
et al. 2016). Figure 1 is a schematic of these events, and indi-
cates how small interdependent networks can form among
RNA fragments with variable IGS and tag sequences.
We have characterized kinetics of the self-assembly of 16

possible IGS-tag variants in a model 2-fragment reaction
scheme: WXY + Z → WXYZ. In this scheme, the IGS exists
on the 5′ of the larger (∼150 nucleotides [nt]) RNA fragment
WXY, while the tag exists on its 3′ end. The smaller (∼50 nt)Z
fragment is invariant in this reaction and serves as a substrate
(or “food” in the language of autocatalytic set theory) for self-
assembly.We varied themiddle nucleotide of the IGS (M) and
tag (N) sequences to measure the self-assembly rates of all 16
possible GMGWXYCNU genotypes (Yeates et al. 2016); see
Table 1. We have found that the predicted thermodynamic
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binding strength of the IGS-tag trinucleotides roughly corre-
lates with rates of self-assembly (Satterwhite et al. 2016), dem-
onstrating that it is possible to rationally engineer small
networks of WXY RNA variants and anticipate how they
might behave. Specifically, two-membered networks, and in
one case a three-membered network, can be well character-
ized using the framework of game theory, such that the dy-
namics of WXYZ production can be predicted if the middle
nucleotides of the IGS and tag sequences in the reaction mix-
ture are known (Yeates et al. 2016).
However, the means by which such small RNA networks

assimilate other available genotypes in the environment to
grow and evolve into the more complex networks that are
thought to have existed in the prebiotic milieu (King 1982)
and that we have observed (Vaidya et al. 2012) remain un-
clear. From a theoretical standpoint, we have discussed six
key parameters that should affect such evolution: (i) viable
cores; (ii) connectivity kinetics; (iii) information control;
(iv) scalability; (v) resource availability; and (vi) compart-
mentalization (Nghe et al. 2015). In the current study, we
will focus on the first two of these to test their influence on
the growth of three- and four-membered RNA networks.
“Viable cores” are subsets of the total reaction network that
are strongly connected to the rest of the network and thought
to play a disproportionate role in driving prebiotic network
evolution (Vasas et al. 2012). “Connectivity kinetics” refers
to the topology of “who is connected to whom and in what
way,” and network theory predicts this to be another key
determinant of network evolution, e.g., growth by preferen-
tial attachment (Barabasi and Albert 1999). To date, these
ideas remain purely theoretical, but here we have an oppor-
tunity to examine their manifestation in an experimental sys-
tem of catalytic RNAs.
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FIGURE 1. TheAzoarcus ribozyme covalent self-assembly network. (A)
The secondary structure of the ribozyme fragments and the catalytic
event of the WXY + Z → WXYZ reaction. The internal guide sequence
(IGS) of the ribozyme lies at the 5′ end and is GMG, where M is free to
vary among the four possible nucleotides. The IGS of one catalyst (sym-
bolized by the “catalyst ribozyme”; it can be a covalently contiguous
WXYZ or a noncovalent binding of aWXY to a Z) binds to the terminal
3 nt (CNU) of theWXY fragment in another molecule and catalyzes the
recombination reaction shown, liberating a free G nucleotide and join-
ing the substrateWXYwith the Z. This reaction works at maximal rate if
M and N form aWatson–Crick pair. (B) An example of the three-mem-
bered network possible if the M and N nucleotides are not complemen-
tary within a particular WXY molecule. Here the WXY species are
symbolized by blue lines, and each can be denoted by just specifying
these M and N nucleotides, such that this network is AA + UC + GU,
which form the RPS core described below. The self-assembly of the net-
work requires the presence of the Z substrate, indicated by the “+Z” in
the center of the diagram.

TABLE 1. Self-assembly rate constants, autocatalytic: ka, for the 16
genotypic variations of WXY

Genotype ka (min–1) Std. errora

CG 0.0415 0.0066
AU 0.0319 0.0011
UA 0.0197 0.0004
GC 0.0125 0.0021
GU 0.0091 0.0007
AC 0.0069 0.0002
UG 0.0049 0.0004
UC 0.0038 0.0002
UU 0.0022 0.0001
CA 0.0020 <0.0001
CC 0.0016 0.0001
GG 0.0006 0.0001
GA 0.0005 0.0001
AA 0.0004 0.0001
CU 0.0004 <0.0001
AG 0.0001 <0.0001

aStandard error values based on three independent replicates.
Data from Yeates et al. (2016).
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RESULTS AND DISCUSSION

Experimental setup

We designed several small three- and four-membered RNA
networks that had the power to test the effects of cores and
connection topology on overall network efficiency. Our first
measure of efficiency, which can roughly be equated to a
chemical kinetic fitness (Pross 2005) was the composite
rate of production of full-length WXYZ ribozymes.
Because each network is initiated with onlyWXY and Z frag-
ments, neither of which in isolation has any catalytic activity,
and because the full-lengthWXYZ ribozymes average at least
a twofold catalytic rate enhancement over their noncovalent
versions (i.e., WXY|Z, where the “|” represents association
only with hydrogen bonds) (Vaidya et al. 2012), this measure
is justified. In some instances we could also measure the
growth rate of individual nodes (WXYZ genotypes) by indi-
vidually radiolabeling the WXY species with 5′-32P via poly-
nucleotide kinase. A combination of network-wide and
node-specific growth measurements gives a robust picture
of evolutionary dynamics in a non-Darwinian setting.

To begin, we focused on constructing a three-membered
core whose dynamics were known from previous work
(Yeates et al. 2016). This is the rock-paper-scissors (RPS)
trio that results when the WXY genotypes AA, UC, and
GU are incubated in a 1:1:1 molar ratio with equimolar Z
(i.e., 3 equivalents). We use a two-letter abbreviation to rep-
resent WXY genotypes: The first letter denotes the middle
nucleotide of the IGS, while the second letter represents the
middle nucleotide of the tag; genotype UC is GUGWXYCCU,
for example. The AA +UC +GU trio is considered a core
because the balanced set of interactions within ensures robust
growth (Fig. 1B). Specifically in this case, the genotype AA
(either the noncovalent complex WXY|Z or the covalently
contiguous WXYZ) strongly catalyzes the assembly of geno-
type GU, which in turn strongly catalyzes the genotype UC,
which in turn strongly catalyzes the assembly of AA. This
closed loop is robust because the IGS of one member forms
a Watson–Crick (WC) pair with the tag of the next member
in the cycle. While non-WC pairings can result in productive
complexes, the WC pairs produce the highest rate enhance-
ments by far (Table 1; Yeates et al. 2016). Using total
WXYZ production as a metric, we then measured the growth
rate of this core. Initiating the reaction with 0.5 μM of each
WXY genotype RNA and 1.5 μM Z, we found the total
growth rate in 100 mM MgCl2 at 48°C in the initial burst
phase (0–5 min) to be 0.0070 ± 0.0003 μM/min. This value
serves as a baseline for later comparisons when additional
nodes are added or subtracted.

Increasing Watson–Crick linkages increases the rates
of the core and network

With a baseline RPS core growth rate in hand, we could add
or subtract nodes in various topologies to test their effects on

core growth rate and total network growth rate. First we add-
ed one new node that created zero, one, two, or three newW–

C linkages in the network (Fig. 2). The addition of a CU
node, which should be primarily a “receiver” from the RPS
core, lowered the core growth rate from 0.0070 to 0.0062
μM/min. (Note that we measured each rate in triplicate,
and found standard errors typically in the 0.0001–0.0003
range; see Fig. 2. Thus we deemed changes in growth rates
of 0.0003 μM/min or more to be significant.) This result
matches with intuitive expectations that “selfish” entities in
isolation can draw resources from an existing network
(Takeuchi and Hogeweg 2008). Conversely, the addition of
an AG node, which should primarily be a “giver” to the
RPS core, raised the core growth rate to 0.0073 μM/min.
Again this matches with intuitive expectations, although
such results have not previously been confirmed experimen-
tally in an RNA system.
Of interest however is that the addition of either the CU or

the AG node had a similar effect on the overall network
growth rate, raising it to 0.0074 or 0.0077 μM/min, respec-
tively. This suggests that the overall degree of connectivity
within an RNA network (the parameter K in graph theory)
influences total network growth rate in a positive fashion.
As further evidence in support of this conclusion, the addi-
tion of a GA node, which should both give and receive
from the RPS core and increases the number ofW–C linkages
by two, has the effect of both increasing the total growth rate
to 0.0084 μM/min and increasing the RPS core growth rate to
0.0074 μM/min. Furthermore, the addition of a GC node,
which not only both gives and receives from the RPS core
but itself is autocatalytic, thereby increasing the total number
of W–C linkages by three, results in an even greater positive
increase on core and total network growth rates, the former
rising to 0.0082 and the latter to 0.0123 μM/min. On the oth-
er hand, the addition of the CG node, which is autocatalytic
but does not connect to the core through a W–C linkage,

FIGURE 2. Effects of adding a single node to a three-membered core.
Network names in red. The core-specific growth rates, in μM/min, are in
crimson, while the overall total network growth rates are in blue. The
number of asterisks denotes the standard error: one = ±0.0001 μM/
min; two = ±0.0002 μM/min; three = ±0.0003 μM/min; four = ±
0.0004–0.0006 μM/min. All networks depend on the presence of Z for
growth.
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has a large detrimental impact on the core growth rate (to
0.0052 μM/min) while increasing the overall growth rate.
Presumably this is because its autocatalytic assembly com-
petes with the core for the resource molecule, Z.
In aggregate, these results demonstrate that the addition of

linkages generally enhances overall network growth rate but
has a variable influence on core growth rates. In a prebiotic
evolutionary setting, the implication is that polymer net-
works would be expected to grow via assimilation of new
nodes that enter the environment. One nontrivial mecha-
nism for the appearance of a “new” node is if the salt concen-
tration of the milieu were to rise, for example, by water
evaporation in a “warm little pond” scenario (Damer and
Deamer 2015), reducing the stringency of base-pair forma-
tion such that fewer nucleotide pairs, or weaker pairs, could
now form among RNA species. Thus far, the results are an
empirical confirmation of the predictions of Jain and
Krishna, who modeled the evolution of prebiotic networks
and detected a strong driving force for cooperativity and in-
terdependence (Jain and Krishna 2001).

Chemically balanced networks grow at equal rates

Next we sought to examine the role of node composition in
RNA network growth. Previously, we determined that a fully
cooperative three-membered network could out-compete
three fully selfish networks when they were not tied together
by the use of a common substrate (Vaidya et al. 2012). Now
the question is whether two chemically balanced networks,
but with different connection topologies, would behave sim-
ilarly or not, when the substrate, Z in this case, is common.
By “chemically balanced” we mean the same number of G–
C and A–U nucleotide pairs exist in the IGS-tag pairings
when the network as a whole is considered. But the effects
of nearest-neighbor interactions may confound a simple enu-
meration of the numbers of such Watson–Crick pairs, such
that different topologies could lead to different network
growth rates. To this end, we compared two four-membered
networks (Fig. 3). We constructed these two networks such
that each had one U, C, A, and G in the first position (middle
nucleotide of the IGS) and one U, C, A, and G in the second
position (middle nucleotide of the tag). However, one net-

work (CA + AG +GU +UC) was fully connected in a cycle
via W–C pairs, while the other (AU + CG +UA + GC) con-
tained four self-assembling nodes. These networks contain
exactly the same chemical compositions but have disparate
topologies, properties that are uncommon in networks of
RNA having exactly 4-nt choices.
When we supplied equimolar (e.g., 4×) of the substrate Z

to each network, we found that the net self-assembly was not
significantly different between them (Fig. 3). The fully con-
nected network produced WXYZ molecules at a rate of
0.0091 ± 0.0008 μM/min, while the “selfish” network assem-
bled at a rate of 0.0095 ± 0.0009 μM/min. As these two values
are equivalent, we can conclude that some degree of asymme-
try is needed to impart a selective difference between two
possible genotypic networks. This was the case in our previ-
ous work with three-membered networks in which W +
XYZ,WX + YZ, andWXY + Z were competed and in which
cooperation was seen to win out (Vaidya et al. 2012). Such
asymmetry would certainly have been a feature of any truly
prebiotic scenarios where such a precise balance of chemical
compositions would not have been likely. In fact there is
only one possible fully selfish four-membered network, and
dozens of possible four-membered networks that include
cooperativity.

Serial dilution experiments

To help translate the above results to evolutionary dynamics
that might be operational in a prebiotic setting, we next per-
formed them in a serial dilution format. Here, as demonstrat-
ed previously (Yeates et al. 2016), a reaction can be initiated
with equimolar ratios of eachWXY species plus a total molar
equivalent of the Z RNA. The reaction is allowed to run for a
very short time (e.g., 5 min), and then a small fraction, typ-
ically 10%, of the reaction mixture is transferred to a fresh
tube containing newWXY and Z. Typically eight such trans-
fers (“bursts”) are done, and the total amounts of each
WXYZ species are tracked as a function of burst number.
For each of the reaction networks shown in Figure 2, we

performed these serial dilution experiments over eight bursts
and tracked the molar proportion of each RNA WXYZ spe-
cies as a fraction of total RNA (Fig. 4). In these experiments,
one can follow the relative abundances of each node, while
visualizing the overall dynamics of the population.
Specifically, in the case of the three species in the RPS core
(Fig. 4; Network 0), each node starts off solely as WXY in
equimolar ratios (fraction of 0.33 each) but after a few bursts
reaches a steady state in which the UC species (now as full-
length WXYZ) dominates somewhat at about half the total
moles, while the AA and GU species comprise the balance.
In this three-membered network (Network 0), UC is kineti-
cally favored over the other two because the steady-state ratio
in which UC dominates represents the optimal eigenvector
solution to a 3 × 3 payoff matrix into which the individual
pairwise rates (Table 1) are input (Yeates et al. 2016).

FIGURE 3. Comparison of two “chemically balanced” topologies of
four nodes. The overall growth rates (blue) of two networks are indistin-
guishable. Both are dependent on the same RNA substrate molecule, Z.
This is denoted by the red dotted lines; the Zmolecule feeds each node.
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Adding nodes increases the complexity of the system be-
yond what a theoretical analysis might be able to handle.
Our previous experimental results in the RPS situation
matched theoretical predictions reasonably well, at least
with respect to the ordering of the nodes at steady state
(UC >> AA >GU), but the extrapolation of self-assembly
data to networks containing 2, 3, and more nodes becomes
increasingly challenging (Yeates et al. 2016). To increase the
evolutionary relevance of the current analysis, we per-
formed the serial dilution experiments on the same net-
works shown in Figure 2 where single nodes were added
to the RPS core (Fig. 4; Networks A–E). In each case a
steady-state populational composition was reached after
two or three bursts, and a clear ordinal ranking of geno-

types became established. In these plots, the fate of the add-
ed fourth genotype (Fig. 4; purple traces) can easily be seen
within the context of the RPS core. The dynamics of the
added species vary dramatically, from the low steady-state
proportions of added AG genotype in Network B, to the
dominant proportion of the CG genotype in Network
E. These data provide a complementary means of following
network dynamics as the single-burst data given in Figure 2.
Overall, the experimental results, both the single-burst data
and the serial dilution data, can be understood by the appli-
cation of graph theory to this biochemical system. Adding
or subtracting nodes perturbs the network growth dynamics
in a predicable fashion provided the node connectivity to-
pologies are considered.

FIGURE 4. Empirical results from serial dilution experiments. In each burst, theWXY genotypes were allowed to react with equimolar Z RNA for 10
min, after which time 10% of the reaction volume was transferred to a new tube with fresh buffer and RNA. The fraction of each species was tracked in
parallel test tubes using specific 32P-labeled WXY species as tags and then plotted as the molar fraction of the total population.
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Simulation of network dynamics

We wondered whether the measured
fractions of species could be predicted
as a function of the connectivity of the
network. Thus we constructed a simula-
tionmodel using a first-order description
as an approximation of the self-assembly
dynamics, using the procedure described
in the Materials and Methods.
For each of the six networks analyzed

in Figure 4, we plotted the predicted dy-
namics of each network (Fig. 5). The
long-term ranking of species fractions
was predicted very well within measure-
ment error (Fig. 6). For the three-mem-
bered core network (Network 0), UC
dominated AA and GU, the latter two be-
ing represented at nearly equal fractions.
Each of the five other networks (A–E)
consisted of adding one species that con-
nects to the core in different ways. This
resulted in different ranking of the newly
introduced species relative to the core
species (Fig. 5). This ranking could be
correctly predicted as a function of its
connection to the core: In Networks A
and C, new species CU and GA were ex-
pressed at similar levels as GU and AA, all
being dominated by UC; in Network B,
species AG clearly ranked below all those
of the core; in Network D, GC fraction was similar to the UC
fraction, dominating other species; in Network E, CG frac-
tion was clearly above the core.
To help experimental design and interpretation, we devel-

oped an application with Matlab to predict network behavior
based on the model above. This application is made available
as a free standing Windows executable (available on request
from the authors), in which three columns of input data
are required. We designed this application to work with the
Azoarcus ribozyme self-assembly networks, but in principle
it can be used for any type of molecular network. The user
first loads a text file of measured rates (third column) as a
function of the catalyst (first column) and substrate (second
column). The user can then choose either (i) to use a specific
cross-catalytic value for each pair of species, using a self-ca-
talysis rate of the IGS-tag combination by default in cases
when a cross-catalytic rate has not been yet measured; or
(ii) to proceed similarly as described above, by computing
an average of all available measurements for a given IGS-
tag combination. We found that approach (ii), which we
used for Figure 5, led to much better predictions than ap-
proach (i) in this experiment. However, we anticipate that
as more exhaustive and precise single-rate measurements
are performed, approach (i) should become more precise

than approach (ii). Once one has selected a set of species par-
ticipating in the network, and upon clicking on one of the
“compute” buttons, the application displays the network
structure, the predicted long-term fractions, the predicted
growth rate, the typical relaxation time before reaching as-
ymptotic fractions (as given by the inverse of the difference
between the two largest eigenvalues of A), and a time course
of species fractions from equimolar initial conditions. See
Figure 7 for a typical screenshot of the application as applied
to our Azoarcus ribozyme network data.

Conclusions

Group I ribozymes can catalyze the recombination of RNA
oligonucleotide substrates in vitro to produce new combina-
tions of sequences (Zaug and Cech 1986; Riley and Lehman
2003). Consequently, RNA-directed recombination of other
ribozymes has great potential to illuminate the means by
which RNAs can form networks of reactions. Here, we
have tracked the dynamics of network growth in three- and
four-membered self-assembling RNA networks in four com-
plementary manners: empirical total growth rates, empirical
core growth rates, empirical single-node growth rates, and
predicted single-node growth rates. From these data we
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FIGURE 5. Predicted dynamics of the six RNA self-assembly networks shown in Figure 2. See
text for the mathematical approach used. These predictions match experimental results shown
in Figure 4 well, especially in terms of ordinal ranking of genotypes; see Figure 6. Mu represents
the predicted total network growth rate constants.
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conclude that RNA networks will grow
faster with more internal node connec-
tions, that chemically balanced networks
should grow at equal rates, and that the
averaging of lower-order empirical rate
data can allow a reasonable prediction
of the dynamics of higher-order network
growth. We propose that primordial
RNA networks could have grown and
been under the strong influence of kinetic
selection to expand by the assimilation of
additional nodes.

MATERIALS AND METHODS

Preparation of RNAs and ribozymes

The variants of the Azoarcus ribozyme were
transcribed from double-stranded DNA tem-
plates prepared by recursive PCR gene synthe-
sis (Engels and Uhlmann 1988). To make the
WXYZ variants, six partially overlapping sin-
gle-stranded DNA oligonucleotides were in-
cubated in equal molar ratios in eight-cycle
PCR-like reactions using Vent DNA polymer-
ase (New England Biolabs). Transcriptions of
full-length ribozymes and longer RNA frag-
ments such as WXY were carried out in reac-
tion mixtures containing 1× transcription
buffer (15 mM MgCl2, 25 mM Tris [pH
7.5], 5 mM dithiothreitol, 2 mM spermidine),
2 mM rNTPs, 10 μL eightfold concentrated
PCRDNA, and 1200U of T7 RNA polymerase
(Fermentas) in a 200 μL volume for 4–12 h at
37°C. The resulting RNA was purified on 8%

polyacrylamide/8 M urea gels. DNA oligonucleotides were pur-
chased from IDT. Shorter RNA oligonucleotides, including the Z
fragment, were purchased from TriLink Biotechnologies.

Single-pot network kinetics

Reaction mixtures containing WXY (0.5 μM) of each genotype,
equimolar Z (1.5 μM in three-membered networks and 2.0 μM
in four-membered networks), and 32P-labeled WXY (≤0.003 μM)
of each genotype, were heated to 80°C for 2 min then cooled to
48°C. Reactions were initiated with the addition of reaction buffer
(100 mM MgCl2 and 30 mM EPPS, pH 7.5). For time points sam-
ples were drawn and rapidly quenched (125 mM EDTA and 2×
loading dye containing formamide and bromophenol blue) over
0–5 min and used for rate comparison experiments. WXY and
WXYZ RNA bands were separated on 8% polyacrylamide/8M
urea gels. Visualization and quantification was done with a
Typhoon Trio+ variable mode phosphorimager and its accompany-
ing ImageQuant software (GE Healthcare). A product ratio was cal-
culated by comparing the RNA in the product WXYZ band to the

predicted fraction
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FIGURE 6. Correlation between measured (y-axis; from Fig. 4) and
predicted (x-axis; from Fig. 5) fraction of the total population for geno-
types in the evolving networks. Each dot represents a node in a network
studied herein, and they are colored by network according to the key.
The dotted line represents the perfect correlation of y = x, but as the in-
dividual data points are themselves interdependent, calculation of a
standard correlation coefficient is not relevant.

FIGURE 7. Screenshot of the Matlab application to predict RNA network growth rates and to-
pological connections.
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unreacted WXY band (fraction reacted = [reacted/(reacted +
unreacted)]). To determine individual genotypeWXYZ production,
reaction mixtures were made as a master mix without 32P-labeled
WXY. The master mix was then divided into three or four reaction
tubes, depending on the number of genotypes being tracked, and
each tube was doped with the specific 32P-labeled-WXY genotype
being followed.

Serial dilution experiments

To perform the serial dilution kinetic experiments as shown in
Figure 4, a master mix reaction mixture was formed containing
equimolar of each WXY genotype (0.5 μM) and Z (1.5 or 2.0
μM). The mixture was then divided into three or four equal vol-
umes, depending on the number of genotypes being compared.
Each part was doped with 32P-labeled aliquot (<0.01 μM) of one
of the WXY genotypes. The reaction mixtures were then aliquoted
into eight tubes each (one for each burst). All tubes were heated
up to 80°C for 2 min and then cooled to 48°C. The reaction in
the first tube was initiated with the addition of reaction buffer (pro-
viding each reaction with a final concentration of 100 mM MgCl2
and 30 mM EPPS, pH 7.5). At 5 min, 10% of the solution volume
from tube #1 was transferred to tube #2, and tube #1 was placed
on ice. Reaction buffer was immediately added to tube #2 while
tube #1 was subsequently quenched with an equal volume of quench
solution. The transfer protocol was repeated through eight bursts.
The master mix containing 32P-labeledWXY was used as a negative
control for the assay. Gel separation, visualization, and quantitation
were performed the same as for the kinetic assays above.

Simulations

We considered the following first-order dependence of the produc-
tion rates, denoting xi as the concentration of species i:

ẋi = ai1 · x1 + ai2 · x2 + · · · + ain · xn.
The set of corresponding equations for every production rate ẋi can
be written as

Ẋ = A†X,
whereX = (x1,…, xn) is the vector of species concentrations and A is
the matrix whose coefficients correspond to the catalytic strengths
aij. Such a first-order description is the simplest approximation of
the dynamics taking into account the diversity of cross-catalytic in-
teractions between species. However, such an approximation is jus-
tified only for a certain range of conditions. In particular, it cannot
account for nonlinear effects that can occur over arbitrary time win-
dows, such as saturations due to substrate limitations, or higher-or-
der interactions between catalytic molecules.
By performing serial dilutions after reaction times that are short

(10 min) compared to saturation regimes, the conditions of our ex-
periment are optimal for this first-order approximation to be valid.
In these conditions, catalysts can be considered as largely limiting
compared to substrates. Each aij thus represents the initial produc-
tion rate of species xi per unit of catalyst xj, given all other compo-
nents fixed, including fragment and food concentration. Note that
the existence of a unique long-term exponential growth state is
not given in general; but in our case, it has been shown to be guar-

anteed by the positivity of all aij, even in the presence of slight satu-
rations (Gaubert and Gunawardena 2004). This stable growth state
is found by resolving the equation A†XM = m · XM for the largest
eigenvalue μ of A. An explicit calculation was previously provided
for the two-species case (Yeates et al. 2016). The current results ex-
tend to a higher number of species, where long-term fractions are
given by the components (x1,…, xn) of the eigenvector XM, normal-
ized such that

∑
i=1,...,N xi = 1. Notably, this long-term state being

unique (Gaubert and Gunawardena 2004), it is necessarily indepen-
dent of the initial conditions, the influence of the latter being appar-
ent only during an early transient of the reaction, a phenomenon
that we experimentally observed to occur within the first round of
the serial transfer (Fig. 4).
To determine the different values aij, one would ideally measure

independently the accumulation rate of every species by doping in
every other species. Although this approach was possible and suc-
cessful for a limited number of two-member networks, it is not cur-
rently realistically accessible for larger networks, as the number of
cross-catalytic rates becomes very large quickly as additional mem-
bers of the networks are added. To overcome this limitation, we
rather used a simplified estimate of these rates based on known mo-
lecular substrate-recognition mechanisms, where interactions are
specified only by the IGS of the catalyst and the tag of the substrate.
This approach reduces to 16 different rates for each IGS-tag combi-
nation. Each rate was then computed by taking the average of the
rates that had been previously measured in the two member-doping
experiments for the same IGS-tag combination.
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