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Abstract 

 

 Multidimensional fluorescent chemosensor data looking at the effect that rhodamine 

boronic acid dyes and fluorescein aldehyde dyes have on analytes of interest was 

collected by the Strongin Research Group. These sets of data have resulted in great 

qualitative results. A method to quantify the results, however, was desired. The major 

objective of this research was to reanalyze these sets of data using a new 

multidimensional analysis technique called Parallel Factor Analysis (PARAFAC) to 

obtain quantitative results. PARAFAC was performed on the data and new promising 

quantitative results were obtained. The promising results offered assertion of the use of 

PARAFAC on future studies of new multidimensional fluorescent chemosensor data.  
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1) Fluorescent Dyes and Analytes of Interest 
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The Strongin Research Group has done many studies on the effect of dyes on the 

fluorescent spectrum of a sample. Each study that was done on the dyes resulted in new 

information regarding ways to change the selectivity of the results by tweaking the 

conditions of the initial samples. It was found that multiple dyes have the ability to detect 

different classes of analytes. The dyes are all different colors, covering different regions 

of the spectra. A typical multidimensional fluorescence spectrum is an excitation 

emission matrix (EEM). An EEM can be thought of as a collection of a series of emission 

spectra over a wide range of excitation wavelengths. All of the excitation and emission 

spectra can be extracted from an EEM. If we slice at a particular excitation wavelength, 

such as 280nm, the slice we get will be an emission spectra excited at 280 nm. 

Conversely, if sliced the opposite way, at an emission wavelength at 280nm, it would 

result in an excitation spectra at this emission wavelength. Compared to only collecting a 

single pair of excitation and emission spectra, an EEM can provide more information 

because it covers all the wavelengths. EEMs make it easy to observe wavelength shifts 

and are ideal for a mixture of several components
1
. The fact that the dyes studied by the 

group are all different colors, they are able to cover all regions of the EEMs. Two dyes of 

interest in the Strongin Research Group are aldehyde-bearing fluorophores and 

rhodamine boronic acid (RhoBo).  

One type of dye that has been extensively studied by the research group is 

aldehyde-bearing fluorophores. Aldehyde-functionalized probes, such as fluorescein 

aldehyde, studied by Strongin et. al., are green and are used for the “optical detection of 

amino thiols,
2
” such as cysteine and homocysteine.  Three different fluorescein aldehydes 

have been studied to determine selectivity for thiols: fluorescein mono aldehyde, 
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dialdehyde, and an unsaturated aldehyde.  Both mono aldehyde and dialdehyde and their 

reaction to cysteine and homocysteine were studied in a sodium bicarbonate buffer, at a 

pH of 9.5. The reaction between mono aldehyde and dialdehyde with cysteine and 

homocysteine resulted in a yellow-to-orange color change and a shift in the absorbance 

maxima. Both mono and dialdehyde responded to the analytes, but dialdehyde had better 

selectivity. It was also found that there was a quenching-based response towards both 

analytes. The reason for this quenching response is photo induced electron transfer (PET) 

of the lone pair of electrons on the nitrogen
1
.  

In their paper, “Differences in heterocycle basicity distinguish homocysteine from 

cysteine using aldehyde-bearing fluorophores,” Strongin et al continued to look into 

fluorescein aldehydes reacting with cysteine and homocysteine.  This study investigated 

the reaction between the probe and analytes at low pH, rather than a high pH like 

previous studies had investigated. Low pH solutions resulted in PET inhibition, as 

hypothesized, resulting in fluorescent enhancement. Fluorescence of the probe was 

enhanced by homocysteine when the pH was changed from 5.5 to 6.0, but cysteine did 

very little to enhance the fluorescence. This difference in basicity between cysteine and 

the fluorescein aldehyde probe (pKa=.57) and homocysteine and the fluorescein aldehyde 

probe (pKa=6.7) allows for the selectivity of homocysteine over cysteine in basic 

solutions. 

Like the color change observed when cysteine and homocysteine reacted with 

mono and dialdehyde, the absorbance spectra of fluorescein aldehydes with other thiols 

also change color, as shown in Figure 1. Figure 1 shows the different colors of a 



fluorescein aldehyde probe with common t

and glutathione along with amino acids

 

  

 

 

Another dye that has been extensively studied is Rhodamine boronic acid (RhoBo). 

RhoBo is a unique boronic acid dye 

Most boronic acids preferentially respond to fructose and fructose derivatives. 

however, is unique because un

derivatives
5
.  The change of selectivity of RhoBo is due to

the dye and the sugars. RhoBo is 

a wavelength and time dependent 

dye. There are three rhodamine 

boronic dyes of interest, shown in 

Figure 2, one that is red, and two 

that absorb and emit at long-

wavelengths—one that emits and 

absorbs at a longer red 

wavelength and one that is near

IR
4
. 
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fluorescein aldehyde probe with common thiols such as L-methionine, mercaptoethanol, 

tathione along with amino acids
3,4

.  

Another dye that has been extensively studied is Rhodamine boronic acid (RhoBo). 

RhoBo is a unique boronic acid dye that detects sugars and is used as a chemosensor. 

preferentially respond to fructose and fructose derivatives. 

however, is unique because under certain conditions it is selective to ribose and ribose 

The change of selectivity of RhoBo is due to binding interactions between 

RhoBo is 

a wavelength and time dependent 

There are three rhodamine 

, shown in 

and two 

that emits and 

near-

methionine, mercaptoethanol, 

Another dye that has been extensively studied is Rhodamine boronic acid (RhoBo). 

used as a chemosensor. 

preferentially respond to fructose and fructose derivatives.  RhoBo, 

der certain conditions it is selective to ribose and ribose 

binding interactions between 



 One important study that the Strongin Research Group has used RhoBo in was that 

regarding the detection of adenylosuccinase deficiency (ADSL deficie

rare inborn error of purine metabolism that is contained within the broad autism spectrum. 

It is a very difficult disease to detect and is often underreported and misdiagnosed. It is 

are very high in concentration in ADSL deficient patients.

the substrates key to diagnosing ADSL deficient patients, neither of them 

commercially available. AICAr, also shown in Figure 3, is structurally similar to both S

Ado and SIACAr and is commercially available. It is for this reason that it is used as a 

model compound in studies related to ADSL

for ADSL deficiency because of its ability to react to ribose and ribose derivatives. 

AICAr is a ribose derivative. 
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One important study that the Strongin Research Group has used RhoBo in was that 

adenylosuccinase deficiency (ADSL deficiency). ADSL is a 

rare inborn error of purine metabolism that is contained within the broad autism spectrum. 

It is a very difficult disease to detect and is often underreported and misdiagnosed. It is 

for this reason that new ways of detecting 

ADSL are important.  

The substrates S-Ado and SAICar, shown 

in Figure 3, are a key to diagnosing ADSL.

Table 1 shows the concentrations of these two 

substrates and AICAr in urine in both healthy 

patients and those with ADSL deficiency.

you can see in the table, levels of both 

substrates are not present in healthy patients but 

concentration in ADSL deficient patients. While S-Ado and SAIC

the substrates key to diagnosing ADSL deficient patients, neither of them are 

. AICAr, also shown in Figure 3, is structurally similar to both S

Ado and SIACAr and is commercially available. It is for this reason that it is used as a 

model compound in studies related to ADSL
6
.  RhoBo was key to studying hum

for ADSL deficiency because of its ability to react to ribose and ribose derivatives. 

AICAr is a ribose derivative.  

One important study that the Strongin Research Group has used RhoBo in was that 

ncy). ADSL is a 

rare inborn error of purine metabolism that is contained within the broad autism spectrum. 

It is a very difficult disease to detect and is often underreported and misdiagnosed. It is 

for this reason that new ways of detecting 

Ado and SAICar, shown 

are a key to diagnosing ADSL. 

Table 1 shows the concentrations of these two 

substrates and AICAr in urine in both healthy 

patients and those with ADSL deficiency. As 

you can see in the table, levels of both 

substrates are not present in healthy patients but 

Ado and SAICAr are 

are 

. AICAr, also shown in Figure 3, is structurally similar to both S-

Ado and SIACAr and is commercially available. It is for this reason that it is used as a 

RhoBo was key to studying human urine 

for ADSL deficiency because of its ability to react to ribose and ribose derivatives. 



In their experiment, highlighted in “Progress Towards Simple and Direct Detection 

of Adenylosuccinase Lyase Deficiency in Human Urine,” RhoBo was used in a 5 percent 

human urine mixture. AICAr was added via standard addition and the excitation emission 

spectra was recorded after each addition, shown in Figure 4 (a, b and c). This study 

showed that it was possibly to detect AICAr in human urine and that the concentration 

increased linearly when spiked

urine being a complex matrix containing lots of other sugars and potential interferences. 

However, there were still setbacks in the resulting data. Figure 

in a 5% urine mixture. There is a fair amount of signal, 

of fructose. Figure 4b shows the EEM upon t

a long wavelength peak that was not present in 

interferences making it hard to see the p
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In their experiment, highlighted in “Progress Towards Simple and Direct Detection 

Lyase Deficiency in Human Urine,” RhoBo was used in a 5 percent 

human urine mixture. AICAr was added via standard addition and the excitation emission 

spectra was recorded after each addition, shown in Figure 4 (a, b and c). This study 

possibly to detect AICAr in human urine and that the concentration 

linearly when spiked shown in Figure 4d. This result was promising due to 

urine being a complex matrix containing lots of other sugars and potential interferences. 

However, there were still setbacks in the resulting data. Figure 4a is the EEM of RhoBo 

in a 5% urine mixture. There is a fair amount of signal, and the peak looks similar to that 

b shows the EEM upon the addition of AICAr; as is apparent

a long wavelength peak that was not present in 4a, but still a large amount of background 

making it hard to see the peak. To more clearly see this peak, the EEMs can 

be subtracted, giving 4c, in order to 

see the long wavelength peak. 

Although the intensity was shown 

to be linear as AICAr was added, 

subtracting the control can 

potentially hamper quantification. It 

was for this reason that a better way 

to remove interferences to quantify 

the data was desired
7
.  

In their experiment, highlighted in “Progress Towards Simple and Direct Detection 

Lyase Deficiency in Human Urine,” RhoBo was used in a 5 percent 

human urine mixture. AICAr was added via standard addition and the excitation emission 

spectra was recorded after each addition, shown in Figure 4 (a, b and c). This study 
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 A second study done on RhoBo, highlighted 

in “Detecting specific saccharides via a single 

indicator,” looked at RhoBo in response to 

different analytes. RhoBo was first combined 

with AICAr and Fructose individually and EEMs 

of these two mixtures, along with a control EEM 

of just RhoBo, were recorded to demonstrate its 

response to different analytes, shown in Figure 5. 

As is evident from the EEMs, different analytes

different spectral regions allow a single indicator, 

such as RhoBo, to detect multiple analytes

 To show RhoBo’s dependence on time and 

wavelength using a single indicator, 

RhoBo with AICAr, fructose and mixtures of the 

two were scanned every 4 minutes for an hour.  

Taking EEMs over time allowed us to work with 

complex mixtures. The resulting EEMs, shown in 

Figure 6, show qualitatively that there are 

differences between each analyte. EEMs of the 

mixtures had characteristics of each analyte

the mixture that contained mostly AICAr resulted 

in an EEM looking more like the AICAr EEM 

and the mixture that contained mostly fructose 

A second study done on RhoBo, highlighted 

in “Detecting specific saccharides via a single 

RhoBo in response to 

first combined 

ose individually and EEMs 

these two mixtures, along with a control EEM 

of just RhoBo, were recorded to demonstrate its 

different analytes, shown in Figure 5. 

As is evident from the EEMs, different analytes in 

different spectral regions allow a single indicator, 

to detect multiple analytes
8
.   

To show RhoBo’s dependence on time and 

wavelength using a single indicator, an EEM of 

ructose and mixtures of the 

very 4 minutes for an hour.  

Taking EEMs over time allowed us to work with 

The resulting EEMs, shown in 

show qualitatively that there are 

differences between each analyte. EEMs of the 

mixtures had characteristics of each analyte, but 

the mixture that contained mostly AICAr resulted 

in an EEM looking more like the AICAr EEM 

and the mixture that contained mostly fructose 
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resulted in an EEM looking more like the fructose EEM. Though these visual differences 

were apparent, methods of quantitatively analyzing this data were desired. This study 

showed that a single indicator could be used to selectively qualitatively distinguish 

structurally related sugars simultaneously
7
. A powerful method to analyze 

multidimensional data is a method called Parallel Factor analysis (PARAFAC). Using 

this tool, the data from these studies could be analyzed and quantified. 

 Along with the desire for quantitative methods of analysis for these past studies, the 

idea of using a combination of both RhoBo and fluorescein aldehydes in future studies is 

of interest to the group. Combined with the autofluorescence of an analyte, both RhoBo 

and fluorescein aldehydes make it possible to measure the entire spectrum of EEMs. 

RhoBo covers from red to near-IR region of the spectra, fluorescein aldehydes cover the 

green range of the spectra and autofluorescence detects short wavelengths. Together, 

more of the spectra of each EEM could be covered, enabling better interpretation of data.  
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2) Multi-way Analysis 
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Multidimensional fluorescence as a metabonomic tool has many advantages. The 

method is very simple and has a rapid acquisition time. The method can analyze large 

sets of data and is very sensitive. Multidimensional data has been used before to detect 

diseases. Wavelength pairs and ratios, along with pattern recognition were used for this 

type of analysis in the past. Now chemometrics and PARAFAC are applied because they 

are believed to be a better method
9
. 

Parallel Factor Analysis (PARAFAC) is a very powerful multi-way decomposition 

method used in chemometrics. When there are multiple components in a sample, peaks of 

different components can overlap with each other, leading to more complex spectra. In 

order to know what each of the components are, the components need to be extracted into 

individual parts. PARAFAC can be used to extract the spectra of different components 

from the matrix. In, “PARAFAC. Tutorial and applications,” a paper by Bro, et al, the 

uses of PARAFAC are discussed. Bro, et al, created a Matlab toolbox, called the N-Way 

toolbox, which is an extension needed to complete PARAFAC. This paper discusses the 

different analysis that the toolbox can do to analyze the data collected in the fluorometer
3
. 

To use PARAFAC, Excitation Emission Spectrums (EEMs) are first collected. These 

EEMs are then combined to make a three dimensional matrix. PARAFAC is then run, 

decomposing this data into its distinct components. PARAFAC shows different analytes 

in mixtures and can give information on their concentrations and spectra
1
.   

In hopes to find a method to quantitatively analyze data collected, the data from the 

previous studies mentioned above was reanalyzed using PARAFAC.  
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3) Reanalysis Using Multi-Way Analysis 
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  The data collected in the afore mentioned studies involving RhoBo and 

fluorescein aldehyde dyes accounted for multiple dimensions, but were not looked at as 

such. The results of these studies gave good qualitative analysis of the data, but methods 

to quantify the data were desired. With PARAFAC, these multiple dimensions could be 

taken into account and quantitative analysis could be done. 

The data shown above in Figure 6 is one set of data that was analyzed with PARAFAC. 

When PARAFAC was performed, each EEM was decomposed into a weighted sum of 

two species, a short and long wavelength. Each of these two species had an emission and 

excitation peak, shown in Figure 7. Figure 7a shows the short wavelength component and 

Figure 7b shows the long wavelength component. It was observed in previous studies that 

the optimum wavelength for quantification of AICAr was at a long wavelength spectrum, 
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similar to the long wavelength component shown in Figure 7(a). Similarly, the optimum 

wavelength for quantification of interference spectra in past studies was found to be at a 

short wavelength spectrum, similar to the short wavelength component shown in Figure 

7(b).  

PARAFAC was used to extract the data into its separate components and these 

components change over time. The magnitude of each component and how they changed 

over time was then graphed for AICAr and fructose, shown in Figure 8. These plots show 

the score, which corresponds to the concentration of each component, as they change 

over time. The manner in which each component changes over time, along with the 

magnitudes for each, varies from analyte to analyte. AICAr (Figure 8(a)) has a long 

wavelength component that steadily increases, plateaus at about 30 minutes and then 

decreases. The short wavelength component stays relatively constant. Fructose (Figure 

8(b)) has a long wavelength component that starts high and decreases over time, while 

the short wavelength component starts low and increases. Qualitatively, these two data 

sets appear very different. One way to show these differences in a quantitative method 

was to plot the ratio of the two as they change over time, so this was done for each; the 

plot of the ratio is shown in black in both graphs in Figure 8.  The ratio of AICAr was 

clearly different than the ratio for fructose.  

To further see how the ratio changes as the AICAr and fructose mixture changes, the 

mixtures were investigated at one point in time. Figure 9 shows the EEMs that were 

looked at to determine this ratio, which corresponds to the fourth row of EEMs in Figure 

6, recorded after about 15 minutes. Qualitatively, it was evident that the EEM for AICAR 

is different than that of fructose. Features of both can be seen in the three mixtures, 



of the ability to quantitatively analyze similar data in the future. 

The second study with RhoBo

Adenylosuccinase Lyase Deficiency in Human Urine,” 

human urine. Complex matrices such as this often have large interferences.

remove interferences in complex matrices was desired. PARAFAC provided a route to do 

that. As shown again in Figure 11(a
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though those that are AICAr heavy have

features dominated by long wavelength 

peak, like AICAr and those mixtures that 

are heavy in fructose are dominated by 

short wavelength, similar to fructose

ratio plotted as a function of AICAr 

concentration in the mixture was then 

plotted, Figure 10.  Plotted as a function 

of AICAr concentration, the ratio 

generally increased with increasing AICAr. 

This result was promising and indicative 

of the ability to quantitatively analyze similar data in the future.  

The second study with RhoBo in “Progress Towards Simple and Direct Detection of 

Lyase Deficiency in Human Urine,” dealt with a more complex 

human urine. Complex matrices such as this often have large interferences. A way to 

remove interferences in complex matrices was desired. PARAFAC provided a route to do 

that. As shown again in Figure 11(a-c), the EEMs in presence of urine have larg

AICAr heavy have 

inated by long wavelength 

mixtures that 

heavy in fructose are dominated by 

, similar to fructose. The 

ratio plotted as a function of AICAr 

concentration in the mixture was then 

plotted, Figure 10.  Plotted as a function 

of AICAr concentration, the ratio 

generally increased with increasing AICAr. 

mising and indicative 

“Progress Towards Simple and Direct Detection of 

dealt with a more complex matrix, 

A way to 

remove interferences in complex matrices was desired. PARAFAC provided a route to do 

, the EEMs in presence of urine have large short 
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wavelength interference. PARAFAC completely resolved the background peak and 

isolated it the two components of the sample, leaving the peak of interest to be analyzed. 

The short wavelength species did not change upon spiking with AICAr, but the long 

wavelength species increased linearly as expected (Figure 12). When PARAFAC was run, 

the interference was eliminated, saving time and leaving less room for the data to be 

hampered with. Though PARAFAC resolved the background peak there was still an 

indicator background present, which needs to be minimized before any standard addition 

procedures are done. 
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4) Future Work 
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One short-term goal for future research is to analyze global data sets instead of at 

just one time point for data collected over a longer period of time. It is hypothesized that 

analysis of global data sets would further improve quantitative analysis.   

Lawaetz, et al, first introduced the idea of using multi-way analysis for 

metabonomic diagnostics. Metabonomic diagnostics is based on non-targeted 

measurements of metabolites in biological systems usually using nuclear magnetic 

spectroscopy (NMR), liquid chromatography (LC) and gas chromatography (GC) 

combined with mass spectroscopy (MS).
10,11

 In their paper, "Fluorescence Spectroscopy 

as a Potential Metabonomic Tool for Early Detection of Colorectal Cancer," they used a 

PARAFAC, to try to detect Colorectal Cancer.  

The main purpose of the paper was to discuss the use of fluorescent spectroscopy 

as a tool for the detection of colorectal cancer and how this technique could be used as a 

metabonomic tool. The study used two different control groups, healthy patients (or 

patients with non-malignant findings) and patients with colorectal cancer. Excitation 

Emission Spectrum (EEM) were collected on their plasma and were then analyzed using 

PARAFAC to look for differences in the chemical components. This method showed 

shifts in the Tryptophan emission of cancer patients, which confirmed previous findings 

by other methods; the method also showed much clearer results.
12

 The paper proved that 

this method of analysis could be used to detect chemical changes correlated with a 

disease, which is why we hypothesize that this same method could be used for the 

detection and diagnoses of sepsis.  
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Sepsis is a serious bloodstream infection that can rapidly become life-threatening. 

A clinical syndrome, sepsis is defined by the presence of both system inflammatory 

response and infection in the body that can arise from various infections, such as those 

“from the skin, lungs abdomen, and urinary tract
13,14

.” In the United States alone, over 

1.1 million people are affected yearly by sepsis. On average, 36 people die per hour 

because of the disease
8
. Despite medical advancements, sepsis is slowly becoming more 

common in patients
15

 and though they are treated with high expenditures, sepsis is more 

often than not, fatal. Though not all have fatal encounters with sepsis, people who survive 

are likely to live with organ damage, cognitive impairment and physical disabilities
8
.   

Historically, sepsis has been diagnosed via a broad set of symptoms including 

abnormalities in body temperature, heart rate, respiratory rate, and white blood cell count. 

When two or more symptoms of systematic inflammatory response syndrome (SIRS) are 

present, infection is considered to be sepsis. Symptoms of the systematic inflammatory 

response syndrome include: ‘body temperature higher than 38°C or lower than 36°C; 

heart rate higher than 90/min or more than two SD above the normal value for age; 

tachypnea; alterations in the white blood count, and the presence of more than 10 percent 

immature neutrophils’. More severe forms of sepsis include sepsis in association with 

organ dysfunction, hypoperfusion and hypotension. Septic shock is sepsis with arterial 

hypotention
7
. 

Sepsis detection is often delayed because of the non-specific symptoms and the 

time-consuming lab techniques. The time that it takes for diagnostics is very important 

however because there is a 7.6% increase in mortality for every hour that a patient 

remains undiagnosed or untreated
16

. Currently, the main clinical method for diagnosis of 
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sepsis is blood testing. This method of diagnosis is very time consuming. Early detection 

of sepsis is key in lowering the rate of mortality
17

, making blood testing very inefficient. 

Blood testing is difficult and less effective for neonates because they do not have the 

amount of blood needed and they are often asymptomatic until respiratory collapse is a 

danger. The amount of blood required for testing is two samples of 20-30 ml
11

. Because 

of this, neonates are often treated with antibiotics that can cause major side effects, such 

as deafness and renal failure in newborns that are misdiagnosed with sepsis
18

.  

As stated above, blood testing is very time-consuming. The incubation period 

takes at least 8 hours and can take upwards of 96 hours
19

.  Culture reports are then ready 

in 24-48 hours
11

. Cultures come out negative almost 50% of the time when severe sepsis 

is sampled after antibiotics administration
20

. It is for this reason that new methods of 

detection are beginning to be investigated.  

Now that new methods of analysis, such as PARAFAC, have been explored, the 

future goal of the research project is to apply this fluorescent-based metabonomic 

approach to early diagnoses of sepsis. There are several biomarkers in blood that 

autofluoresce, which would allow healthy patients to be distinguished from those with 

disease. If the autofluorescence is combined with a rhodamine boronic acid dye, a 

fluorescein aldehyde dye, or a combination thereof and PARAFAC, it is predicted that 

the potential to detect shifts in the chemical composition of known biomarkers would 

increase.  

The process of this future research has many aspects to it, making this a long-term 

goal for the group. In order to determine any trends, hundreds of samples will be needed 
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for analysis. Due to the samples being plasma samples from sick and healthy patients, the 

institutional review board will have to approve of the research and many clinical studies 

will need to be completed.  
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5) Concluding Remarks 
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Much research has been done on the effect that rhodamine boronic acid (RhoBo) 

and fluorescein aldehyde have on fluorescent spectra of analytes. Both dyes can be tuned 

in order to detect analytes of interest. RhoBo is wavelength and time dependent and is 

selective towards ribose and ribose derivatives. Fluorescein aldehyde is selective towards 

thiols.   

Parallel Factor analysis (PARAFAC) provides a multi-dimensional way to 

analyze EEM’s and decompose them into their components. Decomposing EEMs 

provides a better way to quantitatively analyze large sets of data, thus improving results. 

Work is ongoing to improve the results of PARAFAC analysis, including tailoring future 

experiments to assure proper data collection. Analysis of more global data sets is also 

ongoing, as it is hypothesized that these larger sets of data will further improve 

quantitative analysis of data collected.  

A long-term goal of the research group is to use RhoBo and fluorescein aldehyde, 

along with PARAFAC to detect and diagnose sepsis. Doing so would provide a faster, 

more efficient way of diagnosing.  
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