
Portland State University Portland State University

PDXScholar PDXScholar

Mathematics and Statistics Faculty
Publications and Presentations

Fariborz Maseeh Department of Mathematics
and Statistics

2018

Clustering and Multifacility Location With Clustering and Multifacility Location With

Constraints via Distance Function Penalty Methods Constraints via Distance Function Penalty Methods

and DC Programming and DC Programming

Mau Nam Nguyen
Portland State University, mau.nam.nguyen@pdx.edu

Thai An Nguyen
Portland State University

Sam Reynolds
Portland State University, ser6@pdx.edu

Tuyen Tran
Portland State University, tuyen2@pdx.edu

Follow this and additional works at: https://pdxscholar.library.pdx.edu/mth_fac

 Part of the Mathematics Commons

Let us know how access to this document benefits you.

Citation Details Citation Details
Nguyen, Mau Nam; Nguyen, Thai An; Reynolds, Sam; and Tran, Tuyen, "Clustering and Multifacility
Location With Constraints via Distance Function Penalty Methods and DC Programming" (2018).
Mathematics and Statistics Faculty Publications and Presentations. 220.
https://pdxscholar.library.pdx.edu/mth_fac/220

This Post-Print is brought to you for free and open access. It has been accepted for inclusion in Mathematics and
Statistics Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us
if we can make this document more accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/mth_fac
https://pdxscholar.library.pdx.edu/mth_fac
https://pdxscholar.library.pdx.edu/mth
https://pdxscholar.library.pdx.edu/mth
https://pdxscholar.library.pdx.edu/mth_fac?utm_source=pdxscholar.library.pdx.edu%2Fmth_fac%2F220&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=pdxscholar.library.pdx.edu%2Fmth_fac%2F220&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/mth_fac/220
https://pdxscholar.library.pdx.edu/mth_fac/220?utm_source=pdxscholar.library.pdx.edu%2Fmth_fac%2F220&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:pdxscholar@pdx.edu

CLUSTERING AND MULTIFACILITY LOCATION WITH CONSTRAINTS

VIA DISTANCE FUNCTION PENALTY METHODS AND DC

PROGRAMMING

N. M. NAM1, N. T. AN2 , S. REYNOLDS,3 and T. TRAN4.

Abstract. This paper is a continuation of our effort in using mathematical optimization involving

DC programming in clustering and multifacility location. We study a penalty method based on

distance functions and apply it particularly to a number of problems in clustering and multifacility

location in which the centers to be found must lie in some given set constraints. We also provide

numerical examples to test our method.

Key words. Clustering, DC programming, Nesterov’s smoothing techniques, k-mean algorithm

AMS subject classifications. 49J52, 49J53, 90C31.

1 Introduction

In the current time of “big data”, clustering is a very important problem that helps classify

data in many fields such as machine learning, pattern recognition, image analysis, data com-

pression, and computer graphics. Given a finite number of data points with a measurement

distance, a centroid-based clustering problem seeks a finite number of cluster centers with

each data point assigned to the nearest cluster center in a way that a certain measurement

distance is minimized.

It is well-known that the k−mean algorithm is one of the simplest clustering algorithms,

providing an easy way to classify a given data set through a certain number of clusters.

However, it possesses certain drawbacks: the k−mean algorithm depends heavily on the

initial choice of cluster centers; there is no guarantee that the k−mean algorithm converges

to a global optimal solution; the number of clusters k is an input parameter: an inappro-

priate choice of k may yield poor results; the results depend heavily on the measurement

distance; the algorithm may not be applicable for handling constraints imposed on the

cluster centers.

In our recent research, we further the pioneering works by Pham Dinh Tao, Le Thi Hoai

An and others from [1, 2] in using the mathematical programming approach for clustering,

aiming at providing an alternative to the k−mean algorithm and coping with its draw-

backs; see [1, 7, 8]. The mathematical programming approach is very promising as opti-

1Fariborz Maseeh Department of Mathematics and Statistics, Portland State University, Portland, OR

97207, USA (mau.nam.nguyen@pdx.edu). Research of this author was partly supported by the National

Science Foundation under grant DMS-1716057.
2Institute of Research and Development, Duy Tan University, Vietnam (thaian2784@gmail.com). Re-

search of this author was supported by the Vietnam National Foundation for Science and Technology De-

velopment under grant #101.01-2017.325.
3Fariborz Maseeh Department of Mathematics and Statistics, Portland State University, Portland, OR

97207, USA (ser6@pdx.edu).
4Fariborz Maseeh Department of Mathematics and Statistics, Portland State University, Portland, OR

97207, USA (tuyen2@pdx.edu).

1

mization techniques for minimizing nonconvex optimization problems have been of great

interest with significant progress over the past few years. In addition, it is possible to

use derivative-free methods for initializations in the DCA and enhance the effectiveness of

gradient/subgradient-based nonconvex algorithms. Our method using Nesterov’s smooth-

ing techniques and the DCA, an algorithm for minimizing differences of convex functions,

allows us to solve clustering and multifacility location problems in many different settings

involving different norms, bilevel clustering, and set clustering.

The main focus of this paper is on solving a number of clustering and multifacility location

problems with constraints. We use a penalty method with squared Euclidean distance

functions to convert constrained problems to unconstrained problems. Then appropriate

DC decompositions and the DCA are used to minimize the penalized objective functions.

In the case where the measurement distance is defined by the Euclidean norm instead

of the squared Euclidean norm, we use Nesterov’s smoothing techniques for reducing the

nonsmoothness of the model and for providing a DC decomposition that is favorable for

applying the DCA. Our method opens up the possibility of using distance function penalty

methods for other problems of DC programming.

The paper is organized as follows. In Section 2, we present basic tools of convex analysis

and optimization used throughout the paper. The analysis of a penalty method based

on squared distance functions is presented in Section 3. Section 4 is devoted to solving

clustering problems with constraints in which the measurement distance is defined by the

squared Euclidean norm. In Section 5, we study a new model of clustering with constraints

that involves sets. In Section 6, we study clustering problems with constrained and the

measurement distance defined by the Euclidean norm. These problems belong to the class

of continuous multifacility location problems with constraints. Finally, numerical examples

are presented in Section 7.

Throughout the paper, we use 〈·, ·〉 to denote the inner product and use ‖ · ‖ to denote the

associated Euclidean norm in Rd. For the subset Ω of Rd, the set conv(Ω) is the convex

hull of Ω, i.e., the smallest convex set in Rd that contains Ω.

2 Preliminaries

In this section, we present basic tools of analysis and optimization used in the sequel. The

readers are referred to [1, 4, 5, 11] for more details.

Let f : Rd → (−∞,∞] be a convex function. An element v ∈ Rd is called a subgradient of

f at x̄ ∈ dom (f) = {x ∈ Rd | f(x) <∞} if it satisfies

〈v, x− x̄〉 ≤ f(x)− f(x̄) for all x ∈ Rd.

The set of all such elements v is called the subdifferential of f at x̄ and is denoted by ∂f(x̄).

If x̄ 6∈ dom (f), we set ∂f(x̄) = ∅. This subdifferential concept possesses many calculus rules

that are important for applications. In particular, for a finite number of convex functions

2

fi : Rd → (−∞,∞], i = 1, . . . ,m, we have the following sum rule:

∂(f1 + · · ·+ fm)(x̄) = ∂f1(x̄) + · · ·+ ∂fm(x̄) for all x̄ ∈ Rd

provided that
⋂m
i=1 ri(dom (fi)) 6= ∅. Here ri(Ω) stands for the relative interior of Ω; see,

e.g, [5, Definition 1.68].

If f = maxi=1,...,m fi, and fi is continuous at x̄ for every i = 1, . . . ,m, then for any x̄ ∈ Rd

we have the following maximal rule:

∂f(x̄) = conv
(⋃
i∈I(x̄)

∂fi(x̄)
)
, (2.1)

where I(x̄) = {i | fi(x̄) = f(x̄)}.

Given a nonempty closed convex subset Ω of Rd with x̄ ∈ Ω, the normal cone to Ω at x̄ is

defined by

N(x̄; Ω) =
{
v ∈ Rd

∣∣ 〈v, x− x̄〉 ≤ 0 for all x ∈ Ω
}
.

If x̄ 6∈ Ω, we set N(x̄,Ω) = ∅. It is well-known that an element x̄ ∈ Rd is an absolute

minimizer of a convex function f : Rd → R on Ω if and only if x̄ is a local minimizer of

f on Ω. Moreover, this happens if and only if the following optimality condition holds:

0 ∈ ∂f(x̄) +N(x̄; Ω).

Let Θ ⊂ Rd be a nonempty set (not necessarily convex). The distance function to Θ is

defined by

d(x; Θ) = inf
{
‖x− w‖

∣∣ w ∈ Θ
}
, x ∈ Rd.

The Euclidean project from x ∈ Rd to Θ is the set

P (x; Θ) =
{
w ∈ Θ

∣∣ d(x; Θ) = ‖x− w‖
}
.

We can show that if Θ is a nonempty closed set, then P (x; Θ) is nonempty, and it is a

singleton if we assume in addition that Θ is convex. We can also show that if Θ is a convex

set and w ∈ P (x; Θ), then x− w ∈ N(w; Θ).

Another tool we will use in the paper is the notion of Fenchel conjugates. Let f : Rd → R
be a function. The Fenchel conjugate of f is defined by

f∗(y) = sup
{
〈y, x〉 − f(x)

∣∣ x ∈ Rd
}
, y ∈ Rd.

Note that f∗ : Rd → (−∞,∞] is an extended-real-valued convex function. Suppose further

that f is convex, then the Felchel-Moreau theorem states that (f∗)∗ = f . Based on this

theorem, we have the following relation between the subgradients of f and its Fenchel

conjugate:

x ∈ ∂f∗(y) ⇐⇒ y ∈ ∂f(x). (2.2)

The notions of subgradients and Fenchel conjugates provide mathematical foundation for

the DCA introduced below. Given a function f : Rd → R with the DC decomposition

f = g − h, where g, h : Rd → R are convex functions, the DCA introduced by Pham Dinh

3

Algorithm 1 : The DCA

INPUT: x1, N ∈ N
for p = 1, . . . , N do

Find yp ∈ ∂h(xp)

Find xp+1 ∈ ∂g∗(yp)
end for

OUTPUT: xN+1

Tao described in what follows is a simple but effective algorithm for minimizing the function

f ; see [12, 13].

For convenience, define the data matrix A ∈ Rm×d as the matrix whose ith row is ai ∈ Rd

for i = 1, . . . ,m. Similarly, we define the variable matrix X ∈ Rk×d as the matrix whose

`th row is x` ∈ Rd for ` = 1, . . . , k. We equip the linear space Rk×d with the inner product

〈X,Y〉 = trace(XTY). Recall that the Frobenius norm on Rk×d is defined by

∥∥X∥∥
F

= 〈X,X〉1/2 =

(
k∑
`=1

〈x`, x`〉

)1/2

=

(
k∑
`=1

‖x`‖2
)1/2

.

Observe that the square of the Frobenius norm is differentiable with

∇‖X‖2F = 2X for X ∈ Rk×d.

Let Ω` ⊂ Rd for l = 1, . . . , k be nonempty closed convex sets and let Ω = Ω1×Ω2× . . .×Ωk.

For X ∈ Rk×d, the projection from X to Ω is the matrix Y whose `th row is y` = P (x`; Ω`).

We thus have

[d(X; Ω)]2 = ‖X−Y‖2F =
k∑
`=1

‖x` − y`‖2 =
k∑
`=1

d(x`; Ω`)2. (2.3)

3 A Penalty Method via Distance Functions

In this section, we study a penalty method using distance functions for solving constrained

optimization problems and apply them specifically to DC programming. This method is

based on the quadratic penalty method ; see [3, 9]. Let f : Rd → R be a function and let Ωi for

i = 1, . . . , q be nonempty closed subsets of Rd with
⋂q
i=1 Ωi 6= ∅. Consider the optimization

problem:
min f(x)

subject to x ∈
⋂q
i=1 Ωi.

(3.1)

Let us first study the relation between this problem and the unconstrained problem given

by

min fλ(x) = f(x) +
λ

2

q∑
i=1

[d(x; Ωi)]
2, x ∈ Rd. (3.2)

4

The theorem below provides a relation between optimal solutions of the constrained op-

timization problem (3.1) and the unconstrained optimization problem (3.2) obtained by a

penalty method based on distance functions. The proof follows [9, Theorem 17.1].

Theorem 3.1 Consider (3.1) in which f : Rd → R is a l.s.c. function. Suppose that (3.1)

has an optimal solution. If limn→∞ λn = ∞ and xn ∈ Rd is an absolute minimizer of the

function fλn defined in (3.2) for all n ∈ IN , then every subsequential limit of {xn} is a

solution of (3.1).

Proof. Let x̄ ∈ Rd be an optimal solution of (3.1). That means x̄ ∈ Ωi for i = 1, . . . , q and

f(x̄) ≤ f(x) whenever x ∈ Ωi for all i = 1, . . . , q.

Since xn ∈ Rd is an absolute minimizer of the function fλn ,

fλn(xn) ≤ fλn(x̄).

This implies, with the observation that d(x̄; Ωi) = 0 for i = 1, . . . , q, that

f(xn) +
λn
2

q∑
i=1

[d(xn; Ωi)]
2 ≤ f(x̄). (3.3)

Then
q∑
i=1

[d(xn; Ωi)]
2 ≤ 2

λn

(
f(x̄)− f(xn)

)
for all n ∈ IN.

Let x∗ ∈ Rd be a subsequential limit of {xn}. Without loss of generality, we can assume that

limn→∞ xn = x∗. By the continuity of the distance function and the lower semicontinuity

of f ,

q∑
i=1

[d(x∗; Ωi)]
2 = lim

n→∞

q∑
i=1

[d(xn; Ωi)]
2 ≤ lim inf

n→∞

2

λn

(
f(x̄)− f(xn)

)
≤ 0.

It follows that d(x∗; Ωi) = 0, and so x∗ ∈ Ωi for i = 1, . . . , q. In addition, by (3.3) and the

lower semicontinity of f we have

f(x∗) ≤ lim inf
n→∞

f(xn) ≤ lim inf
n→∞

(
f(xn) +

λn
2

q∑
i=1

[d(xn; Ωi)]
2
)
≤ f(x̄).

Therefore, x∗ is an optimal solution of (3.1). �

Now we discuss a direct consequence of Theorem 3.1 that will be used in the sequel. Let

F : Rk×d → R be a function and let Ω`
i for ` = 1, . . . , k and i = 1, . . . , q be nonempty closed

subsets of Rd. Consider the problem

min F (x1, . . . , xk)

subject to x` ∈
⋂q
i=1 Ω`

i , x
` ∈ Rd for ` = 1, . . . , k.

(3.4)

5

We now clarify the relation between this problem and the unconstrained problem given by

min Fλ(x1, . . . , xk) = F (x1, . . . , xk) +
λ

2

k∑̀
=1

q∑
i=1

[d(x`; Ω`
i)]

2

x` ∈ Rd for ` = 1, . . . , k.

(3.5)

In what follows, we identify X = (x1, . . . , xk) ∈ Rk×d with the matrix X ∈ Rk×d, whose `th

row is x` for ` = 1, . . . , k.

Corollary 3.2 Consider (3.4) in which F : Rk×d → R is a l.s.c. function. Suppose that

(3.4) has an optimal solution. If limn→∞ λn = ∞ and Xn = (x1
n, . . . , x

k
n) ∈ Rk×d is an

absolute minimizer of the function Fλn, then every subsequential limit of {Xn} is a solution

of (3.4).

Proof. Let X = (x1, . . . , xk) ∈ Rk×d and let Ωi = Ω1
i × . . . × Ωk

i ⊂ Rk×d for i = 1, . . . , q.

Note that
q⋂
i=1

Ωi =

q⋂
i=1

k∏
`=1

Ω`
i =

k∏
`=1

q⋂
i=1

Ω`
i .

It follows that x` ∈
⋂q
i=1 Ω`

i for ` = 1, . . . , k if and only if X ∈
⋂q
i=1 Ωi, and thus (3.4)

reduces to the following optimization problem:

min F (X)

subject to X ∈
⋂q
i=1 Ωi.

Based on (2.3), we can rewrite the objective function Fλ in (3.5) as follows

Fλ(X) = F (X) +
λ

2

q∑
i=1

[d(X; Ωi)]
2.

The conclusion now follows directly from Theorem 3.1. �

Let us continue with a known result on DC decompositions of squared distance functions.

The proof of the following result can be found in [8, Proposition 5.1].

Proposition 3.3 Let Ω be a nonempty closed set in Rd (not necessarily convex). Define

the function

ϕΩ(x) = sup
{
〈2x,w〉 − ‖w‖2

∣∣ w ∈ Ω
}

= 2 sup
{
〈x,w〉 − 1

2
‖w‖2

∣∣ w ∈ Ω
}
.

Then we have the following conclusions:

(i) The function ϕΩ is always convex. If we assume in addition that Ω is convex, then ϕΩ

is differentiable with ∇ϕΩ(x) = 2P (x; Ω).

(ii) The function f(x) = [d(x; Ω)]2 is a DC function with f(x) = ‖x‖2 − ϕΩ(x) for all

x ∈ Rd.

6

We now consider (3.1) in which f(x) = g(x) − h(x) is a DC function where g, h : Rd → R
are convex functions. We also assume additionally that all constraint sets are convex and

satisfy
⋂q
i=1 ri(Ωi) 6= ∅. By [6, Theorem 5.3], this condition ensures that

N(x̄;

q⋂
i=1

Ωi) =

q∑
i=1

N(x̄; Ωi) for every x̄ ∈
q⋂
i=1

Ωi. (3.6)

Recall from [13] that an element x̄ ∈ Rd is a critical point of a DC function f with DC

decomposition f = g − h if ∂g(x̄) ∩ ∂h(x̄) 6= ∅. Observe that (3.1) can be written as an

unconstrained optimization problem using the indicator function as follows:

min
(
g(x) + δ(x,

⋂q
i=1 Ωi)

)
− h(x), x ∈ Rd.

Define v(x) = g(x) + δ(x,
⋂q
i=1 Ωi) for x ∈ Rd. By (3.6),

∂v(x̄) = ∂g(x̄) +N(x̄;

q⋂
i=1

Ωi) = ∂g(x̄) +

q∑
i=1

N(x̄; Ωi) for all x̄ ∈ Rd.

Thus, we call an element x̄ ∈ Rd a critical point of (3.1) if

(
∂g(x̄) +

q∑
i=1

N(x̄; Ωi)
)
∩ ∂h(x̄) 6= ∅. (3.7)

The objective function of (3.2) now becomes

fλ(x) = g(x) +
λ

2

q∑
i=1

d(x; Ωi)
2 − h(x).

Using Proposition 3.2, we have

fλ(x) =
(
g(x) +

λq

2
‖x‖2

)
−
(
h(x) +

λ

2

q∑
i=1

ϕΩi(x)
)

= g̃λ(x)− h̃λ(x), (3.8)

where g̃λ and h̃λ are functions defined on Rd by

g̃λ(x) = g(x) +
λq

2
‖x‖2 and h̃λ(x) = h(x) +

λ

2

q∑
i=1

ϕΩi(x), x ∈ Rd.

Proposition 3.4 Suppose that limn→∞ λn =∞ and xn is a critical point of the DC func-

tion fλn = g̃λn − h̃λn given in (3.8). Then every subsequential limit of the sequence {xn} is

a critical point of (3.1).

Proof. Since xn is a critical point of fλn and by Proposition 3.3, there exist vn ∈ ∂g(xn)

and wn ∈ ∂h(xn) such that

vn + λnqxn = wn + λn

q∑
i=1

P (xn; Ωi). (3.9)

7

Let x̄ be a subsequential limit of {xn}. Without loss of generality, we can assume that {xn}
converges to x̄. Since any finite convex function is locally Lipschitz continuous, we can

assume that both g and h are locally Lipschitz continuous around x̄ with Lipschitz constant

L > 0. Then

‖vn‖ ≤ L and ‖wn‖ ≤ L for sufficiently large n. (3.10)

By (3.9), (3.10) and the assumption that λn →∞ as n→∞,

q∑
i=1

(
xn − P (xn; Ωi)

)
=

1

λn
(wn − vn)→ 0 as n→∞.

Letting n→∞ yields
∑q

i=1

(
x̄−P (x̄; Ωi)

)
= 0, due to the continuity of projection operators

onto convex sets. Note also that λn
∑q

i=1

(
xn−P (xn; Ωi)

)
∈
∑q

i=1N(xn; Ωi). This implies

wn − vn ∈
q∑
i=1

N(xn; Ωi) = N(xn;

q⋂
i=1

Ωi).

By (3.10), we can assume without loss of generality that vn → v̄ and wn → w̄ as n → ∞.

Then by passing to a limit, we have

w̄ − v̄ ∈ N(x̄;

q⋂
i=1

Ωi) =

q∑
i=1

N(x̄; Ωi).

Observe also that v̄ ∈ ∂g(x̄) and w̄ ∈ ∂h(x̄). Therefore, (3.7) is satisfied and thus x̄ is a

critical point of (3.1). �

We continue by considering (3.4) in which

F (x1, . . . , xk) = G(x1, . . . , xk)−H(x1, . . . , xk)

is a DC function, where G,H : Rk×d → R are convex functions. From the proof of Corollary

3.2, we can rewrite (3.4) as

min F (X) = G(X)−H(X)

subject to X ∈
⋂q
i=1 Ωi.

Recall that a point X = (x̄1, . . . , x̄k) is called a critical point of this problem if

(
∂G(X) +

q∑
i=1

N(X; Ωi)
)
∩ ∂H(X) 6= ∅,

where N(X; Ωi) = N(x̄1; Ω1
i)× . . .×N(x̄k; Ωk

i).

For Ω ⊂ Rk×d, based on Frobenious norm, we define

ϕΩ(X) = ‖X‖2F − d(X; Ω)2 = 2 sup

{
〈X,Y〉 −

‖Y‖2F
2

∣∣ Y ∈ Ω

}
,X ∈ Rk×d.

8

Observe that if Ωi = Ω1
i × Ω2

i . . .× Ωk
i and X = (x1, . . . , xk) ∈ Rk×d, then

d(X; Ωi)
2 =

k∑
`=1

d(x`; Ω`
i)

2 =
k∑
`=1

(
‖x`‖2 − ϕΩ`

i
(x`)

)
= ‖X‖2F −

k∑
`=1

ϕΩ`
i
(x`).

Therefore, ϕΩi(X) =
∑k

`=1 ϕΩ`
i
(x`).

In this new notation, the function Fλ in (3.5) can be rewritten as

Fλ(X) =
(
G(X) +

λq

2
‖X‖2F

)
−
(
H(X) +

q∑
i=1

ϕΩi(X)
)

= G1(X)−H1(X),

where

G1(X) = G(X) +
λq

2
‖X‖2F and H1(X) = H(X) +

q∑
i=1

ϕΩi(X),X ∈ Rk×d.

We also recall that X ∈ Rk×d is a critical point of (3.5) if

∂G1(X) ∩ ∂H1(X) 6= ∅.

The proof of the following result is similar to that of Proposition 3.4.

Proposition 3.5 Suppose that limn→∞ λn =∞ and Xn = (x1
n, . . . , x

k
n) ∈ Rk×d is a critical

point of the function Fλn. Then every subsequential limit of {Xn} is a critical point of (3.4).

4 Clustering with Constraints

In this section, we study problems of clustering with constraints in which the measurement

distance is defined by the squared Euclidean norm. We seek k centers x1, . . . , xk ∈ Rd of

m data nodes a1, . . . , am ∈ Rd and impose the restriction that each x` ∈
⋂q
i=1 Ω`

i for some

nonempty closed convex set Ω`
i ⊂ Rd with ` = 1, . . . , k and i = 1, . . . , q. Here, without loss

of generality, we assume that the numbers of constraints for each center is equal to each

other. The problem we are concerned with is given by

min ψ(x1, . . . , xk) =
∑m

i=1 min`=1,...,k ‖x` − ai‖2

subject to x` ∈
⋂q
j=1 Ω`

j for ` = 1, . . . , k.
(4.1)

This problem can be converted to an unconstrained minimization problem:

min f(x1, . . . , xk) =
1

2

∑m
i=1 min`=1,...,k ‖x` − ai‖

2
+
τ

2

∑k
`=1

∑q
i=1[d(x`; Ω`

i)]
2,

x1, . . . , xk ∈ Rd,
(4.2)

where τ > 0 is a penalty parameter.

Recall from Proposition 3.3 that for any nonempty closed convex set Ω in Rd,

[d(x; Ω)]2 = ‖x‖2 − ϕΩ(x),

9

where ϕΩ(x) = 2 sup
{
〈x,w〉 − 1

2‖w‖
2 | w ∈ Ω

}
is a differentiable function with ∇ϕΩ(x) =

2P (x; Ω). Let us use the minimum-sum principle for k real numbers α` for ` = 1, . . . , k:

min
`=1,...,k

α` =
k∑
`=1

α` − max
r=1,...,k

k∑
`=1,`6=r

α`

to obtain a DC decomposition of f as follows

f(x1, . . . , xk) =
(1

2

m∑
i=1

k∑
`=1

‖x` − ai‖2 +
τq

2

k∑
`=1

‖x`‖2
)

−
(1

2

m∑
i=1

max
r=1,...,k

k∑
`=1,` 6=r

(‖x` − ai‖)2 +
τ

2

k∑
`=1

q∑
i=1

ϕΩ`
i
(x`)

)
.

We see that f = g − h by defining

g1(x1, . . . , xk) =
1

2

m∑
i=1

k∑
`=1

‖x` − ai‖2, g2(x1, . . . , xk) =
τq

2

k∑
`=1

‖x`‖2 ,

h1(x1, . . . , xk) =
1

2

m∑
i=1

max
r=1,...,k

k∑
`=1,`6=r

‖x` − ai‖2, h2(x1, . . . , xk) =
τ

2

k∑
`=1

q∑
i=1

ϕΩ`
i
(x`),

and setting g = g1 + g2 and h = h1 + h2.

As discussed in the introduction, we may collect xj into the variable matrix X and denote

Ωi = Ω1
i × Ω2

i × . . .× Ωk
i ∈ Rk×d for i = 1, . . . , q. Then (4.1) becomes

min ψ(X) subject to X ∈
q⋂
i=1

Ωi.

We also collect ai into the data matrix A, and upon doing so we may express g in terms of

the Frobenius norm, namely,

g1(X) =
1

2

m∑
i=1

k∑
`=1

‖x` − ai‖2 =
1

2

m∑
i=1

k∑
`=1

(
‖x`‖2 − 2〈x`, ai〉+ ‖ai‖2

)
=
m

2

k∑
`=1

‖x`‖2 −
m∑
i=1

k∑
`=1

〈x`, ai〉+
k

2

m∑
i=1

‖ai‖2

=
m

2
‖X‖2F − 〈X,EA〉+

k

2
‖A‖2F ,

where E ∈ Rk×m is the matrix of ones. In this form, it is easily seen that

∇g1(X) = mX−EA.

Similarly, g2 can be equivalently written as

g2(X) =
τq

2

k∑
`=1

‖x`‖2 =
τq

2

∥∥X∥∥2

F
.

10

Hence, g2 is differentiable and its gradient is given by ∇g2(X) = τqX. Therefore,

∇g(X) = ∇g1(X) +∇g2(X) = (m+ τq)X−EA.

Based on the relation (2.2), finding X ∈ ∂g∗(Y) is equivalent to solving the equation

Y = (m+ τq)X−EA.

It follows that

X =
Y + EA

m+ τq
∈ ∂g∗(Y).

Our goal, then, is to find Yp ∈ ∂h(Xp) from which we will obtain Xp+1 and thereby

compute the first N terms of the sequence {Xp} via Algorithm 1. Toward this end we will

find subgradients of the convex function h.

For each i = 1, . . . ,m, let r(i) ∈ {1, . . . , k} be an index for which

k∑
`=1,`6=r(i)

‖x` − ai‖2 = max
r=1,...,k

k∑
`=1,`6=r

‖x` − ai‖2,

in which case we see that a subgradient W ∈ ∂h1(X) is given by

W =
m∑
i=1

(
X−Ai − er(i)(xr(i) − ai)

)
= mX−EA−

m∑
i=1

er(i)(x
r(i) − ai), (4.3)

where Ai ∈ Rk×d is the matrix whose all rows are ai and er is the k× 1 column vector with

a one in the rth position and zeros elsewhere.

Now for h2(X) = τ
2

∑k
`=1

∑q
i=1 ϕΩ`

i
(x`), we have

∂h2

∂xj
(X) =

τ

2

k∑
`=1

q∑
i=1

∂

∂xj
ϕΩ`

i
(x`) = τ

q∑
i=1

P (xj ; Ωj
i)

with j = 1, . . . , k. Then U = 1
τ∇h2(X) is the k × d matrix whose rows are uj =∑q

i=1 P (xj ; Ωj
i).

The form of the DCA instructs us to find Yp ∈ ∂h(Xp) at the pth iteration, so we set

Yp = W + τU. Combining the above results gives Xp+1 = (W + τU + EA)/(m + τq).

Substituting (4.3) for W, we obtain the recursive relation

Xp+1 =
1

m+ τq

(
mXp + τU−

m∑
i=1

er(i)
(
xr(i)p − ai

))
,

where x`p denotes the `th row of Xp. The following algorithm summarizes the DCA-based

procedure we just derived.

Inspecting (4.2), we see that for small τ our problem begins to resemble the associated

unconstrained problem. For solving the clustering (4.1), we may gradually increase the value

of the penalty parameter τ > 0 by periodically multiplying by some σ > 1 and terminate

whenever τ > τf . This may be accomplished by Algorithm 3. Notice that for the initial

choice of τ , the maximum number of overall iterations of Algorithm 3 is Ndlogσ(τf/τ)e,
where d · e denotes the ceiling function.

11

Algorithm 2 : DC program for (4.2)

INPUT: A,X0, {Ω`
j}
`=1,...,k
j=1,...,q , N, τ

for p = 1, . . . , N do

for i = 1, . . . ,m do

Find r(i) s.t. ‖xr(i)p−1 − ai‖2 = min{
∥∥x`p−1 − ai

∥∥2 | ` = 1, . . . , k}
Set Wi := er(i)(x

r(i)
p−1 − ai)

end

for ` = 1, . . . , k do

Find u` :=
∑q

j=1 P (x`p−1; Ω`
j)

end

Set Xp := 1
m+τq

(
mXp−1 + τU−

∑m
i=1 Wi

)
end

OUTPUT: XN

Algorithm 3 : Penalty DC program for (4.1)

INPUT: A,X0, {Ω`
j}
`=1,...,k
j=1,...,q , N, τ, σ, τf

while τ < τf do

Find XN by executing Algorithm 2 with A,X0, {Ω`
j}
`=1,...,k
j=1,...,q , N, τ

Reassign X0 := XN

Reassign τ := στ

end

OUTPUT: XN

5 Set Clustering with Constraints

In this section, we turn our attention to a model of set clustering with constraints, i.e., for

given m subsets Λ1, . . . ,Λm ⊂ Rd, we seek k cluster centers x` ∈
⋂q
j=1 Ω`

j for ` = 1, . . . , k,

where each Ω`
j is a subset of Rd. The measurement distance is defined by the squared

distance functions to the sets involved. The optimization modeling of the problem to be

solved is given by

min ψ(x1, . . . , xk) =
∑m

i=1 min`=1,...,k[d(x`; Λi)]
2

subject to x` ∈
⋂q
j=1 Ω`

j for ` = 1, . . . , k.
(5.1)

Throughout this section, we assume that Λi for i = 1, . . . ,m and Ω`
j for j = 1, . . . , q and

` = 1, . . . , k are nonempty, closed and convex.

Using the penalty method based on distance functions with a parameter τ > 0, we consider

the constrained set clustering model:

min f(x1, . . . , xk) = 1
2

∑m
i=1 min

`=1,...,k
[d(x`; Λi)]

2 + τ
2

∑k
`=1

∑q
j=1[d(x`; Ω`

j)]
2,

x1, . . . , xk ∈ Rd.
(5.2)

12

We will now find a DC decomposition of f = g − h as follows. For each i = 1, . . . ,m, we

have

min
`=1,...,k

[d(x`; Λi)]
2 =

k∑
`=1

[d(x`; Λi)]
2 − max

r=1,...,k

k∑
`=1,`6=r

[d(x`; Λi)]
2

=

k∑
`=1

(
‖x`‖2 − ϕΛi(x

`)
)
− max
r=1,...,k

k∑
`=1,` 6=r

[d(x`; Λi)]
2

= ‖X‖2F −
(k∑
`=1

ϕΛi(x
`) + max

r=1,...,k

k∑
`=1,`6=r

[d(x`; Λi)]
2
)
.

Furthermore, we have

k∑
`=1

q∑
j=1

[d(x`; Ω`
j)]

2 =

k∑
`=1

q∑
j=1

(
‖x`‖2 − ϕΩ`

j
(x`)

)
= q ‖X‖2F −

k∑
`=1

q∑
j=1

ϕΩ`
j
(x`).

Let

g1(X) =
m

2
‖X‖2F , g2(X) =

τq

2
‖X‖2F ,

h1(X) =
m∑
i=1

(1

2

k∑
`=1

ϕΛi(x
`) +

1

2
max
r=1,...,k

k∑
`=1,` 6=r

[d(x`; Λi)]
2
)
, h2(X) =

τ

2

k∑
`=1

q∑
j=1

ϕΩ`
j
(x`),

in which case we have the DC decomposition f = g− h, where g = g1 + g2 and h = h1 + h2

are convex.

Using the relation (2.2), we can easily see that X = 1
m+τqY ∈ ∂g

∗(Y). To apply the DCA

from Algorithm 1, we also need to find Y ∈ ∂h(X) as Y = V + U, where V ∈ ∂h1(X) and

U ∈ ∂h2(X).

Now, we focus on finding V ∈ ∂h1(X). Define

Di(X) =
1

2

k∑
`=1

ϕΛi(x
`),

and

Fi(X) =
1

2
max
r=1,...,k

k∑
`=1,`6=r

[d(x`; Λi)]
2, i = 1, . . . ,m.

Then h1(X) =
∑m

i=1[Di(X) +Fi(X)]. Based on Proposition 3.3, we see that ∇Di(X) is the

k × d matrix given by

∇Di(X) =

P (x1; Λi)
...

P (xk; Λi)

 .
For each i = 1, . . . ,m, choose an index r(i) such that

max
r=1,...,k

k∑
`=1,` 6=r

[d(x`; Λi)]
2 =

k∑
`=1,` 6=r(i)

[d(x`; Λi)]
2.

13

Now, for j = 1, . . . , k, define

vji =

{
xj − P (xj ; Λi) if j 6= r(i),

0 if j = r(i).

By (2.1) and the fact that ∇[d(x; Λ)]2 = 2
(
x− P (x; Λ)

)
for a nonempty closed convex set

Λ, the matrix Vi whose jth row is vji defines a subgradient of Fi at X. It follows that such

a subgradient V is

V = mX−
m∑
i=1

er(i)

(
xr(i) − P (xr(i); Λi)

)
.

As computed in the previous section, ∇h2(X) = τU, where U is the k × d matrix whose

`th row is
∑k

j=1 P (x`; Ω`
j) for ` = 1, . . . , k. Consequently, the k × d matrix

Y = mX−
m∑
i=1

er(i)

(
xr(i) − P (xr(i); Λi)

)
+ τU = mX + τU−

m∑
i=1

er(i)

(
xr(i) − P (xr(i); Λi)

)
belongs to ∂h(X).

Now, for p ∈ IN such that Xp−1 is given, one has

Yp−1 = mXp−1 + τUp −
m∑
i=1

er(i)

(
x
r(i)
p−1 − P (x

r(i)
p−1; Λi)

)
∈ ∂H(Xp−1),

where x`p is the `th row of Xp and Up is the k × d matrix whose `th row is
∑k

j=1 P (x`p; Ω`
j)

for l = 1, . . . , k. It follows that Xp from the DCA in Algorithm 1 can be determined by

Xp =
1

τq +m

(
mXp−1 + τUp −

m∑
i=1

er(i)
(
x
r(i)
p−1 − P (x

r(i)
p−1; Λi)

))
.

We now adapt Algorithm 4 to solve our set clustering problem. Just as in the previous

section, we gradually increase the value of the penalty parameter τ > 0 by periodically

multiplying it by some σ > 1 and stopping when τ > τf > 0. This may be accomplished

by Algorithm 5. We again see that for an initial choice of τ = τ0, the maximum number of

overall iterations of Algorithm 5 is Ndlogσ(τf/τ0)e.

14

Algorithm 4 : DC program for (5.2)

INPUT: X0,Λi, {Ω`
j}
`=1,...,k
j=1,...,q , N, τ

for p = 1, . . . , N do

for i = 1, . . . ,m do

for ` = 1, . . . , k do

Set w`i := P (x`p−1; Λi)

end

Find r(i) s.t. ‖xr(i)p−1 − w
r(i)
i ‖2 = min

`=1,...,k
‖x`p−1 − w`i‖2

end

for ` = 1, . . . , k do

Find u` :=
∑q

j=1 P (x`p−1; Ω`
j)

end

Xp := 1
τq+m

(
mXp−1 + τUp −

∑m
i=1 er(i)

(
x
r(i)
p−1 − w

r(i)
i

))
end

OUTPUT: XN

Algorithm 5 : Penalty DC program for (5.1)

INPUT: X0, {Λi}mi=1, {Ω`
j}
`=1,...,k
j=1,...,q , N, τ, τf , σ

while τ < τf do

Find XN by executing Algorithm 4 with X0, {Λi}mi=1, {Ω`
j}
`=1,...,k
j=1,...,q , τ,N

Reassign X0 := XN

Reassign τ := στ

end

OUTPUT: XN

6 Multifacility Location with Constraints

Given a set of m points (nodes) a1, a2, . . . , am in Rd, our goal is find k centers x` for ` =

1, . . . , k, which must be in constraint sets
⋂q
i=1 Ω`

i for l = 1, .., k, such that the transportation

cost to the nodes is minimized. The same setting in Section 4 gives us the constrained

minimization problem:

min ψ(X) subject to X ∈
q⋂
i=1

Ωi, (6.1)

where the total cost now is given by

ψ(X) = ψ(x1, . . . , xk) =
m∑
i=1

min
`=1,...,k

‖x` − ai‖.

This problem can be converted to an unconstrained minimization problem:

min fτ (x1, . . . , xk) =
∑m

i=1 min`=1,...,k ‖x` − ai‖+ τ
2

∑k
`=1

∑q
i=1[d(x`; Ω`

i)]
2,

x1, . . . , xk ∈ Rd.
(6.2)

15

where τ > 0 is a parameter.

We apply Nesterov’s smoothing techniques from [8] to approximate the objective function

fτ by a new DC function which is favorable for applying the DCA.

fτ,µ(x1, . . . , xk) =
(µ

2

m∑
i=1

k∑
`=1

∥∥∥∥∥x` − aiµ

∥∥∥∥∥
2

+
τq

2

k∑
`=1

‖x`‖2
)

−
(µ

2

m∑
i=1

k∑
`=1

[
d

(
x` − ai

µ
;B
)]2

+

m∑
i=1

max
r=1,...,k

k∑
`=1,` 6=r

‖x` − ai‖ +
τ

2

k∑
`=1

q∑
i=1

ϕΩ`
i
(x`)

)
.

In what follows, we use f instead of fτ,µ for the simplicity of notations. The original

clustering problem now can be solved using a DC programming:

min f(x1, . . . , xk) = g(x1, . . . , xk)− h(x1, . . . , xk), x1, . . . , xk ∈ Rd.

In this formulation, g and h are convex functions on (Rd)k defined by

g(x1, . . . , xk) = g1(x1, . . . , xk) + g2(x1, . . . , xk),

h(x1, . . . , xk) = h1(x1, . . . , xk) + h2(x1, . . . , xk) + h3(x1, . . . , xk),

with their respective components defined as

g1 =
µ

2

m∑
i=1

k∑
`=1

∥∥∥∥∥x` − aiµ

∥∥∥∥∥
2

, g2 =
τq

2

k∑
`=1

‖x`‖2,

h1 =
µ

2

m∑
i=1

k∑
`=1

[
d

(
x` − ai

µ
;B
)]2

, h2 =

m∑
i=1

max
r=1,...,k

k∑
`=1,` 6=r

‖x` − ai‖, h3 =
τ

2

k∑
`=1

q∑
i=1

ϕΩ`
i
(x`).

The function g1 can be equivalently written as

g1(X) =
1

2µ

m∑
i=1

k∑
`=1

‖x` − ai‖2

=
1

2µ

m∑
i=1

k∑
`=1

(
‖x`‖2 − 2〈x`, ai〉+ ‖ai‖2

)
=

1

2µ

(
m
∥∥X∥∥2

F
− 2
〈
X,EA

〉
+ k
∥∥A∥∥2

F

)
.

Note that g1 is differentiable and its gradient is given by

∇g1(X) =
1

µ
[mX−EA] .

The function g2 is the same as before so its gradient is given by

∇g2(X) = τqX.

16

Since g(X) = g1(X) + g2(X), its gradient can be computed by

∇g(X) = ∇g1(X) +∇g2(X)

=
1

µ

(
mX−EA

)
+ τqX

= (
m

µ
+ τq)X− 1

µ
S,

where S = EA. The latter can equivalently be written as

Y = (
m

µ
+ τq)X− 1

µ
S.

Our goal now is to compute ∇g∗(Y), which can be accomplished by the relation (2.2). Then

with some algebraic manipulations, we can show that

∇g∗(Y) = X =
µY + S

m+ µτq
.

Next, we will demonstrate in more details the techniques we used in finding a subgradient

for the convex function h. Recall that h is defined by

h(X) =

3∑
i=1

hi(X).

We will start with the function h1 given by

h1(X) =
µ

2

m∑
i=1

k∑
`=1

[
d

(
x` − ai

µ
;B
)]2

.

Similar to the situation in [8], we get

∂h1

∂x`
(X) =

m∑
i=1

(
x` − ai

µ
− P

(x` − ai
µ

; IB
))

.

Thus, for ` = 1, 2, . . . , k, ∇h1(X) = Z is the k × d matrix whose `th row is ∂h1
∂x`

(X).

Let us compute a subgradient of h2 as in [8]

h2(X) =

m∑
i=1

max
`=1,...,k

k∑
j=1,j 6=`

‖xj − ai‖ =

m∑
i=1

γi(X),

where γi(X) = max`=1,...,k
∑k

j=1,j 6=` ‖xj − ai‖. For each i = 1, . . . ,m, define

γi`(X) =

k∑
j=1,j 6=`

‖xj − ai‖, ` = 1, . . . , k.

Then γi(X) = max`=1,...,k γi`(X).

17

Based on the subdifferential formula for maximum functions, for each i = 1, . . . ,m, we find

Wi ∈ ∂γi(X). Then define W =
∑m

i=1 Wi to get a subgradient of the function h2 at X by

the subdifferential sum rule. To accomplish this goal, we first choose an index `∗ = 1, . . . , k

such that γi(X) = γi`∗(X) =
∑k

j=1,j 6=`∗ ‖xj−ai‖. Using the familiar subdifferential formula

of the Euclidean norm function, the jth row wji for j 6= `∗ of the matrix Wi is determined

as follows

wji =

 xj−ai
‖xj−ai‖ if xj 6= ai,

0 if xj = ai.

The `∗th row of the matrix Wi is w`
∗
i = 0.

The procedure for computing ∂h3(X) is the same in Section 4. Let U be the matrix whose

rows are
∑q

i=1 P (x`; Ω`
i), for ` = 1, . . . , k, then ∇h3(X) = τU.

At this point, we are ready to give a new DCA-based algorithm for our problem.

Algorithm 6 : DC program for (6.2)

INPUT: A,X0, {Ω`
j}
`=1,...,k
j=1,...,q , τ, µ,N ∈ N.

for p = 1, 2, · · · , N do

Find Yp := Zp + Wp + τUp where

Zp := ∇h1(Xp)

Wp ∈ ∂h2(Xp)

Up := ∇h3(Xp)

Find Xp+1 :=
µ(Zp+Wp+τUp)+S

m+µτq

end

OUTPUT: XN

We also present below an adapted version of Algorithm 6 for solving (6.1). We may improve

Algorithm 6 by gradually increasing and decreasing the value of the penalty parameter τ

and the smoothing parameter µ respectively. This can be done by periodically multiplying

them by some σ > 1, 0 < δ < 1 and stopping when τ > τf , µ < µf .

Algorithm 7 : Penalty DC program for (6.1)

INPUT: A,X0, {Ω`
j}
`=1,...,k
j=1,...,q , N, τ, σ, τf , µ, δ, µf

while τ < τf and µ > µf do

Find XN by executing Algorithm 6 with A,X0, {Ω`
j}
`=1,...,k
j=1,...,q , N, τ, µ

Reassign X0 := XN

Reassign τ := στ

Reassign µ := δµ

end

OUTPUT: XN

18

7 Numerical Experiments

We now implement proposed algorithms to solve some constrained clustering and multifacil-

ity location problems in a number of examples. All the test are implemented in MATLAB.

Instead of choosing the number of iterations N in advance, we terminate the DCA in Al-

gorithms 2, 4 and 6 whenever ‖Xp+1−Xp‖F < 10−8. In all examples, we initialize starting

centers X0 as an k × d matrix whose all rows are the mean of the dataset A.

7.1 Constrained Clustering

Example 7.1 We now consider the dataset EIL76 taken from the Traveling Salesman Prob-

lem Library [10]. We impose the following constraints on the solution:

1. The first center is a common point of a box whose vertices are (40, 40); (40, 60);

(20, 60); (20, 40) and a ball of radius r = 7 centered at (20, 60).

2. The second center is in the intersection of two balls of the same radius r = 7, centered

at (35, 20) and (45, 22), respectively.

Choosing τ = 1, σ = 10, τf = 108, Algorithm 3 yields an approximate solution:

X =

(
26.69959 57.97125

41.06910 23.48799

)
, with the cost ψ(X) = 33576.25387; see Figure 1.

7.2 Set Clustering with Constraints

Example 7.2 We now use Algorithm 5 to solve a set clustering problem with constraints.

We consider the latitude and longitude of the 50 most populous US cities taken from 2014

United States Census Bureau data 5, and approximate each city by a ball with radius 0.1
√

A
π

where A is the city’s reported area in square miles.

We use Algorithm 5 for solving 3-center problem generated by this 50-set dataset with

requirement that each center must belong to the intersection of two balls. The centers of

these constrained balls are the columns of the matrix below(
−80 −80 −92 −90 −115 −110

34 38 37 40 45 40

)

with corresponding radii given by
(

2 3 4 3 4 4
)

. The result is plotted in Figure 2

using a plate Carrée projection 6.

We again choose τ = 1, σ = 10, τf = 108, Algorithm 5 yields an approximate optimal value

5https://en.wikipedia.org/wiki/List_of_United_States_cities_by_population
6https://www.mathworks.com/help/map/pcarree.html

19

0 10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

Figure 1: A 2-center constrained clustering problem for dataset EIL76.

ψ(X) = 2271.09657 at an aproximate solution given by

X =

 −79.32172 35.88148

−91.93134 37.70436

−113.82289 41.17711

 .

7.3 Multifacility Location with Constraints

Example 7.3 We now test Algorithm 7 on a data set A containing random points in 4

balls of radius r = 0.3 centered at (2, 2), (4, 2), (4, 4) and (2, 4). Let k = 4 and the constraint

be the ball with the same radius, centered at (3, 3). We use the kmeans (a MATLAB built

in function) to partition the nodes into 4 clusters first, and then we selected the 4 cluster

centroid locations as starting centers. We choose τ = 1, σ = 10, τf = 108, µ = 1, δ = 0.75,

µf = 10−6. Typical centers are the intersections of the constraint ball boundary and the

line connecting centers of each ball to the center of the constraint one. A visualization is

shown in Figure 3.

Example 7.4 Next we consider the latitude and longitude data of the m = 988 most-

populated cities in the contiguous 48 United States [14]. We impose the following constraints

on the solution:

20

-130 -120 -110 -100 -90 -80 -70
20

25

30

35

40

45

50

Figure 2: A 3-center set clustering problems with 50 most populous US cities. Each city is

approximated by a ball proportional to its area.

1. One center is to lie west of −115◦ longitude and within 4◦ latitude/longitude of Cald-

well, Idaho.

2. One center is to lie within the state of Colorado and within 6◦ latitude/longitude of

Oklahoma City, Oklahoma.

3. One center is to lie within 2◦ latitude/longitude of Skokie, Illinois and the triangle

with vertices at Cleveland, Ohio; Atlanta, Georgia; and Des Moine, Iowa.

4. One center is to lie within 4◦ latitude/longitude of New York, NY and Washington,DC.

Employing Algorithms 6 and 7 with τ = 1, σ = 100, τf = 108, µ = 1, δ = 0.85, µf = 10−6,

we terminate when ‖Xp+1 −Xp‖F < 10−6 and find final centers at

X =


−118.03185 39.89550

−102.04996 36.99996

−87.93854 40.90443

−76.63980 38.67968


with an objective value ψ(X) = 42586.65060; see Figure 4.

References

[1] L. T. H. An, M. T. Belghiti, P. D. Tao, A new efficient algorithm based on DC pro-

gramming and DCA for clustering, J. Glob. Optim .27, (2007), 503–608.

[2] L. T. H. An, L. H. Minh, P. D. Tao, New and efficient DCA based algorithms for

minimum sum-of-squares clustering, Pattern Recognition .47 (2014), 388–401.

21

1.5 2 2.5 3 3.5 4 4.5

2

2.5

3

3.5

4

Figure 3: A 4-center multifacility location with one ball constraint

Figure 4: A 4-center constrained multifacility location problem with US cities dataset.

[3] E. Chi, H. Zhou, K. Lange, Distance majorization and its applications, Math. Program.

Series A .146, (2014), 409–436.

[4] J. B. Hiriart-Urruty and C. Lemaréchal, Funndamental of Convex Analysis, Springer-

Verlag, 2001.

[5] B. S. Mordukhovich and N. M. Nam, An Easy Path to Convex Analysis and Applica-

tions, Morgan & Claypool Publishers, San Rafael, CA, 2014.

22

[6] B. S. Mordukhovich and N. M. Nam, Geometric approach to convex subdifferential

calculus, Optim. 66, (2017), 839–873.

[7] N. M. Nam, W. Geremew, S. Reynolds, T. Tran, The Nesterov Smoothing Technique

and Minimizing Differences of Convex Functions for Hierarchical Clustering, submitted.

[8] N. M. Nam, R. B. Rector, D. Giles, Minimizing Differences of Convex Functions with

Applications to Facility Location and Clustering, submitted.

[9] J. Nocedal, S.J. Wright, Numerical Optimization , Springer, New York, 2nd Edition,

2006.

[10] G. Reinelt, TSPLIB: A Traveling Salesman Problem Library, ORSA Journal of Com-

puting. 3, 376384, 1991.

[11] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.

[12] P. D. Tao, L. T. H. An, Convex analysis approach to D.C. programming: Theory,

algorithms and applications, Acta Math. Vietnam. 22 (1997), 289–355.

[13] P.D. Tao, L. T. H. An, A D.C. optimization algorithm for solving the trust-region

subproblem, SIAM J. Optim. 8 (1998), 476–505.

[14] United States Cities Database. Simple Maps: Geographic Data Products, 2017, http:

//simplemaps.com/data/us-cities.

23

	Clustering and Multifacility Location With Constraints via Distance Function Penalty Methods and DC Programming
	Let us know how access to this document benefits you.
	Citation Details

	tmp.1554225392.pdf.DcbAY

