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Abstract
We present an algorithm for detecting IRC-like chat net-
works that does not rely on Layer 7 payload information.
The goal is to extract only those meshes from conven-
tional flows where long-term periodic data is being ex-
changed between an external server and multiple internal
clients. Flow data is passed through a series of filters that
reduce the memory requirements needed for final candi-
date mesh sorting. Final outputs consist of two sorted
lists including the fanout list, sorted by the number of
client hosts in the mesh, and a secondary list called the
evil sort. The latter consists of meshes with any host
with a high TCP work weight1 [3] indicating significant
counts of scanning hosts. We are currently able to dis-
cover SSL-encoded IRC meshes as well as other chat-
like meshes including MSN chat. Therefore we believe
that the new algorithm will prove useful in detecting bot-
net meshes encrypted at Layer 7.

1 Introduction

Botnets [6] [5] remain a current scourge of the Internet,
involved in computer crime, denial of service attacks,
identity theft, and SPAM. According to a recent late 2006
Microsoft report [11], Microsoft’s removal tool (MSRT)
found 16 million instances of malware on 5.7 million
hosts in a fifteen-month timeframe. Most of the malware
consisted of IRC-based bots.
In a previous SRUTI paper [5], the authors called

for new systems to detect botnets in more robust ways.
Many techniques for command and control detection in-
volve inside knowledge of attack commands or other
string-based signatures that may simply be changed by
changing the botnet’s programming. In our 2006 SRUTI
paper [3] we presented an algorithm for an anomaly-
based system that combined knowledge of layer 7 IRC

1This is measured as syns sent + fins sent + resets returnedtotal TCP packets .

[7] protocol commands including PRIVMSG, JOIN,
PING, and PONG that was aimed at IRC mesh ex-
traction. IRC meshes were then sorted by the number
of scanners detected via our TCP work weight statistic
which detects scanners. The result gives us ”evil meshes”
which often represent an attacking IRC-based botnet.
Our current ourmon [4] [14] IRC system is based

on a simple hard coded C-based lexer that simply
looks for IRC commands. We can claim that it is not
signature-based in the sense that it does not need to
know application-level knowledge of any particular bot-
net family. Readers should understand that many com-
mon botnet coding families may use IRC as a delivery
mechanism, but effectively function as an application on
top of IRC itself. IRC is basically a communication de-
livery channel. For example, agobot might use the com-
mand ”scan.start” delivered within an IRC PRIVMSG
command. See [2] for more examples. Our IRC parsing
system would absolutely not be able to find encrypted or
merely obfuscated IRC meshes. An IRC system using
SSL would be totally opaque to our IRC mesh extraction
system. Worse even a trivial Caesar cipher encoding for
the IRC protocol would cause it go blind.
As a result, we set out to develop a new extraction sys-

tem that would have three goals. First it would not use
any layer 7 information and would confine itself to layer
3 and layer 4. Thus it should be able to detect SSL-based
IRC networks. Second even though we would use our
ourmon system as the data collector, the system would
be based on top of a fairly conventional flow extraction
system, thus it might prove possible at a later date for
the system to be implemented with conventional netflow
technology. Last we would reconstruct our mesh ex-
traction subsystem with the target of extracting IRC-like
meshes defined according to a certain set of attributes.
For example, topologically we define an IRC-like mesh
to consist of one external server and more than one in-
ternal IP client. Such a mesh should also have long term
and periodic packet exchanges between the participants



and thus for example be unlike short term bursty web
exchanges. We call our new algorithm the small mesh
detection algorithm.

2 The Small Mesh Detection Algorithm

The goal of this algorithm is to extract IRC-like meshes.
It should be understood that the algorithm starts with bi-
directional flow collection and then proceeds to create
candidate Layer 7 meshes out of the flows. In general,
the algorithm seeks to throw out flows or meshes when-
ever it gets the chance simply because mesh organization
is an exponential problem and thus early elimination of
non-interesting data is a crucial component of the over-
all system. At a very high-level the algorithm has the
following steps:

1. TCP bi-directional flows are collected

2. candidate flows must have a non-zero layer 7 pay-
load and must be ”small”, where small is defined as
less than 600 bytes

3. candidate flowsmust be external/internal in terms of
a HOME enterprise. At a later sorting state, candi-
date meshes must consist of one external IP to more
than one internal IP.

4. candidate meshes must exhibit long lived and ac-
tive behavior over a long time period (defined as one
hour at present).

5. After all data reduction filters are run, the final result
is output as the fanout list.

6. The fanout list is also sorted according to the num-
ber of internal component hosts having a high TCP
work weight. If a mesh has a non-zero number of
internal hosts with a high work weight, it is also
output in the evil sort.

The front-end ourmon probe acts as the flow collec-
tor for the small mesh system. It collects bi-directional
flows with non-zero payloads and also makes sure that
the flows in question are not from internal to internal
”HOME” IP addresses. We call these filters pass 1 fil-
ters and will discuss the relative statistical efficiency of
our various filters in a later section. Note that the our-
mon probe as outlined in our previous paper also collects
per IP address TCP statistics that are output in a TCP syn
tuple. This information gives us the TCP work weight.
Data flows collected by the front-end consist of a list of
tuples each of which have the following format:

(IP source address, source port,
IP destination address, destination

port, IP protocol, packet count, total
flow byte count)

Because the flows are bi-directional, they are collected
as pairs with IP addresses swapped, etc. Candidate flows
and TCP work weight information are passed to the
back-end every thirty seconds.
The back-end script (written in perl) runs over one

hour’s worth of samples. It seeks to organize flow pairs
into candidate meshes and represents meshes by a logical
flow graph. During the construction of the flow graph,
the back-end gathers statistics about the hosts and flows
that allows it to eliminate meshes that are not exhibiting
IRC-like behavior. This is done via three separate filter
passes .
Pass two filters are run per ten minutes of data collec-

tion. Their goal is to significantly reduce the amount of
data as well as to eliminate non-IRC like flows as rapidly
as possible. Every host that gets filtered in this pass is
added to an internal whitelist and subsequently ignored
for the duration of the hourly run. It should be pointed
out that we do not make any assumptions about well-
known ports in terms of simplistic assumptions like IRC
may be found on port 6667. This is crucial as a botnet
controller might be found on any port. The pass two filter
eliminates various meshes based on the following crite-
ria:

1. internal and external web servers. A host is consid-
ered a server if it is talking to multiple clients with
less than three ports. Here we use the BLINC [8]
assertion - web servers may be identified by noting
that during a given sampling period, the number of
destination ports will be greater than the number of
destination IPs.

2. multi-flow servers. If servers talk to each of their
clients with many flows over the 10 minute period
then we can safely eliminate them. The reason is
that IRC servers usually talk to their clients using a
single long lived flow rather than many simultane-
ous connections.

3. external clients. An external host is considered a
client if the number of source ports is greater than
the number of destination ports (during the sample
period). This eliminates external hosts accessing in-
ternal servers.

4. internal servers - Any internal host talking from less
than three ports to many external clients (greater
than 10) is considered an internal server.

Pass three filters are applied to all hosts in the flow
graph after an hour’s worth of data is processed. Hosts
eliminated at this level are not removed from the flow



graph but are ignored in any later analysis. This pass
eliminates any internal hosts as possible candidates for
single external servers for the simple reason that they are
external. It also eliminates external hosts with only a
single individual internal client.
Pass four filters represent the last filter step. At this

level in general the algorithm is only concerned with
meshes as a whole and eliminates meshes that do not
seem to have IRC-like behavior. Meshes are eliminated
if they do not have long-lived flows. IRC should survive
this step because the mesh will refresh itself either with
periodic PING and PONG commands at layer 7 or with
client JOINS to recreate IRC connections.
After all the filter passes, we output a fanout list of

candidate meshes that are either IRC or exhibit IRC-like
behavior. The fanout list is sorted according to mesh size.
Thus a mesh with more internal IP clients will appear
higher in the list. In addition, the back-end performs the
evil sort. This list is a subset of the meshes in the fanout
list and may have no entries. The back-end code consults
a daily TCP work weight database and looks up internal
IP addresses found in fanout meshes for their maximum
work weight value seen during the day. Evil meshes are
then sorted by the number of clients having high work
weights. A mesh with more than one scanning host may
represent a botnet. We know from experience with our
IRC mesh mechanism that a mesh with three or more
members has a high probability of being a botnet and
may represent a botnet scanning in parallel. It is impor-
tant to understand that the ”evil sort” part of this algo-
rithm is basically not new and is simply a form of tech-
nology reuse from our previous IRC specific algorithm.
What is new here is the mesh extraction part of the sys-
tem that is not using any Layer 7 payload information.

3 Experimental Results

In this section we briefly present our experimental re-
sults. As we felt that exposure to the real-world is impor-
tant, the algorithm is currently deployed in the PSU DMZ
and is looking at real data. We will first review what sort
of meshes our system seems to be finding. In addition
we also subjected the new system to various tests pri-
marily aimed at determining if it could both respond to
a scanning IRC botmesh along the lines of the previous
algorithm, and perhaps more important (given that rank-
ing meshes by attackers is not a new idea for us) we also
made sure that the new algorithm could detect IRC-like
encrypted meshes. Last because this work is about data
reduction, we will take a short look at a measurement
study we made to both sanity check the system and find
out which parts eliminated the most flows or meshes.
In terms of real-world data extraction, one very impor-

tant test for our new system was to see if it would find

the same external-internal IRC meshes currently found
by the earlier Layer 7 system. This proved to be the
case. In addition, there is the rather fundamental ques-
tion of what else does the system find? During a normal
school day the system finds about 20 small meshes in
the morning and around 40 meshes in the afternoon. We
can informally classify the meshes as falling into four
camps: 1. VPNs, 2. MSN chat, 3. IRC., and 4. small
but mysterious. For example out of a recent afternoon
hourly run, we find roughly three quarters of the meshes
are MSN chat and/or IRC, with MSN chat far outnum-
bering the IRC meshes (10 to 5). MSN chat runs at port
1873 and is characterized by a server run by Microsoft
with a strange DNS name ending in phx.gbl. The proto-
col is also not IRC proper, but is similar. VPNs of var-
ious forms seem to actually dominate the statistics, not
in terms of meshes, but in terms of IP hosts in the VPN
mesh. The VPNs are encrypted connections to remote
servers. We speculate that the connection is periodic and
long-lived simply to keep NAT state fresh for broadband
home systems. One example of this is gotomypc.com.
Finally a number of relatively small mysterious meshes
exist that are not always easy to explain. One example
(recently unraveled) turned out to be a Oregon Univer-
sity System VOIP management system based at Oregon
State University that curiously enough used TCP port 23
and was not somehow a telnet-based mesh.

We also performed a number of lab and on-line ex-
periments to determine if our system behaved properly.
For example, as the small mesh back-end program uses
a per IP address database of TCP work weights created
elsewhere by the ourmon system, we thus first selected
an IRC mesh found in the fanout mesh by the algorithm,
and tested what would happen if the local clients were
found to have high work weights. High work weights
were created by salting the database with false values.
The result is shown in table 1. Although simplified. the
output here is roughly what the new algorithm shows for
any captured mesh. The external host (presumed to be a
server) is given first followed by two internal clients. The
L3D column gives the number of unique IP destinations
for the host. The L4S and L4D columns give counts for
TCP source and destination ports. The WW value gives
the maximum work weight. The port list shows source
ports for the external host. We also repeated this test by
creating an IRC mesh with an external server, and then
used nmap [12] to scan an internal darknet, thus emulat-
ing the behavior of a typical IRC-based botnet in its scan-
ning phase. This form of test worked and results were
similar to table 1. In addition, we created an SSL-based
IRC mesh and made sure our algorithm would capture it.
The resulting mesh may be seen in table 2.



Table 1: Small Test BOT Mesh
IP L3D L4S L4D WW Port List
outside.166.3 2 1 2 0 6667
inside.10.206 1 1 1 90
inside.11.30 11 7 17 90

Table 2: Small SSL Mesh
IP L3D L4S L4D WW Port List
outside.142.4 4 2 4 0 6697, 2523
inside.1.51 1 1 1 0
inside.2.49 1 1 1 0
inside.3.61 1 1 1 0

3.1 Filter Efficiency

Finally given the multiple component nature of our algo-
rithm which effectively decomposes into a set of smaller
filters, we have attempted to determine the relative effec-
tiveness of the various components.
In terms of the front-end probe the situation is rela-

tively simple. In table 3 we present a statistical summa-
rization over multiple samples. The first column gives
the name of the filter stage and the second column shows
the overall data reduction as a percent in flows from the
total number of flows. Total flows are shown as a basis
in the first row and of course make up 100% of the to-
tal flow count (on average we see 60k flows every day).
The next two rows show that TCP flows outnumber UDP
flows about two to one. This study focuses only on TCP
and our real filters here then are the filters named 2-way
TCP flows and 2-way TCP/small flows. In the first case
we discard any TCP flow that is not bi-directional, which
nets us a small data reduction of around 10% of the flows.
In addition we discard flows that have no payload and
only keep those with payloads less than 600 bytes to-
tal (hence small). This nets us a further reduction to
around 10% of the total original flow count. The filter
label 2-way small flows indirectly shows that there are
more small UDP flows than TCP flows. This may be due
to DNS, but as of yet we have not explored UDP. For
UDP it may be necessary to eliminate DNS servers with
a whitelist or via as yet unknown attributes as elimination
via whitelists could lead to false negatives.
For our back-end in table 4 we present a very rough

estimate of data reduction based on passes and filters in
passes. In general the estimates are based on total ex-
ternal and internal IP addresses eliminated. However in
some cases flows are eliminated and in later stages of the
algorithm meshes are eliminated. Given that one is look-
ing at IP addresses, or flows, or meshes at various stages,
it is hard to determine a proper strategy for comparison.
For example, pass two which pre-computes all data in ten

minute stages in order to reduce overall data size in gen-
eral eliminates about 15% of the total flows. This number
is not reflected in the table. In gross terms then it appears
that the most effective component in terms of data reduc-
tion is the no mesh filter which simply means flows from
one external source with a single internal partner. The
pass 2 filter for detection of external clients is also useful
at 15%.
Given that the front-end reduces the data by an order

of magnitude and the back-end reduces data presented to
it by 99%, we can see that the primary thrust of our algo-
rithm and its sub-components is certainly data reduction.
We believe that at this point we are successful at getting
rid of everything that is not a long-lived TCP mesh. Thus
we can ignore layer 7 payloads.
In terms of running time for the backend filters, on a

P4 machine with 512MB of RAM, the total running time
(in wallclock seconds) per one hour of data as measured
by perl’s Benchmark package is: Pass 1 filters - 74s, Pass
2 filters - 10.5s, Pass 3 filters - 1s, and Pass 4 (mesh)
filters - 2.5s.

4 Related Work

In general the academic literature on botnet detection re-
mains sparse. The most relevant work to our work pre-
sented here is ironically our previous work [3], which
describes an anomaly-based system for detection of bot-
nets. The algorithm parses Layer 7 payloads to extract
IRC meshes and then uses the TCP work weights of the
clients to determine if the mesh is a botnet. The problem
is, simple encryption or encoding of the payloads can de-
feat the algorithm. We have thus modified it to work with
Layer 3 and 4 information only. A number of valuable at-
tribute ideas have been found in [8], but they have been
reused here in a different problem space - IRC-like mesh
detection - not P2P detection. Still, this reflects our own
experience with attribute detection aimed at P2P mesh
detection. Quite often the attributes found may be reused



Table 3: Probe Flow Reduction
filter percent
total flows 100
TCP flows 66
UDP flows 29
2-way TCP flows 57
2-way small flows 32
2-way TCP/small flows 11

Table 4: Back-end Data Reduction
pass filter percent
pass 2 multi-flow servers 3.4
pass 2 external clients 15
pass 2 internal servers .01
pass 3 no mesh 71
pass 3 internal IP only 5
pass 4 short-lived mesh 5.4

in a different problem space.
Other botnet detection techniques include machine

learning, honeynets and signature based detection. Ma-
chine learning classification algorithms are used in [10]
and [9] to identify botnet meshes. Although the algo-
rithms use Layer 3 and 4 information only, their false
positive and negative rates can vary with the training set
used. This can be a real problem because finding ac-
curate training data, especially one that includes mali-
cious (botnet) traffic can be challenging. Further, since
the classifiers work with individual flows, they fail to
identify the mesh, i.e. the flows that belong to the same
botnet. Honeynets [6] or darknets [1] are very effec-
tive in collecting information about botnets. However,
they may not be easy to deploy internally for those with
limited time for analysis or limited IP address space. It
is also not always clear that information found in dark-
nets is disseminated to those who need to know it. (Of
course email about abuse may be ignored as well.) Sig-
nature based detection can be implemented using an IDS
like snort [13], and can be effective in finding known
bots like the ones discussed in [2]. The drawback, of
course, is that modified versions of old bots, completely
new bots, or encrypted command and control communi-
cation with bots can defeat this system. Layer 3 and 4
based anomaly detection on the other hand, can detect
such a system. Drawbacks of anomaly based detection
include the discovery of IRC-like networks that may be
botnets but have not been used for attacks yet, thus there
are no anomalies. Our technology to some extent de-
pends on bot controllers actually launching attacks; of
course, there is no guarantee that we can detect every in-
fected system. On the other hand, an analyst can use our
technology to learn the current set of small meshes and

may thus note new meshes at a layer point that constitute
passive botnets. Also, anomaly detection can sometimes
be too late. It is certainly more useful to detect an ini-
tial attack with a signature than to wait for hosts to get
infected and show signs infection. Many of these tech-
niques can go hand in hand and need not be considered
competitive. In fact they are often complimentary. Most
discussed techniques like honeypots, signature detection,
and anomaly detection can be useful in different ways for
studying or detecting botnets.

5 Conclusion

In this paper we have presented a flow-based system
for extraction of small meshes that may also be coupled
with our previous TCP work-weight to suggest attacking
meshes. This work may prove useful in the detection of
stealth botnets. The result does not depend on Layer 7
data or attributes. It only uses Layer 3 IP addresses and
Layer 4 TCP ports. The overall algorithmmay be viewed
as a set of filter passes that aim to reduce the overall flow
data to a small set of meshes with one external system
and more than one internal IP host. Only meshes with
long-term periodic data are considered. This system is
currently deployed in our network and is both stable and
has been proven to detect the same IRC meshes as our
previous Layer 7 based system. In addition it has been
shown experimentally to detect SSL-based IRC meshes
and in actual reality has detected some previously un-
known external VPN systems.
The white paper [5] calls for systems to detect botnets

via more robust detection means. We believe that our
system is more robust than previous systems. In terms of



future work, we intend to investigate UDP small meshes.
Also given the nature of the Ourmon system itself, which
tends to extreme data aggregation in the probe, we would
like to reexamine our various component filters to see
if any of the current back-end filters might be pushed
into the probe. This would hopefully improve the overall
scalability of the system.
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