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Abstract 

Prospective elementary school teachers (PTs) come to their mathematics courses fluent 
in using procedures for adding and subtracting multidigit whole numbers, but many are 
unaware of the essential features inherent in understanding the base-10 place-value 

system (i.e., grouping, place value, base). Understanding these features is crucial to 
understanding and teaching number and place value. The research aims of this paper 

are (1) to present a local instructional theory (LIT), designed to familiarize PTs with 
these features through comparison with historical number systems and (2) to present 
the effects of using the LIT in the PT classroom. A theory of learning (variation theory) is 

paired with a framework related to motivation (intellectual need) to illustrate the mutually 
supporting roles they may play in mathematical learning and task design. The LIT, a 

supporting task sequence, and the rationale for task design are shared. This theoretical 
contribution is then paired with evidence of PTs’ changing growth in their conceptions of 
whole number before and after courses leveraging this task sequence. 
 
 

 
Keywords: variation theory; intellectual need; whole number; prospective teachers; 
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1. Introduction 



Prospective teachers (PTs) often come into mathematics content courses with 

knowledge of how to implement arithmetic procedures but without understanding the 

mathematics underlying them (e.g., Thanheiser, 2009, 2010). Further, they often see 

applying procedures as tantamount to understanding (Graeber, 1999). As such, they 

may not perceive a need to further develop their understanding of the base-ten system. If 

educators wish to provide PTs with opportunities to learn (Cai et al., 2017), they must 

develop contexts to overcome the challenges of revisiting material that PTs see as 

unproblematic.  

To meet this need, we present a local instructional theory (LIT) (Gravemeijer & 

Cobb, 2006) designed to build on prospective teachers' (PTs') incoming conceptions and 

to enable PTs to become aware of and make sense of the essential features of the base-

ten numeration system: grouping, place value, and base. The tasks are situated in 

various historic number systems that can serve to both to highlight and motivate 

understanding of the features of the base-ten numeration system. The historic contexts 

deprive PTs of their procedural fluency and provide a path that mimics the historic needs 

leading to the development of grouping, place value, and base across various number 

systems. We note that the systems were chosen from various cultures at various times in 

history and as such do not provide the development of one number system but are used 

to highlight various aspects of our base ten numeration system.  

The LIT is based on design principles from variation theory (e.g., Marton, 

Runesson, & Tsui, 2004) and Harel’s (1998; 2013) necessity principle. We argue that 

presenting carefully selected and sequenced tasks (Adler, 2017) to leverage variation 

according to the goals of the task sequence enables PTs to contrast, separate, 



generalize, and fuse properties to enrich understanding (Marton, Runesson, & Tsui, 

2004).  

The LIT illustrates learning opportunities for PTs. We define a learning 

opportunity as a situation in which  students (a) engage in a context to become aware of 

an important feature through variation and (b) experience an intellectual need (Harel, 

2013) to attend to and desire such a feature. For each step in the LIT, we share how the 

design provides a learning opportunity related to base ten aligned with those two 

features. We instantiate the trajectory with data from PTs who engaged in the task 

sequence and conclude by sharing pre/post data illustrating that PTs who engaged in 

this sequence developed richer understanding of base ten.   

Our research goals are the following: 

(1) Present a theoretically grounded LIT for PTs' development of base-ten 

understanding that integrates design principles from variation theory with 

intellectual need; 

(2) Provide empirical evidence that this LIT has the potential to lead to PTs’ 

growth in conceptions of base ten. 

 

2. Literature Review 

PTs in the United States are typically fluent with algorithms for operating on 

multidigit whole numbers but struggle to explain the mathematics underlying the 

algorithms (Ball, 1988; Ma, 1999; Simon, 1993; Thanheiser, 2009, 2010). The PTs’ 

incoming conceptions of number limit their abilities to explain the procedures. 

Thanheiser (2018)  found that about 80% of PTs interpret the values of the digits in a 

multidigit number incorrectly at least some of the time. This in turn, limits the PTs' 



abilities to make sense of the algorithms. In addition, Thanheiser (2009) showed that 

PTs overgeneralize the applicability of the standard algorithms beyond a base-ten 

context. Such overgeneralization may reflect unawareness of how the algorithm is 

linked with the base ten structure. 

2.1 Children’s and PTs' Understanding of Base-Ten Numbers 

PTs struggle to understand the content of elementary school (Ball, 1988; Ma, 

1999; Simon, 1993; Simon & Blume, 1992; Zazkis & Campbell, 1996) including whole 

number and operation (Chapman, 2007; Crespo & Nicol, 2006; Kaasila, Pehkonen, & 

Hellinen, 2010; Thanheiser, 2009, 2010). Many PTs can perform the algorithms for 

addition, subtraction, multiplication, and division of whole numbers (Harkness & 

Thomas, 2008; Khoury & Zazkis, 1994; Menon, 2009; Zazkis & Khoury, 1993) but 

struggle when asked to explain the mathematics underlying the algorithms (Ball, 1988; 

Ma, 1999; Simon, 1993; Thanheiser, 2009, 2010).  

For an understanding of number in our base ten numeration system we need to 

be able to group 10 ones into one unit of 1 ten, etc. and need to understand 10 as both 

10 ones and 1 ten simultaneously thus relating the different unit types (Fuson, 1990; 

Fuson et al., 1997; Hiebert & Wearne, 1996; Steffe & Cobb, 1988). Both children (Kamii, 

1986; Valeras & Becker, 1997) and PTs (Ross, 2001; Thanheiser, 2009, 2018) struggle 

identifying the meaning of the digit in the ten’s place, for example, 1 in 16 as 10 ones or 

1 ten rather than as a one. In addition, children and PTs often fail to connect units of 

different types (ones, tens, hundreds, etc.) with one another (Cobb & Wheatley, 1988; 

Kamii, 1986, 1994; Thanheiser, 2009, 2018).   



Thanheiser (2009) identified four distinct conceptions PTs hold when entering 

their mathematics content courses in the United States (see Table 1) based on Fuson et 

al.’s (1997) framework for children’s conceptions. 

 

Table 1 

Definition of Conceptions in the Context of the Standard Algorithm for the PTs in 

Thanheiser's (2009) Study 

Conception 

Reference units.  PTs with this conception reliably conceive of the reference units for 

each digit and relate reference units to one another, seeing the 3 in 389 as 3 
hundreds or 30 tens or 300 ones, the 8 as 8 tens or 80 ones, and the 9 as 9 ones. 

They can reconceive of 1 hundred as 10 tens, and so on. [correct and most 
sophisticated conception] 

 
Groups of ones.  PTs with this conception reliably conceive of all digits in terms of 

groups of ones (389 as 300 ones, 80 ones, and 9 ones) but not in terms of reference 
units; they do not relate reference units (e.g., 10 tens to 1 hundred). [correct 

conception] 

  

Concatenated-digits plus. PTs with this conception conceive of at least one digit as an 
incorrect unit type at least sometimes. They struggle when relating values of the digits 

to one another (e.g., in 389, 3 is 300 ones but the 8 is only 8 ones). [incorrect 
conception] 

  
Concatenated-digits only.  PTs holding this conception conceive of all digits in terms 

of ones (e.g., 548 as 5 ones, 4 ones, and 8 ones). [incorrect conception] 

  

Thanheiser (2018) showed that about 80% of U.S. PTs enter their teacher 

education courses with one of the concatenated-digits conceptions, reflecting 

incomplete understanding of essential features of base ten. PTs with such an 



understanding may explain the value of the regrouped digit in the standard U.S. 

algorithm (see Figure 1) incorrectly as 1 or 10 (in 14), rather than as 10 tens or 1 

hundred (regrouped from the hundreds to the tens place). Thus, they may be unable to 

explain why the algorithm yields correct answers in base ten.  

 

 314 7 
-1 5 2 

 

Figure 1. Subtraction problem showing regrouping 

In addition, Thanheiser (2009) showed that PTs may overgeneralize the 

application of the standard algorithm to non-base-ten contexts, such as finding elapsed 

time (a mixed-base context). The literature provides impetuous for a clear learning goal: 

developing PTs’ incomplete conceptions to arrive at the most sophisticated (reference-

units) conception of base ten.  

 

3. Theoretical Perspective(s) 

         Students learn best when given opportunities to learn (Bransford, Brown, & 

Cocking, 1999; Cai et al., 2017; National Research Council, 2001); thus, tasks and 

curricula should align with students' incoming conceptions, motivation to engage, and 

learning goals. In this paper, variation theory (e.g., Marton, et al., 2004) is paired with 

intellectual need (Harel, 2013) to elaborate on learning opportunities. To support PTs  in 

providing robust learning opportunities, educators need “instructional design supporting 

instruction that helps students to develop their current ways of reasoning into more 

sophisticated ways of mathematical reasoning” (Gravemeijer, 2004, p. 106).  

3.1 Local Instructional Theories (LITs) 



 LITs provide a tool for supporting teachers in providing robust learning 

opportunities. Such theories leverage research-based instructional design to illustrate 

how students may arrive at specific learning goals. An LIT consists of “the description 

of, and rationale for, the envisioned learning route as it relates to a set of instructional 

activities for a specific topic” (Gravemeijer, 2004, p. 107). In contrast to a hypothetical 

learning trajectory, an LIT provides a travel plan that can then be adapted to a particular 

set of students to create a hypothetical learning trajectory. To produce a robust LIT, one 

needs a theory “on how to help students’ construct mathematical ideas and procedures” 

(Gravemeijer, 2004, p. 108). Many existing LITs leverage design heuristics from 

Realistic Mathematics Education (e.g., Gravemeijer, 2004; Gravemeijer & Cobb, 2006; 

Larsen, 2013). We add to the research literature by leveraging alternative design 

theories: variation theory (Gu, Huang, & Gu, 2017; Marton & Booth, 1997; Marton, 

Runesson, et al., 2004) and the necessity principle (Harel, 1998, 2013; Stylianides & 

Stylianides, 2009).  We begin by introducing our definition of learning then outline 

general theories of variation and necessity that ground our LIT.  

3.2 On Learning 

Learning is defined as experiencing, understanding, or seeing something in a 

different or new way (Runesson, 2006; Ryve, Larsson, & Nilsson, 2013). Learning 

occurs for a person who is “capable of being simultaneously and focally aware of other 

aspects or more aspects of a phenomenon than was previously the case” (Marton & 

Booth, 1997, p. 142). 

3.2.1 Opportunities of Learning: Variations 



In any situation, individuals focus on some aspects of a situation whereas others 

are in the background (Marton & Booth, 1997). For example, understanding triangles 

requires awareness of many features including a figure's having three sides and being a 

closed polygon (e.g. Woleck, 2003). However, students may be aware of the first and 

not the second, as evidenced by students' identifying three-sided shapes without 

closure as triangles. From a variation theory lens, these students may not have 

experienced variation that would foreground closure as a triangle feature. A student 

must “experience variation in order to be able to discern a particular feature” (Holmqvist, 

Gustavsson, & Wernberg, 2008, p. 111). When learners experience the variation rather 

than being told on what to focus, they can discern the essential features rather than 

have them remain unfocused in the background (Bussey, Orgill, & Crippen, 2013; 

Holmqvist et al., 2008; Runesson, 2006; Schwartz & Bransford, 1998). In the triangle 

example, students are unlikely to become aware of the essential feature of closure if 

they never interact with geometric figures that are not closed. 

In general, learning situations can be thought of as analogous to jigsaw puzzles in 

which 

the whole needs to be made more distinct, and the parts need to be found and then 

fitted into place, like a jigsaw puzzle that sits on the table half-finished inviting the 

passerby to discover more of the picture. (Marton & Booth, 1997, p. 180) 

The various essential features and sub-features are referred to as dimensions of 

variation (Marton, Tsui, Chik, Ko, & Lo, 2004). In learning, the various dimensions of 

variation must be identified and foregrounded and then pieced together (like jigsaw 

puzzles) to form a more complete picture. 



To build this picture, we draw on patterns of variation: separating, contrasting, 

generalizing, and fusing ideas (Marton, Runesson, et al., 2004). Contrasting highlights a 

dimension of variation by contrasting entities and nonentities. For example, in our LIT, 

to isolate the aspect of grouping, PTs are asked to compare the Egyptian system (which 

is based on grouping) and the tally system (which has no grouping). Generalizing 

occurs through PTs' exploring varying instantiations to determine which features are 

specific to a given concept, such as in comparing a base-ten system to a base-twenty 

system (Mayan) to focus on the common feature of base. Both contrasting and 

generalizing fall under the larger category of separating: isolating a particular feature 

from a given context (Pang, Bao, & Ki, 2017) In the previous examples, the feature of 

grouping and the feature of base, respectively, are separated from other features in the 

context.  Fusion occurs when multiple critical features are accounted for simultaneously 

(i.e., the jigsaw pieces are now together). These experiences with variation provide the 

structure for learning opportunities. Thus, learning goals should align with dimensions of 

variation (essential features), and tasks should be designed to provide contexts in which 

students can experience variance and invariance along those dimensions (Coles & 

Brown, 2016). 

3.3.1 Essential Features/Dimensions of Variation of the Base-Ten 

Numeration System. To leverage a variation-theory approach, we identified the 

essential features of the base-ten number system: grouping, place value, and base, 

illustrated in Table 2 (first column). Further, sub-features were identified: Values are 

assigned to digits depending on place; order matters; the system has a limited number 

of symbols; minimal grouping and zero are required. We selected various historic 



number systems on the basis of variation in the major features: tally (no grouping, no 

place value, no base), Egyptian (grouping, no place value, grouping by 10), Mayan 

(grouping, place value, base twenty), and base ten (grouping, place value, base ten). 

Historic number systems provide not just a context for variations but also contexts that 

reflect authentic intellectual need. The refinements (variations) between systems were 

made to meet historic needs of certainty, computation, and efficiency (expanded on in 

the next section).  

 

Table 2 

 Number Systems With Features of Base-Ten System 

Features embedded in each system Tally Egyptian Mayan Base ten 

1.    Grouping No Yes Yes
*

 Yes
*

 

2.    Place value No No Yes Yes 

2a.    Values assigned to digits on the 
bases of their placements 

No No Yes Yes 

2b.    Order matters No No Yes Yes 

2c.     Limited number of symbols Yes No Yes Yes 

2d.    Minimal grouping required No No Yes Yes 

2e.    Zero required No No Yes Yes 

3. Base No 10 20 10 

*
Grouping is part of the place-value system, but it is not a mere grouping system. 



 

3.4 Opportunities to Promote Intellectual Need 

To provide the impetus for students to integrate the variations into their 

knowledge, we leverage Harel’s (2013) design principle, the necessity principle:  

“Students are most likely to learn when they see a need for what we intend to teach 

them, whereby ‘need’ is meant [to be] intellectual need, as opposed to social or 

economic need” (Harel, 1998, p. 501). Harel described intellectual need as the 

need to reach equilibrium by learning a new piece of knowledge. Thus, 

intellectual need has to do with disciplinary knowledge being created out of 

people’s current knowledge through engagement in problematic situations 

conceived as such by them (Harel, 2013, p. 122).   

Intellectual need is framed as an epistemological construct stemming from the 

mathematics field’s intellectual need to create new knowledge. In this way, it is separate 

from motivation, which is more accurately described as a psychological construct 

capturing many affect-related variables. However, recently researchers have illustrated 

that intellectual need can promote intrinsic motivation for students and mathematicians 

(Hart, 2010; Kontorovich, 2015).  We similarly treat intellectual need as mechanism to 

create motivation for students to build their understanding in a way parallel to the 

historic development of mathematical ideas. 

Harel (1998, 2013) identified many intellectual needs in mathematics including 

(a) need for certainty, (b) need for causality, (c) need for computation, and (d) need for 

communication. Kontorovich and Zazkis (2016) introduced an additional need: the need 

for efficiency.  



The need for certainty reflects the need to determine whether a given conjecture 

is mathematically true. In Harel’s (2013) treatment of this idea, he focused on the use of 

proof. In our context, we treat the need for certainty as the historic driving force for 

developing numeration systems that are precise rather than approximations (many).  

The “need for causality is the need to explain—to determine a cause of a 

phenomenon, to understand what makes a phenomenon the way it is” (Harel, 2013, p. 

143). In our work, we aim to perturb PTs comfort with the base-ten system to develop 

the need for causality. Rather than an historic reflection of intellectual need, this is a 

need created to specifically connect to the unique population of PTs.  As mentioned 

previously, PTs (and children) are often efficient at performing algorithms but struggle to 

explaining why they yield correct answers (Ball, 1988; Ma, 1999; Simon, 1993; 

Thanheiser, 2009, 2010). However, many PTs hold the belief that knowing how to apply 

procedures is synonymous with understanding (Graeber, 1999). PTs enter education 

without authentic need for causality in base-ten number systems, a need that must be 

developed. 

The need for computation includes “determining a missing quantity from a set of 

quantitative constraints” (Harel, 2013, p. 131), such as determining the product of two 

numbers. Numeration systems naturally fill a need for computation. Harel explored this 

notion by addressing how the need for computation led the Babylonians to develop a 

positional number system with essential features such as a zero placeholder.  

Harel (2013) presented the need for communication as two acts: formulating and 

formalizing. These acts, often reflexive in nature, capture both the act of translating 

language into mathematical expressions (formulating) and defining or providing a logical 



basis (formalizing).  Harel notes that historically, the need for formalizing pre-dates 

formulating. This is reflected in our work, where the need to unambiguously convey 

meaning of a certain number is a driving force. However, unlike their historic 

counterparts, modern students are also driven to symbolize into a mathematical short-

hand (formulate.)  

The evolution of number systems was also driven by the need for efficiency.  The 

need for efficiency is associated with the parsimony principle of doing a minimal amount 

of work to solve a given problem (Kontorovich & Zazkis, 2016). Number systems not 

only provide a means for computation, but also each increase in sophistication over 

time (variations) increased the efficiency of computation.  

To leverage the various needs, we developed tasks in which a new variation 

would allow for significant increases in accuracy and efficiency of computation. To 

leverage the need for causality, we developed tasks focused on the power of algorithms 

and on making PTs aware that algorithms can be performed without understanding. We 

posit that pairing these needs with variations provides students with (a) a situation in 

which they can compare and contrast to learn through variation and (b) motivation to 

incorporate these variations into their existing knowledge. 

 

4. Methods and Mode of Inquiry 

In this work, an LIT for base-ten numeration was developed through leveraging 

variation and necessity in using a design-based research approach (The Design-Based 

Research Collective, 2003) to iteratively implement and refine the tasks and 

accompanying theory. We share a sequence of tasks; the purpose of each task in terms 



of goals, variation, and intellectual need; and provide PTs’ work illustrating how PTs 

typically engage with each task. We conclude with evidence that across two 

implementations PTs engaged with this LIT increased their understandings of the base-

ten numeration system. 

4.1 Context 

Data for the LIT were collected in the context of a mathematics content course 

for PTs in the United States.  In the United States and at this university, content courses 

for PTs are typically taught during undergraduate education and serve as prerequisites 

to enter teacher-certification programs. Content courses are divorced from pedagogical 

methods, which are part of teacher-certification program. The focus of these content 

courses was on whole number and operation. The task sequence described below was 

a major component of the class. The content courses were four-credit courses in a 

quarter system; thus, PTs met with the instructor for 40 contact hours. Participants were 

36 PTs who gave consent to have their data used. Of the 36 PTs, 13 PTs (9 women 

and 4 men ranging in age from 21 to 64 years old) participated in a summer course and 

23 PTs (16 women and 7 men ranging in age from 21 to 39) participated in a regular 

school-year course. 

4.2  Data Sources 

Data for the LIT description were drawn from PTs' work in two sections of a 

mathematics content course for PTs in the United States. Copies of the PTs' work were 

collected and scanned while they engaged in the task sequence. In this paper, we use 

this data to instantiate typical approaches to subtasks. 



Data for the change in conceptions were based on interviews with all PTs before 

and after the course. The interviews were all conducted by the first author and instructor 

of the course. Interview questions were chosen to identify the PTs’ conceptions of 

number using Thanheiser’s (2009) framework (Table 1) and were between 7 and 20 

minutes in length, depending on the details the PTs were able to describe and the wait 

time they needed to give explanations. In the interviews, PTs were asked to explain 

regrouping in the context of adding and subtracting multidigit whole numbers (see 

Figure 2). To flexibly understand whole numbers, PTs need to be able to group and 

regroup within the base. To group and regroup, PTs must be aware of the roles of 

grouping, of place value, and of base ten. Ability to group and regroup based on the 

underlying base also enables PTs to modify the algorithms as needed for various 

bases. Thus, a move to reference-units provides may evidence that PTs have fused 

their base-ten knowledge. 

 

 

  

Figure 2. One PT's solutions to one subtraction problem and one addition problem 

 

After the PTs had solved each problem, they were asked questions about various 

steps and why those steps were valid. Special attention was paid to the PTs’ 



interpretations of regrouped ones. For a list of interview follow-up questions, see 

Thanheiser (2018). The interviews were videotaped and independently watched and 

coded by two researchers using Thanheiser’s (2009) guidelines for interpreting 

conceptions. Agreement was 88% (the disagreements were resolved through 

discussion). Both groups of PTs experienced the same sequence of tasks exposing 

them to alternative number systems described below. 

4.3 Task Sequence 

The task sequence incorporates the base-ten system and three historic 

numeration systems chosen to differ along the three major dimensions of variation: 

grouping, place value, and base (see Table 2). The historic systems are: the tally 

system with none of the base-ten features (no grouping, no place value, no base), the 

Egyptian system (grouping, no place value, grouping by 10), and the Mayan system 

(grouping, place value, base twenty). These systems are contrasted with the base-ten 

system (grouping, place value, base ten) (see Table 3). In the LIT, we describe each 

activity, show artifacts from class, discuss the variations the systems afford, and 

describe the motivation for PTs to attend to each feature through the lens of intellectual 

need. 

Table 3 

Variation Along the Major Dimensions of Variation 

Features in each system Tally Egyptian Mayan 
Base 

ten 

Grouping No Yes Yes* Yes* 

Place value No No Yes Yes 



Base ten No 

No 

(Grouping by 10 but not 

base) 

No Yes 

*Grouping is part of the place-value system, but it is not a mere grouping system. 

 

5. Local Instructional Theory 

In this section, we describe our LIT for base-ten numeration. An overview of the 

goals in the sequence with the accompanying intellectual need and variation is followed 

by a detailed description of each goal, the tasks illustrated with PTs’ work engaging with 

the task, and the instructional rationale. We close this section by discussing the last 

goal, fusion.  

5.1 Local Instructional Theory for Developing Understanding of Base Ten  

 The general LIT is focused on three features: grouping structure, place value, 

and base ten, and the fusion of these features. The stages are as follows: 

Goal 1. Becoming Aware of a Grouping Structure 

 Developing intellectual need for certainty and computation in non-grouped 

system (tally)  

 Contrasting a non-grouped system (tally) with grouped systems (student-

generated) 

 Developing intellectual need for communication (symbolizing student-

generated groupings) 

 Generalizing grouping (student-generated, Egyptian) 

Goal 2. Becoming Aware of a Place-Value Structure 



Goal 2(A) Becoming Aware of Value on the Bases of Placement and Order 

 Generalizing and contrasting across numbers not ordered consistently 

(Egyptian) 

 Contrasting a non-order-dependent system (Egyptian) and order-

dependent system (base ten) 

Goal 2(B) Becoming Aware of Repetition of Finite Symbols 

 Contrasting a system without finite symbols (Egyptian) and a system with 

finite symbols (base ten) 

Goal 2(C) Becoming Aware of Minimal Grouping 

 Generalizing and contrasting across numbers grouped in various ways 

(Egyptian) 

 Contrasting a non-minimally grouped system (Egyptian) and a minimally 

grouped system (base ten) 

Goal 2(D) Becoming Aware of the Role of Zero in a Place-Value Structure 

 Contrasting a system without zero (Egyptian) and a system with zero 

(base ten) 

Goal 2(F) Fusion of Place-Value Structure 

 Developing Intellectual Need for Efficiency (Computing in inefficient place-

value-free system) 

 Contrasting non-place-value system (Egyptian) and place-value system 

(Mayan) 

Goal 3 Becoming Aware of a Base-Ten Multiplicative Structure 

 Contrasting base-ten system with a non-base-ten system (Mayan) 



 Developing Intellectual Need for certainty for values of place-value system 

(Mayan)  

 Developing Intellectual Need for Causality (Engaging in computations without 

understanding) 

Goal 4 Fusion  

 Coordinating the essential features in tandem (Returning to base-ten tasks) 

5.2 Goal 1 Becoming Aware of a Grouping Structure 

  PTs' incoming conceptions (mostly concatenated-digits plus or concatenated-

digits only) reflect that many conceive of the digits in a number as representing ones 

rather than groups of ones or groups of different sizes. PTs typically perform 

calculations but do not make sense of them. When at the beginning of the course they 

are asked to explain regrouping in the standard algorithms for addition and subtraction 

and are typically unable to do so (Thanheiser, 2018), they recognize that the 

mathematics of the algorithms can be explained but they are not able to explain them  

(Thanheiser, Philipp, Fasteen, Strand, & Mills, 2013). This recognition lays the 

foundation for the need for causality.  

Our first goal for the LIT is to provide students learning opportunities to develop 

awareness of grouping through placing them in a situation in which (a) they see a 

system that has no grouping to allow for contrast with base ten, (b) an intellectual need 

for grouping is developed via a need for computation and certainty, and (c) they 

generalize grouping structure across various systems. We illustrate how this awareness 

can be developed through a specific task: The Tally Activity. 



5.2.1 The Tally Activity. The PTs were introduced to the idea that all number 

systems have one thing in common: Each system has a symbol for 1 (tally) (May, 

1970). Beyond that, number systems differ in their features. The PTs were then given 

(a) the following context: An ancient farm owner who lived in a time when only tallies 

existed recorded how many cows he had by recording one tally for each cow he saw 

and (b) the Tally Activity shown in Figure 3.  

 

Figure 3. The Tally Activity 

The approximately 500 tallies (see Figure 3) are purposefully misaligned to 

necessitate counting all tallies (rather than grouping by rows or using a comparable 

strategy). The PTs were asked to translate the number of cows the farmer owned from 

the tally system to the base-ten number system. 



Counting each individual tally leads to difficulty in computation and uncertain 

results. To meet this need for computation, PTs typically group 5, 10, or 20 tallies into a 

group and mark the groups (for example by circling). The PTs then count those groups; 

two examples are shown in Figures 4a and 4b. 

Figure 4a. A PT's grouping by 10s in the Tally Activity 

 

 



 

Figure 4b. PT's grouping by 5s and 10s in Tally Activity 

Even using the computational approach, PTs typically arrived at a range of 

answers from 501 to 512 cows. These differences tap into PTs' intellectual need for 

certainty.  The PTs wanted to know which answer is correct. The difficulty in 

determining the exact number of cows represented by so many tallies led the PTs to 

recognize that the tally system is inefficient for recording large numbers. Even with 

grouping, counting is cumbersome. This inefficiency for representing large numbers 

combined with the uncertainty of accurately determining the number of many tallies 



creates the need for a better system to quantify, therefore tapping into the students’ 

need to compute and ultimately quantify more efficiently to get accurate answers. 

The PTs’ need for certainty and computation led them to focus on the dimension 

of grouping (Feature 1, Table 2), which is lacking in the tally system. The PTs often 

initially invent their own symbols to represent numbers (see Figure 5 for an example) 

and then discuss standardization of such symbols in addressing the need for 

communication. 

  

 

Figure 5. A PT's invention of new symbols for groups of tallies 

5.2.2 Instructional Rationale. The goals for the Tally Activity are to necessitate 

and thus highlight the feature of grouping ones into groups of larger size and then 

represent those new groups with new symbols. After the PTs isolated these features, 

they were introduced to the Egyptian System, which incorporates such grouping and 

symbolizing and is aligned with the groups-of-ones conception from Thanheiser’s (2009) 

framework. The PTs can generalize the idea of grouping across their generated 

systems with the Egyptian system (which also provides the context for the next goal in 

the LIT.)  



Because the tally system is the first system on which the PTs work, no explicit 

comparison or contrast is made between it and other number systems. However, 

students conclude that the tally system lacks the feature of grouping (Feature 1), 

forming the basis for introducing the next system, the Egyptian system. 

5.3 Goal 2 Becoming Aware of a Place-Value Structure 

At this point in the LIT, students have become aware of the feature of grouping 

through engaging with a system without grouping, generating a grouping system, and 

then generalizing grouping to new systems such as the Egyptian system. The next 

dimension of variation in number systems is place-value structure. Just as a non-

grouped system allows for developing a need for and identifying a grouping structure, a 

non-place-value system can provide a contrast to and develop a need for a place-value 

system.  

Place-value structure has a number of sub-features: order dependency, minimal 

grouping, and the role of zero. PTs can become aware of these features via contrasting 

a non-place-value system with base ten. When PTs are prompted to discuss numbers, 

they can develop an intellectual need for communication (i.e., to remove ambiguity 

about the numbers). When students are prompted to compute, they can develop an 

intellectual need for efficiency (when computations without place-value structure 

become difficult.) Students can then attend to these features in tandem as components 

of place value (fusion), ultimately contrasting base ten (a system with all the place-value 

features) to the Egyptian system (a system without some features.) We next outline a 

task that can provide students with opportunities to learn place value: The Egyptian 

Activity.   



5.3.1 The Egyptian Activity. The goals for the Egyptian activity are to highlight the 

advantages of a grouping system (Feature 1, Table 2) as compared to a tally system 

and to create a need for a place-value system (Feature 2, Table 2). The PTs are 

introduced to the Egyptian numeration system (see Figure 6) as an historical grouping 

system. They are then asked to convert between the base-ten and the Egyptian 

systems (see Figures 7a and 7b).  

 

 

Figure 6. Egyptian numbers retrieved from https://www.britannica.com/topic/numeral  

 

https://www.britannica.com/topic/numeral


 

Figure 7a. Egyptian Worksheet 1 

 

Figure 7b. Egyptian Worksheet 2 



 

The Egyptians used various symbols for groups of powers of ten (ones, tens, 

hundreds, etc.). The order of these symbols is insignificant; an arch represents 10 no 

matter where it is written in a number. Although most Egyptian numeration is written 

largest to smallest for ease of reading, it is not an essential feature of the Egyptian 

system. We presented the PTs with Egyptian numerals in mixed order (not ordered from 

largest to smallest). Through working with these unordered numbers, students become 

aware that order is not standardized in the Egyptian grouping system (Feature 2a, Table 

2).  

Students were presented with the first few symbols of the Egyptian system and 

were asked to produce the next symbol and identify what quantity it would represent 

(Worksheet 1). This question was designed to encourage grouping repeatedly by 10 

(Feature 1, Table 2) and to incite discussion about the need for a new symbol for each 

subsequent group (Feature 2c, Table 2). Grouping repeatedly by 10 is not easily visible 

in the base-ten system because the words ones, tens, hundreds do not explicate the 

relationship among adjacent place values. The Egyptian system can be leveraged to 

highlight this repeated grouping by 10.  

Asking PTs to represent 4508 with the Egyptian symbols (Worksheet 1) created 

a situation for students to explicitly contrast the base-ten representation with the 

Egyptian. Students then discussed whether one needs to represent the zero tens 

(Feature 2c, Table 2), developing awareness of the role of a zero in a place-value 

system. They came to recognize that zero serves a communication role in number 

systems, tapping into the intellectual need for communication. 



Finally, we presented the PTs with numbers written in minimal grouping and non-

minimal grouping (Feature 2d, Table 2) in the Egyptian system so that students could 

contrast numbers in the Egyptian system to become aware of this permissible variation. 

PTs also contrasted with base ten wherein this variation is not permissible. Seeing 

numbers with mixed order and non-minimal grouping taps further into students’ 

intellectual need for communication. The multiple representations of the same numeral 

cause uncertainty about what numbers are used and make communication ambiguous. 

After familiarizing themselves with the Egyptian system and discussing the features 

listed above, PTs were asked to perform multiplication in this system (see Figure 8). 

 

Figure 8. Egyptian multiplication task. Task adapted from 
http://discoveringegypt.com/egyptian-hieroglyphic-writing/egyptian-mathematics-

numbers-hieroglyphs/ancient-egyptian-mathematics-problems-for-12-16-year-olds/ 

 

http://discoveringegypt.com/egyptian-hieroglyphic-writing/egyptian-mathematics-numbers-hieroglyphs/ancient-egyptian-mathematics-problems-for-12-16-year-olds/
http://discoveringegypt.com/egyptian-hieroglyphic-writing/egyptian-mathematics-numbers-hieroglyphs/ancient-egyptian-mathematics-problems-for-12-16-year-olds/


Although one can multiply in the Egyptian system (with repeated addition and 

repeated regrouping or doubling and halving), clearly the operations are quite 

cumbersome in this system (see Figure 9 for an example). PTs commented, for 

example, “This would result in a profane amount of symbols,” and “It would be difficult,” 

as well as “It would be really cumbersome,” when asked to multiply a number by 30. 

The intellectual need for efficiency becomes a driving force to motivate the need for a 

different kind of number system in which calculations can be made efficiently. 



 

Figure 9. One PT's response to the Egyptian multiplication task. Task adapted from 

http://discoveringegypt.com/egyptian-hieroglyphic-writing/egyptian-mathematics-

numbers-hieroglyphs/ancient-egyptian-mathematics-problems-for-12-16-year-olds/  

 

http://discoveringegypt.com/egyptian-hieroglyphic-writing/egyptian-mathematics-numbers-hieroglyphs/ancient-egyptian-mathematics-problems-for-12-16-year-olds/
http://discoveringegypt.com/egyptian-hieroglyphic-writing/egyptian-mathematics-numbers-hieroglyphs/ancient-egyptian-mathematics-problems-for-12-16-year-olds/


5.3.2 Instructional Rationale. Our goal for working with the Egyptian system after 

the tally system was to highlight the power of grouping (Feature 1, Table 2) for 

representing large numbers succinctly. In the Egyptian system, one groups by 10, which 

is highlighted (and thus made visible) and then held constant with the base-ten system 

(Feature 3, Table 2). Limitations of the Egyptian system discussed include (a) many 

symbols may be needed to represent some numbers (Feature 2c, Table 2); (b) the 

same number can be represented in various ways (not ordered, not in minimal 

grouping) (Features 2b and 2d, Table 2); (c) zero is not needed (Feature 2e, Table 2); 

(d) calculations are cumbersome. These limitations show the need for a different 

system.  

Our final goal in having PTs become aware of place value is fusion, which occurs 

when PTs can consider place value as a single entity. To engage students in this 

treatment, PTs can be placed in a situation in which they contrast between a non-place-

value system and a place-value system and generalize across different place-value 

systems. We introduce the Mayan Activity to provide a contrasting system to the 

Egyptian, then to bring attention to the next essential feature: multiplicative base-

structure. 

5.4 Goal 3. Becoming Aware of a Base-Ten Multiplicative Structure 

 Awareness of a base-ten multiplicative structure is built upon understanding 

place value, then leveraging this understanding to make sense of a particular structure: 

multiplicative base structure. PTs' attention can be drawn to base structure by exposing 

the PTs to a system with an unfamiliar base so that they contrast the base-ten system 

with that alternative system. We also see this component of the LIT as motivating sense 



making by developing an intellectual need for causality of the base-ten system by 

engaging PTs in efforts to make sense of a parallel system. We outline one such task, 

the Mayan Activity, which serves to bridge place-value fusion and awareness of base-

ten multiplicative structure.   

5.4.1 The Mayan Activity. The goal of this activity is to highlight place value 

(Feature 2, Table 2) and the 10 to 1 ratio between the values of adjacent digits in base 

ten (Feature 3, Table1). The PTs are introduced to the Mayan system (base twenty: 20 

to 1 ratio between the values of adjacent digits) as one of the historical number systems 

that incorporated both grouping and place value (requiring a fused idea of place value.) 

The PTs are provided with the first 30 numbers (see Figure 10), and they familiarize 

themselves with the Mayan number system by converting between base-ten numbers 

and Mayan numbers within the first two place values (activity modified from Overbay & 

Brod, 2007). In this situation, PTs can contrast the grouping structures of base ten and 

Mayan (base twenty) numbers. The PTs see that a unit with a zero represents 20 in the 

Mayan system. After the PTs have converted the first 30 numbers, they are asked what 

a unit with 2 zeros (400) and a unit with 6 zeros (64 x 106) represent (see Figure 11). 

Typically PTs struggle to identify these values (Thanheiser, 2014) because they are 

unaware of the function of the base (either they do not attend to it or they 

overgeneralize base ten). In Thanheiser’s study, the most common interpretation of a 

unit with 2 zeros was 200 (because a unit with 1 zero represents 20 and a zero was 

incorrectly appended to that 20), and the most common interpretation of a unit with 6 

zeroes was 20,000,000 (same line of reasoning). Other responses for a unit with 2 

zeros typically include 400 (two arguments given below), 100 (a unit appended with 2 



zeros was incorrectly interpreted as 100), 30 (each place value was incorrectly 

interpreted as 10 and 3 tens were added, one for each of the three symbols), and 40 

(adding 20 + 20). Discussing these varied solutions tapped into PTs' intellectual needs 

for certainty: They wanted to know the correct answer. This experience led the PTs to 

compare arguments, which ultimately focused their attention on the base.  

PTs developed two types of correct arguments to make sense of this task, first 

completely filling every place and thus determining at what value one would “spill over” 

to the next place (20, 400, etc.). This argument aligns with a groups-of-ones conception. 

In their second argument, they used the multiplicative relationship between adjacent 

places as x20, so the first place represents ones, the second 20, the third 20 x 20 = 

400, and so on. This argument aligns with a reference-units conception. Identifying the 

value of a unit with a certain number of zeros highlights the ratio between adjacent 

values as 20 to 1 (contrasting with the base-ten 10 to 1 ratio) (Feature 3, Table 2).  

 

 

     
 

Figure 10. Chart of the first 29 Mayan 

numerals 

Figure 11. Task to identify a unit with 2 and 

6 zeros, respectively 

 

Next the PTs were asked to create addition and subtraction algorithms in the 

Mayan system, using the base to regroup between place values. This activity highlights 



the power of place value and algorithms. The 20-to-1 structure between place values 

provides the structure for regrouping 20 in a lower place to 1 in the next higher place. 

Because PTs could not intuitively read Mayan numbers, this system demonstrates well 

how one can work with an algorithm on numbers one does not quite understand or 

know and enables PTs to relate to their abilities to use but not explain base-ten 

algorithms at the beginning of the term. Working in the Mayan system illustrates clearly 

that one can apply algorithms to numbers not (yet) understood, promoting a need for 

causality.  PTs can combine within each place value when adding and then regroup 

(see Figure 12a), iteratively regroup (see Figure 12b), or simulate the U.S. standard 

algorithms (see Figure 11c). In any case PTs need not be explicitly aware of the values 

with which they are working.  

 

Figure 12. Three ways to add numbers in the Mayan number system and the base-

ten system. Note that the numbers added in the two systems are different 

 



5.4.2 Instructional Rationale. The goal for PTs' working with the Mayan system is 

to highlight the power of place-value systems (Feature 2, Table 2) as compared to non-

place-value systems (such as the Egyptian system) in representing large numbers with 

a limited number of symbols (Feature 2c, Table 2) and in computing within the system. 

In addition, work with the Mayan system highlights the mostly hidden feature of the 

base-ten system, namely that groupings are based on groups of 10 (Feature 3, Table 

2). The Mayan system is a base system like base ten, highlighting the multiplicative 

structure, but it has one significant difference: grouping by 20, which serves to highlight 

grouping by 10 in base ten. This task addresses the overgeneralization of the standard 

algorithms to contexts other than base ten by explicating the meaning of the regrouped 

digit in relation to the base. 

5.5 Goal 4. Fusion 

 The last goal for the trajectory is for PTs to fuse the various features of which 

they have become aware by moving back to base ten. We explored whether this fusion 

occurred by returning to tasks from the conception survey in which students use base-

ten algorithms and explain the meanings underlying the steps.  

 

6. Discussing of Variation in the LIT and Task Sequence 

After PTs worked with more than one system, they compared and contrasted 

across systems. Comparing and contrasting the differing systems enables PTs to 

identify similarities and differences (dimensions of variation) among the number 

systems, to explicate aspects of each, especially base ten (identify pieces of the jigsaw 



puzzle), and thus to build better understanding of base ten (put the puzzle pieces 

together).  

The power of this task sequence derives from two combined features of the 

tasks: (a) aspects of the base-ten system that are not easily observable without moving 

beyond the base-ten system are made explicitly visible, and (b) the need for more 

accurate/efficient/better numerations systems are developed to motivation integration of 

the new features into understanding of the base-ten system. Using a tally system 

illuminates grouping (Feature 1, Table 2) and highlights the need because no grouping 

is available within that system. Using the Egyptian system (a grouping system) 

highlights several aspects of the place-value system (Features 2a – 2e) and creates a 

need for a more concise numeration system to limit the number of symbols needed and 

to allow for efficient computations. Using the Mayan system (a place-value system) 

highlights grouping by 10 versus other groupings because the Mayans grouped by 20 

(Feature 3, Table 2). The features highlighted as different from base ten in each system 

in each task (to raise awareness of the features' importance in base ten) are illustrated 

in Table 4. 

 

Table 4. 

 Features Highlighted in Each Activity and in their comparisons. 

Features Highlighted in each of the 

activities and in their comparisons 
Tally Egyptian Mayan 

1 Grouping x   

2 Place value  x x 

2a Value dependent on symbol 

placement 

  x 



2b Order  x  

2c Limited number of symbols  x  

2d Minimal grouping required  x  

2e Need for zero  x  

3. Base ten   x 

 

The variations emphasized between the tally system and place-value systems 

are that the tally system has none of the features; thus, recording large numbers is 

cumbersome prompting an intellectual need for certainty, communication, computation, 

causality, and efficiency. In completing the Tally Activity, PTs experienced difficulty in 

keeping track of many tallies and began grouping them. 

The variations emphasized between the Egyptian system and the base-ten 

place-value system are that in the Egyptian system symbol location is irrelevant 

(Feature 2a, Table 2), symbol order is irrelevant (feature 2b, Table 2), the system has 

infinitely many symbols (Feature 2c, Table 2), grouping is not required to be minimal 

(Feature 2d, Table 2), and the system has no need for zero (Feature 2e, Table 2). The 

fact that operations are quite cumbersome in the Egyptian system relates to PTs' 

intellectual needs for certainty, communication, and efficiency and thus served as a 

motivator for place-value systems. In the Egyptian Activity, PTs noticed that the place of 

the symbols does not matter (Feature 2a, Table 2); however, for ease of reading and 

writing numbers, the PTs (like the Egyptians) ordered the symbols from largest to 

smallest, leading them to notice that the base-ten system has the same underlying 

grouping structure (ones, tens, hundreds, etc.) as the Egyptian system (Feature 3, 

Table 2). When asked to perform operations (such as multiplication) in the Egyptian 



system, PTs realized how awkward such operations are in non-minimal grouping 

systems. Thus, this activity highlighted the advantages of grouping systems (i.e., 

recording large numbers, values of symbols are fixed) and their limitations 

(cumbersome for calculations).  

The variation emphasized between the Mayan system and the base-ten place 

value system is the explication of the underlying base (20 vs, 10) (Feature 3, Table 2) 

and the relationship between adjacent unit types as x20 (in the Mayan system) and x10 

(in the base-ten place-value system). The power of this task derives from the fact that 

conceptions that are not easily observable in the base-ten place-value system become 

visible and can be examined by the PTs (i.e., appending zeros in base ten vs. using 

zeros in conjunction with powers of 20 in the Mayan system). This activity can then 

prompt PTs to consider why procedures such as appending zeros can be used in place-

value systems and what they mean. Along the same lines, regrouping in adding and 

subtracting numbers can be explained, and the fact that one regroups between a group 

of larger size and groups of the next smaller size is explicated (it is not hidden behind a 

procedure). PTs often quite naturally invent sense-making algorithms in the context of 

the Mayan numbers and thus experience sense making connected to arithmetic 

operations. 

7. PTs’ Conceptions 

In this section, we provide evidence that PTs who engaged in a task sequence 

aligned with the LIT developed richer conceptions of base-ten numeration. Most (31 of 

36) PTs developed one of the correct conceptions of number (reference-units or groups-

of-ones) by the end of the course with 26 having the most significant sophisticated 



conception (see Table 5). To hold the reference-units conceptions, PTs must 

understand and be aware of all three aspects of base ten noted in Table 1, namely, 

grouping, place value, and base ten. For example, when adding multi-digit whole 

numbers, students with correct conceptions could explain a regrouped one (in the tens 

place) as both a group of one ten, and ten ones.  An exact McNemar’s test determined 

that there was a significant difference in the number students who moved to a 

reference-units conception by the end of the course (24 of 26 students who could move 

to a reference-units) compared the expected number of PTs moving between categories 

due to chance, p<001. In fact, this change was quite robust as no students went from a 

reference-unit conception to non-reference unit conceptions. Overwhelmingly, the PTs 

moved to a robust understanding of base ten. 

 

Table 5 

 PTs' Conceptions of Number After the Course Related to Their Conceptions Before the 

Course.  

 
POST 

  
Concatenated-

Digits Only 
Concatenated-

Digits Plus 
Groups of 

Ones 
Reference 

Units 
Total 

P
R

E
 

Concatenated-
digits only 

0 1 0 7 8 

Concatenated-
digits plus 

1 3 3 12 19 

Groups of ones 0 0 2 5 7 

Reference Units 0 0 0 2 2 

 
Total 1 4 5 26 36 

 



 

8. Discussion and Conclusion 

In this paper, we illustrated how variation theory (Marton et al., 2004) and 

intellectual need (Harel, 2013) could serve complementary roles in an LIT. Additionally, 

we provided an LIT that may support the specific needs of PTs coming to understand 

the base-ten system. We created a corresponding sequence of tasks to (a) create a 

need for more sophisticated numeration systems and (b) highlight the features of the 

base-ten number system via engagement with varying numeration systems. Each 

numeration system in the sequence differed from the prior task by one (or several) 

features of the base-ten system. Each numeration system was introduced as a solution 

to meet a need created by the previous task. As such, PTs understood not only the 

nature of the number systems but also the need for the development of new systems 

when the older ones were inadequate. The historic intellectual need was recreated for 

the PTs to motivate their own learning and assimilation of new knowledge about number 

systems. The combination of the two factors, intellectual need and variation theory, 

served a powerful role in task design focused on learning opportunity. We conjecture 

that these design principles could inform the development of other LITs linked to core 

content areas in mathematics.    

Throughout the LIT, we relied on the need for certainty, computation, 

communication, efficiency, and causality. For learning to occur, students must both 

attend to varying situations and be motivated to integrate new understandings with their 

previous knowledge. We paired our LIT with pre/post data from two classes of PTs that 

engaged with the outlined task sequence. The LIT was a major component of the 



course and as such likely contributed to the change in conceptions. Most students 

moved from being unable to explain the mathematics underlying U.S. standard 

algorithms to developing rich conceptions of base ten to accurately account for the roles 

of grouping (and regrouping), place value, and the base ten.  

When addressing the needs of PTs, educators must problematize the base-ten 

system so that PTs can engage in genuine learning opportunities. An LIT provides one 

mechanism for moving from theory and research to results that are useful for practice 

(Cai et al., 2017). In that sense, the LIT in this paper is both a research contribution, but 

also immediately usable by practitioners. Further, we also contribute a model for design-

based research to integrate learning opportunities (in terms of patterns of variation) with 

motivation (in terms of intellectual need).  
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