
Portland State University Portland State University

PDXScholar PDXScholar

Computer Science Faculty Publications and
Presentations Computer Science

2008

Reconstructing Images as Piecewise Smooth Reconstructing Images as Piecewise Smooth

Functions Functions

Ralf Juengling
Portland State University, ralf-juengling@gmail.com

Follow this and additional works at: https://pdxscholar.library.pdx.edu/compsci_fac

 Part of the Computer Sciences Commons

Let us know how access to this document benefits you.

Citation Details Citation Details
Juengling, Ralf, "Reconstructing Images as Piecewise Smooth Functions" (2008). Computer Science
Faculty Publications and Presentations. 224.
https://pdxscholar.library.pdx.edu/compsci_fac/224

This Technical Report is brought to you for free and open access. It has been accepted for inclusion in Computer
Science Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if
we can make this document more accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/compsci_fac
https://pdxscholar.library.pdx.edu/compsci_fac
https://pdxscholar.library.pdx.edu/compsci
https://pdxscholar.library.pdx.edu/compsci_fac?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F224&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F224&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/compsci_fac/224
https://pdxscholar.library.pdx.edu/compsci_fac/224?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F224&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:pdxscholar@pdx.edu

Reconstructing Images as Piecewise Smooth Func-

tions

by Ralf Juengling

Department of Computer Science, Portland State University
PO Box 751 Portland, OR 97207 USA

Email: juenglin@cs.pdx.edu

Abstract

Leclerc’s approach to image reconstruction consists of finding the shortest description of

the data (an image) as a model (reconstruction) plus noise [5]. The approach poses two

design problems: 1. Define an appropriate description language for image models and

noise, 2. Derive an objective function and conceive an optimization algorithm that finds

good local minima. Leclerc proposed to model images as piecewise low order polynomials

and to describe models in terms of region boundaries (discontinuity set) and polynomial

coefficients.

In this report I describe Leclerc’s methodology, and, adopting his image model and

description language, derive an objective function within this methodology. I discuss the

differences of my result with Leclerc’s objective function, sketch the optimization algo-

rithm and give expressions for the gradient of my objective function.

1 Introduction

1.1 The Reconstruction Problem

Like Leclerc [5] I want to find an explicit description of an image as a piecewise smooth function
plus noise. The image is given as a set of gray values {zi}, zi ∈Z, assigned to nodes in a regular
rectangular grid. Let the nodes be identified with labels from some label set I. We associate
coordinates xi = (xi, yi) and a square domain Di, centered on xi, with each node i ∈ I. The pair
(zi, Di) is commonly called pixel (short for picture element), in line with the custom of repro-
ducing an image as the piecewise constant function

z:D→Z , z(x)|Di
= zi, with D=

⋃

i∈I

Di.

However, our intuition is that there is a real image, which is the limit of z with the number of
nodes increasing, |I | → ∞, while the domain of z is held constant. Neglecting diffraction and
sensor noise of the imaging system [4], the limit would be a piecewise smooth function. The task
here is to define a method for finding a good estimate u of the real image (the problem is some-
times called image reconstruction, or restoration; see [3, 1] for other prominent approaches).
Image reconstruction has been used for denoising images or for finding contours in images as the
set of discontinuities in u.

1.2 Reconstruction by Optimization

Leclerc posed the reconstruction problem as an optimization problem [5]. As the space for u he
chose the space of piecewise low-order polynomial functions over the image domain. More pre-
cisely, for any such function u:D→R there exists a finite number of regions {Rj}j∈J

, with Ri ∩

Rj = ∅ when i� j, ∪j∈J Rj =D, and each Rj is a connected set of the form Rj =∪i∈Ij
Di, such

that u|Rj
is a polynomial of order at most two. (The fact that a region Rj is the union of pixel

domains is not a desirable property of u, but a technical constraint to limit the space of possible
solutions.)

1

We may describe u by specifying the regions {Rj} over which u is smooth plus a tuple of
coefficients per region. I will refer to this format as a “natural description” of u and will say the

natural description to refer to the shortest natural description. The natural description of a pos-
sible solution has a variable number of components. This makes it hard to define an efficient
optimization procedure and so we need an alternative description. Since u is piecewise polyno-
mial and the regions are unions of pixel domains, we may completely describe any possible func-
tion u by tuples of coefficients {ui}, one tuple for each pixel domain. That is, with ui = (ui,0,

ui,1,� , ui,5), u over the domain Di is

u =ui,0 + ui,1(x− xi) +ui,2(y − yi) +
ui,3

2
(x−xi)2 + ui,4(x− xi)(y − yi)+

ui,5

2
(y − yi)2. (1)

When ui,k, k = 1� 5 are all zero we say u is zero-order over Di. When ui,3, ui,4, and ui,5 are zero
and ui,1 or ui,2 non-zero we say u is first-order, and otherwise second-order over Di.

The description of u based on Eq. (1) is a vector u of length 6 × |I | holding all coefficients
for all pixels. It is, of course, possible to derive the natural description from u by identifying all
discontinuities in u and finding the partitioning {Rj} of shortest description length such that no
discontinuity is interior to any region Rj. In other words, natural descriptions and descriptions
in terms of coefficient vectors u span the same function space. We will use the coefficient vector

description to define an objective function on U = R6×|I|, but this objective function measures
properties of u which are more easily expressed in terms of the natural description.

2 Objective Function

It is clear that the reconstruction u should exhibit some similarity with z. This property will be
ensured by a “fidelity term” ∼

∑

i∈I (zi − u(xi))
2 in the objective function. However, U contains

many functions that are reasonably similar to z and we need to come up with more desirable
properties of the solution to make a selection. Leclerc’s idea is that the reconstruction should be
the simplest , in a sense, of the reasonably similar ones and that simplicity could be formalized
as length of the natural description of u (using minimum length of description in model selec-
tion and for defining prior probabilities is an established idea in statistics [6]). To balance all
desirable properties of u in a principled way, we define an objective function L that approxi-
mately measures the length of a description of the data (i.e., of {zi}i∈I) in terms of u. From a
high-level point of view, L has two components:

L = |description of u|+ |description of {zi − u(xi)}|. (2)

Since we do not require u(xi) = zi for all i ∈ I, the differences in gray value between z and u at
the nodes need to be accounted for by some noise model. Following Leclerc we assume zero-
mean Gaussian noise with unknown, piecewise constant variance. (If sensor noise were the only
source of noise, a spatially uniform noise model would be appropriate. However, another phe-
nomenon we want to account for is texture, which, in Horn’s words, is “detailed structure in an
image that is too fine to be resolved, yet coarse enough to produce a noticeable fluctuation in
the gray-levels of neighboring picture cells” [4], page 140.) We further assume that the variance
is constant over the regions of the natural description and hold all variance values in a vector σ,
one value σi for every pixel. Thus, the objective function is a function of u and σ, L(u, σ).

As zi − u(xi) is a known stochastic process we may use information-theoretic arguments to
compute the length of |description of {zi − u(xi)}| in an encoding that is optimal in the sense of
minimizing the expected value of |description of zi − u(xi)|. From this follows [5]

|description of {zi − u(xi)}|=
1

log 2

∑

i∈I

[

1

2

(

zi −ui,0

σi

)2

+ log σi

]

, (3)

giving justification to the particular form of the fidelity term.

2 Section 2

We want the other term, |description of u|, to be an approximation of the length of the nat-
ural description of u. If we knew the regions {Rj}j∈J of the natural description, this term could
be decomposed as

|description of u|=
∑

j∈J

|description of Rj |+
∣

∣description of u|Rj

∣

∣. (4)

A succinct way of describing a region Rj is by encoding its boundary with a chain-code [2]. This
works here because Rj is the union of pixel domains, thus, at any point there is always a small,
finite number of possible continuations of a contour. In a chain-code encoding of a contour we
specify the first and last element, and the direction of continuation for each element in between.
Thus we get

|description of Rj |= |description of ∂Rj |= 2 (ls − le) + le |∂Rj | , (5)

where ls is the description length for the first (last) element, le is the description length per ele-
ment, and ∂Rj is Rj’s boundary.

The length of the other term,
∣

∣description of u|Rj

∣

∣, depends on whether u|Rj
is zero-order,

first-order, or second-order. If u|Rj
is zero-order, we need to encode one coefficient and the vari-

ance value (see Eq. (1)). A first-order (second-order) u|Rj
requires two (three) more coefficients.

Thus, if lc is the number of bits required to encode a number and nj the number of extra coeffi-
cients required to describe u|Rj

,

∣

∣description of u|Rj

∣

∣= lc(2 +nj). (6)

Next I discuss how to approximately compute terms (5) and (6) from the coefficient vector u

and using only “local” computations (each computation depends on a few entries in u only, cor-
responding to pixels close to each other).

2.1 Discontinuities

Different regions are separated by discontinuities. It makes sense to distinguish different kinds of
discontinuities, for two adjacent regions may share lower-order coefficients but have different
high-order coefficients. To be precise about discontinuities we introduce notation for “the kth

derivative of u around x”. Taking the kth derivative of u around x means taking derivatives
w.r.t. x and y of orders corresponding to coefficient ui,k in Eq. (1). Derivatives 1–5 are:

D1(ui, x) =
∂u

∂x

∣

∣

∣

∣

Di

= ui,1 +ui,3(x− xi)+ ui,4(y − yi)

D2(ui, x) =
∂u

∂y

∣

∣

∣

∣

Di

= ui,2 +ui,4(x− xi)+ ui,5(y − yi)

D3(ui, x)=
∂2u

∂x2

∣

∣

∣

∣

Di

= ui,3

D4(ui, x) =
∂2u

∂x∂y

∣

∣

∣

∣

Di

= ui,4

D5(ui, x)=
∂2u

∂y2

∣

∣

∣

∣

Di

= ui,5

and, for completeness, D0(ui, x)= u(x)|Di
.

Second, we need to be precise about the neighborhood relationship of pixels. On this point I
deviate from Leclerc and use a topology in which every interior pixel has six neighbor pixels and
write Ni

6 for the neighbors of pixel i (see the Appendix for a short discussion of different conven-
tions used for pixel topologies; the advantage of this topology over the 8-connected neighbor-
hood used by Leclerc will become clear later).

Objective Function 3

We say there is a discontinuity between two neighboring pixels i and j ∈Ni
6 when

Dk(ui, xi,j)� Dk(uj , xi,j) (7)

for any k = 0� 5, where xi,j =
1

2
(xi + xj).1 A zero-order discontinuity occurs when inequality (7)

holds for k = 0 only. A first-order discontinuity occurs when Eq. (7) holds for at least one k, 0 <

k ≤ 2, but for no k > 2, a second-order discontinuity occurs when Eq. (7) holds for at least one
k, 2 < k ≤ 5. The following notational vehicle for expressing the order of a discontinuity will
come in handy below

oi,j = oi,j(u) =



















3, if j ∈Ni andDk(ui, xi,j)� Dk(uj , xi,j) for k =3, k = 4 or k = 5
2, if j ∈Ni andDk(ui, xi,j)� Dk(uj , xi,j) for k =1 or k = 2
1, if j ∈Ni and D0(ui, xi,j)� D0(uj , xi,j)
0, if j � Ni orDk(ui, xi,j)= Dk(uj , xi,j) for all k

2.2 Description Length of u

We now assemble an expression that plays the role of term (5) in (4). With the new definitions
from the preceding section we require that a contour is homogeneous in order (that is, there are
three types of contours). It is easy to simply count all discontinuities,

∑

j∈J

|∂Rj | =
le
2

∑

i∈I

∑

j∈Ni
6

max
k

(1− δ(Dk(ui, xi,j)−Dk(uj , xi,j))

=
le
2

∑

i∈I

∑

j∈Ni
6

(

1−
∏

k=0,� ,5

δ(∆i,j,k(u))

)

(8)

where δ(x) = 0 for x � 0, δ(0) = 1, ∆i,j,k(u) = Dk(ui, xi,j) − Dk(uj , xi,j) and the factor
1

2
accounts for counting all discontinuity elements twice on the right. Since a partial contour may
only continue in one of two directions (see Appendix), the description length per contour ele-
ment is 1 bit, le = 1.

To find ends of contours we need to look at triplets of discontinuity elements that correspond
to pixel cliques in the neighborhood graph (see Appendix). A pixel clique is a set {h, i, j} ⊂ I,

such that h, i ∈ Nj
6, i, j ∈ Nh

6, and h, j ∈ Ni
6. At each such triplet we may observe up to three

contour terminations. For instance, let {h, i, j} be a pixel clique; if (oi,j , oh,i, oj,h) = (0, 1, 0), we
count one contour termination; if (oi,j , oh,i, oj,h) = (0, 1, 1), we count zero terminations; if (oi,j ,

oh,i, oj,h) = (2, 0, 1) there are two contour terminations, and so on. There are 43 = 64 combina-
tions to consider and we denote t the function that maps any combination to the termination
count, t: T ×T ×T →T , whereT = {0, 1, 2, 3}.

With the definition of a “clique indicator” ch,i,j,

ch,i,j =

{

1, if {h, i, j}⊂I is a clique
0, otherwise

1. Note that there are only six possible values xj − xi, and Dk(ui, xi,j) may be written as a dot product of
the coefficients ui with a pre-computed vector di,k,n, k = 0� 5, n = 0� 5. For instance, with xj − xi = (− 1, 1) we
may write D2(ui, xi,j) as

D2(ui, xi,j) =ui,2 + ui,4

(

xj − xi

2

)

+ ui,5

(

yj − yi

2

)

=

(

0, 0, 1, 0,−
1
2
,
1
2

)

·ui =di,2,3 ·ui,

where n =3 in some arbitrary but fixed enumeration of the neighbors of i.

4 Section 2

we may finally write an expression for the other part of term (5) in (4),

2 (ls − le) |J | ≈
2 (ls − le)

3!

∑

h,i,j∈I

ch,i,j t(oh,i, oi,j , oh,j), (9)

which completes the first part of (4) (the factor 1/3! accounts for the number of possible permu-
tations of the three pixels in a clique).

To derive an approximation of (6) we make use of the fact that regions are unions of pixel
domains, Rj = ∪i∈Ij

Di. Any pixel i ∈ Ij may be used to compute the value lc(2 + nj) because

u|Di
is of the same order across Rj,

lc(2 +nj) = lc



2+ 2

(

1−
∏

k=1,� ,5

δ(ui,k)

)

+ 3

(

1−
∏

k=3,4,5

δ(ui,k)

)



. (10)

However, we do not know the regions nor their size. Using local computations we may only
determine whether pixel i is interior to a region or not (it is interior when oi,j = 0 for all j ∈Ni).
The idea now is to simply sum (10) over all pixels i ∈ I and to correct this sum for every pair of
adjacent pixels that shares coefficients.

∑

j∈J

∣

∣descr. u|Rj

∣

∣ ≈ lc
∑

i∈I



2+ 2

(

1−
∏

k=1,� ,5

δ(ui,k)

)

+ 3

(

1−
∏

k=3,4,5

δ(ui,k)

)



−

lc
6

∑

i∈I

∑

j∈Ni
6

(

2 δ(∆i,j,0)+ 2
∏

k=0,1,2

δ(∆i,j,k)+ 3
∏

k=0,� ,5

δ(∆i,j,k)

)

(11)

The second sum in (11) removes excess contributions in the first sum. For example, consider two
neighboring pixels i, j with u|Di

and u|Dj
second order and a second-order discontinuity between

i and j. In this case pixel i contributes 7 lc to the first sum and the pair (i, j) contributes
4

6
lc to

the second sum, which amounts to a sixth of the description length for the second-order coeffi-
cients that i and j share.

In general, an interior pixel i has six neighbors Ni
6. If u|Di

is C2-continuous with all neigh-
bors, then all contributions by i to the second sum in (11) will annihilate the contribution of i

to the first sum. The net contributions in (11) are therefore by pixels that are not interior to a
region. Thus, what we are actually computing in (11) is, approximately,

∑

j∈J

∣

∣description of u|Rj

∣

∣× |∂Rj |. (12)

While (12) is not exactly what we set out to compute, note that this expression does not run
counter to our overall objective as it combines two desirable properties of u that we want to
optimize (compare with (5)).

We need to come up with one more term that ensures the piecewise uniform noise property

of the solution. To be more precise, we require that σi = σj when j ∈ Ni
6 and oi,j = 0. This con-

straint may be enforced by adding the term

g

2

∑

i∈I

∑

j∈Ni
6

δ(∆i,j,0) (1− δ(σi − σj)), (13)

with g ≫ lc. Note that the interpretation of (13) is different from all other terms, it is not mea-
suring length of any description.

Objective Function 5

Combining all contributions to the objective function we finally arrive at

L(u, σ) =
∑

i∈I

{

1

log 2

[

1

2

(

zi − ui,0

σi

)2

+ log σi

]

+
g

2

∑

j∈Ni
6

δ(∆i,j,0)(1− δ(σi −σj))

+
le
2

∑

j∈Ni
6

(

1−
∏

k=0,� ,5

δ(∆i,j,k)

)

+
2(ls − le)

3!

∑

h,j∈Ni
6

ch,i,j t(oh,i, oi,j , oh,j)

+ lc



2 +2

(

1−
∏

k=1,� ,5

δ(ui,k)

)

+ 3

(

1−
∏

k=3,4,5

δ(ui,k)

)





−
lc
6

∑

j∈Ni
6

(

2 δ(∆i,j,0) +2
∏

k=0,1,2

δ(∆i,j,k)+ 3
∏

k=0,� ,5

δ(∆i,j,k)

)







(14)

3 Optimization

The objective function (14) is not only not convex over U × (R+)|I | but has many local minima
and is even discontinuous. For instance, if u|Di

is first-order with ui,1 the largest non-zero coeffi-
cient, then limui,1→0 L(u, σ) does not exist as L is discontinuous at ui = (ui,0, 0, 0, 0, 0, 0).
Clearly, optimization methods utilizing derivatives of L are not applicable without further pro-
visions. Leclerc’s solution is to use a continuation method [5].

3.1 Continuation Method

The solution is to embed L in a family of objective functions, L(u, σ , s), s ∈R+, such that L(u,

σ , 0) equals L(u, σ), L(u, σ , s), s > 0 is smooth, and there is an s0 where L(u, σ , s0) has a

unique, known minimum (u∗ 0, σ∗0). S is called the scale parameter. The idea is that L(u, σ , s),
s > 0 is also smooth with respect to s, which makes it possible to track a local minimum across
scales with the following algorithm: Starting with t =0, repeat the steps

1. Update s: st+1 = ρ st,

2. Use (u∗t−1, σ∗t−1) as starting point of a search for a minimum of L(u, σ , st)

until st is sufficiently close to zero (and thereby L(u, σ , st) sufficiently similar to L(u, σ)). The
parameter ρ ∈ (0, 1) determines the step size between different instances of L(u, σ , s). Leclerc
recommends ρ = 0.95.

3.2 Engineering the Embedding

We need to find an embedding L(u, σ , s) with the required properties. I use Leclerc’s embed-
ding recipe and replace all Kronecker deltas in the objective function by exponentials of the
form exp

(

− x2/(s σ)2
)

. This function assumes the properties of δ(x) for s→ 0. A parameter σ is

included to adjust for different scales of x at different places. For instance, if x is the difference
u(xi)− u(xj), j ∈Ni, then σ = σi,j =

1

2
(σi +σj) provides an appropriate scale.

Examining the objective function (14), however, we find that not all discontinuities may be
traced back to a Kronecker delta. The exception is the expression inherited from (9), which
counts contour terminations. To enable the continuation method I substitute a function t̄ for t,
t̄ :
[

0, 3]3 → [0, 3], which interpolates t and has easy to evaluate first derivatives (polynomial or
trigonometric interpolation). Second, I rewrite oi,j(u) in terms of ∆i,j,k as

oi,j(u)= 6− δ(∆i,j,0)− 2
∏

k=1,2

δ(∆i,j,k)− 3
∏

k=3,4,5

δ(∆i,j,k).

6 Section 3

Now the embedding is obtained by substituting the exponentials

ei,j,k
D = ei,j,k

D (u, s) = exp



 −

(

2∆i,j,k(u)

s
(

σi
∗t−1 + σi

∗t−1
)

)2


,

ei,k
u = ei,k

u (u, s) = exp

[

−

(

ui,k

s σi
∗t−1

)2
]

, and

ei,j
σ = ei,j

σ (σ , s) = exp



 −

(

2 (σi −σj)

s
(

σi
∗t−1 + σi

∗t−1
)

)2




for δ(∆i,j,k), δ(ui,k), and δ(σi − σj), respectively:

L(u, σ , s) =
∑

i∈I

{

1

log 2

[

1

2

(

zi − ui,0

σi

)2

+ log σi

]

+
g

2

∑

j∈Ni
6

ei,j,0
D × (1− ei,j

σ)

+
le
2

∑

j∈Ni
6

(

1−
∏

k=0,� ,5

ei,j,k
D

)

+
2(ls − le)

3!

∑

h,j∈Ni
6

ch,i,j t̄ (oh,i, oi,j , oh,j)

+ lc



2 + 2

(

1−
∏

k=1,� ,5

ei,k
u

)

+3

(

1−
∏

k=3,4,5

ei,k
u

)





−
lc
6

∑

j∈Ni
6

(

2 ei,j,0
D + 2

∏

k=0,1,2

ei,j,k
D + 3

∏

k=0,� ,5

ei,j,k
D

)







. (15)

Note that products of exponentials may be simplified. For example,

∏

k=1,� ,5

ei,k
u (u, σ , s)= exp

[

−
∑

k=1,� ,5

(

ui,k

s σi
∗t−1

)2
]

.

3.3 Minimization

According to Leclerc, simultaneous minimization of L(u, σ , st) with respect to (u, σ) by itera-
tive descent is not feasible. Instead he alternately minimizes with respect to u and σ, respec-
tively, holding σ fixed to the most recent values while minimizing u, and vice versa.

The gradient of L with respect to u and σ is given in the Appendix. Setting the gradient
∂L/∂u to zero results in a non-linear system of the form

A(u, σ , s)u + b(u, σ , s) =0.

The dependency on u aside, A has the properties of a stiffness matrix in FEM calculations
(symmetric and sparse). Leclerc suggests to find a minimizer by linearizing the equations (i.e.,
fixing u in A(u, σ , s) and b(u, σ , s)) and to solve for u by Gauss-Seidel iteration.

The gradient of L with respect to σ is not linearizable, so the minimization procedure for u

is not applicable for σ. Leclerc suggest the following modification to L to enable the lineariza-
tion ([5], pages 90-91):

1. Replace the term ∼
(

zi −ui,0

σi

)2
in L by ∼

(

zi −ui,0

σi
∗t−1

)2

2. Replace the term ∼ log σi in L by a term ∼
(

σi − σi
t−1

σi
∗t−1

)2
, where σî

t−1 is an estimate of

σi computed as σî
t−1 =

∑

j∈Ni
ei,j,0

D (u∗t−1, st)
(

zj − D0(u∗t−1, xj)
)2

∑

j∈Ni
ei,j,0

D (u∗t−1, st)

√

Optimization 7

3.4 Leclerc’s Objective Function

Leclerc derives the objective function (16) below ([5], page 91). The first two terms in the sum
are the same as in (14) and are included for the same reasons (save for the term

∑

j∈Si
Ki,j uj,0

in (16), which models the effect of a point-spread-function and which I left out).

L(u, σ) =
∑

i∈I







1

log 2





1

2

(

zi −
∑

j∈Si
Ki,j uj,0

σi

)2

+ log σi



+
g

2

∑

j∈Ni
8

δ(∆i,j,0)(1− δ(σi − σj))

+
b

2

∑

j∈Ni
8



1− δ(∆i,j,0) +2

(

1−
∏

k=0,1,2

δ(∆i,j,k)

)

+ 3

(

1−
∏

k=0,� ,5

δ(∆i,j,k)

)





+ d



2

(

1−
∏

k=1,� ,5

δ(ui,k)

)

+ 3

(

1−
∏

k=3,4,5

δ(ui,k)

)











(16)

The purpose of the term ∼ b is to approximate (5) (|description of Rj |). Note that this term
is not really proportional to the number of discontinuities in u, but assigns a higher cost to
higher order discontinuities. Further, Leclerc must assume a mean region boundary length to
include the encoding cost for contour terminations. In contrast, we count contour terminations
explicitly in (14). Similarly, the term ∼ d is to approximate (6) (

∣

∣description of u|Rj

∣

∣). Again,

one must assume an average region size to justify this term (d∼ lc/(average region size)). In con-

trast, (14) includes a contribution approximating
∣

∣description of u|Rj

∣

∣ × |∂Rj | and is not tuned
to a particular region size.

Another major difference is the use of the Ni
6 neighborhood in (14) versus the use of the Ni

8

neighborhood (16). With Ni
8 pixel cliques are of size 4, and a function corresponding to t above

would be defined on T 4. Another advantage of Ni
6 is that a counterpart of the Jordan curve the-

orem holds in a topology generated with this neighborhood, and paradoxical answers to ques-
tions of connectedness do not occur [4].

While our objective function (14) is truer to the intended objective function (2), it also is
more complex than (16). Thus, the design and implementation of a reconstruction procedure
based on (14) will be more time consuming and its minimization computationally more expen-
sive. It remains to be seen whether this increase in theoretical accuracy translates into more
accurate image reconstructions.

4 Appendix

4.1 Pixel Neighborhoods

Figure 1. Pixel topology with 4- and 8-connected neighborhood, respectively.

8 Section 4

Figure 1 shows the classical pixel topologies with 4- and 8-connected neighborhoods.
Defining a topology like in Figure 2 (left) on a pixel-grid has some advantages over the more
widely used 4- or 8-connected neighborhood [4]. Figure 2 (right) shows the possible elements of
discontinuity that result with this topology and the places where we look for ends of contour
chains, namely, where three discontinuity elements meet (shown as dots on the right). Note that
the dots on the right correspond to cliques in the graph on the left.

Figure 2. Left: Pixel topology (left) and corresponding discontinuity elements (right).

I am making use of different kinds of neighborhoods. To distinguish I write Ni
4 for all neigh-

bors of pixel i in the 4-connected neighborhood, Ni
8 for all neighbors of i in the 8-connected

neighborhood, and Ni
6 for all neighbors of i with the topology illustrated in Figure 2 (left). Note

that Ni
4 ⊂ Ni

6 ⊂ Ni
8. In statements or definitions that make sense for any neighborhood, I some-

times write Ni.

4.2 Derivatives

∂ei,k
u

∂ui,l
= −

2

(s σi)2
ui,l δi,l ei,k

u

∂ei,j
σ

∂σi
= − 2

σi − σj

s2
(

σi
∗t−1 + σj

∗t−1)2
ei,j

σ

ei,j,0
D ei,j,1

D ei,j,2
D ei,j,3

D ei,j,4
D ei,j,5

D

-1

ei,j,k
D

∂

∂ui,0
2

∆i,j,0

(s σi,j)2
0 0 0 0 0

-1

ei,j,k
D

∂

∂ui,1
2

∆i,j,0

(s σi,j)2
(xj − xi) 2

∆i,j,1

(s σi,j)2
0 0 0 0

-1

ei,j,k
D

∂

∂ui,2
2

∆i,j,0

(s σi,j)2
(yj − yi) 0 2

∆i,j,2

(s σi,j)2
0 0 0

-1

ei,j,k
D

∂

∂ui,3

∆i,j,0

(s σi,j)2
(xj − xi)

2 2
∆i,j,1

(s σi,j)2
(xj − xi) 0 2

∆i,j,3

(s σi,j)2
0 0

-1

ei,j,k
D

∂

∂ui,4
2

∆i,j,0

(s σi,j)2
(xj − xi) (yj − yi) 2

∆i,j,1

(s σi,j)2
(yj − yi) 2

∆i,j,2

(s σi,j)2
(xj − xi) 0 2

∆i,j,4

(s σi,j)2
0

-1

ei,j,k
D

∂

∂ui,5

∆i,j,0

(s σi,j)2
(yj − yi)2 0 2

∆i,j,2

(s σi,j)2
(yj − yi) 0 0 2

∆i,j,5

(s σi,j)2

Table 1. Derivatives of ei,j,k
D with respect to ui,l.

For readability I write ǫi,j,k,l
D for

∂ei,j,k
D

∂ui,l
, ǫ̃i,j,k,l

D for
∂ei,j,k

D

∂uj,l
and ǫi,k,l

u for
∂ei,k

u

∂ui,l
. Note that

ǫi,j,k,l
D and ǫi,k,l

u are of the form f(u)ui,l.

∂oi,j

∂ ui,l
= − ǫi,j,0,l

D − 2
[

ǫi,j,1,l
D × ei,j,2

D + ei,j,1
D × ǫi,j,2,l

D
]

− 3

(

∏

l=3,4,5

ei,j,l
D

)

∑

k=3,4,5

ǫi,j,2,l
D

ei,j,k
D

∂oi,j

∂ uj,l
= − ǫ̃i,j,0,l

D − 2
[

ǫ̃i,j,1,l
D × ei,j,2

D + ei,j,1
D × ǫ̃i,j,2,l

D
]

− 3

(

∏

l=3,4,5

ei,j,l
D

)

∑

k=3,4,5

ǫ̃i,j,2,l
D

ei,j,k
D

Appendix 9

∂L

∂ui,0
= −

1

log 2

zi −ui,0

σi
2 + g

∑

j∈Ni
6

ǫi,j,0,0
D × (1− ei,j

σ)

− le
∑

j∈Ni
6

(

∏

k=0,� ,5

ei,j,k
D

)

ǫi,j,0,0
D

ei,j,0
D

− 2 (ls − le)
∑

h,j∈Ni
6

ch,i,j

(

∂t̄ (oh,i, oi,j , oh,j)

∂oh,i

∂oh,i

∂ui,0
+

∂t̄ (oh,i, oi,j , oh,j)

∂oi,j

∂oi,j

∂ui,0

)

+
1

3
lc
∑

j∈Ni
6

ǫi,j,0,0
D

ei,j,0
D

(

2 ei,j,0
D + 2

∏

k=0,1,2

ei,j,k
D + 3

∏

k=0,� ,5

ei,j,k
D

)

∂L

∂ui,l

∣

∣

∣

∣

l=1,2

= g
∑

j∈Ni
6

ǫi,j,0,l
D × (1− ei,j

σ)

− le
∑

j∈Ni
6

(

∏

k=0,� ,5

ei,j,k
D

)

∑

k=0,1,2

ǫi,j,k,l
D

ei,j,k
D

− 2 (ls − le)
∑

h,j∈Ni
6

ch,i,j

(

∂t̄

∂oh,i

∂oh,i

∂ui,l
+

∂t̄

∂oi,j

∂oi,j

∂ui,l

)

− 2 lc
ǫi,l,l
u

ei,l
u

∏

k=1,� ,5

ei,k
u

+
1

3
lc
∑

j∈Ni
6

ǫi,j,0,l
D

ei,j,0
D

(

2 ei,j,0
D + 2

∏

k=0,1,2

ei,j,k
D + 3

∏

k=0,� ,5

ei,j,k
D

)

+
1

3
lc
∑

j∈Ni
6

ǫi,j,l,l
D

ei,j,l
D

(

2
∏

k=0,1,2

ei,j,k
D +3

∏

k=0,� ,5

ei,j,k
D

)

∂L

∂ui,l

∣

∣

∣

∣

l=3,4,5

= g
∑

j∈Ni
6

ǫi,j,0,l
D × (1− ei,j

σ)

− le
∑

j∈Ni
6

{(

∏

k=0,� ,5

ei,j,k
D

)

∑

k=0,1,2

ǫi,j,k,l
D

ei,j,k
D

+

(

∏

k� l

ei,j,k
D

)

ǫi,j,l,l
D







− 2 (ls − le)
∑

h,j∈Ni
6

ch,i,j

(

∂t̄

∂oh,i

∂oh,i

∂ui,l
+

∂t̄

∂oi,j

∂oi,j

∂ui,l

)

− 2 lc
ǫi,l,l
u

ei,l
u

∏

k=1,� ,5

ei,k
u − 3 lc

ǫi,l,l
u

ei,l
u

∏

k=3,4,5

ei,k
u

+
1

3
lc
∑

j∈Ni
6

ǫi,j,0,l
D

ei,j,0
D

(

2 ei,j,0
D + 2

∏

k=0,1,2

ei,j,k
D + 3

∏

k=0,� ,5

ei,j,k
D

)

+
1

3
lc
∑

j∈Ni
6

(

ǫi,j,1,l
D

ei,j,1
D

+
ǫi,j,2,l
D

ei,j,2
D

+
ǫi,j,l,l
D

ei,j,l
D

)

(

2
∏

k=0,1,2

ei,j,k
D + 3

∏

k=0,� ,5

ei,j,k
D

)

∂L

∂σi

=
− 1

log 2

(zi − ui,0)2

σi
3

+
1

σi

− g
∑

j∈Ni
6

∂ei,j
σ

∂σi

× ei,j,0
D

Bibliography

[1] A. Blake and A. Zisserman. Visual Reconstruction. MIT Press, Cambridge, MA, 1987.

[2] H. Freeman. Computer processing of line-drawing images. Computing Surveys, 6:57–97, March 1974.

[3] S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and the bayesian restoration of

images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(6):721–741, November 1984.

[4] B. K. P. Horn. Robot Vision. MIT Press, Cambridge, MA, 1986.

10 Section

[5] Y. G. Leclerc. Constructing simple stable descriptions for image partitioning. International Journal of

Computer Vision, 3:73–102, May 1989.

[6] J. Rissanen. Minimum description length principle. In S. Kotz and N. L. Johnson, editors, Encyclopedia

of Statistical Sciences, 5, pages 523–527. Wiley, New York, 1985.

Bibliography 11

	Reconstructing Images as Piecewise Smooth Functions
	Let us know how access to this document benefits you.
	Citation Details

	Untitled

