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ABSTRACT  
 

The crystallographic phase and morphology of many materials change with the crystal size so that new needs arise to 
determine the crystallography of nanocrystals. Direct space high-resolution phase-contrast transmission electron 
microscopy (HRTEM) and atomic resolution scanning TEM (STEM) when combined with tools for image-based 
nanocrystallography in two (2D) and three (3D) dimensions possess the capacity to meet these needs. After a concise 
discussion of lattice-fringe visibility spheres and maps, this paper discusses lattice-fringe fingerprinting in 2D and tilt 
protocol applications. On-line database developments at Portland State University (PSU) that support image-based 
nanocrystallography are also mentioned. 
 
Keywords: crystallography, nanocrystals, HRTEM and STEM images, lattice fringes, crystallographic databases 
 
 

1. INTRODUCTION 
 
Recent nanotech developments create new needs for the characterization of nanocrystals. Conventional (parallel 
illumination) transmission electron microscopy (TEM) and scanning probe TEM (STEM) traditionally provide 
structural, chemical, and morphological information of crystalline materials. Medium acceleration voltage (200 - 400 
kV) high-resolution TEMs (HRTEMs [1] and STEMs [2] without aberration correctors) provide 2D projections of the 
3D electrostatic potential energy distribution within crystals with a directly interpretable spatial resolution in the range 
of approximately 0.2 - 0.136 nm*.  
Due to the tiny size of nanocrystals, some well established electron crystallography characterization methods that are 
based on dynamic electron scattering effects such as convergent beam electron diffraction (CBED) cannot satisfy the 
above mentioned needs. This is because (medium acceleration voltage) CBED disks are largely devoid of their fine 
structure [3] when the nanocrystal diameter is on the order of 10 nm.  
In the first part of this paper, the concepts of lattice-fringe visibility spheres and maps are discussed. In the second part 
of this paper, we briefly review lattice-fringe fingerprinting in two dimensions (i.e. on the basis of 2D projections 
without tilting the nanocrystals). On-line database developments at Portland State University (PSU) are mentioned. 
There developments are for both the community of electron microscopists (that work with inorganic materials) and the 
community of materials science educators. Tilt protocol applications are reviewed as supporting methods for analyzing 
crystalline nanoparticles in 3D in the third part of this paper. Sub-stoichiometric Tungsten Carbide and Tungsten 
nanocrystals as well as Altaite/Clausthalite nano-islands are chosen as examples.  
For both conceptual and practical reasons, we restrict the application of our image-based nanocrystallography tools to 
the point resolution of the microscope. Note that the viability of image-based nanocrystallography in either 2D or 3D 
improves super-linearly with the microscope’s point resolution [4,5]. The word “fringe” is typically used in physics for 
any periodic light or dark band produced by diffraction or interference of electromagnetic or matter waves. We use the 
words “lattice fringes” here for periodic contrast variations in HRTEM or STEM images. 
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2. LATTICE-FRINGE VISIBILITY SPHERES AND MAPS 
 
A kinematical theory of lattice-fringe visibility in HRTEM has recently been developed by P. Fraundorf and co-workers 
[6-8]. The heuristic value of this theory is founded in the remarkable fact that one of its model representations, the 
lattice-fringe visibility map, is in a sense the direct space equivalent of the well known (computer generated) Kikuchi 
diffraction** map [ 9]. There are, however, important differences between these two types of maps.  
Lattice-fringe visibility maps only contain crystallographic planes that are occupied by atoms, while Kikuchi diffraction 
maps contain up to instrumental (i.e. small diffraction angles) and attenuation limits the multiples (n) of allowed net 
planes (according to n · λ = 2dhkl sin Θ = 2dHKL sin Θ, with n · h = H, etc.). The widths of the crystallographic bands in 
lattice-fringe visibility maps are directly proportional to the crystallographic plane spacings and indirectly proportional to 
the wavelength of the transmitted electrons (i.e. directly proportional to the acceleration voltage that acts on the electron 
beam). These direct space proportionalities are reciprocal to those that apply to (reciprocal space) Kikuchi maps.  
Following a kinematical approach, ideal (zero-dimensional) reciprocal lattice points (corresponding to an infinitely large 
crystal) are expanded in a first approximation into reciprocal lattice spheres, Fig. 1, as a result of small size effects of 
spherical nanoparticles. A perfectly symmetric intersection of two corresponding reciprocal lattice spheres for ( gr± ) with 
the Ewald sphere would result in lattice fringes becoming visible over two symmetrically equivalent cones of incident 
electron-beam directions, Fig. 2. 
From the intersection of the spherical range of reciprocal space around the tip of gr+  with the Ewald sphere, a cone of 
incident electron beam directions results that contains ok

r
 , i.e. the vector from A to O, as its axis, and also comprises all 

other incident directions that fulfill the Laue condition. The angular width of this cone that is associated with gr+  is the 
angle BOC, which is also one half of the nanocrystal tilt-range over which crystallographic planes ( gr±  bands, Friedel 
pairs) are (reliably) visible in a real HRTEM image (if their direct-space net-plane spacings are larger than the point 
resolution of the microscope).  
Note that the second reciprocal lattice sphere that is associated with gr−  would intersect the Ewald sphere when ok

r
 and 

gr−  make an angle ≤ 90° + BOC. This would lead to a second cone of incident electron-beam directions of exactly the 
same size as the first cone and in mirror symmetric orientation with respect to this cone.  
The angular width of the BOC cone of incident electron-beam directions is proportional to the width of the 
corresponding crystallographic band in a direct-space model sphere that represent a nanocrystal with a spherical shape, 
Fig. 3. We call these direct-space spheres with overlaid visible fringes simply lattice-fringe visibility spheres, Fig. 3. 
Since nanocrystals possess certain symmetries, their lattice-fringe visibility spheres have to show the same symmetries. 
Systematic absences due to non-primitive (higher symmetric) choices of the unit cell are also revealed in fringe-visibility 
spheres. In Fig. 3, i.e. the lattice-fringe visibility sphere of gold nanocrystals, space group Fm3m, there are for example 
no {100} fringes visible since the face centering of the conventional non-primitive unit cell results in lattice points (and 
atoms) residing at unit cell positions of ½ 0 0, 0 ½ 0, and 0 0 ½.  
Since HRTEM structure images are the result of interferences of several diffracted beams with the transmitted beam (but 
ideally not of interferences with each other, i.e. linear imaging), the other rules of systematic absences (which are due to 
the presence of screw-axis and glide-plane symmetry elements) apply also to lattice-fringe visibility spheres. In addition, 
only those crystallographic planes will be visible which actually contain atoms and whose spacing can be resolved with a 
given electron microscope at the Scherzer resolution.  
In short, the kinematic theory of lattice-fringe visibility, Figs. 1-3, describes how crystallographic bands (net planes with 
appropriate direct-space spacings) become visible on (3D) lattice-fringe visibility spheres. Lattice-fringe visibility maps, 
on the other hand, are simply the (2D) stereographic projections of the corresponding lattice-fringe visibility spheres or 
of sections of these spheres, Figs. 4a,b. Note that the stereographic projection [10] preserves the angles between 
crystallographic planes (i.e. interfringe angles) and, therefore, the angles between zone axes are also preserved.  
When lattice-fringe visibility maps are properly calibrated, experimental HRTEM images can be directly compared and 
indexed with these maps, just as Kikuchi diffraction patterns can be compared with simulated Kikuchi maps in order to 
index such patterns. The more details a lattice-fringe visibility map contains, e.g. Fig. 4b for a prospective point 
resolution of 0.06 nm, the more useful it will be in comparing to experimental HRTEM images.  
Due to their relationship with reciprocal lattice spheres, the widths of the crystallographic bands in lattice-fringe 
visibility spheres and maps are inversely proportional to the size of the nanocrystal. For HRTEM images from smaller 
nanocrystals, this means that the same crystallographic planes are visible over a wider range of incident electron beam 
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directions. Both lattice-fringe visibility maps and Kikuchi maps can be used analogously as “road maps” to guide the 
tilting of crystals in a TEM.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1: (left) Sketch to show a reciprocal lattice sphere due to small size effects of nanocrystals and how its existence leads to a cone 
of primary electron-beam directions that fulfills the Laue condition. Ideal reciprocal lattice points (left) that the kinematical diffraction 
theory predicts for infinitely large crystals are expanded into reciprocal lattice spheres for nanocrystals (right). An ideal reciprocal 
lattice point intersects the Ewald sphere in just one mathematical point which is defined by the Laue equation sgkk o

rrrr
+=−  with 

0
rr

=s  (left). A reciprocal lattice sphere, on the other hand, intersects the Ewald sphere over a range in reciprocal space since the Laue 
equation sgkk o

rrrr
+=−  can be fulfilled for a sphere of radius 0

rr ≠s  (right). (Modified after a sketch from Wentao Qin.) 
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Fig. 2:  Sketch to show how the two cones of incident electron-
beam directions (two shaded areas) that are mirror symmetric 
about the central crystallographic net plane (which contains all 
rotation-symmetric primary beam vectors ok

r
 that are 

perpendicular to the normal to this plane) result in two fringes 
(one for each sign of gr±  also called a Friedel pair) becoming 
visible on a model direct-space sphere (lattice-fringe visibility 
sphere). The radius of this sphere is conveniently chosen to be 
proportional to the radius of the nanoparticle which it represents 
in the context of lattice-fringe visibility spheres. The widths of 
fringes on a lattice-fringe visibility sphere are directly 
proportional to their corresponding reciprocal lattice spheres (Fig. 
1 right) and are chosen to be proportional to their corresponding 
direct-space net-plane spacings. (Modified after a sketch from 
Wentao Qin). 
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Fig. 3: Lattice-fringe visibility sphere for gold nanocrystals, point resolution 0.19 nm. Fringes that are visible at this resolution are 
indexed; the crossings of such fringes reveal visible zone axes. The lattice-fringe visibility bands are divided into 4 stripes, so that the 
symmetry of the zone axes becomes apparent. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4: (a) Lattice-fringe visibility map for gold, point resolution 0.12 nm (as obtainable with e.g. a Cs-corrected FEI Tecnai G2 F20 
ST microscope at 200 kV or a JEOL JEM-ARM1250 microscope at 1250 kV). Visible fringes and their zone axis intersections are 
labeled. The angles between zone axes are given; (b) Lattice-fringe visibility map for gold, point resolution 0.06 nm (as prospectively 
obtainable with 300 kV aberration corrected “TEAM project [11]” microscopes). The four widest lattice fringe visibility bands are 
divided into 4 stripes, so that the symmetry of the zone axes becomes apparent. 
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As mentioned in the introduction, the crystallographic information that can be harnessed by the tools described in this 
paper increases with improvements in directly interpretable image resolution. This effect is demonstrated by the lattice-
fringe visibility maps of gold, Figs. 4a and 4b. Note that the computer generated lattice-fringe visibility map of gold for a 
point resolution of 0.06 nm, Fig. 4b, looks rather similar to a computer generated Kikuchi map of gold. Since a similar 
amount of crystallographic information is encoded in high resolution lattice-fringe visibility maps and Kikuchi maps, 
much of the crystallography that has traditionally been derived from Kikuchi diffraction patterns can be obtained from 
images that are recorded in aberration-corrected TEMs and STEMs. 
 
 

3. LATTICE-FRINGE FINGERPRINTING IN TWO DIMENSIONS 
 
As a high-resolution conceptual extension to certain aspects of fluctuation or variable coherence microscopy [12,13], 
lattice-fringe fingerprinting was recently proposed by P. Fraundorf and co-workers. Lattice-fringe fingerprint plots [14-
16], represent in their most basic form a plot of visible interfringe angles of crossed fringes versus the respective 
reciprocal lattice spacings of these fringes. Figure 5 shows, for example, theoretical lattice-fringe fingerprint plots for 
ensembles of the two titania phases Rutile and Brookite in their most basic form (and in the kinematical diffraction limit) 
for a typical point resolution of a non-aberration corrected HRTEM. (As mentioned above, the criterion for a lattice 
fringe being visible here is that its spatial frequency is reliably transferred to the HRTEM or STEM image.)  
 

    
 
Fig. 5: Basic theoretical lattice-fringe fingerprint plots for two titania polymorphs (left) Rutile and (right) Brookite in the 
kinematical diffraction limit for a microscope point resolution of 0.19 nm. Although the stoichiometry of both titania phases is 
identical, the lattice-fringe fingerprint plots look rather different, i.e. characteristic of the individual polymorphs. (The crystallographic 
data for both polymorphs are given in the appendix in a format that is endorsed by the International Union of Crystallography.) 
 
The utility of such theoretical lattice-fringe fingerprint plots, e.g. Fig. 5, is founded in them being a rather specific 
characteristic for an ensemble of nanocrystals against which experimental data from HRTEM (or STEM [17]) images 
can be directly compared for the identification of unknown nanocrystal phases. When compared to powder diffraction 
pattern, which may alternatively be called “diffraction fingerprints”, lattice-fringe fingerprint plots contain (in the same 
spatial frequency range) much more crystal specific information for the unique identification of nanocrystals.  
In addition, the crystal phase characteristics of lattice-fringe fingerprint plots can be determined with a high accuracy and 
precision. The net-plane spacings that correspond to lattice fringes can, for example, be determined experimentally from 
digitally recorded images [18-20] with a statistical precision of 0.0001 to 0.005 nm in dependence of specimen 
characteristics such as the electron dose and the size of the measured area. For the angles of intersecting lattice-fringes, 
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the corresponding statistical precisions range from 0.1° to 0.5°. A slow-scan charge coupled device (CCD) camera with 
1024 times 1024 pixels at a magnification of 250,000 was employed in those studies [20] and CCD cameras with more 
pixels are supposed to lead to even better precisions.  
Under favourable experimental conditions (uniform areas of equal thickness and without visible defects) as well as an 
internal calibration such as a known crystalline material near the specimen area of interest, lattice-fringe spacings can be 
measured with an accuracy of better than a few ten-thousands of a nanometer and the angles of intersecting lattice-
fringes can be obtained with errors smaller than 0.1° [20]. Under less favourable experimental conditions (thickness 
variations and defects) and a typical external calibration of the microscope’s magnification, these systematic errors are 
likely to be one order of magnitude larger [18]. One can, nevertheless, be quite confident that local variations of the 
lattice parameters for regions as small as 1.5 to 0.8 nm in diameter can be measured [18,20]. (Additional measurement 
errors are likely to occur for theoretical reasons if two lattice fringes with almost the same orientation and very close 
spacing are present in an image [19]. This latter situation is, however, practically rather rare.)  
Summarized the above briefly, there is additional crystal phase specific information to be gained from the analyses of 
lattice fringes and that information can be extracted with high accuracies and precisions. This makes the identification of 
unknowns by lattice-fringe fingerprinting in a TEM competitive to the well established “powder X-ray diffraction 
fingerprinting” methods.  
W. J. de Ruijter et al. concluded already in 1995 that because “lattice-fringe vector measurements for identification of 
unknown materials … must still be compared manually with X-ray diffraction databases …” it would be beneficial “to 
establish an automated link with these databases and associated search/matching programs thus enabling immediate 
printout of a list of possible materials and phase names.” [20]. A multi-year project that addresses these concerns was 
started 10 years later by the Nanocrystallography Group of PSU [15,16,21-23].  
For a start, we provide a free on-line crystallography database that supports both the communities of electron 
microscopists (that work with inorganic materials) and of materials science educators. At our project’s website [23] and 
on the basis of our critically evaluated (syntax and semantics corrected) mainly inorganic subset of the Crystallography 
Open Database [24], we provide computer access to approximately 10,000 reports on full structure determinations, i.e. 
lattice parameters, space group, atomic coordinates, and bibliographic reference. The left side of Figure 6 shows, for 
example, a shot of the search screen for the titania phase Brookite. The results of this search are given in the right side of 
Fig. 6. (Clicking on the items CIF view or download will result in access to the full structure determination report in a 
standardized file format that is endorsed by the International Union of Crystallography. Abbreviated examples of two 
such files are given in the appendix.) 
 

    
 
Fig. 6: Search of our mainly inorganic subset [23] of the Crystallography Open Database [24]; (left) Screenshot of the search 
screen for the titania phase Brookite; (right) Screenshot of the search results (currently 13 entries including pseudo-brookite and rutile). 
 
To support lattice-fringe fingerprinting in 2D, we currently provide on our project web site [23] the options to 
calculate and display basic lattice-fringe fingerprint plots in both the kinematic and dynamic diffraction limits, e.g., 
compare Figs. 5 and 7. The dynamic diffraction limit is taking account of double and multiple diffraction within a 
single nanocrystal. Our project web site [23] can also be used to display and compare structures (CIFs), e.g. Fig. 8. 
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Fig. 7: Basic theoretical lattice-fringe fingerprint plots for the two titania polymorphs (left) Rutile and (right) Brookite in the 
dynamical diffraction limit for a microscope point resolution of 0.19 nm.  
 

 
 
Fig. 8: Screenshot from our project’s website [23] which compares the unit cells of Pseudo-brookite, Fe2O5Ti, (left) and Brookite, 
TiO2, (right). The 2D projections are orthographic, i.e. the observer’s eyes are assumed to be perpendicular to the computer screen. 
The crystal structure orientations can be changed interactively and independently of each other, providing “quasi-3D visualizations”.  
 
Because lattice-fringe fingerprinting in 2D with on-line database support is amendable to automation, we will start 
automation of the whole procedure in 2007. The Oregon Nanoscience and Microtechnologies Institute will support 
these developments since they have commercial potential. 
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4. TILT PROTOCOL APPLICATIONS 
 

Tilt protocol applications are discussed by P. Fraundorf and co-workers in refs. [6,7,25,26] and Moeck et al. [5,27,28]. 
The applications of such protocols are special cases of the more general transmission electron goniometry [5,28] since 
the latter delivers the transformation matrix between the crystallographic coordinate system of the crystal under 
investigation and the Cartesian coordinate system of the electron microscope. This matrix and its derivatives serve as the 
basis for many kinds of crystallographic analyses. Tilt protocol applications, on the other hand, do not require the 
determination of this matrix. Only the crystallographic tilt and its tilt axis are important for tilt protocol applications, but 
not the actual goniometer settings before and after the tilt. These sets of goniometer settings are, on the other hand, 
crucial experimental data for transmission electron goniometry. 
Figure 9 summarizes a range of tilt protocols for face-centered cubic and body-centered cubic nanocrystals that can be 
realized with non-aberration corrected HRTEMs and STEMs. Tilt protocols may be divided into three groups, (i) 
minimalistic protocols that deliver the minimal data set for deriving lattice parameters in 3D [26], (ii) two-zone axis 
protocols including tests for symmetry elements, and (iii) advanced tilt protocols consisting of more than one 
crystallographic tilt. When the point resolution is sufficiently high, a zone axis may be revealed by the crossing of more 
than two fringes, e.g. Figs. 4a,b. (Since Fig. 9 was designed to show tilt protocols that can be employed in non-aberration 
corrected HRTEM and STEM with a point resolution in the range of 0.2 to 0.15 nm for crystals with small lattice 
constants, no two zone-axis tilt protocols where the zone axis are revealed by more than two crossing fringes is shown in 
this figure.)  
 

 
 
Fig. 9: Chart of tilt protocols for face-centered cubic and body-centered cubic nanocrystals with small lattice constants (i.e. metals and 
other densely packed materials such as ceramics with one large and one small atom per lattice point) that can be applied in non-
aberration corrected HRTEMs and STEMs with point resolutions in the range 0.2 to 0.15 nm. 
 
Minimalistic tilt protocols encompass at least three non-coplanar reciprocal lattice vectors, one zone axis that is revealed 
by crossed fringes and one zone axis that is inferred from the orientation of a fringe with respect to the tilt axis and tilt 
angle. Figure 9 gives 5 such tilt protocols. In the following, the face-center cubic minimalistic <100> → <112> tilt 
protocol, as given in the left column and second row of Fig. 9, is discussed.  
An ensemble of randomly oriented sub-stoichiometric WC1-x particles with the halite structure (2-x atoms at a lattice 
point) serves as experimental example. The tilt protocol was performed in an HRTEM that possesses a point resolution 
of 0.19 nm and was equipped with a double-tilt goniometer that allows for ± 15 ° (αmax) tilt around the eucentric axis of 
the side entry rod and ± 10° (βmax) tilt perpendicular to this axis [7,26]. Since the WC1-x nanocrystals possess a lattice 
constant of 0.425 nm, only {200} and {111} fringes are resolved in the respective HRTEM images. For the halite 
structural prototype, crossed {200} fringes result in <001> zone axes being visible, crossed {111} fringes result in 
<011> zone axes being visible. While the smallest tilt angle between <001> and <011> zone axes is 45°, the smallest tilt 
angle between two different <011> zones is 60°, see Fig. 3. The maximum combined tilt of the goniometer is, however, 
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only 35.5° (i.e. arc cos (cos 2αmax · cos 2βmax). Two-zone axis protocols can, therefore, not be employed.  
From Fig. 9 we can infer that an anti-clockwise tilt of 35.3° around [-110] (i.e. the cross product of [001] and [112]) will 
result in a nanocrystal that was aligned parallel to [001] before the application of the tilt protocol becoming aligned 
parallel to [112] after the application of the tilt protocol. This example of a tilt protocol application delivered the basis for 
both the determination of the lattice constant of WC1-x nanocrystals and the identification of their phase out of 35 
candidate structures [7,26].  
Two zone-axis protocols encompass at least four non-coplanar reciprocal lattice vectors and two zone axes that are 
revealed by crossed fringes. Fig. 9 gives four such tilt protocols. To illustrate a two zone-axis protocol and information 
given in the right column of Fig. 9 for body-centred cubic crystals, the following example deals with Tungsten 
nanocrystals. Like most body-centred cubic lattices, space group Im3m, with one atom at a lattice point, tungsten 
possesses a rather small lattice constant: 0.3165 nm. A point resolution of 0.15 nm is therefore required to reveal <011> 
zone axes by the crossings of {200} and {110} fringes and <111> zone axes by crosses of symmetrically equivalent 
{110} fringes. The two-zone axis tilt protocol becomes, therefore, [111] → [110], left column, forth row in Fig. 9, were 
the tilt axis is [-110] and the tilt angle is 35.3° (anticlockwise).   
Another example of a two-zone axis tilt protocol application to a face-centered cubic crystal with the halite structure is 
given in ref. [27]. Altaite/Clausthalite nano-islands on (001) oriented clausthalite substrate were tilted from [111] to 
[112] in order to confirm pseudomorph heteroepitaxial growth, Fig. 10. Since the semiconductor Clausthalite possesses 
the rather large lattice constant of 0.625 nm, {111}, {200} and {220} fringes are revealed already in a microscope with a 
point resolution of 0.22 nm. The <111> zone axes are, thus, revealed by crossing {220} fringes and the <112> zone axes 
are revealed by crosses of {220} and {111} fringes. The relative small tilt of 19.5° anticlockwise around the [1-10] axis 
is then sufficient to tilt from [111] to [112]. As nanocrystals with rather large lattice constants were involved, this tilt 
protocol is not shown schematically in Fig. 10. 
 
 
 
 

                                                                
 
Fig. 10: Sketch of the face-center cubic minimalistic [111] → [112] tilt protocol for nanocrystals with the halite (rock salt) structure, 
rotating the crystal anticlockwise 19.5° around [-110]. Corresponding HRTEM images of the Clausthalite (left) substrate and 
Altaite/Clausthalite nano-islands (right). The contrast variations across the right image are due to pseudomorphic lattice-mismatch 
strain between the nano-islands and the substrate. Note the different magnifications. (The sketches of the halite structure in [111] and 
[112] orientation were created with the shareware program “Balls & Sticks”, Version 1.52, 2004, by S. J. Kang and T. C. Ozawa, see 
http://www.softbug.com/toycrate/bs for free downloads. The unit cell is displayed in the perspective projection mode, so that atoms do 
not exactly fall on top of each other in a 2D projection. 3D anaglyph glasses may be used in connection with this visualization 
program.) 
 
Increased point resolution, Figs. 4a,b, will enable more advanced tilt protocols that consist of more than one 
crystallographic tilt. Between the 8 visible zone axes in one stereographic [001]-[011]-[111] triangle (which represents 
1/24 of the orientation half space and can by the application of the symmetry elements of the space group Fm3m cover the 
whole orientation space) that are indexed in Figs. 4a.b, there are no less than 28 (= 8·7/2) possible two-zone axis tilt 
protocols to employ. Out of these 28 two-zone axis tilt protocols, there are three that test for the simultaneous existence 
of symmetry axes at both zone axes, i.e. [001] → [011], [001] → [111], and [011] → [111]. The testing for the existence 
of projected symmetry elements for the identification of a nanocrystal phase, thus, emerges as a potential application of 
tilt protocols in HRTEMs and STEMs with a sufficiently high point resolution.  
Figure 11 shows, for example, the two possible cases of orientations of three different symmetry axes in a cube. The 
combined presence or absence of such symmetry axes in a cubic nanocrystal can be determined by the application of 
three subsequent two-axis tilt protocols. Nanocrystals with point groups 23 or m3, on the one hand, and 432, 43m, or 

α1 = 6.1 ± 0.1° and β1 = -2.8 ± 0.1°; crossed {220} fringes α2 = 4.7 ± 0.1° and β1 = 16.5 ± 0.1°; crossed (-220) 
and (11-1) fringes 

[-110]
[112] [111] 
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m3m, on the other hand, can be distinguished from the presence of either a two fold or a four fold axis parallel to <100>. 
Fig. 12 finally illustrates how PSU’s nanocrystallography visualization website may be used to support the application of 
tilt protocols. 

 
Fig. 11: Sketch of the two possible combinations of three different symmetry axes in a cube (from ref. [29]). The application of three 
subsequent two-zone axis tilt protocols allows for a distinction between subgroups of the cubic point symmetry group a nanocrystal 
may belong to. 
 

 
  
Fig. 12: Screenshot composite of quasi-3D visualizations of the halite structure: (left) [001] projection – default and original 
orientation, (middle) [011] projection (one 45° anti-clockwise rotation around [100]), and (right) [111] projection (one additional 
35.264° clockwise rotation around [010]. Such rather large tilts should be possible in aberration-corrected TEMs even in an eucentric 
mode [30] since there can be much more free space around the specimen in such microscopes. The 2D projections are orthographic. 
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SUMMARY AND CONCLUSIONS 
 
After a concise introduction to lattice-fringe visibility spheres and maps, this paper discussed lattice-fringe fingerprinting 
in 2D and (3D) tilt protocol applications. On-line database developments at Portland State University that support image-
based nanocrystallography were also mentioned. Because lattice-fringe fingerprinting in 2D with on-line database 
support is amendable to automation, we will start a corresponding project in 2007. This can be considered as a 
realization of W. J. de Ruijter’s and co-workers’ concluding remarks of their 1995 paper. 
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* Silicon crystals in the <110> orientation showing two 0.136 nm spaced atoms that appear as “dumbbells” in this projection typically serve to 
demonstrate the respective point resolution of high resolution transmission electron microscopes. 
 

** Kikuchi diffraction lines and bands support controlled tilting of crystals in a TEM since their projected movements appear on the TEM’s screen as 
quasi-straight lines that are rigidly fixed to the crystals. 
 
 

APPENDIX 
 

_chemical_name_common 'Rutile' 
loop_ 
_publ_author_name 
'Meagher E P' 
'Lager G A' 
_journal_name_full "The Canadian Mineralogist" 
_journal_volume 17 
_journal_year 1979 
_journal_page_first 77 
_journal_page_last 85 
_publ_section_title 
; 
 Polyhedral thermal expansion in the TiO2 polymorphs: Refinement of the crystal 
structure of rutile and brookite at high temperature Sample at 25 degrees C 
; 
_chemical_formula_sum 'Ti O2' 
_cell_length_a 4.593 
_cell_length_b 4.593 
_cell_length_c 2.959 
_cell_angle_alpha 90 
_cell_angle_beta 90 
_cell_angle_gamma 90 
_symmetry_space_group_name_H-M 'P 42/m n m' 
_space_group.reference_setting '136:-P 4n 2n' 
loop_ 
_atom_site_label 
_atom_site_fract_x 
_atom_site_fract_y 
_atom_site_fract_z 
_atom_site_U_iso_or_equiv 
Ti   0.00000   0.00000   0.00000   0.00532 
O   0.30510   0.30510   0.00000   0.00760 

_chemical_name_common 'Brookite' 
loop_ 
_publ_author_name 
'Meagher E P' 
'Lager G A' 
_journal_name_full "The Canadian Mineralogist" 
_journal_volume 17 
_journal_year 1979 
_journal_page_first 77 
_journal_page_last 85 
_publ_section_title 
; 
 Polyhedral thermal expansion in the TiO2 polymorphs: Refinement of the crystal 
structures of rutile and brookite at high temperature Sample at 25 degrees C 
; 
_chemical_formula_sum 'Ti O2' 
_cell_length_a 9.174 
_cell_length_b 5.449 
_cell_length_c 5.138 
_cell_angle_alpha 90 
_cell_angle_beta 90 
_cell_angle_gamma 90 
_symmetry_space_group_name_H-M 'P b c a' 
_space_group.reference_setting '061:-P 2ac 2ab' 
loop_ 
_atom_site_label 
_atom_site_fract_x 
_atom_site_fract_y 
_atom_site_fract_z 
Ti   0.12890   0.09720   0.86280 
O1   0.00950   0.14910   0.18350 
O2   0.23140   0.11100   0.53660 

 

Note that the unit-cell lengths are given in Å; that the unit-cell angles are given in degrees; that the (unambiguous space group symmetry and origin choice) notations of 
the “Symmetry CIF Dictionary”, Version 1.0.1 of June 17, 2005, http://www.iucr.org/, are given; and that the symmetry equivalent positions are omitted for brevity. 
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