Portland State University

PDXScholar
TREC Final Reports Transportation Research and Education((%%rggg
9-2021

Evaluating Mobility Impacts of Construction Work
Zones on Utah Transportation System Using
Machine Learning Techniques

Ali Hassandokht Mashhadi
University of Utah

Abbas Rashidi
University of Utah

Follow this and additional works at: https://pdxscholar.library.pdx.edu/trec_reports

6‘ Part of the Transportation Commons, Urban Studies Commons, and the Urban Studies and Planning
Commons

Let us know how access to this document benefits you.

Recommended Citation

Mashhadi, A. H., Rashidi, A., Evaluating Mobility Impacts of Construction Work Zones on Utah
Transportation System Using Machine Learning Techniques. NITC-SS-1362, Portland, OR: Transportation
Research and Education Center (TREC), 2021. https://dx.doi.org/10.15760/trec.263

This Report is brought to you for free and open access. It has been accepted for inclusion in TREC Final Reports by
an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible:
pdxscholar@pdx.edu.


https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/trec_reports
https://pdxscholar.library.pdx.edu/trec
https://pdxscholar.library.pdx.edu/trec
https://pdxscholar.library.pdx.edu/trec_reports?utm_source=pdxscholar.library.pdx.edu%2Ftrec_reports%2F224&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1068?utm_source=pdxscholar.library.pdx.edu%2Ftrec_reports%2F224&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/402?utm_source=pdxscholar.library.pdx.edu%2Ftrec_reports%2F224&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/436?utm_source=pdxscholar.library.pdx.edu%2Ftrec_reports%2F224&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/436?utm_source=pdxscholar.library.pdx.edu%2Ftrec_reports%2F224&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/trec_reports/224
https://dx.doi.org/10.15760/trec.263
mailto:pdxscholar@pdx.edu

NI I C Final Report 1362

NATIONAL INSTITUTE for September 2021

TRANSPORTATION and COMMUNITIES

Evaluating Mobility Impacts Of Construction
Workzones On Utah Transportation System
Using Machine Learning Techniques

Ali Hassandokht Mashhadi
Abbas Rashidi, Ph.D.

THE

UNIVERSITY
OF UTAH

NATIONAL INSTITUTE FOR TRANSPORTATION AND COMMUNITIES  nitc-utc.net




EVALUATING MOBILITY IMPACTS OF
CONSTRUCTION WORK ZONES ON UTAH
TRANSPORTATION SYSTEM USING MACHINE
LEARNING TECHNIQUES

Final Report

NITC-SS-1362
By

Ali Hassandokht Mashhadi, Abbas Rashidi
University of Utah

for

National Institute for Transportation and Communities (NITC)
P.O. Box 751
Portland, OR 97207

=aNITC

NATIONAL INSTITUTE for
TRANSPORTATION and COMMUNITIES

September 2021



Technical Report Documentation Page

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.
NITC-SS-1362
4. Title and Subtitle 5. Report Date
September 2021

Evaluating Mobility Impacts of Construction Work Zones on Utah Transportation System | 6. Performing Organization Code
Using Machine Learning Techniques

7. Author(s) 8. Performing Organization Report
Ali Hassandokht Mashhadi, https://orcid.org/0000-0002-7792-4645 No.
Abbas Rashidi, https://orcid.org/0000-0002-4342-0588

9. Performing Organization Name and Address 10. Work Unit No. (TRAIS)
The University of Utah
Department of Civil and Environmental Engineering 11. Contract or Grant No.
201 Presidents Circle NITC 1362
Salt Lake City, UT 84112

12. Sponsoring Agency Name and Address 13. Type of Report and Period
National Institute for Transportation and Communities (NITC) Covered
P.O. Box 751 Final Report 12/1/2019 — 7/26/21
Portland, OR 97207 14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

Construction work zones are inevitable parts of daily operations at roadway systems. They have a significant impact on traffic
conditions and the mobility of roadway systems. The traffic impacts of work zones could significantly vary due to several
interacting factors such as work zone factors (work zone location and layout, length of the closure, work zone speed, intensity,
and daily active hours); traffic factors (percentage of heavy vehicles, highway speed limit, capacity, mobility, flow, density,
congestion, and occupancy); road factors (number of total lanes, number of open lanes, and pavement grade and condition);
temporal factors (e.g., year, season, month, weekday, daytime, and darkness); weather conditions (rainy, sunny, and snowy);
and spatial factors (road lane width, proximity, and number of ramps).

Utah Department of Transportation (UDOT) is continuously collecting and storing project-related data. Due to the significant
impact of work zones on traffic conditions, they are interested in evaluating the impacts of work zone attributes on mobility and
traffic conditions of roadway systems within the state of Utah. Such an analysis will help the UDOT personnel better understand
and plan for more efficient work zone operations, select the most effective traffic management systems for work zones, and
assess the hidden costs of construction operations at work zones.

To help UDOT address this problem, we propose a robust, deep neural network (DNN) model capable of evaluating the impacts
of the factors mentioned earlier on the mobility conditions of Utah roadway systems. DNNs can capture all the relationships
between input variables and output compared to traditional machine learning algorithms. The results of this project show that
work zone features have an important effect on the traffic condition. In the end, the performance of the model is evaluated using
three different measures, including R2 score, RMSE, and MAE. Comparing the measurement to previously conducted research,
it is the first study that has attempted to investigate the effect of work zone features on hourly traffic volume.

17. Key Words 18. Distribution Statement
Work zone Capacity, Traffic Prediction, Work Zone Traffic Estimation, No restrictions. Copies available from NITC:
Artificial Neural Network, Non-parametric Method www.nitc-utc.net
19. Security Classification (of this report) 20. Security Classification (of this | 21. No. of Pages 22. Price
page)
Unclassified 42
Unclassified




ACKNOWLEDGEMENTS

The authors acknowledge the National Institute for Transportation and Communities
(NITC; grant number 1362), a U.S. DOT University Transportation Center, for funding
this research. The authors also would like to thank Dr. Nikola Markovic, assistant
professor at the University of Utah, for helping to guide the research.

DISCLAIMER

The contents of this report reflect the views of the authors, who are solely responsible
for the facts and the accuracy of the material and information presented herein. This
document is disseminated under the sponsorship of the U.S. Department of
Transportation University Transportation Centers Program in the interest of information
exchange. The U.S. Government assumes no liability for the contents or use thereof.
The contents do not necessarily reflect the official views of the U.S. Government. This
report does not constitute a standard, specification, or regulation.

RECOMMENDED CITATION

Mashhadi, A. H., Rashidi, A., Evaluating Mobility Impacts of Construction Work Zones
on Utah Transportation System Using Machine Learning Techniques. NITC-SS-1362,
Portland, OR: Transportation Research and Education Center (TREC), 2021.



Table of Contents

S IO ] i 17 = I P iv
LIST OF FIGURES (PHOTOS) ..cciiiiiiiieeeeeeeeeeeeeeeee ettt ettt e e e e e e e e e e e aeaeeaaaeaes iv
EXECUTIVE SUMMARY ...ttt ettt ettt ettt e e e e e e e e e e e e e e e e e e aaeeees 1
1.0 INTRODUCTION .. ..o 2
R I © Y=Y TP 2
1.2 PROBLEM STATEMENT ..ottt 4
1.3 OBUECTIVES. ...ttt ettt e e e e 5
S T O 1 PP 6
1.5 OUTLINE OF REPORT ..ottt a e e e e e e aae s 6
2.0 RESEARCH BACKGROUNDS ........euuuiiiiiiiiiiiieieiiiieeieneeneeneeennnneaneennnannsesnsnnsnnnnnnes 7
21 BACKGROUND ... 7
211 ParametriC MOAEIS.......cooo e 7
2.1.2  MicroscopiC SImulation ..............coieiiiiiiiiiccee e 8
2.1.3  Non-parametric MOAEIS .........cccoovviiieiiiiee e 9

2.2 FREQUENT FACTORS ... 10
2.3 SUMMARY ..o 14
3.0 DATA COLLECTION ... uuuuuuuuuuuuuuununuunuunuaeasasaaesansnsssssaaasanassasssssssssssssssssnnsnsssnnnnnnnns 15
3.1 OVERVIEW ... 15
3.2 INFLUENCING FACTORS ... . 15
3.3 WORK ZONES AND ROADWAY DATA . 15
3.4 TRAFFIC DAT A e 21
o T Y/ | = (O] @ I L€ R 24
4.1 BASIC CONCEPTS ... 24
4.1.1  Batch Normalization Layer..............uuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiiiiieieeeeaneeeeeeeees 26
4.1.2  ACHVALION LAYEI ...ttt sssneesnnnnnes 27

g G T O o) .0~ SRR 28

4.2 HYPERPARAMETERS ...t 30
4.3 EVALUATION METHODS.......cc oottt 31
4.3.1 Coefficient of Determination (R?) ..........ccouieeiiiieeeiiee e 31
4.3.2 Mean Absolute Percentage Error (MAPE).............coiiiiiiiiiiiieeeee e, 31



4.3.3 Mean Squared Error (MSE) ..........uuuiiiiiiiiiiiiiiiiiiiiiiiiiieiiiieeeeeeeeeeeeaeeeeneeeees 32

4.3.4 Root Mean Square Error (RMSE)...........uuiiiiiiiiiiiiiiiiiiiiiiiee 32
4.3.5 Mean Absolute Error (MAE).......ccooormiiiiiee e 32

4.4 Research FIOW Chart ..o 32

B 0 RESULT S ettt e e e e e e e e ettt e e e e e e e e e s nnnraneeaeaeeeaaannns 34
5.1 SUMMARY ..ottt e e e e e e et e e e e e e e e et e e e e e e e e e e annnnnees 34
6.0  CONGCLUSION ...ttt asaaasaasassssssssssnssssssnssnnssnsnnnnnnnns 37
6.1 SUMMARY ..o 37
6.2 LIMITATIONS AND RECOMMENDATIONS ..o 37
AL s P 39



LIST OF TABLES

Table 2.1: Frequency of the Commonly Considered Factors ...........cccoeeeeevvviiiiiicieee.nn. 12
Table 3.1: Data Collection Spreadsheet................coiiiiiiiiiiiiiiiiee e, 18
Table 3.2 cont. : Data Collection Spreadsheet ..............ccoooeiiiiiiiiiiiiiiiieeeeeee, 19
Table 3.3 cont. : Data Collection Spreadsheet ............cccooeeiiiiiiiiiiiiiiieeeeeeee, 20
Table 3.4: Work zones Location and the Adjacent Sensors...........ccccoeeeeeeiiiiiiiiiceeeenn.n. 22
Table 3.5: Extracted Traffic Data using the PeMS Database ...........cccccceeeeeiviiiiiieee.... 23
Table 4.1: Considered Training Parameters Based on Hyperparameter Tuning........... 30

LIST OF FIGURES (PHOTOS)

Figure 1.1: U.S. Congestion Problem Trends in Recent Years ........cccccccvviiiiiiiiiiininnnnnn. 2
Figure 1.2: PeMS Dataset for Extracting Traffic Data...........ccccceeeeeiiiiiis 4
Figure 1.3: Location and Detailed Information on Projects in Utah ................................. 5
Figure 2.1: VISSIM Model Calibration Procedure [19].........ooovimiiiiiiiiiieeeceee e 9
Figure 2.2: Framework For Work Zone Capacity Prediction [26]..............cveeieeeeeinnnnns 10
Figure 3.1: A Screenshot of Google Earth Database ............c.cccoooeeiiiiiiiicii 16
Figure 3.2: Projects ARIDULES .........eeiie e 17
Figure 3.3: Location of Sensors on the Roadways of the State..............ccccccccooool 21
Figure 4.1: An artificial NEUION ..........oveiiiiii e 26
Figure 4.2: A sample structure of an artificial neural network...............cccccoeeieeeeei, 26
Figure 4.3: Structure of the Fully Connected Neural Network .............cccovviiiieenininnn, 30
Figure 4.4: ANN PSEUAOCOME.........cccoeiiiiiiiiiiiiiiiiiiieieeeeeeeeeee e 31
Figure 4.5: Work Zone Traffic Estimation Methodology ... 33
Figure 5.1: Loss Function and R2 score diagram for 20 Epochs and Batch Size of 200

...................................................................................................................................... 34
Figure 5.2: MAE and RMSE metrics for 20 Epochs and Batch Size of 200................... 34
Figure 5.3: Loss Function and R2 score diagram for 20 Epochs and Batch Size of 500

...................................................................................................................................... 35
Figure 5.4: MAE and RMSE metrics for 20 Epochs and Batch Size of 500................... 35
Figure 5.5: Graphical comparison of the model performance and the actual data ........ 36



EXECUTIVE SUMMARY

Construction work zones play a significant role in traffic delays and congestion on state
roadways. The roadway capacity is decreased due to fewer traffic lanes, narrower
lanes, and work zone speed limits. To this end, accurate prediction of work zones'
capacity is of utmost importance to transportation agencies. Thanks to the advancement
of technologies, there are many traffic sensors installed on roadways. The considerable
amount of traffic data collected by these sensors at every time of the day provided
researchers with the chance to investigate possible influential factors on road traffic.
The traffic impacts of work zones could significantly vary due to several interacting
factors such as work zone factors (work zone location and layout, length of the closure,
work zone speed, intensity, and daily active hours); traffic factors (percentage of heavy
vehicles, highway speed limit, capacity, mobility, flow, density, congestion, and
occupancy); road factors (number of total lanes, number of open lanes, and pavement
grade and condition); temporal factors (e.g., year, season, month, weekday, daytime,
and darkness); weather conditions (rainy, sunny, and snowy); and spatial factors (road
lane width, proximity, and number of ramps). Utah, as one of the pioneer states in using
novel techniques in traffic management, is interested in evaluating the impacts of those
factors on mobility and traffic conditions of roadway systems within the state.

To address work zones' capacity on roadways, this project proposed an artificial neural
network model based on the collected data by Utah transportation agencies. In order to
determine the most influential factors of work zones, a comprehensive literature review
has been conducted on 70 previously published papers. Lane width, work zone length,
project duration, time of day, day of the week, and heavy vehicle percentage are among
the most common factors considered in the literature. The suggested neural network
model is trained and evaluated on around 400,000 data points collected from about 80
projects on Utah roadways. Based on the collected data from various resources, a four-
layer neural network has been developed with 256 neurons in each hidden layer. The
developed model is trained on 70% of the data and is evaluated using the other 30%,
divided into 15% of validation and 15% of test set. Numerical results of a random seed
show consistent outperformance of the proposed model, with an R2, RMSE, and MAE
being 0.98, 158, and 101, respectively. Based on the results of this project, future
studies could be carried out using the probe vehicle data to improve the model's
performance by decreasing the RMSE, MAPE, and MAE values.



1.0 INTRODUCTION

1.1 Overview

The increased load on road infrastructures due to population growth has resulted in an
increment in the need for road maintenance and reconstruction activities, including
increasing the line number, replacing the pavement, and adding or removing traffic
signs. Road maintenance activities usually require lane closures that will cause
increased traffic crashes and delays because of reduced capacity. According to the
urban mobility report [1], traffic congestion in 2017 caused 8.8 billion hours of travel
delay, with 3.3 billion gallons more fuel consumption, equal to a congestion cost of $179
billion. Figure 1.1 shows the trend of traffic congestion effects on public loss.
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Figure 1.1: U.S. Congestion Problem Trends in Recent Years

Construction work zones are among the main reasons for traffic congestion and
nonrecurring delays in every transportation network. Other reasons for nonrecurring
delays are crashes, weather conditions, and disabled vehicles. However, the top three
causes of nonrecurring delays are incidents (25% of congestion), work zones (10% of
congestions), and adverse weather conditions (15% of congestion) [2]. Appropriate
management of temporary disruptions could mitigate their effect.

The effect of work zones as one of the causes of traffic delays could further diminish by
deploying a precise traffic prediction model. Accurate work zone traffic prediction could
equip drivers to handle any upcoming delays or congestion in their travel. Travelers are
especially more sensitive to unpredicted congestion because of tightly scheduled daily
activities. Additionally, work zone traffic prediction providing agencies with adequate
information helps them in resource allocation according to the congestion risk of each
specific road [3]. Moreover, because of the dynamic nature of the traffic network,
precise work zone impact prediction could alleviate traffic congestion, directly impacting
fuel consumption and air pollution [4].



Many studies have investigated the effect of work zones on traffic conditions and road
capacity. Such studies accounted for a wide range of parameters that may affect
capacity reduction. Depending on the work zone's nature and configuration, they could
be classified into various groups, such as work zone configuration, roadway conditions,
work activity characteristics, and environmental conditions. Work zone features, such as
work zone length, work time, work zone speed limit, heavy vehicle percentage, work
zone grade, work intensity, road type, number of opened/closed lanes, and lane width,
are among the work zone features that could affect roadway capacity.

The simplicity of implementing traditional approaches is why many works of literature
have employed them in their studies. Traditional approaches use the deterministic
queuing theory based on the relationship between approaching traffic volume and
limited capacity. However, several interacting variables might contribute to traffic
conditions around work zones, which cannot be represented in a simple mathematical
function. To this end, the predicted capacities are usually inaccurate because of the
simplified conditions.

To improve the effectiveness of work zone traffic management plans (TMP), novel and
automated approaches are required to identify the relationship between work zone
parameters and traffic characteristics such as delay time, capacity, and queue length.
State departments of transportation (DOTs), especially the Utah Department of
Transportation (UDOT), collect various data types related to work zone operations and
are interested in evaluating the potential impacts of these variables on traffic and
mobility conditions at the roadway system. One potential method of finding traffic
patterns and evaluating the effect of work zones on traffic parameters is the use of
machine learning techniques. Machine learning algorithms, such as decision trees,
ensemble learning, support vector machine (SVM), and artificial neural network (ANN),
have been widely used for prediction work zones capacity.

Another possible method of investigating the effect of work zones on roadway traffic Is
using microscopic simulation models. One of the advantages of using a simulation
model is determining the impact of each work zone feature on the road capacity [5], [6].
However, the need for specialized software packages, model calibration, and
computational resources are some of the downsides of these models. A few examples
of these softwares are CORSIM and VISSIM. With the availability of more data each
day, the better accuracy and the less need for technologies are some of the reasons
pushing researchers to use data-driven approaches, such as machine learning
algorithms.

This project aims to develop a neural network-based model to estimate the work zone
traffic volume on Utah's freeways. It is worth noting that the developed model can
estimate work zone traffic in areas without any traffic sensors.



1.2 PROBLEM STATEMENT

Recently, DOTs in the United States have started making landmark decisions on
implementing data-driven approaches to daily state problems. However, due to region-
based developed models, transportation divisions cannot select the right technology
unless they know whether that technology can meet their requirements. Due to the
higher accuracy of machine learning methods, some of the pioneer DOTSs, such as
UDOT, in the United States have begun using them in their decision-making.

Fortunately, UDOT continuously collects and records all necessary data required for this
project. UDOT also has access to two data sources, the freeway Performance
Measurement System (PeMS) and iPeMS. The iPeMS website provides statewide
HERE probe data, and freeway PeMS provides data from the UDOT traffic
management system. Freeway PeMS data is collected from radar, loops, and micro-
loops. This data can later be preprocessed and prepared to be utilized in the model.
Figure 1.2 shows the interface of PeMS and the recorded traffic data on freeway 115 at
a specific time.
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Figure 1.2: PeMS Dataset for Extracting Traffic Data



Moreover, UDOT stores work zone data in their databases, and those databases are
updated frequently. Figure 1.3 shows the website that shows the completed and
ongoing projects in Utah.
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Figure 1.3: Location and Detailed Information on Projects in Utah

A deep learning model could be developed using the traffic data collected from PeMS
and the work zone features from the UDOT project database. The output data could
further assist the decision-makers in assessing the most effective traffic management
systems at work zones, evaluating the hidden costs of construction operations at the
work zone, and better scheduling for work zone-related projects. This system is based
on a deep neural network and can consider different factors affecting the traffic
conditions near the work zones.

1.3 OBJECTIVES

Many approaches are available for predicting traffic and road capacity within work
zones. While the output is similar for all of them, the considered parameters and levels
of accuracy may differ. Also, one approach may work better than the other one based
on the existing conditions. Despite the growing popularity of data-driven approaches,
such as machine learning algorithms, and their ease of use and low-cost technology, it
has not been considered as a practical tool within UDOT divisions. The primary purpose
of this project is to address traffic estimation within work zones and explore the
feasibility of using data-driven approaches as an alternative technology to the existing
traditional methods.



1.4 SCOPE

This research evaluates the mobility effect of work zones within the state of Utah. The
scope of this project covers the following subjects:

e Most important features of work zones
e Traffic impact of work zones
e Traffic estimation of roadways within the work zone area

The project was conducted within these areas because the existing literature had
considered different work zone features in their developed models. Therefore, finding
the most effective and common features is of utmost importance for developing any
model. Moreover, all of the conducted projects in this research area are related to a
specific city or state. Since driving rules and drivers' behaviors within each zone are
different from another zone, it is impossible to use the existing models for the state of
Utah. Furthermore, there is no study investigating the effect of work zones on hourly
traffic. Most of the studies in this field focused on work zone capacity prediction. To this
end, this project developed a machine learning model based on the work zone features
and traffic data collected from Utah's freeways.

1.5 OUTLINE OF REPORT

¢ Introduction

e Research Background
e Data Collection

e Methodology

e Results

¢ Conclusion



2.0 RESEARCH BACKGROUNDS
21 BACKGROUND

Construction work zones play an important role in delays occurring on roadway
systems. Therefore, many studies have been conducted to determine the effect of work
zones on roadway capacity. Moreover, to facilitate the process, the Highway Capacity
Manual is provided to calculate the work zone capacity. Generally, the existing literature
in the field of work zone traffic prediction could be categorized into three main groups:
parametric, non-parametric, and microscopic simulation.

2.1.1 Parametric Models

The early studies in this field attempted to suggest mathematical models for work zone
capacity. The developed models are based on the work zone attributes, road features,
and collected data from various implemented projects. Based on the data collected from
33 work zones in Texas between 1987 and 1991, Krammas and Lopez [7], as one of
the pioneers in this field, suggested a deterministic model for short-term work zone
capacity estimation. Specifically, the model,

C = (1600 +1—R) X fyy (2-1)

estimates capacity C by accounting for adjustment factors for work intensity /, presence
of the ramp R, and heavy vehicle percentage f,. Racha et al. [8] developed a
parametric model by considering speed-flow relationships using collected data from 22
work zone sites in South Carolina. The results of their study show that 1,550 passenger
cars per hour per lane (pcphpl) is a reasonable estimation for a two-to-one lane closure
configuration.

Long-term and short-term work zones have different capacities. Therefore, it is not ideal
to use short-term models for long-term work zones capacity estimation. Various models
have been proposed in the literature based on the collected data on long-term work
zones. Al-Kaisy and Hall [9] developed a multiplicative model for capacity estimation in
long-term work zones. The collected data are from six sites in Ontario, Canada. The
results of this study depicted that heavy vehicle percentage has the most effect on the
road capacity. The model,

C=Cp X fay X faX fw X fs X fr X fi X f; (2-2)

estimates capacity C by accounting for adjustment value for based work zone capacity
C,, heavy vehicle percentage fyy, driver population f;, work activity f,,, location of lane
closure f;, presence of rain f,, light conditions f;, non-additive interactive effects f;.

In order to capture the uncertainties associated with the traffic parameters and present
a more reliable capacity estimation, many studies have integrated probability
distributions of parameters into their developed model. Using the probabilistic speed-
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flow relationship, Weng and Yan [10] proposed a work zone capacity estimation model
based on the recorded data in Singapore. Based on this study, an increase in the
geometrical alignment will result in decreasing the capacity. However, the work zone
capacity increases with an increase in speed limit. In the next section, a literature review
of non-parametric studies will be presented. Weng and Yan [11] also proposed another
probability model for work zones in the United States. Their study provides traffic
engineers with a range of work zone capacity at a corresponding prediction band at a
specific confidence level. However, one of the downsides to this study is that the model
was developed based on the US data; therefore, it may not be applicable to other
countries due to differences in driving behavior and rules. Weng et al. [12] suggested a
stochastic model to estimate the uncertainty of work zone capacity. The proposed
model could be applied to evaluate travel time reliability. Some of the limitations related
to this study are: 1) The limited examination of explanatory factors other than those that
were considered, 2) The assumption of a linear relationship between capacity and other
variables.

2.1.2 Microscopic Simulation

Another well-known approach for estimating the work zone capacity is the microscopic
simulation. Using this approach, researchers could determine the effect of each work
zone or road attribute on the capacity. Specialized software, model calibration, and
expensive computations are some of the disadvantages of using simulation models.
The most popular software packages of microscopic simulation are CORSIM, VISSIM,
and PARAMICS. Ping and Zhu [13] used CORSIM to estimate the work zone capacity
under different conditions. In another study, Chatterjee et al. [14], using VISSIM,
proposed a work zone capacity model by considering drivers' behaviors. Also, Wen built
a PARMICS simulation model for a prototypical freeway work zone in a connected
vehicle environment. Four different models were constructed for the travel time analysis,
including linear regression, multivariate adaptive regression splines (MARS), stepwise
regression, and elastic net. The results show that the different modeling approaches
have similar performance in terms of the Root of Mean Square Error (RMSE) [15]. In
another study, Das and Chattaraj developed a work zone traffic simulation model using
cellular automata. The results of their study showed that the lane drop not only
produces a jam in the blocked lane as well as in the bypass lane [16]. Model calibration
is an inevitable part of simulation models. Therefore, many researchers have suggested
various calibration methods. Yeom et al. [17] proposed a methodology to calibrate work
zone capacity models. In order to pave the way for future studies, Kan et al. [18]
suggested a procedure for calibrating VISSIM models. Figure 2.1 shows the suggested
procedure.

Since parametric and simulation models only consider a limited number of work zone
features and road attributes, they usually have poor performance in estimation work
zone capacity. Moreover, they only present a crisp number as the work zone capacity,
but the capacity could vary based on the time of day, day of the week, and other
contributing features. To this end, non-parametric models were developed to overcome
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the disadvantages of the parametric and simulation models. Since non-parametric
models are based on data collected from actual work zone sites, their estimations are
more realistic and have better accuracy.

Adjust Key Parameter
Ranges

Simulation Model »| Tnitial Evaluation —Unsatisiedl Expenrluental . Feasibility
Setup Design Test
Satidfied
h 4
End Yes Passed? Modfl W a%ldaltlon & | ¢-Satisiod—] Evaluation of calibrated » Eaam eter .Callbratfon
Visualization param eter set using Genetic Algorithm
| A
Unsatisfied
- 4

Figure 2.1: VISSIM Model Calibration Procedure [19]

2.1.3 Non-parametric Models

Different machine learning approaches have been adopted by researchers and applied
to various transportation fields. Work zone capacity estimation is not an exception.
Decision trees, ensemble learning, support vector machine (SVM), and neural network
are among the most common methods. Based on the collected data from 14 cities and
states, Weng and Meng [20] developed a decision tree to estimate the freeway work
zone capacity. Better accuracy with no need for adjustment factors are the advantages
of using this method. However, decision trees are vulnerable to small changes or any
noises in the training set. Using the same dataset, Weng and Meng [21] developed an
ensemble learning model using 105 individual trees to cover the disadvantages of
decision trees.

Some studies used more novel techniques, such as SVM and artificial neural networks.
Adeli and Jiang [22] developed a neuro-fuzzy model by considering 17 different
parameters. The dataset was based on the collected data from seven cities and states
in the United States. In another study, Karim and Adeli [23], considering 11 work zone
factors, developed a neural network for work zone capacity estimation. A radial basis
function was employed to develop deterministic results.

In order to compare the results of different models, Hou et al. [24] developed four
different models: random forest, baseline predictor, regression tree, and neural network.
The results of their study showed that random forest outperformed the other three
models. Moreover, one of the most important findings of their study is that the work
zone features do not affect the traffic flow characteristics.

To improve the results of previous researches, some studies combined different
algorithms. However, all the previously developed models result in a single value as

9



their outputs. In other words, they do not consider probability distributions and
confidence intervals in their models. Bian and Ozbay [25] developed a Bayesian neural
network with black-box variational inferences (BBVI) technique and a regular artificial
neural network with Monte Carlo (MC)-dropout technique. The proposed models are
capable of capturing the uncertainties associated with capacity estimation models.
Figure 2.2 shows the framework for work zone capacity prediction based on non-
parametric and parametric models. The framework consists of three main phases. i)
Data Collection Phase: data can be collected using different technologies such as
sensors, radars, cameras, vehicle-mounted GPS, and WiFi. ii) Prediction Phase: the
collected data in the first phase could further be analyzed to extract more information on
drivers' behaviors. iii) Application Phase: the results of the previous phase could be
used in traffic management, transportation planning, and navigation.

Data Collection Phase

Prediction Phase

Video Camera

Non-parametric Work zone capacity

Smsors' . Queue Length computation
Probe Vehicle *  Decision Tree Traffic Delay computation
Loop Detector *  Ensemble Learning City Management

Laser Speed Gun »  Neural Network Congestion Control

Radar «  3VM Navigation

LIDAR +  Bayesian Mbdel Routs Planning

GPS Markov Chain Modsl ion

i T Transportation Control

Autenemous Driving

0 %

Time zeries models

Parametric
approaches

Figure 2.2: Framework for Work Zone Capacity Prediction [26]

2.2 FREQUENT FACTORS

Numerous studies have been performed to model freeway work zone capacity using
site conditions. These studies accounted for a wide range of factors that may influence
capacity reduction. Depending on the work zone's nature and configuration, these
factors can be categorized into multiple groups: work zone configuration, roadway
conditions, work activity characteristics, and environmental conditions [27]. Among
almost 40 factors that were considered in the literature, the following were identified as
the most frequent ones:

Lane width

Lane closure location (Left/ Right)
Work zone length

Weather condition (Clear/ Rain)
0. Driver composition and population

Heavy vehicle percentage 2.
Work zone grade 4.
Work zone intensity 6.
Road type (Rural/ Urban) 8.
Number of opened lanes 1

©NO W=
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11.Number of closed lanes 12.Ramp (Yes/ No)

13.Work zone duration (Short/Long) 14.Work zone speed limit
15.Work time (Day/ Night) 16.Normal speed
17.Weekday 18.Lateral clearance

Table 2.1 summarizes the most frequently considered factors and the outputs of the
models. Some studies only focused on capacity estimation, while a couple of them
considered multiple outputs simultaneously. Results show that heavy vehicle
percentage, work zone grade, work zone intensity, and the number of opened and
closed lanes are among the most frequent factors considered in previous studies. It is
expected that a higher percentage of heavy vehicles will reduce the short- and long-
term work zone capacity due to occupying more space and moving slower. Also, as the
work intensity is increased from light to heavy, the work zone capacity will decrease.
The most common influencing factors in the simulation-based studies include lane
configuration, volume distributions, the distance of signs upstream of the work zone,
presence of trucks, and rubbernecking.
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Table 2.1: Frequency of the Commonly Considered Factors

Work zone duration (Short/Long)
Lane closure location (Left/ Right)
Weather condition (Clear/ Rain)
Driver composition and population

Number of opened lanes
Number of closed lanes
Work time (Day/ Night)
Lane width

Work zone length

Ramp (Yes/ No)

Work zone speed limit
Normal speed

Weekday

Lateral Clearance

*
*
*

*

Input Variables

S <

o) @

c £
Author 3 2|2

2182 |°¢

o | 8| 2|3

cREREERS

A R-AR-EE

ZIR|IR| >

AEAE-EE:

T|S(2 |
Abrams and Wang [28] *
Dudek and Richards [29] *
Krammes and Lopez [7] * * *
Dixon [30] * *
Dixon et al. [31] * *
Yi[32] * * *
Al-Kaisy et al. [33] * *
Maze et al. [34] *
Kim et al. [35] * * *
Venugopal and Tarko [36] *
Karim and Adeli [23] * * * *
Adeli and Jiang [22] * * * * *
Al-Kaisy and Hall [9] * *
Benekohal et al. [37] * *
Benekohal et al. [38] * *
Sarasua et al. [39] * * *




Arguea [40]

Sarasua et al. [41]

Ping and Zhu [13]

Racha et al. [8]

Hicks et al. [42]

Hicks et al. [43]

Batson et al. [44]

Notbohm et al. [45]

Weng and Meng [20]

Heaslip et al. [46]

Bham and Khazraee [47]

Weng and Meng [21]

Ortiz [48]

Weng and Yan [10]

Hou et al. [24]

Weng and Meng [49]

Weng and Yan [11]

Heiden and Geistefeldt [50]

Stromgren and Olstam [51]

Weng et al. [12]

Bae et al. [52]

Lu et al. [53]

Bian and Ozbay [54]
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2.3 SUMMARY

Based on the literature, different approaches have been proposed for estimating work
zone capacities. Although parametric approaches are widely used by both federal and
state transportation agencies, due to their simplicity and ease of implementation, it is
challenging to model work zone capacity "in the closed-form" as attempted with models
(2-1) and (2-2). Specifically, these models do not account for interactions between
influencing factors [12]. On the other hand, non-parametric approaches can extract
nonlinearity or higher-order interactions of work zone features and work zone capacity.
The need for a large amount of data for training, validation, and testing is one of the
drawbacks of non-parametric models. Moreover, they may fall short when applied to
scenarios that were not observed historically.

It is often difficult to measure the effect of some features, such as driving behavior, the
distance of warning signs, and merge strategies in the parametric and non-parametric
models. Therefore, simulation-based methods have been introduced to determine the
impact of these features on traffic flow and better understand future situations.
Requiring computational resources, specialized software, and model calibration are
some of the drawbacks of simulation-based models.

The method selection depends on various criteria. However, one of the most important
factors is the amount of available data. Both parametric and non-parametric methods
are data-driven approaches; however, the choice between the two may depend on the
available number of data points. Since non-parametric models require a validation
dataset for hyperparameter tuning as well as test data, they typically require more data
points than parametric models. However, if the amount of data is large enough, non-
parametric methods are expected to provide higher estimation accuracy than parametric
models.
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3.0 DATA COLLECTION
3.1 OVERVIEW

The idea behind the suggested approach is to train a neural network model to learn the
relation between traffic volumes and various influencing factors of work zones. This
process would enable agencies to use the model and estimate volumes at locations
with no traffic sensors. Accordingly, the proposed work regresses hourly traffic volumes
from traffic sensors along Utah's freeways to explanatory variables obtained from
various data sources (e.g., road characteristics, work zone features). The remainder of
this section provides a brief description of the most influential factors of work zones and
the data needed to train the model.

3.2 INFLUENCING FACTORS

Based on the literature review, the following 18 factors are among the most common
factors considered in the previously conducted research.

1. Heavy vehicle percentage 2. Lane width

3. Work zone grade 4. Lane closure location (Left/ Right)
5. Work zone intensity 6. Work zone length

7. Road type (Rural/ Urban) 8. Weather condition (Clear/ Rain)
9. Number of opened lanes 10. Driver composition and population
11.Number of closed lanes 12.Ramp (Yes/ No)

13.Work zone duration (Short/Long) 14.Work zone speed limit

15.Work time (Day/ Night) 16.Normal speed

17.Weekday 18.Lateral clearance

Table 2.1 shows that heavy vehicle percentage, work zone grade, and work zone
intensity are the most common parameters in the previously developed models.
However, some variables, such as lateral clearance or weather conditions, are
infrequent in the proposed models.

3.3 WORK ZONES AND ROADWAY DATA

UDOT stores work zones data as well as traffic data in its databases, and those
databases are updated frequently. Since the ongoing projects may keep changing the
work zone setups, this project only focused on the completed projects. Using the
Google Earth file of completed projects, we can get the locations and project attributes.
Figure 3.1 shows a screenshot of the attributes associated with each project. Each
project has more than 170 attributes; however, some of them, such as its contractor,
project cost, and engineering company, do not affect the traffic conditions of roads.
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Field Name. Field Value
0BUECTID 7089

Project D 5099

[Project Cross Reference 11871

[Project Number [F-0036(41)81

PN [1a458

[PIN Description [SR-36; MP 59.300-62.900, Median Barrier
[PIN Status Code 1

PIN Status Closed

Master PIN 6019

[Master PIN Description HIGHWAY SAFETY IMPROVEMENT PROGRAM - (HSIP)
[Master PIN Location Nul

[Road System Code 3

[FIIS Number Fot1a71

SR-36; MP 60.80 - 62.90 & SR-36; MP 59.30 - 62.90 & SR-36, MP 50.30 -
62.90

Project Value [936077.77
[Region Code B

Project Location

[Concept Description [HSIP - Highway Safety Improvement/Barier Treatments

Project Type ul

[Project Type Description Nuil

[Project Manager [DOEHRING UDOT, VICKY
UDoT RE [RUBY, RODNEY J

¥ [consuttantRE ul

| [Design Enginser MARTIN, CLINTON D
[EPM Planned Start Date 9112017

[EPM Planned Duration 55

[EPM Planned End Date 1012612017

[Job Proj uil

Function Type il
Local GovtFlag [N
[Commitiee Approved 0

[will Advertise Flag i

| [Bubmitfor Advertise Date [6/20/2017 5.00:00 Pl
[Commitfor Advertise Date [riz22017

[Route sequence 2z

[Project Created Date 51972017 5.57:34 Al
[Project Modified Date il

[Funding Indicator F

[Total Expendiures 936977.77

Figure 3.1: A Screenshot of Google Earth Database

In order to increase the readability, Figure 3.2 shows a screenshot of the project
features associated with each project. Roadway features, such as grade, heavy vehicle
percentage, and lane width, could not be extracted from the work zones database. Utah
open data portal provides collected data from statewide roads yearly. Table 3-1 shows a
small part of the work zone collected data.
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|OBJECTID ||[7o89

[Project ID ||509a

|F‘r0jec1 Cross Reference ||1187r"1
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I
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[Master PIN Description ||[HIGHWAY SAFETY IMPROVEMENT PROGRAM - (HSIP)
[Master PIN Location |

|Road System Code ||R
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SR-36; MP 60.80 - 62.90 & SR-36; MP 59.30 - 62.90 & 5R-36, MP 59.30 -

62.90
[Project value ||la38a77 77
|Regi0n Code ||2
|Concept Description ||HSIF' - Highway Safety Improvement/Barrier Treatments
|F‘r0je|:1T3.rpe ||NL.|II
|F'r0jectT].rpe Description ||N|_|II

|Project Manager |[poEHRING UDOT, ViCKY
|UDOT RE [RuBY, RODNEY J.
|Consultant RE |
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Figure 3.2: Projects Attributes
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Table 3.1: Data Collection Sp readsheet
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Table 3.2 cont. :
SR-121: MP .00 3
State Route: SF2
Cnty:FA-3552: W4
SR-114; MP 903
US-89; MP 37814
SR-200; MP .00 -4
1900 East Price 4
TO UTILITY; MP 2
I-15; MP 293.63 2
Cnty:FA-3158; M4
I-15;: MP 206.49 3
I1-80; MP 30.00 - 2
SR-173; MP 702
TO UTILITY; MP 2
TO UTILITY; MP 2
TO UTILITY; MP 2
US-89; MP 40751
SR-12; MP 10.7C4
SR-12: MP 10.7C4
SR-12; MP 10.7C4
1-80; MP 158.62 2
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SR-143; MP S AL 4
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SR-200; MP 152
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3.4 TRAFFIC DATA

Using the location of work zones and UDOT's traffic management platform, we can find
the adjacent traffic sensors to each work zone. Figure 3.3 shows the location of traffic
sensors on state roadways.

Figure 3.3: Location of Sensors on the Roadways of the State

Using the sensors' IDs and the occurrence date of work zones, we can extract the traffic
data related to each work zone. Hourly traffic data during the project duration was used
for training the model. Table 3.4 shows the location of work zones and the adjacent
sensor ID used to extract traffic data. Furthermore, Table 3.5 shows the extracted traffic
data for a specific location using the PeMS database.

After collecting data from different data sources, one crucial step is to preprocess data.
In any data-driven process, data preprocessing is the step of transforming and encoding
data in order to bring it to such a state that the machine can parse it. Especially, the
features of the data can now be interpreted by the algorithm.
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Table 3.4: Work zones Location and the Adjacent Sensors

LOCATION Y X Sensors # 1D Road SensorX Sensor¥
['SR-201;', 'MP', 583, '-', 10.93, '&', 'SR-201;', '"MP', 5.82, -, 10.92] 4072571093 |-112.022447 |100353 300 SR-201|-112.02891 |40.7245
['I-80;, '"MP', 136, 'to', 143] 4074002853 |-111.674715 |10042% 618 TI-BD  -111.65675 407425
['I-80;", '"MP', 136, 'to’, 143] 4075215523 |-111.6134% |100171 622 I-80  |-111.61488B |40.7525
['SR-201;", 'MP', 5.83, '-', 10.95, '&', 'SR-201;', '"MP', 5.82, ', 10.92] 4072591886 |-112.021702 |100353 300 SR-201 |-112.02891 |40.7245
['I-80;, '"MP', 1336, -, 136.3, '&', "I-B0;, '"MP', 133 .6, '-', 136.3] 4075201512 |-111.715958 |100618 611 I-B0  |-111.72449 |40.7463
['I-80;, '"MP', 1336, -, 136.3, '&', "I-B0;, '"MP', 1336, '-', 136.3] 4073925033 |-111.669215 |10042% 618 TI-BD -111.65675 407425
['I-15;", 'ITS', 'PROJECTS', 'AT", 'VARIOUS', 'LOCATIONS'] 36.99999037 |-113.62245 |100210 790 1-15 |-113.60886 37.0214
['I-15;, '"MP, 293.63, ', 309.33, '&', 'I-15;", 'MP', 293.63, -, 309.33] 40 558BEB97 |-111.898131 |100035 570 “1-15 -111.8988  40.5583
['I-15;', '"MP', 293 63, '-', 309.33, '&', 'I-15;', '"MP", 29353, '-', 309.33] 40 78237808 |-111 910585 |100615 436 I-15 |-11191034 407717
['I-15;", '"MP', 334 73, 'to', 'MP', 340.74] 4111121916 |-112 010814 |100340 978  TI-15  -112.01526 41.1145
['I-15;", '"MP', 334.73, 'to’, 'MP", 340.74] 4119089758 |-112.005484 |100128 966 1-15 -112.00663 41.1916
['US-6&;', 'MP', 176.91, '-', 177.6] 40.09268015 |-111.600023 |100364 3E+06 |US-6 |-111.59892 40.0916
['I-15;', '"MP', 303.34, '-', 30594, '&', 'SR-171;', 'MP', 9.23, '-', 10.27] 40 69836923 |-111 901627 |100566 530 T1-15 |-11190428 40.6967
['I-15;', '"MP', 303.34, '-', 30594, '&', 'SR-171;', 'MP', 9.23, '-', 10.27] 4070700917 |-111.90357 |100554 526 I1-15 -1119044 |4D.7086
['I-15;, '"MP, 293.63, ', 309.33, '&', 'I-15;", 'MP', 293.63, -, 309.33] 40 558BEB97 |-111.898131 |100035 570 “1-15 -111.8988  40.5583
['I-15;, '"MP, 293.63, ', 309.33, '&', 'I-15;", 'MP, 293.63, -, 309.33] 4078237808 |-111.910585 |100615 436 1-15  |-111.91034 40.7717
['I-15;', '"MP', 279.8, '-', 291 5] 4038931982 |-111 833926 |100403 3E+06 |1-15 |-111.83554 40.3916
['I-15;', '"MP', 279.8, '-', 291 5] 405287961 |-111.891015 |100053 375 Y1-15  -111.8921 405354
['I-15;", '"MP', 361.5, '-', 362.5] 4147817213 |-112.053873 |100593 3E+06 “1-15 -112.05609 414646
['I-15;", '"MP', 361.5, '-', 362.5] 4149255703 |-112.053943 100593 3E+06 |1-15 |-112.05609 414646
['TO", 'UTILITY;', 'MP', 0.18, '-', 0.2, '&', '"RANCH', 'EXIT', "OVERPASS;', "M 40.712253778 |-111 789757 |10:0607 192 Y1-215 |-11179618 40.708
['TO", 'UTILITY;', 'MP', 0.18, '-', 0.2, '&', 'RANCH', 'EXIT', '"OVERPASS;', "M 40.71194586 |-111 78992 |100607 192  Y1-215 -11179618 |4D.708
['TO, "UTILITY;', 'MP, 0.19, ', 0.2, '&', 'RANCH’, 'EXIT', '"OVERPASS;", 'MY40.7075884 |-111.796871 |100356 192 Y1-215 -111.79725 |40.708
['TO, "UTILITY;', 'MP*, 0.19, ', 0.2, '&', 'RANCH’, 'EXIT', '"OVERPASS;'", 'MY40.70715268 |-111.797022 |100356 192  Y1-215 -111.79725 |4D.708
['I-15;', '"MP', 33153, '-', 334 73 '&', 'I-15;", '"MP', 342 24 '-', 344 57] 4120913737 |-111.996331 |100124 922 I-15 |-11199861 412128
['I-15;', '"MP', 33153, '-', 334 73 '&', 'I-15;", '"MP', 342 24 '-', 344 57] 4123873271 |-112 014458 |100136 954 YVI-15 -112.01297 4132284
['1-215;', 0.736, 'to', 1.707] 40.70154961 |-111.795065 |100604 190 1-215 |-111.79476 |40.7015
['1-215;', 0.736, 'to', 1.707] 40.71218179 |-111.805847 b
['I-15;", '"MP', 331 53, '-", 334 73 '&', 'I-15;", '"MP", 331,53, -, 334 73] 4107301764 |-111 976065 |100375 738 Y1-15  -1119624 (410522
['I-15;", '"MP', 331 53, '-", 334 73 '&', 'I-15;", '"MP", 331,53, -, 334 73] 4111107441 |-112.0111 100340 978  TI-15  -112.01526 41.1145
['I-15;, '"MP', 351.53, ', 334.73, '&', 'I-15;", 'MP', 331.53, -, 334.73] 41.07306568 |-111.975774 |100375 738 TI1-15 -1119624 |41.0522
['I-15;, '"MP', 351.53, ', 334.73, '&', 'I-15;", 'MP, 331.53, -, 334.73] 41.11121916 |-112.010814 |100340 978 115 -112.01526 41.1145
['US-189;', '"MP', 7.43, '-', 24.9] 40.31977962 |-111.649365 |100228 458 US-189 -111.64222 |40.3233
['US-189;', '"MP', 7.43, '-', 24.9] 4040870875 |-111.500903 | 100237 475 US-189 -111 53608 | 40.39%6
['I-15;, '"MP', 10.88, '-', 10.97, '&', '5R-9;", 'MP', 3.58, *-', 3.71, '&', "I-15;', | 37.12813535 |-113.525831 |100211 795 YI1-15 -113.54773 |37.1172
['I-15;, '"MP', 10.88, -, 10.97, '&', '5R-9;", 'MP', 3.58, *-', 3.71, '&', "I-15;', |537.12917376 |-113.524242 |100211 795 Y1-15 -113.54773 |37.1172
['FROM, 'I-215N;", '"MP', 0, '-', 1.25, '&', 'FROMNY', "I-215N', 'TO', 'I-BOP', '8 40.7404851 |-111.949261 |100158 73 Y1-215 -111.94737 4075
['FROM, 'I-215N;", '"MP', 0, '-', 1.25, '&', 'FROMNY', "I-215N', 'TO', 'I-BOP', '8 40.73995035 |-111.949744 100158 73 Y1-215 -111.94737 4075
['FROM', 'I-215N;", '"MP', 0, -', 1.25, "&', 'FRONY", "I-215N", 'TO', 'I-BOP', '8 40.76168102 -111.949793 |100551 74 Y1-215 -111.95039 |40.7587
['FROM', "'I-215N;", '"MP', 0, -', 1.25, "&', 'FRONY', "I-215N", 'TO', 'I-BOF, '8 40.76594218 |-111.956316 |100368 207 TI1-BD -1119541 |4D.7627
['FROM, 'I-215N;", '"MP', 0, '-', 1.25, '&', 'FROMNY', "I-215N', 'TO', 'I-BOP', '8 40.76497491 |-111.957048 | 100368 207 I-80 | -1119541 40.7627
['FROMN, 'I-215N;", '"MP', 0, '-', 1.25, '&', 'FRONY', "I-215N', 'TO', 'I-BOP', '8 40.76541596 |-111.939121 |100341 214 Y1-BD -1119297 (407642
['FROMN', "I-215N;", '"MP', 0, -', 1.25, "&', 'FRONY', "I-215N", 'TO', 'I-BOF, '8 40.76649452 |-111.946568 | 100368 207 TI1-BD -1119541 |4D.7627
['FROM', 'I-215N;", '"MP', 0, -', 1.25, "&', 'FRONY', "I-215N", 'TO', 'I-BOP, '8 40.76525266 |-111.956143 | 100368 207 TI1-BD -111.9541 |4D.7627
['l-15;', '"MP', 32593, '-', 329 85, '&', 'I-15;', '"MP', 325.93, '-', 329 85] 410031366 |-111927573 |100254 007 I-15  |-11193044 410066
['l-15;', '"MP', 32593, '-', 329 85, '&', 'I-15;', '"MP', 325.93, '-', 329 85] 4105253847 |-11196061 |100375 738 I-15 |-1119624 410522
['I-80;', 'MP', 127.57, '-', 139.22, '&', 'I-B0;", '"MP', 127.57, '-', 138.22] 4071444991 |-111.808598 |100390 193 Y1-BD -111.8061 |4D.7128B
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Table 3.5: Extracted Traffic Data using the PeMS Database

Data Quality
Hour Lane 1 Flow (Veh/Hour)|Lane 2 Flow (Veh/Hour)|# Lane Points|% Observed
05/05/2021 00:00 24.0 93.0 36 100.0
05/05/2021 01:00 19.0 85.0 36 75.0
05/05/2021 02:00 21.0 82.0 36 88.9
05/05/2021 02:00 38.0 108.0 36 100.0
05/05/2021 04:00 68.0 277.0 36 100.0
05/05/2021 05:00 345.0 681.0 36 100.0
05/05/2021 06:00 046.0 1,180.0 36 100.0
05/05/2021 07:00 1,241.0 1,410.0 36 100.0
05/05/2021 08:00 9580.0 1,219.0 36 100.0
05/05/2021 09:00 517.0 884.0 36 100.0
05,/05/2021 10:00 333.0 736.0 36 100.0
05/05/2021 11:00 354.0 7958.0 36 100.0
05/05/2021 12:00 379.0 854.0 36 100.0
05/05/2021 13:00 454.0 838.0 36 100.0
05/05/2021 14:00 540.0 054.0 36 33.3
05/05/2021 15:00 799.0 1,132.0 36 0.0
05/05/2021 16:00 965.0 1,242.0 36 75.0
05/05/2021 17:00 1,148.0 1,254.0 36 100.0
05/05/2021 18:00 573.0 g8901.0 36 100.0
05/05/2021 19:00 332.0 670.0 36 100.0
05/05/2021 20:00 255.0 641.0 36 100.0
05/05/2021 21:00 171.0 463.0 36 100.0
05/05/2021 22:00 113.0 351.0 36 100.0
05/05/2021 23:00 41.0 203.0 36 100.0
05/06/2021 00:00 25.0 113.0 36 100.0
05/06/2021 01:00 15.0 64.0 36 97.2
05/06/2021 02:00 18.0 73.0 36 97.2
05/06/2021 03:00 35.0 127.0 36 100.0
05/06/2021 04:00 78.0 244.0 36 100.0
05/06/2021 05:00 332.0 703.0 36 100.0
05/06/2021 06:00 892.0 1,182.0 36 100.0
05/06/2021 07:00 1,248.0 1,386.0 36 100.0
05/06/2021 08:00 823.0 1,215.0 36 100.0
05/06/2021 09:00 523.0 805.0 36 100.0
05/06/2021 10:00 395.0 824.0 36 100.0
05/06/2021 11:00 369.0 805.0 36 100.0
05/06/2021 12:00 393.0 839.0 36 100.0
05/06/2021 13:00 455.0 892.0 36 100.0
05/06/2021 14:00 599.0 4a3.0 36 100.0
05/06/2021 15:00 g843.0 1,183.0 36 100.0
05/06/2021 16:00 1,049.0 1,281.0 36 100.0
05/06/2021 17:00 1,212.0 1,391.0 36 100.0
05/06/2021 18:00 677.0 1,003.0 36 100.0
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4.0 METHODOLOGY

Many studies have adopted ANN for traffic flow prediction. The robustness of ANN, the
capability to handle large datasets, and the parallel processing ability are why it was
adopted to estimate historical hourly volumes in the work zones. This section provides a
brief overview of the suggested methodology, which would enable researchers and
engineers to replicate the analysis. In this section, we first introduce the basic concepts
of neural networks. Then, the role of used layers and different evaluation methods for
regression models are explained.

4.1 BASIC CONCEPTS

The concept of neural networks is adopted from bionomics. As the core components of
the brain and the nerve system, neurons form a neural network by interconnecting to
billions of other neurons. The outstanding information processing ability of the human
brain provides neural networks with the ability to exploit the massively parallel local
processing and distribute storage properties in the brain.

The significant difference of human and the computer is in the ability of pattern
recognition and learning. Although computers can handle a large number of datasets
with high speed, they are not able to distinguish the difference between them. Daily
brain tasks such as classification, comparison, learning, and regression are some of the
limitations of computers compared to human brains.

ANN is a mathematical system that is able to model the function of a neural network
using many of the simple neurons. A neuron converts single or multiple inputs to a
single or multiple outputs. The process of converting input values to output is presented
in Figure 4.1. The weights assigned to each vector are then updated using the loss
value and the backpropagation technique. This technique is the most prevalent method
of self-learning for ANN models. In this process, the interconnection weights are
adjusted using the error convergence method to obtain a desired output for a given
input. The error function at the output neuron is defined as:

1 4-1
E= §Z(Tj - 4, (4-1)

Where T; is the actual value of output neuron, 4; is the predicted value of the output
neuron, ad j is the output neuron. The ability to learn, operating in parallel, distributed
memory, and fault tolerance are the characteristics of ANN that made them an
appropriate choice for various areas. Generally, neural networks are made of three
main layers: 1) Input layer, 2) Hidden layer, and 3) Output layer (Figure 4.2).

A fully connected feedforward multilayer neural network, as an example of ANN,
consists of multiple layers with neurons in each layer. The first layer represents the
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input layer, the last layer is called the output layer, which is the model prediction, and
the layers in between are hidden layers. Each neuron in a fully connected feedforward
multilayer neural network is linked with all the neurons from the previous layer.
Therefore, the output from a neuron is computed as

a*l = f(wHial + bH*1), (4-2)

Where a}*! is the output of the i-th neuron in layer [ + 1, w!*! is the weight vectors
between the i-th neuron in layer [ + 1 and all the neurons in layer [, a! is the output
vector from the neurons in layer [, b/*! is the bias value associated with the i-th neuron

in layer [ + 1, and f is the activation function used for adding nonlinearity to the model.

Networks with many hidden layers are called deep networks. Such networks are
capable of capturing more complex nonlinear relationships. However, overfitting and
computational costs are the most common problems of deep neural networks.
Overfitting usually occurs when the proposed model is excessively complex, and the
learned pattern from the training dataset is unable to be applied to other datasets.
Moreover, increasing the complexity of the model will also result in more parameters
that increase the need for more computational resources. Computations are performed
with a graphical processing unit (GPU) that can significantly speed up computations.
The computations were performed on Nvidia GeForce RTX 2080 Super, using CUDA
and PyTorch libraries. The Nvidia GeForce RTX 2080 Super is powerful hardware with
3,072 CUDA cores, and 8GB of GDDRG6 clocked at 15.5 Gbps. CUDA is a parallel
computing platform and programming model developed by Nvidia for general computing
on its GPUs. CUDA allows developers to speed up compute-intensive applications by
harnessing the power of GPUs for the parallelizable part of the computation [55]. In
order to improve the performance of neural networks, various layers have been used in
addition to fully connected layers. The following will explain the role of each layer used
in the model performance.
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Figure 4.2: A sample structure of an artificial neural network

4.1.1 Batch Normalization Layer

Since deep networks can be sensitive to the weights initialization and other
configurations, training deep networks with multiple layers is challenging. The
distribution of the inputs to layers in the network may change due to various issues.
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Batch normalization is a technique for standardizing the inputs to each neural network
layer. It also accelerates the training process and reduces the generalization error. This
process can be done using the mean and standard deviation of the input variable to a
layer in each mini-batch. Equation 4-3 is used for normalizing the input data to each
layer.

A

= Joi +¢€ (4-3)

Where ¥, is the normalized vector, x; is the original vector, pj is the batch mean, and o2
is the batch variance.

4.1.2 Activation Layer

Activation functions are added into neural networks in order to add nonlinearity into the
model. This will help the model to learn more complex relationships in the data. The
most common activation functions are listed below.

4.1.2.1 Sigmoid

This activation function is computationally expensive, not zero-centered, and also
causes vanishing gradient problems. Therefore, it is not usually used in real models.
The sigmoid is defined as,

1

4-4
1+e™* (4-4)

o(x) =

4.1.2.2 Tanh

Although the problem of not being zero-centered is solved in this activation function, it
still kills the gradient when the neuron is saturated. It is defined as,

f(x) = tanh(x) (4-5)
4.1.2.3 Rectified Linear Unit (ReLU)

This function does not saturate in the positive region. It is computationally efficient and
converges faster than sigmoid/ tanh in practice. Also, ReLU overcomes the vanishing
gradient problem, allowing models to learn faster and perform better. However, it is not
zero-centered, and also the gradient for negative values is always zero. It is defined as,

f(x) = max(0, x) (4-6)
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4.1.2.4 Leaky ReLU

It has all the advantages of previous functions and covers all their drawbacks. It is
defined as,

f(x) = max(0.1x, x) (4-7)
4.1.2.5 Maxout

It generalizes ReLU and Leaky RelLU. Also, it does not die nor saturate. Nevertheless, it
doubles the number of parameters. Therefore, it is expected to take more time for the
model to learn.

f(x) = max(wlx + by, wlx + b,) (4-8)
4.1.2.6 Exponential Linear Units (ELU)

It has all the benefits of ReLU. Also, it does not die and is closer to zero mean outputs.
However, it is more expensive computationally. It is defined as,

X , x=0
flx) = {a(ex -1), x<0 (4-9)
Based on the advantages of ReLU and its robustness, it is selected as the activation
function for this study.

4.1.3 Optimizer

Optimizers help neural networks in minimizing the loss by changing the parameters
such as weights and learning rate. Neurons weights are initialized using some
strategies and are updated with each epoch using the following equation.

Whew = Woiq — learning rate X (Vy, L)y, ,, (4-10)
4.1.3.1 Gradient Descent (GD)

It is one of the most basic optimization algorithms. In this algorithm, weights are
updated using Eq. 4-10. Although it is easy to implement, it takes an entire dataset to
compute the derivative to update the old weights. This process requires a lot of memory
and computational resources. Also, it is vulnerable to getting stuck at local minima or
saddle points.
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4.1.3.2 Stochastic Gradient Descent (SGD)

In order to overcome the expensive computations of GD, SGD is suggested as an
extension of GD. Instead of considering the whole dataset at a time, the SGD algorithm
derivative is computed, taking one point at a time. It needs less computational
resources than GD; however, it takes more time to converge. The problem of getting
stuck at local minima still exists in this algorithm.

4.1.3.3 Mini-Batch Stochastic Gradient Descent (MB-SGD)

This algorithm overcomes the problem of the significant time of converging in the SGD
algorithm. It uses a small batch of the dataset to compute derivate. After many
iterations, it is observed that the MB-SGD and GD have almost the same value for
derivate the loss function. Although it takes less time to converge than SGD, the
updates are much noisier compared to the GD algorithm.

4.1.3.4 SGD with momentum

It covers the disadvantages of noisy updates in the MB-SGD algorithm by denoising the
gradients. It uses an exponential weighting average, giving more weightage to recent
updates than the previous updates. It has all the advantages of the SGD algorithm and
also converges faster than GD. However, it needs to compute one more variable in
each epoch.

4.1.3.5 Adaptive Gradient (AdaGrad)

In all the previous algorithms, the learning rate remains constant; however, in the
AdaGrad algorithm, the learning rate for weights updating will be decreasing with the
number of iterations. This algorithm does not need to update the learning rate manually.
However, as the number of iterations grows, the learning rate decreases, causing slow
convergence.

4.1.3.6 Adaptive Moment Estimation (Adam)

It stores an exponentially decaying average of past gradients in addition to keeping an
exponentially decaying average of past squared gradients like the AdaDelta algorithm.
Among the discussed optimization algorithms, it has the best performance, although it is
computationally expensive. Adam works with momentums of first and second order. In
addition to storing an exponentially decaying average of past squared gradients, it
keeps an exponentially decaying average of past gradients. Using averages makes the
algorithm converge towards the minima at a faster pace.

Adam is relatively easy to configure, and the default configuration parameters do well in
most situations. Since it combines the best properties of the AdaGrad and RMSProp
algorithms, it can handle sparse gradients on noisy problems. Based on the significant
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advantages of Adam over other optimizers, it is selected as the optimizer algorithm for
this study.

4.2 HYPERPARAMETERS

The network hyperparameters, such as number of layers and number of neurons in
each layer, were selected based on preliminary experiments. The final model
configuration is comprised of an input layer, multiple hidden layers with various neurons
in each, and an output layer. Figure 4.3 shows the structure of the proposed model. The
model was evaluated as described in the following.
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Figure 4.3: Structure of the Fully Connected Neural Network

The hyperparameters are tuned to maximize model performance on the validation
dataset. The parameters used in model training are shown in Table 4.1.

Table 4.1: Considered Training Parameters Based on Hyperparameter Tuning

Hyperparameters Value
Number of Hidden Layers 3

Number of Neurons In Each Layer 256/256/256
Batch Size 500
Maximum Epoch 20

Learning Rate 1e-3
Optimizer Adam

The pseudocode of the proposed is given in Figure 4.4.
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| Function ANN

Initialize ANN model

For epoch in epochs:
Train Data, Valid Data, Test Data < Test Valid Train Split(Dataset,0.7,0.15,0.15)

For point in Train Data:
X < point [:-1], Y <« point[-1]
Optimizer.zero grad()
Prediction <+ ANN(X)
Loss <« MSE.loss(prediction,Y)
Loss.backward(
Optimizer.step()

End For

End For

Figure 4.4: ANN Pseudocode

4.3 EVALUATION METHODS

The output of the proposed model is the traffic volume at each time and specific
location. The performance of the model could be evaluated using the metrics discussed
below.

4.3.1 Coefficient of Determination (R?)

This measure shows the proportion of traffic volume variance that the model explains.
The R? metric is computed as,

?:1(3’;’ - f’j)z

RZ=1- £
1 — ¥)?

(4-11)

where y; denotes the actual traffic volume, j; is the model prediction, and y represents
the sample average. Values closer to 1 indicate better model performance.

4.3.2 Mean Absolute Percentage Error (MAPE)

This measure represents the relative accuracy of the model. It is defined as,
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n
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MAPE = —Z
n

j=1

x 100 (4-12)

It varies between 0 and 100%. Smaller values indicate better model performance.

4.3.3 Mean Squared Error (MSE)

The MSE metric measures the average of the squared errors. It is defined as,
n ,\. — . 2
msp =y =2 (4-13)
i=1

The smaller the MSE, the better the performance is.

4.3.4 Root Mean Square Error (RMSE)

The RMSE metric measures the differences between the predicted value and the
observed ones. It is defined as,

m S v)2
RMSE = Zw (4-14)
i=1

L
A model with a smaller RMSE has a better performance compared to the other models.

4.3.5 Mean Absolute Error (MAE)

It measures the difference between two continuous variables. It is defined as,

n A~
MAE = Z |y’;—y’| (4-15)
i=1

The smaller MAE means that the predicted values are closer to the observed value than
the larger MAE.

4.4 Research Flow chart

The whole process of traffic estimation is shown in Figure 4.5.
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Figure 4.5: Work Zone Traffic Estimation Methodology
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5.0 RESULTS
5.1 SUMMARY

In this study, the traffic dataset is randomly divided into three groups: 70% as training
data, 15% as validation data, and 15% as test data, respectively. The hyperparameters
have been tuned using the validation set and the model performance. Then, the best
model has been applied to the test set. Performance of the proposed ANN model is
determined using four different measures. Figure 5.1 shows the loss diagram and R2
score for training, validation, and test set for a batch size of 200.
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Figure 5.1: Loss Function and R2 score diagram for 20 Epochs and Batch Size of 200

As shown in Figure 5.1, all three loss diagrams decrease with increases in epochs,
meaning that the choice of learning rate is acceptable. Also, the R2 score increases as
the number of epochs increases. Other evaluation metrics diagrams are shown in
Figure 5.2.
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Figure 5.2: MAE and RMSE metrics for 20 Epochs and Batch Size of 200
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As shown in Figure 5.2, there are many fluctuations in the R2 score and MAE score. In
order to investigate the effect of batch size, the batch size is increased to 500.
Comparing the loss value of the 20" epoch shows that it outperforms the previous
model with a batch size of 200. Figure 5.3 shows the loss diagram and R2 score of
training, validation, and test set for a batch size of 500 and 20 epochs.
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Figure 5.3: Loss Function and R2 score diagram for 20 Epochs and Batch Size of 500

Other evaluation metrics are shown in Figure 5.4.
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Figure 5.4: MAE and RMSE metrics for 20 Epochs and Batch Size of 500

A smaller value of train loss than the test loss shows that the model is trained better in
comparison to the previous model. Since the volume of the validation set is much
smaller than the training and test set, the estimated values are more reliable with less
value of losses. The loss value of all three divided datasets is decreasing with an
increase in the number of epochs. Therefore, the model is trained perfectly without any
possibility of overfitting. As shown in Figure 5.3, there are fewer fluctuations in the R2
and MAE diagram showing that the model is stable and the training process was
performed well.
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The data collected in this study included the field data, data acquired from open-source
datasets, and the data acquired from the permanent sensors implemented at several
locations on the interstate highways. The model evaluation for a random seed showed
the model outperformance with an R2, RMSE, and MAE being 0.98, 158, and 101,
respectively. Determining the study results more precisely shows that the model has
much higher accuracy in those locations with more considerable traffic volume.
However, the model could not yield acceptable results in zones with fewer traffic
volumes. One possible justification for that could be the higher number of data points
with higher traffic values, which could cause the network to be optimized based on
those values. The MAE shows that the average absolute difference between the
observed values and the predicted values is 101 vehicles per hour, meaning that the
actual traffic is in the range of + (Predicted Values + 101).

Since the data is randomly sampled for train, validation, and test sets, it is difficult to
visualize the model performance for a specific station at a given time. However, to make
a graphical comparison of how the model predictions match the ground truth data,
Figure 5.5 shows 50 randomly selected data points.
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Figure 5.5: Graphical comparison of the model performance and the actual data
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6.0 CONCLUSION
6.1 SUMMARY

Construction work zones are one of the main reasons for traffic delays and road
congestion. This happens due to a decrease in available lanes, imposed speed limits,
and narrower lanes. The availability of reliable and accurate traffic flow prediction
models can save time and cost. In this study, an artificial neural network model is
developed to predict hourly traffic volume in a statewide network based on the data
collected by Utah transportation agencies. The developed model is based on the
project data, road data, and traffic features such as lane width, heavy vehicle
percentage, work intensity, road slope, work-zone length, project duration, year,
season, day of the week, and time of day. The main benefit of the proposed model is
that it does not require users to set various adjustment factors based on practical
experience. The presented model would bring insights for having more accurate traffic
prediction in work zones.

The suggested neural network model is trained and evaluated on around 400,000 data
points collected from about 80 projects on Utah roadways. The developed model is
trained on 70% of the data and is evaluated using the other 30%, divided into 15% of
validation and 15% of test set. The main goal of this project is to estimate historical
hourly volumes throughout the state of Utah. The results show that there exists a strong
correlation between the predicted and actual values. Specifically, numerical results of
four random seeds show consistent outperformance of the proposed model, with an
average R2, RMSE, and MAE being 0.98, 101, and 158, respectively.

Due to the limited number of traffic sensors on state roads, it is almost impossible to
estimate the work zones' traffic flow on the roads without traffic sensors. The developed
deep neural network examined the feasibility of using historical data to develop a data-
driven tool for evaluating traffic impacts of work zones based on work zone and
spatiotemporal features. The accuracy of all types of work zone results, including short
and long term, day and night time, and interstate and arterial work zones, were
acceptable, with under 2% error in the predicted traffic volume. The developed model
makes predictions of traffic volume within work zones using 20 input variables. One
important point is that the project focused on state work zones, not meaning it is
applicable to other cities and countries.

6.2 LIMITATIONS AND RECOMMENDATIONS

One of the main limitations of this study is the lack of exact information on the project
location, project time, and lane closure strategies. For example, one project may have
happened during nighttime when there is much less traffic. However, those that
occurred during the daytime have more traffic impacts. Additionally, not all of the project
lengths have been occupied by work zones. Many road projects are happening in
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multiple segments due to limited available heavy equipment. This could further affect
the traffic conditions on the roads.

The model performance could be assessed using other machine learning models, such
as random forest, support vector machine (SVM), and XGBoost. XGBoost is an
optimized boosting algorithm that uses the gradient boosting framework. Boosting
algorithms solve data science problems using a parallel decision-tree structure. Due to
the importance of work zone traffic prediction, many studies have applied various
machine learning models to investigate the effect of work zones on road traffic. The
results of the proposed model could be compared to the work zone capacity estimation
models existing in the literature.

Based on the encouraging results of this project, further studies could be carried out
using the probe vehicle data to improve the model's reliability by decreasing the RMSE,
MAPE, and MAE values. Also, the model could be used in navigation systems to
improve the route choice of drivers. Thanks to recent advancements in computing
technologies, computer vision can facilitate the process of automatically detecting work
zone features and extracting them using different techniques such as photogrammetry
[56], [57]. A valuable resource for work zone detection and feature extraction on
roadsides are the videos and images collected by Mandli. Mandli is a specialized
highway data collection company that integrates 3D pavement technology, mobile
LiDAR, and geospatial equipment for multiple DOTs throughout the U.S.
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