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EXECUTIVE SUMMARY 
Construction work zones play a significant role in traffic delays and congestion on state 
roadways. The roadway capacity is decreased due to fewer traffic lanes, narrower 
lanes, and work zone speed limits. To this end, accurate prediction of work zones' 
capacity is of utmost importance to transportation agencies. Thanks to the advancement 
of technologies, there are many traffic sensors installed on roadways. The considerable 
amount of traffic data collected by these sensors at every time of the day provided 
researchers with the chance to investigate possible influential factors on road traffic. 
The traffic impacts of work zones could significantly vary due to several interacting 
factors such as work zone factors (work zone location and layout, length of the closure, 
work zone speed, intensity, and daily active hours); traffic factors (percentage of heavy 
vehicles, highway speed limit, capacity, mobility, flow, density, congestion, and 
occupancy); road factors (number of total lanes, number of open lanes, and pavement 
grade and condition); temporal factors (e.g., year, season, month, weekday, daytime, 
and darkness); weather conditions (rainy, sunny, and snowy); and spatial factors (road 
lane width, proximity, and number of ramps). Utah, as one of the pioneer states in using 
novel techniques in traffic management, is interested in evaluating the impacts of those 
factors on mobility and traffic conditions of roadway systems within the state. 

To address work zones' capacity on roadways, this project proposed an artificial neural 
network model based on the collected data by Utah transportation agencies. In order to 
determine the most influential factors of work zones, a comprehensive literature review 
has been conducted on 70 previously published papers. Lane width, work zone length, 
project duration, time of day, day of the week, and heavy vehicle percentage are among 
the most common factors considered in the literature. The suggested neural network 
model is trained and evaluated on around 400,000 data points collected from about 80 
projects on Utah roadways. Based on the collected data from various resources, a four-
layer neural network has been developed with 256 neurons in each hidden layer. The 
developed model is trained on 70% of the data and is evaluated using the other 30%, 
divided into 15% of validation and 15% of test set. Numerical results of a random seed 
show consistent outperformance of the proposed model, with an R2, RMSE, and MAE 
being 0.98, 158, and 101, respectively. Based on the results of this project, future 
studies could be carried out using the probe vehicle data to improve the model's 
performance by decreasing the RMSE, MAPE, and MAE values. 
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1.0 INTRODUCTION 
1.1 Overview 

The increased load on road infrastructures due to population growth has resulted in an 
increment in the need for road maintenance and reconstruction activities, including 
increasing the line number, replacing the pavement, and adding or removing traffic 
signs. Road maintenance activities usually require lane closures that will cause 
increased traffic crashes and delays because of reduced capacity. According to the 
urban mobility report [1], traffic congestion in 2017 caused 8.8 billion hours of travel 
delay, with 3.3 billion gallons more fuel consumption, equal to a congestion cost of $179 
billion. Figure 1.1 shows the trend of traffic congestion effects on public loss. 
 

 
Figure 1.1: U.S. Congestion Problem Trends in Recent Years 

 
Construction work zones are among the main reasons for traffic congestion and 
nonrecurring delays in every transportation network. Other reasons for nonrecurring 
delays are crashes, weather conditions, and disabled vehicles. However, the top three 
causes of nonrecurring delays are incidents (25% of congestion), work zones (10%  of 
congestions), and adverse weather conditions (15% of congestion) [2]. Appropriate 
management of temporary disruptions could mitigate their effect.  

The effect of work zones as one of the causes of traffic delays could further diminish by 
deploying a precise traffic prediction model. Accurate work zone traffic prediction could 
equip drivers to handle any upcoming delays or congestion in their travel. Travelers are 
especially more sensitive to unpredicted congestion because of tightly scheduled daily 
activities. Additionally, work zone traffic prediction providing agencies with adequate 
information helps them in resource allocation according to the congestion risk of each 
specific road [3]. Moreover, because of the dynamic nature of the traffic network, 
precise work zone impact prediction could alleviate traffic congestion, directly impacting 
fuel consumption and air pollution [4]. 
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Many studies have investigated the effect of work zones on traffic conditions and road 
capacity. Such studies accounted for a wide range of parameters that may affect 
capacity reduction. Depending on the work zone's nature and configuration, they could 
be classified into various groups, such as work zone configuration, roadway conditions, 
work activity characteristics, and environmental conditions. Work zone features, such as 
work zone length, work time, work zone speed limit, heavy vehicle percentage, work 
zone grade, work intensity, road type, number of opened/closed lanes, and lane width, 
are among the work zone features that could affect roadway capacity.  

The simplicity of implementing traditional approaches is why many works of literature 
have employed them in their studies. Traditional approaches use the deterministic 
queuing theory based on the relationship between approaching traffic volume and 
limited capacity. However, several interacting variables might contribute to traffic 
conditions around work zones, which cannot be represented in a simple mathematical 
function. To this end, the predicted capacities are usually inaccurate because of the 
simplified conditions.  

To improve the effectiveness of work zone traffic management plans (TMP), novel and 
automated approaches are required to identify the relationship between work zone 
parameters and traffic characteristics such as delay time, capacity, and queue length.  
State departments of transportation (DOTs), especially the Utah Department of 
Transportation (UDOT), collect various data types related to work zone operations and 
are interested in evaluating the potential impacts of these variables on traffic and 
mobility conditions at the roadway system. One potential method of finding traffic 
patterns and evaluating the effect of work zones on traffic parameters is the use of 
machine learning techniques. Machine learning algorithms, such as decision trees, 
ensemble learning, support vector machine (SVM), and artificial neural network (ANN), 
have been widely used for prediction work zones capacity.  

Another possible method of investigating the effect of work zones on roadway traffic Is 
using microscopic simulation models. One of the advantages of using a simulation 
model is determining the impact of each work zone feature on the road capacity [5], [6]. 
However, the need for specialized software packages, model calibration, and 
computational resources are some of the downsides of these models. A few examples 
of these softwares are CORSIM and VISSIM. With the availability of more data each 
day, the better accuracy and the less need for technologies are some of the reasons 
pushing researchers to use data-driven approaches, such as machine learning 
algorithms.  

This project aims to develop a neural network-based model to estimate the work zone 
traffic volume on Utah's freeways. It is worth noting that the developed model can 
estimate work zone traffic in areas without any traffic sensors.  
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1.2 PROBLEM STATEMENT 

Recently, DOTs in the United States have started making landmark decisions on 
implementing data-driven approaches to daily state problems. However, due to region-
based developed models, transportation divisions cannot select the right technology 
unless they know whether that technology can meet their requirements. Due to the 
higher accuracy of machine learning methods, some of the pioneer DOTs, such as 
UDOT, in the United States have begun using them in their decision-making.  

Fortunately, UDOT continuously collects and records all necessary data required for this 
project. UDOT also has access to two data sources, the freeway Performance 
Measurement System (PeMS) and iPeMS. The iPeMS website provides statewide 
HERE probe data, and freeway PeMS provides data from the UDOT traffic 
management system. Freeway PeMS data is collected from radar, loops, and micro-
loops. This data can later be preprocessed and prepared to be utilized in the model. 
Figure 1.2 shows the interface of PeMS and the recorded traffic data on freeway I15 at 
a specific time. 

 

 
Figure 1.2: PeMS Dataset for Extracting Traffic Data 
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Moreover, UDOT stores work zone data in their databases, and those databases are 
updated frequently. Figure 1.3 shows the website that shows the completed and 
ongoing projects in Utah. 

 
Figure 1.3: Location and Detailed Information on Projects in Utah 

 
A deep learning model could be developed using the traffic data collected from PeMS 
and the work zone features from the UDOT project database. The output data could 
further assist the decision-makers in assessing the most effective traffic management 
systems at work zones, evaluating the hidden costs of construction operations at the 
work zone, and better scheduling for work zone-related projects. This system is based 
on a deep neural network and can consider different factors affecting the traffic 
conditions near the work zones. 

 

1.3 OBJECTIVES 

Many approaches are available for predicting traffic and road capacity within work 
zones. While the output is similar for all of them, the considered parameters and levels 
of accuracy may differ. Also, one approach may work better than the other one based 
on the existing conditions. Despite the growing popularity of data-driven approaches, 
such as machine learning algorithms, and their ease of use and low-cost technology, it 
has not been considered as a practical tool within UDOT divisions. The primary purpose 
of this project is to address traffic estimation within work zones and explore the 
feasibility of using data-driven approaches as an alternative technology to the existing 
traditional methods.  
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1.4 SCOPE 

This research evaluates the mobility effect of work zones within the state of Utah. The 
scope of this project covers the following subjects: 

• Most important features of work zones 
• Traffic impact of work zones 
• Traffic estimation of roadways within the work zone area 

The project was conducted within these areas because the existing literature had 
considered different work zone features in their developed models. Therefore, finding 
the most effective and common features is of utmost importance for developing any 
model. Moreover, all of the conducted projects in this research area are related to a 
specific city or state. Since driving rules and drivers' behaviors within each zone are 
different from another zone, it is impossible to use the existing models for the state of 
Utah. Furthermore, there is no study investigating the effect of work zones on hourly 
traffic. Most of the studies in this field focused on work zone capacity prediction. To this 
end, this project developed a machine learning model based on the work zone features 
and traffic data collected from Utah's freeways. 

 

1.5 OUTLINE OF REPORT 

• Introduction 
• Research Background 
• Data Collection 
• Methodology 
• Results 
• Conclusion 
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2.0 RESEARCH BACKGROUNDS 
2.1 BACKGROUND 

Construction work zones play an important role in delays occurring on roadway 
systems. Therefore, many studies have been conducted to determine the effect of work 
zones on roadway capacity. Moreover, to facilitate the process, the Highway Capacity 
Manual is provided to calculate the work zone capacity. Generally, the existing literature 
in the field of work zone traffic prediction could be categorized into three main groups: 
parametric, non-parametric, and microscopic simulation. 

2.1.1 Parametric Models 

The early studies in this field attempted to suggest mathematical models for work zone 
capacity. The developed models are based on the work zone attributes, road features, 
and collected data from various implemented projects. Based on the data collected from 
33 work zones in Texas between 1987 and 1991, Krammas and Lopez [7], as one of 
the pioneers in this field, suggested a deterministic model for short-term work zone 
capacity estimation.  Specifically, the model, 

𝐶𝐶 = (1600 + 𝐼𝐼 − 𝑅𝑅) × 𝑓𝑓𝐻𝐻𝐻𝐻 (2-1) 
 
estimates capacity C by accounting for adjustment factors for work intensity I, presence 
of the ramp R, and heavy vehicle percentage 𝑓𝑓𝐻𝐻𝐻𝐻. Racha et al. [8] developed a 
parametric model by considering speed-flow relationships using collected data from 22 
work zone sites in South Carolina. The results of their study show that 1,550 passenger 
cars per hour per lane (pcphpl) is a reasonable estimation for a two-to-one lane closure 
configuration. 

Long-term and short-term work zones have different capacities. Therefore, it is not ideal 
to use short-term models for long-term work zones capacity estimation. Various models 
have been proposed in the literature based on the collected data on long-term work 
zones. Al-Kaisy and Hall [9] developed a multiplicative model for capacity estimation in 
long-term work zones. The collected data are from six sites in Ontario, Canada. The 
results of this study depicted that heavy vehicle percentage has the most effect on the 
road capacity. The model,  

 
𝐶𝐶 = 𝐶𝐶𝑏𝑏 × 𝑓𝑓𝐻𝐻𝐻𝐻 × 𝑓𝑓𝑑𝑑 × 𝑓𝑓𝑤𝑤 × 𝑓𝑓𝑠𝑠 × 𝑓𝑓𝑟𝑟 × 𝑓𝑓𝑙𝑙 × 𝑓𝑓𝑖𝑖 (2-2) 

 
estimates capacity C by accounting for adjustment value for based work zone capacity 
𝐶𝐶𝑏𝑏, heavy vehicle percentage 𝑓𝑓𝐻𝐻𝐻𝐻, driver population 𝑓𝑓𝑑𝑑, work activity 𝑓𝑓𝑤𝑤, location of lane 
closure 𝑓𝑓𝑠𝑠, presence of rain 𝑓𝑓𝑟𝑟,  light conditions 𝑓𝑓𝑙𝑙, non-additive interactive effects  𝑓𝑓𝑖𝑖. 

In order to capture the uncertainties associated with the traffic parameters and present 
a more reliable capacity estimation, many studies have integrated probability 
distributions of parameters into their developed model. Using the probabilistic speed-
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flow relationship, Weng and Yan [10] proposed a work zone capacity estimation model 
based on the recorded data in Singapore. Based on this study, an increase in the 
geometrical alignment will result in decreasing the capacity. However, the work zone 
capacity increases with an increase in speed limit. In the next section, a literature review 
of non-parametric studies will be presented. Weng and Yan [11] also proposed another 
probability model for work zones in the United States. Their study provides traffic 
engineers with a range of work zone capacity at a corresponding prediction band at a 
specific confidence level. However, one of the downsides to this study is that the model 
was developed based on the US data; therefore, it may not be applicable to other 
countries due to differences in driving behavior and rules. Weng et al. [12] suggested a 
stochastic model to estimate the uncertainty of work zone capacity. The proposed 
model could be applied to evaluate travel time reliability. Some of the limitations related 
to this study are: 1) The limited examination of explanatory factors other than those that 
were considered, 2) The assumption of a linear relationship between capacity and other 
variables.              

2.1.2 Microscopic Simulation  

Another well-known approach for estimating the work zone capacity is the microscopic 
simulation. Using this approach, researchers could determine the effect of each work 
zone or road attribute on the capacity. Specialized software, model calibration, and 
expensive computations are some of the disadvantages of using simulation models. 
The most popular software packages of microscopic simulation are CORSIM, VISSIM, 
and PARAMICS. Ping and Zhu [13] used CORSIM to estimate the work zone capacity 
under different conditions. In another study, Chatterjee et al. [14], using VISSIM, 
proposed a work zone capacity model by considering drivers' behaviors. Also, Wen built 
a PARMICS simulation model for a prototypical freeway work zone in a connected 
vehicle environment. Four different models were constructed for the travel time analysis, 
including linear regression, multivariate adaptive regression splines (MARS), stepwise 
regression, and elastic net. The results show that the different modeling approaches 
have similar performance in terms of the Root of Mean Square Error (RMSE) [15]. In 
another study, Das and Chattaraj developed a work zone traffic simulation model using 
cellular automata. The results of their study showed that the lane drop not only 
produces a jam in the blocked lane as well as in the bypass lane [16]. Model calibration 
is an inevitable part of simulation models. Therefore, many researchers have suggested 
various calibration methods. Yeom et al. [17] proposed a methodology to calibrate work 
zone capacity models. In order to pave the way for future studies, Kan et al. [18] 
suggested a procedure for calibrating VISSIM models. Figure 2.1 shows the suggested 
procedure. 

Since parametric and simulation models only consider a limited number of work zone 
features and road attributes, they usually have poor performance in estimation work 
zone capacity. Moreover, they only present a crisp number as the work zone capacity, 
but the capacity could vary based on the time of day, day of the week, and other 
contributing features. To this end, non-parametric models were developed to overcome 
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the disadvantages of the parametric and simulation models. Since non-parametric 
models are based on data collected from actual work zone sites, their estimations are 
more realistic and have better accuracy. 

 
Figure 2.1: VISSIM Model Calibration Procedure [19] 

 
2.1.3 Non-parametric Models 

Different machine learning approaches have been adopted by researchers and applied 
to various transportation fields. Work zone capacity estimation is not an exception. 
Decision trees, ensemble learning, support vector machine (SVM), and neural network 
are among the most common methods. Based on the collected data from 14 cities and 
states, Weng and Meng [20] developed a decision tree to estimate the freeway work 
zone capacity. Better accuracy with no need for adjustment factors are the advantages 
of using this method. However, decision trees are vulnerable to small changes or any 
noises in the training set. Using the same dataset, Weng and Meng [21] developed an 
ensemble learning model using 105 individual trees to cover the disadvantages of 
decision trees.  

Some studies used more novel techniques, such as SVM and artificial neural networks. 
Adeli and Jiang [22] developed a neuro-fuzzy model by considering 17 different 
parameters. The dataset was based on the collected data from seven cities and states 
in the United States. In another study, Karim and Adeli [23], considering 11 work zone 
factors, developed a neural network for work zone capacity estimation. A radial basis 
function was employed to develop deterministic results.  

In order to compare the results of different models, Hou et al. [24] developed four 
different models: random forest, baseline predictor, regression tree, and neural network. 
The results of their study showed that random forest outperformed the other three 
models. Moreover, one of the most important findings of their study is that the work 
zone features do not affect the traffic flow characteristics. 

To improve the results of previous researches, some studies combined different 
algorithms. However, all the previously developed models result in a single value as 
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their outputs. In other words, they do not consider probability distributions and 
confidence intervals in their models. Bian and Ozbay [25] developed a Bayesian neural 
network with black-box variational inferences (BBVI) technique and a regular artificial 
neural network with Monte Carlo (MC)-dropout technique. The proposed models are 
capable of capturing the uncertainties associated with capacity estimation models. 
Figure 2.2 shows the framework for work zone capacity prediction based on non-
parametric and parametric models. The framework consists of three main phases. i) 
Data Collection Phase: data can be collected using different technologies such as 
sensors, radars, cameras, vehicle-mounted GPS, and WiFi. ii) Prediction Phase: the 
collected data in the first phase could further be analyzed to extract more information on 
drivers' behaviors. iii) Application Phase: the results of the previous phase could be 
used in traffic management, transportation planning, and navigation. 

 

 
Figure 2.2: Framework for Work Zone Capacity Prediction [26] 

 

2.2 FREQUENT FACTORS 

Numerous studies have been performed to model freeway work zone capacity using 
site conditions. These studies accounted for a wide range of factors that may influence 
capacity reduction. Depending on the work zone's nature and configuration, these 
factors can be categorized into multiple groups: work zone configuration, roadway 
conditions, work activity characteristics, and environmental conditions [27]. Among 
almost 40 factors that were considered in the literature, the following were identified as 
the most frequent ones: 

1. Heavy vehicle percentage 2. Lane width 
3. Work zone grade 4. Lane closure location (Left/ Right) 
5. Work zone intensity  6. Work zone length 
7. Road type (Rural/ Urban)  8. Weather condition (Clear/ Rain) 
9. Number of opened lanes  10. Driver composition and population 
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11. Number of closed lanes 12. Ramp (Yes/ No) 
13. Work zone duration (Short/Long)  14. Work zone speed limit 
15. Work time (Day/ Night) 16. Normal speed 
17. Weekday 18. Lateral clearance 

Table 2.1 summarizes the most frequently considered factors and the outputs of the 
models. Some studies only focused on capacity estimation, while a couple of them 
considered multiple outputs simultaneously. Results show that heavy vehicle 
percentage, work zone grade, work zone intensity, and the number of opened and 
closed lanes are among the most frequent factors considered in previous studies. It is 
expected that a higher percentage of heavy vehicles will reduce the short- and long-
term work zone capacity due to occupying more space and moving slower. Also, as the 
work intensity is increased from light to heavy, the work zone capacity will decrease. 
The most common influencing factors in the simulation-based studies include lane 
configuration, volume distributions, the distance of signs upstream of the work zone, 
presence of trucks, and rubbernecking. 
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Table 2.1: Frequency of the Commonly Considered Factors 
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2.3 SUMMARY 

Based on the literature, different approaches have been proposed for estimating work 
zone capacities. Although parametric approaches are widely used by both federal and 
state transportation agencies, due to their simplicity and ease of implementation, it is 
challenging to model work zone capacity "in the closed-form" as attempted with models 
(2-1) and (2-2). Specifically, these models do not account for interactions between 
influencing factors [12]. On the other hand, non-parametric approaches can extract 
nonlinearity or higher-order interactions of work zone features and work zone capacity. 
The need for a large amount of data for training, validation, and testing is one of the 
drawbacks of non-parametric models. Moreover, they may fall short when applied to 
scenarios that were not observed historically.  

It is often difficult to measure the effect of some features, such as driving behavior, the 
distance of warning signs, and merge strategies in the parametric and non-parametric 
models. Therefore, simulation-based methods have been introduced to determine the 
impact of these features on traffic flow and better understand future situations. 
Requiring computational resources, specialized software, and model calibration are 
some of the drawbacks of simulation-based models. 

The method selection depends on various criteria. However, one of the most important 
factors is the amount of available data. Both parametric and non-parametric methods 
are data-driven approaches; however, the choice between the two may depend on the 
available number of data points. Since non-parametric models require a validation 
dataset for hyperparameter tuning as well as test data, they typically require more data 
points than parametric models. However, if the amount of data is large enough, non-
parametric methods are expected to provide higher estimation accuracy than parametric 
models.  
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3.0 DATA COLLECTION 
3.1 OVERVIEW 

The idea behind the suggested approach is to train a neural network model to learn the 
relation between traffic volumes and various influencing factors of work zones. This 
process would enable agencies to use the model and estimate volumes at locations 
with no traffic sensors. Accordingly, the proposed work regresses hourly traffic volumes 
from traffic sensors along Utah's freeways to explanatory variables obtained from 
various data sources (e.g., road characteristics, work zone features). The remainder of 
this section provides a brief description of the most influential factors of work zones and 
the data needed to train the model. 

3.2 INFLUENCING FACTORS 

Based on the literature review, the following 18 factors are among the most common 
factors considered in the previously conducted research. 

1. Heavy vehicle percentage 2. Lane width 
3. Work zone grade 4. Lane closure location (Left/ Right) 
5. Work zone intensity  6. Work zone length 
7. Road type (Rural/ Urban)  8. Weather condition (Clear/ Rain) 
9. Number of opened lanes  10. Driver composition and population 
11. Number of closed lanes 12. Ramp (Yes/ No) 
13. Work zone duration (Short/Long)  14. Work zone speed limit 
15. Work time (Day/ Night) 16. Normal speed 
17. Weekday 18. Lateral clearance 

 

Table 2.1 shows that heavy vehicle percentage, work zone grade, and work zone 
intensity are the most common parameters in the previously developed models. 
However, some variables, such as lateral clearance or weather conditions, are 
infrequent in the proposed models. 

3.3 WORK ZONES AND ROADWAY DATA 

UDOT stores work zones data as well as traffic data in its databases, and those 
databases are updated frequently. Since the ongoing projects may keep changing the 
work zone setups, this project only focused on the completed projects. Using the 
Google Earth file of completed projects, we can get the locations and project attributes. 
Figure 3.1 shows a screenshot of the attributes associated with each project. Each 
project has more than 170 attributes; however, some of them, such as its contractor, 
project cost, and engineering company, do not affect the traffic conditions of roads.  
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Figure 3.1: A Screenshot of Google Earth Database 

 
In order to increase the readability, Figure 3.2 shows a screenshot of the project 
features associated with each project. Roadway features, such as grade, heavy vehicle 
percentage, and lane width, could not be extracted from the work zones database. Utah 
open data portal provides collected data from statewide roads yearly. Table 3-1 shows a 
small part of the work zone collected data. 
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Figure 3.2: Projects Attributes 
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Table 3.1: Data Collection Spreadsheet 
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Table 3.2 cont. : Data Collection Spreadsheet 
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Table 3.3 cont. : Data Collection Spreadsheet 
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3.4 TRAFFIC DATA 

Using the location of work zones and UDOT's traffic management platform, we can find 
the adjacent traffic sensors to each work zone. Figure 3.3 shows the location of traffic 
sensors on state roadways. 
 

 
Figure 3.3: Location of Sensors on the Roadways of the State 

 
Using the sensors' IDs and the occurrence date of work zones, we can extract the traffic 
data related to each work zone. Hourly traffic data during the project duration was used 
for training the model. Table 3.4 shows the location of work zones and the adjacent 
sensor ID used to extract traffic data. Furthermore, Table 3.5 shows the extracted traffic 
data for a specific location using the PeMS database.  

After collecting data from different data sources, one crucial step is to preprocess data. 
In any data-driven process, data preprocessing is the step of transforming and encoding 
data in order to bring it to such a state that the machine can parse it. Especially, the 
features of the data can now be interpreted by the algorithm. 
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Table 3.4: Work zones Location and the Adjacent Sensors 
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Table 3.5: Extracted Traffic Data using the PeMS Database 
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4.0 METHODOLOGY 
Many studies have adopted ANN for traffic flow prediction. The robustness of ANN, the 
capability to handle large datasets, and the parallel processing ability are why it was 
adopted to estimate historical hourly volumes in the work zones. This section provides a 
brief overview of the suggested methodology, which would enable researchers and 
engineers to replicate the analysis. In this section, we first introduce the basic concepts 
of neural networks. Then, the role of used layers and different evaluation methods for 
regression models are explained.  

4.1 BASIC CONCEPTS 

The concept of neural networks is adopted from bionomics. As the core components of 
the brain and the nerve system, neurons form a neural network by interconnecting to 
billions of other neurons. The outstanding information processing ability of the human 
brain provides neural networks with the ability to exploit the massively parallel local 
processing and distribute storage properties in the brain.  

The significant difference of human and the computer is in the ability of pattern 
recognition and learning. Although computers can handle a large number of datasets 
with high speed, they are not able to distinguish the difference between them. Daily 
brain tasks such as classification, comparison, learning, and regression are some of the 
limitations of computers compared to human brains.  

ANN is a mathematical system that is able to model the function of a neural network 
using many of the simple neurons. A neuron converts single or multiple inputs to a 
single or multiple outputs. The process of converting input values to output is presented 
in Figure 4.1. The weights assigned to each vector are then updated using the loss 
value and the backpropagation technique. This technique is the most prevalent method 
of self-learning for ANN models. In this process, the interconnection weights are 
adjusted using the error convergence method to obtain a desired output for a given 
input. The error function at the output neuron is defined as: 

  
𝐸𝐸 =  

1
2
��𝑇𝑇𝑗𝑗 −  𝐴𝐴𝑗𝑗�

2

𝑛𝑛

, (4-1) 

  
Where 𝑇𝑇𝑗𝑗 is the actual value of output neuron, 𝐴𝐴𝑗𝑗 is the predicted value of the output 
neuron, ad j is the output neuron. The ability to learn, operating in parallel, distributed 
memory, and fault tolerance are the characteristics of ANN that made them an 
appropriate choice for various areas. Generally, neural networks are made of three 
main layers: 1) Input layer, 2) Hidden layer, and 3) Output layer (Figure 4.2).  

A fully connected feedforward multilayer neural network, as an example of ANN, 
consists of multiple layers with neurons in each layer. The first layer represents the 
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input layer, the last layer is called the output layer, which is the model prediction, and 
the layers in between are hidden layers. Each neuron in a fully connected feedforward 
multilayer neural network is linked with all the neurons from the previous layer. 
Therefore, the output from a neuron is computed as 

  
𝑎𝑎𝑖𝑖𝑙𝑙+1 = 𝑓𝑓�𝑤𝑤𝑖𝑖𝑙𝑙+1𝑎𝑎𝑙𝑙 + 𝑏𝑏𝑖𝑖𝑙𝑙+1�, (4-2) 

  
Where 𝑎𝑎𝑖𝑖𝑙𝑙+1 is the output of the i-th neuron in layer 𝑙𝑙 + 1, 𝑤𝑤𝑖𝑖𝑙𝑙+1 is the weight vectors 
between the i-th neuron in layer 𝑙𝑙 + 1 and all the neurons in layer 𝑙𝑙, 𝑎𝑎𝑙𝑙 is the output 
vector from the neurons in layer 𝑙𝑙, 𝑏𝑏𝑖𝑖𝑙𝑙+1 is the bias value associated with the i-th neuron 
in layer 𝑙𝑙 + 1, and 𝑓𝑓 is the activation function used for adding nonlinearity to the model.  

Networks with many hidden layers are called deep networks. Such networks are 
capable of capturing more complex nonlinear relationships. However, overfitting and 
computational costs are the most common problems of deep neural networks. 
Overfitting usually occurs when the proposed model is excessively complex, and the 
learned pattern from the training dataset is unable to be applied to other datasets. 
Moreover, increasing the complexity of the model will also result in more parameters 
that increase the need for more computational resources. Computations are performed 
with a graphical processing unit (GPU) that can significantly speed up computations. 
The computations were performed on Nvidia GeForce RTX 2080 Super, using CUDA 
and PyTorch libraries. The Nvidia GeForce RTX 2080 Super is powerful hardware with 
3,072 CUDA cores, and 8GB of GDDR6 clocked at 15.5 Gbps. CUDA is a parallel 
computing platform and programming model developed by Nvidia for general computing 
on its GPUs. CUDA allows developers to speed up compute-intensive applications by 
harnessing the power of GPUs for the parallelizable part of the computation [55]. In 
order to improve the performance of neural networks, various layers have been used in 
addition to fully connected layers. The following will explain the role of each layer used 
in the model performance.  
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Figure 4.1: An artificial neuron 

 

 
Figure 4.2: A sample structure of an artificial neural network 

 

4.1.1 Batch Normalization Layer 

Since deep networks can be sensitive to the weights initialization and other 
configurations, training deep networks with multiple layers is challenging. The 
distribution of the inputs to layers in the network may change due to various issues. 
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Batch normalization is a technique for standardizing the inputs to each neural network 
layer. It also accelerates the training process and reduces the generalization error. This 
process can be done using the mean and standard deviation of the input variable to a 
layer in each mini-batch. Equation 4-3 is used for normalizing the input data to each 
layer. 
  

𝑥𝑥𝚤𝚤� =  
𝑥𝑥𝑖𝑖 − 𝜇𝜇𝐵𝐵
�𝜎𝜎𝐵𝐵2 + 𝜀𝜀

 (4-3) 

  
Where 𝑥𝑥𝚤𝚤�  is the normalized vector, 𝑥𝑥𝑖𝑖 is the original vector, 𝜇𝜇𝐵𝐵 is the batch mean, and 𝜎𝜎𝐵𝐵2 
is the batch variance.  

4.1.2 Activation Layer 

Activation functions are added into neural networks in order to add nonlinearity into the 
model. This will help the model to learn more complex relationships in the data. The 
most common activation functions are listed below. 

4.1.2.1 Sigmoid 

This activation function is computationally expensive, not zero-centered, and also 
causes vanishing gradient problems. Therefore, it is not usually used in real models. 
The sigmoid is defined as, 
  

𝜎𝜎(𝑥𝑥) =  
1

1 + 𝑒𝑒−𝑥𝑥
 (4-4) 

  
4.1.2.2 Tanh 

Although the problem of not being zero-centered is solved in this activation function, it 
still kills the gradient when the neuron is saturated. It is defined as, 
  

𝑓𝑓(𝑥𝑥) =  tanh (𝑥𝑥) (4-5) 
  

4.1.2.3 Rectified Linear Unit (ReLU) 

This function does not saturate in the positive region. It is computationally efficient and 
converges faster than sigmoid/ tanh in practice. Also, ReLU overcomes the vanishing 
gradient problem, allowing models to learn faster and perform better. However, it is not 
zero-centered, and also the gradient for negative values is always zero. It is defined as, 
   

𝑓𝑓(𝑥𝑥) = max (0, 𝑥𝑥) (4-6)  
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4.1.2.4 Leaky ReLU 

It has all the advantages of previous functions and covers all their drawbacks. It is 
defined as, 
  

𝑓𝑓(𝑥𝑥) = max (0.1𝑥𝑥 , 𝑥𝑥) (4-7) 
  

4.1.2.5 Maxout 

It generalizes ReLU and Leaky ReLU. Also, it does not die nor saturate. Nevertheless, it 
doubles the number of parameters. Therefore, it is expected to take more time for the 
model to learn.  
  

𝑓𝑓(𝑥𝑥) =  max (𝑤𝑤1𝑇𝑇𝑥𝑥 + 𝑏𝑏1,𝑤𝑤2𝑇𝑇𝑥𝑥 + 𝑏𝑏2) (4-8) 
  

4.1.2.6 Exponential Linear Units (ELU) 

It has all the benefits of ReLU. Also, it does not die and is closer to zero mean outputs. 
However, it is more expensive computationally. It is defined as, 
  

𝑓𝑓(𝑥𝑥) = � 𝑥𝑥        , 𝑥𝑥 ≥ 0
𝛼𝛼(𝑒𝑒𝑥𝑥 − 1), 𝑥𝑥 < 0 (4-9) 

  
Based on the advantages of ReLU and its robustness, it is selected as the activation 
function for this study.  
 
4.1.3 Optimizer 

Optimizers help neural networks in minimizing the loss by changing the parameters 
such as weights and learning rate. Neurons weights are initialized using some 
strategies and are updated with each epoch using the following equation. 
  

𝑊𝑊𝑛𝑛𝑛𝑛𝑤𝑤 =  𝑊𝑊𝑜𝑜𝑙𝑙𝑑𝑑 − 𝑙𝑙𝑒𝑒𝑎𝑎𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑎𝑎𝑟𝑟𝑒𝑒 ×  (∇𝑤𝑤𝐿𝐿)𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜 (4-10) 
  

4.1.3.1 Gradient Descent (GD) 

It is one of the most basic optimization algorithms. In this algorithm, weights are 
updated using Eq. 4-10. Although it is easy to implement, it takes an entire dataset to 
compute the derivative to update the old weights. This process requires a lot of memory 
and computational resources. Also, it is vulnerable to getting stuck at local minima or 
saddle points.  
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4.1.3.2 Stochastic Gradient Descent (SGD) 

In order to overcome the expensive computations of GD, SGD is suggested as an 
extension of GD. Instead of considering the whole dataset at a time, the SGD algorithm 
derivative is computed, taking one point at a time. It needs less computational 
resources than GD; however, it takes more time to converge. The problem of getting 
stuck at local minima still exists in this algorithm.  

4.1.3.3 Mini-Batch Stochastic Gradient Descent (MB-SGD) 

This algorithm overcomes the problem of the significant time of converging in the SGD 
algorithm. It uses a small batch of the dataset to compute derivate. After many 
iterations, it is observed that the MB-SGD and GD have almost the same value for 
derivate the loss function. Although it takes less time to converge than SGD, the 
updates are much noisier compared to the GD algorithm. 

4.1.3.4 SGD with momentum 

It covers the disadvantages of noisy updates in the MB-SGD algorithm by denoising the 
gradients. It uses an exponential weighting average, giving more weightage to recent 
updates than the previous updates. It has all the advantages of the SGD algorithm and 
also converges faster than GD. However, it needs to compute one more variable in 
each epoch. 

4.1.3.5 Adaptive Gradient (AdaGrad) 

In all the previous algorithms, the learning rate remains constant; however, in the 
AdaGrad algorithm, the learning rate for weights updating will be decreasing with the 
number of iterations. This algorithm does not need to update the learning rate manually. 
However, as the number of iterations grows, the learning rate decreases, causing slow 
convergence.  

4.1.3.6 Adaptive Moment Estimation (Adam) 

It stores an exponentially decaying average of past gradients in addition to keeping an 
exponentially decaying average of past squared gradients like the AdaDelta algorithm. 
Among the discussed optimization algorithms, it has the best performance, although it is 
computationally expensive. Adam works with momentums of first and second order. In 
addition to storing an exponentially decaying average of past squared gradients, it 
keeps an exponentially decaying average of past gradients. Using averages makes the 
algorithm converge towards the minima at a faster pace. 

Adam is relatively easy to configure, and the default configuration parameters do well in 
most situations. Since it combines the best properties of the AdaGrad and RMSProp 
algorithms, it can handle sparse gradients on noisy problems. Based on the significant 
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advantages of Adam over other optimizers, it is selected as the optimizer algorithm for 
this study. 

 
4.2 HYPERPARAMETERS 

The network hyperparameters, such as number of layers and number of neurons in 
each layer, were selected based on preliminary experiments. The final model 
configuration is comprised of an input layer, multiple hidden layers with various neurons 
in each, and an output layer. Figure 4.3 shows the structure of the proposed model. The 
model was evaluated as described in the following. 

 
Figure 4.3: Structure of the Fully Connected Neural Network 

 

The hyperparameters are tuned to maximize model performance on the validation 
dataset. The parameters used in model training are shown in Table 4.1. 
 
Table 4.1: Considered Training Parameters Based on Hyperparameter Tuning 
Hyperparameters Value 
Number of Hidden Layers 3 
Number of Neurons In Each Layer 256/256/256 
Batch Size 500 
Maximum Epoch 20 
Learning Rate 1e-3 
Optimizer Adam 

 
The pseudocode of the proposed is given in Figure 4.4. 
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Figure 4.4: ANN Pseudocode 

 

4.3 EVALUATION METHODS 

The output of the proposed model is the traffic volume at each time and specific 
location. The performance of the model could be evaluated using the metrics discussed 
below.  

4.3.1 Coefficient of Determination (R2) 

This measure shows the proportion of traffic volume variance that the model explains. 
The R2 metric is computed as, 

  

𝑅𝑅2 = 1 −  
∑ (𝑦𝑦𝑗𝑗 −  𝑦𝑦�𝑗𝑗)2𝑛𝑛
𝑗𝑗=1

∑ (𝑦𝑦𝑗𝑗 −  𝑦𝑦�𝑗𝑗)2𝑛𝑛
𝑗𝑗=1

 (4-11) 

  
where 𝑦𝑦𝑗𝑗 denotes the actual traffic volume, 𝑦𝑦�𝑗𝑗 is the model prediction, and 𝑦𝑦� represents 
the sample average. Values closer to 1 indicate better model performance. 
 
4.3.2 Mean Absolute Percentage Error (MAPE)  

This measure represents the relative accuracy of the model. It is defined as, 
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𝑀𝑀𝐴𝐴𝑀𝑀𝐸𝐸 = �
1
𝑙𝑙
��

𝑦𝑦�𝑗𝑗 −  𝑦𝑦𝑗𝑗
𝑦𝑦𝑗𝑗

�
𝑛𝑛

𝑗𝑗=1

� × 100 (4-12) 

  
It varies between 0 and 100%. Smaller values indicate better model performance. 
 
4.3.3 Mean Squared Error (MSE) 

The MSE metric measures the average of the squared errors. It is defined as, 
  

𝑀𝑀𝑀𝑀𝐸𝐸 = �
(𝑦𝑦�𝑗𝑗 −  𝑦𝑦𝑗𝑗)2

𝑙𝑙

𝑛𝑛

𝑖𝑖=1

 (4-13) 

  
The smaller the MSE, the better the performance is.  
 
4.3.4 Root Mean Square Error (RMSE)  

The RMSE metric measures the differences between the predicted value and the 
observed ones. It is defined as, 

  

𝑅𝑅𝑀𝑀𝑀𝑀𝐸𝐸 = ��
(𝑦𝑦�𝑗𝑗 −  𝑦𝑦𝑗𝑗)2

𝑙𝑙

𝑛𝑛

𝑖𝑖=1

 (4-14) 

  
A model with a smaller RMSE has a better performance compared to the other models.  
 
4.3.5 Mean Absolute Error (MAE) 

It measures the difference between two continuous variables. It is defined as, 

  

𝑀𝑀𝐴𝐴𝐸𝐸 = �
�𝑦𝑦𝑗𝑗 −  𝑦𝑦�𝑗𝑗�

𝑙𝑙

𝑛𝑛

𝑖𝑖=1

 (4-15) 

  
The smaller MAE means that the predicted values are closer to the observed value than 
the larger MAE. 
 
4.4 Research Flow chart 

The whole process of traffic estimation is shown in Figure 4.5. 
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Figure 4.5: Work Zone Traffic Estimation Methodology 
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5.0 RESULTS 
5.1 SUMMARY 

In this study, the traffic dataset is randomly divided into three groups: 70% as training 
data, 15% as validation data, and 15% as test data, respectively. The hyperparameters 
have been tuned using the validation set and the model performance. Then, the best 
model has been applied to the test set. Performance of the proposed ANN model is 
determined using four different measures. Figure 5.1 shows the loss diagram and R2 
score for training, validation, and test set for a batch size of 200.  

 

 
Figure 5.1: Loss Function and R2 score diagram for 20 Epochs and Batch Size of 200 

 
As shown in Figure 5.1, all three loss diagrams decrease with increases in epochs, 
meaning that the choice of learning rate is acceptable. Also, the R2 score increases as 
the number of epochs increases. Other evaluation metrics diagrams are shown in 
Figure 5.2. 

 

 
Figure 5.2: MAE and RMSE metrics for 20 Epochs and Batch Size of 200 
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As shown in Figure 5.2, there are many fluctuations in the R2 score and MAE score. In 
order to investigate the effect of batch size, the batch size is increased to 500. 
Comparing the loss value of the 20th epoch shows that it outperforms the previous 
model with a batch size of 200. Figure 5.3 shows the loss diagram and R2 score of 
training, validation, and test set for a batch size of 500 and 20 epochs.  

 

 
Figure 5.3: Loss Function and R2 score diagram for 20 Epochs and Batch Size of 500 

 
Other evaluation metrics are shown in Figure 5.4. 
 

 
Figure 5.4: MAE and RMSE metrics for 20 Epochs and Batch Size of 500 

 
A smaller value of train loss than the test loss shows that the model is trained better in 
comparison to the previous model. Since the volume of the validation set is much 
smaller than the training and test set, the estimated values are more reliable with less 
value of losses. The loss value of all three divided datasets is decreasing with an 
increase in the number of epochs. Therefore, the model is trained perfectly without any 
possibility of overfitting. As shown in Figure 5.3, there are fewer fluctuations in the R2 
and MAE diagram showing that the model is stable and the training process was 
performed well.  



36 
 

The data collected in this study included the field data, data acquired from open-source 
datasets, and the data acquired from the permanent sensors implemented at several 
locations on the interstate highways. The model evaluation for a random seed showed 
the model outperformance with an R2, RMSE, and MAE being 0.98, 158, and 101, 
respectively. Determining the study results more precisely shows that the model has 
much higher accuracy in those locations with more considerable traffic volume. 
However, the model could not yield acceptable results in zones with fewer traffic 
volumes. One possible justification for that could be the higher number of data points 
with higher traffic values, which could cause the network to be optimized based on 
those values. The MAE shows that the average absolute difference between the 
observed values and the predicted values is 101 vehicles per hour, meaning that the 
actual traffic is in the range of ± (Predicted Values + 101). 

Since the data is randomly sampled for train, validation, and test sets, it is difficult to 
visualize the model performance for a specific station at a given time. However, to make 
a graphical comparison of how the model predictions match the ground truth data, 
Figure 5.5 shows 50 randomly selected data points. 

 

 
Figure 5.5: Graphical comparison of the model performance and the actual data 

 

.
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6.0 CONCLUSION 
6.1 SUMMARY 

Construction work zones are one of the main reasons for traffic delays and road 
congestion. This happens due to a decrease in available lanes, imposed speed limits, 
and narrower lanes. The availability of reliable and accurate traffic flow prediction 
models can save time and cost. In this study, an artificial neural network model is 
developed to predict hourly traffic volume in a statewide network based on the data 
collected by  Utah transportation agencies. The developed model is based on the 
project data, road data, and traffic features such as lane width, heavy vehicle 
percentage, work intensity, road slope, work-zone length, project duration, year, 
season, day of the week, and time of day. The main benefit of the proposed model is 
that it does not require users to set various adjustment factors based on practical 
experience. The presented model would bring insights for having more accurate traffic 
prediction in work zones. 

The suggested neural network model is trained and evaluated on around 400,000 data 
points collected from about 80 projects on Utah roadways. The developed model is 
trained on 70% of the data and is evaluated using the other 30%, divided into 15% of 
validation and 15% of test set. The main goal of this project is to estimate historical 
hourly volumes throughout the state of Utah. The results show that there exists a strong 
correlation between the predicted and actual values. Specifically, numerical results of 
four random seeds show consistent outperformance of the proposed model, with an 
average R2, RMSE, and MAE being 0.98, 101, and 158, respectively.  

Due to the limited number of traffic sensors on state roads, it is almost impossible to 
estimate the work zones' traffic flow on the roads without traffic sensors. The developed 
deep neural network examined the feasibility of using historical data to develop a data-
driven tool for evaluating traffic impacts of work zones based on work zone and 
spatiotemporal features. The accuracy of all types of work zone results, including short 
and long term, day and night time, and interstate and arterial work zones, were 
acceptable, with under 2% error in the predicted traffic volume. The developed model 
makes predictions of traffic volume within work zones using 20 input variables. One 
important point is that the project focused on state work zones, not meaning it is 
applicable to other cities and countries. 

 
6.2 LIMITATIONS AND RECOMMENDATIONS 

One of the main limitations of this study is the lack of exact information on the project 
location, project time, and lane closure strategies. For example, one project may have 
happened during nighttime when there is much less traffic. However, those that 
occurred during the daytime have more traffic impacts. Additionally, not all of the project 
lengths have been occupied by work zones. Many road projects are happening in 
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multiple segments due to limited available heavy equipment. This could further affect 
the traffic conditions on the roads. 

The model performance could be assessed using other machine learning models, such 
as random forest, support vector machine (SVM), and XGBoost. XGBoost is an 
optimized boosting algorithm that uses the gradient boosting framework. Boosting 
algorithms solve data science problems using a parallel decision-tree structure. Due to 
the importance of work zone traffic prediction, many studies have applied various 
machine learning models to investigate the effect of work zones on road traffic. The 
results of the proposed model could be compared to the work zone capacity estimation 
models existing in the literature.  

Based on the encouraging results of this project, further studies could be carried out 
using the probe vehicle data to improve the model's reliability by decreasing the RMSE, 
MAPE, and MAE values. Also, the model could be used in navigation systems to 
improve the route choice of drivers. Thanks to recent advancements in computing 
technologies, computer vision can facilitate the process of automatically detecting work 
zone features and extracting them using different techniques such as photogrammetry 
[56], [57]. A valuable resource for work zone detection and feature extraction on 
roadsides are the videos and images collected by Mandli. Mandli is a specialized 
highway data collection company that integrates 3D pavement technology, mobile 
LiDAR, and geospatial equipment for multiple DOTs throughout the U.S.  
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