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Abstract

The accuracy of an autonomous robot's intended navigation can be impacted by 
environmental factors affecting the robot's movement. When sophisticated 
localizing sensors cannot be used, it is important for a pathfinding algorithm to 
provide opportunities for landmark usage during route execution, while balancing 
the efficiency of that path. Although current pathfinding algorithms may be 
applicable, they often disfavor paths that balance accuracy and efficiency needs. I 
propose a bidirectional pathfinding algorithm to meet the accuracy and efficiency 
needs of autonomous, navigating robots.

1.	

 Introduction

While a multitude of pathfinding algorithms 
exist, pathfinding algorithms tailored for the 
robotics domain are less common. The 
stochastic behavior of robots in response to 
environmental factors warrants pathfinding 
algorithms specific to this domain. While 
these environmental factors can be 
counteracted via the use of precise localizing 
sensors, the growing demand for inexpensive 
navigational robots requires accurate 

navigation without expensive sensors. As low-
cost navigating robots need to account for 
potential inaccuracies without the use of 
sophisticated  localizing sensors, an ideal 
pathfinding algorithm should favor routes that  
are efficient while also providing  
opportunities for landmark use. This paper 
discusses pathfinding needs found in the 
robotics domain, criteria for an effective 
pathfinding algorithm that addresses these 
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needs, how current pathfinding algorithms 
apply to robotic pathfinding, and a proposed 
bidirectional pathfinding algorithm tailored 
specifically for use in robotics.

Section 2 discusses the requirements for a 
pathfinding algorithm tailored for use in 
robotics, and why the robotics domain 
warrants its own pathfinding algorithm. 
Section 3 provides an overview of related  
work in pathfinding algorithms and their 
relation to robotic pathfinding. Section 4 
describes the bidirectional algorithm I 
developed for the robotic pathfinding domain. 
Section 5 concludes this paper. 

2.	

 Background

The following assumptions are made about 
the robot and its environment:

1. 	

 The robot is surrounded by an 
	

 environment consisting of known 
	

 pathways and pathway intersections.

2. 	

 The robot may only travel along a defined 
	

 set of pathways.

3. 	

 The robot's origin and destination are both 
	

 defined intersections of multiple 
	

 pathways.

4. 	

 The robot's movements are stochastic in 
	

 that environmental variables, such as 
	

 traffic and flooring surfaces, can alter the 
	

 robot's actual location.

5. 	

 The robot maintains a belief state about its 
	

 location, but cannot ensure the 
	

 validity of this belief state due to a limited 
	

 array of sensors.

6. 	

 Various aspects of the environment can be 
	

 sensed and recognized as landmarks 
	

 unique to a particular location.

To represent the robot's known environment as 
a graph, each pathway is represented by a 
graph edge and each pathway intersection 
represented by a graph vertex. The robot's 
origin and destination must both be elements 
of the set of graph vertices. The pathfinding 
algorithm must return a sequence of vertices 
that are visited to reach the destination. The 
pathfinding algorithm discussed in this paper 
is not designed to include real-time 
navigation, such as navigation around 
unexpected obstacles.

As stated above, it is assumed that the robot's 
movements are stochastic. This is a result of 
environmental factors, such as variations in 
the friction between the robot's wheels and 
multiple flooring surfaces, that can create 
discrepancies between the robot's belief state 
and its actual location. Additionally, factors 
such as the traffic of a pathway can impact 
both the efficiency and accuracy of the robot's 
movement, as a pathway with higher traffic 
can introduce additional environmental forces 
furthermore adjusting the robot's position 
while potentially slowing the robot's 
movement. 

It is also assumed that the robot's precise 
location and heading cannot be known due to 
a limited array of sensors. Due to the cost of 
precise localizing sensors, these expensive 
sensors may not be feasible for use in an 
inexpensive robot. The remainder of this paper 
is presented under the assumption that such 
precise sensors are unavailable for the robot's 
use due to cost or other constraints.

Without an exact knowledge of its location, it 
is possible that the robot maintains a belief 
state of its position that is false due to the 
effect of environmental variables on its ability 
to travel. For this reason, the robot's 
pathfinding algorithm should provide methods 
of accounting for environmental forces that 
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would alter the robot's execution of the pre-
determined path. 

As stated in the earlier assumptions, the 
robot's environment should contain aspects 
recognizable as landmarks to a particular 
location. An example of such a landmark 
would be colored tiles in an indoor 
environment that are located in known, fixed 
locations. Depending on the type of landmark 
sensed, the robot could use its sensors to align 
itself to the landmark, thus correcting the 
location and direction of the robot. This 
synchronizes the robot's actual location with 
its belief state.

During route creation, the pathfinding 
algorithm should be tailored to a robot's likely 
environment. As the robot and its destination 
are not likely to be on opposite sides of the 
graph, the pathfinding algorithm must be able 
to prune potential paths that are not directed 
toward the destination. On the other hand, a 
path that is very accurate but slightly less 
efficient than the shortest path should not be 
pruned, even if it travels away from the 
destination for a short time. The algorithm 
must be able to prune unfavorable paths while 
considering accuracy and efficiency, while 
also not taking too much time to run for large 
graph input sets.

Overall, the criteria for a pathfinding 
algorithm suited for robotic navigation are as 
follows:

1. 	

 Must balance accuracy and efficiency

2. 	

 Must prune paths that are not directed 
	

 toward the destination

3. 	

 Must be selective in prunes to prevent 
	

 pruning of accurate, but slightly less 
	

 efficient paths

3.	

 Existing Algorithms

3.1   	

 Breadth-First Search
An example of a common path-searching 
algorithm is called  breadth-first search.  
Breadth first search is straightforward to 
implement, but inefficient during runtime [2].  
Additionally, it does not always produce the 
"best" path. This algorithm searches a graph 
by considering all possible branched paths in 
the search frontier, visiting all vertices 
adjacent to the starting vertex before 
expanding its search frontier [3]. While this 
would thoroughly explore paths that balance 
the robot's accuracy and efficiency needs, it is 
unsuitable for use in a large environment 
without pruning heuristics to limit the number 
of considered paths. Additionally, quite a 
number of paths will be considered before the 
frontier approaches the robot's destination.

3.2   	

 Depth-First Search
The depth-first search algorithm traverses the 
graph using a stack to track visited vertices. 
Rather than explore each vertex's neighboring 
vertices sequentially prior to expanding the 
frontier, the depth-first search algorithm 
explores one complete path from the origin to 
the destination before backtracking and 
exploring a new path [3]. This algorithm is 
also unsuitable for discovering paths that 
balance accuracy and efficiency needs, as 
paths are not directed toward the destination 
vertex.

3.3   	

 Dijkstra's Algorithm
Dijkstra's algorithm is a greedy search that 
also determines the lowest path cost required 
to reach the goal vertex from the starting 
vertex. To do this, the algorithm determines 
the lowest cost to reach every vertex from the 
starting vertex, and then extracts the cost of 
traveling to the goal vertex [7].

However, Dijkstra’s algorithm’s “best-first" 
methodology can cause it to skip or postpone 
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discovering paths that are scored poorly at 
first, but later contain aspects that increase its 
overall accuracy and efficiency rating. If a 
pathway has a worse score than another 
available pathway, it is ignored in some 
circumstances, even if the pathway with the 
higher score leads to much better route 
options. This reduces the algorithm's 
efficiency in finding paths that balance 
accuracy and efficiency needs.

3.4   	

 A* Search
Another search, known as the A* search, uses 
a distance heuristic to search routes that are 
closest to the ending point. The point value of 
each edge is the sum of G and H, where G is 
the cost of traversing that edge and H is the 
estimated cost of traveling from the 
neighboring vertex to the destination [1]. 
Dijkstra's algorithm can be thought of as a 
special case of A* that does not use any 
heuristic for H [2]. At the starting point, the 
algorithm considers the surrounding nodes 
and their point values using the 
aforementioned G and H heuristics.  It then 
calculates the point value of each surrounding 
node and uses the node with the lowest point 
value as its new starting point. When this is 
run recursively until the path reaches the 
ending point, the resulting path is very 
efficient. 

A* is a more attractive algorithm for the 
robotics domain than Dijkstra's algorithm, as 
paths that are directed toward the destination 
are explored with higher priority. However, 
this algorithm has the same setback as 
Dijkstra's algorithm in that it may avoid paths 
that are scored poorly in the edges closer to 
the robot's origin, but later contains edges that 
are scored very highly in their balance of 
accuracy and efficiency.

4.	

 Algorithm Definition

My algorithm is based on the concept of a 
bidirectional search, meaning that two search 
processes run incrementally. One such search 
process is run using the robot's origin as its 
first vertex. The other search process uses the 
robot's destination as its originating vertex. 
Each search process in this bidirectional 
search is a breadth-first search (see section 
3.2). Once a path from the robot's origin 
intersects a path originating from the 
destination, the two paths are combined to 
form a complete path. Any path that is not yet 
a complete path will be referred to as a partial 
path.

The score assigned to each graph edge is used 
to determine the accuracy and efficiency that it 
contributes to or detracts from each path that 
includes it. This is similar to a graph edge's 
weight that is used in other search algorithms. 
Furthermore, the landmark availability and 
traffic level of a path will be represented by its 
accuracy rating. As explained in section 2, the 
pathfinding algorithm must have the ability to 
balance the accuracy and efficiency (total 
distance) of a path. The scoring function is not 
defined in this algorithm, as it should be 
implemented to suit the situation.

With a bidirectional search being used, this 
algorithm does not avoid paths that appear less 
promising closer to the origin vertex, as is 
potential for other pathfinding algorithms. To 
prevent paths from branching away from the 
origin or destination vertices, any partial path 
with a score worse than that of any complete 
path found thus far is pruned.

There are five elements involved in this 
bidirectional search: the two search frontiers; 
the two path lists, which are represented by a 
growing list of linked lists; and a reference  to 
the best scored path. The two frontiers are 
used to determine which paths are to be 
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expanded, and each contain a reference to a 
path consisting of its ID and a list of vertices. 
A single frontier can contain multiple listings 
for the same node so long as they are 
associated with separate path IDs. The path 
lists store each paths' IDs with a list of the 
vertices that comprise each. Finally, the "best 
path" reference represents the complete path 
with the lowest, and therefore best, cost 
balancing accuracy and efficiency.

The general workflow is as follows:

1. 	

 Two path frontiers are created: one from 
	

 the starting point, and one from the 
	

 destination.
	


2. 	

 Per iteration, expand each path in the 
	

 frontiers with their neighboring nodes.

3. 	

 When the frontiers intersect, a complete 
	

 path is formed and a score is calculated 

	

 representing the accuracy/efficiency 
	

 tradeoff of that path. The complete path is 
	

 removed from both frontiers.

4. 	

 Score is compared to best score so far, 
	

 with the better scoring path being kept as 
	

 the best path. 

5.	

 If at any time, a partial (incomplete) path 
	

 in either frontier has a worst score than the 
	

 "best path", that path is removed from the 
	

 frontier.

6. 	

 Route building continues until there are no 
	

 more starting or ending paths to evaluate.

The following Figure 1 contains a pseudocode 
definition for this pathfinding algorithm. The 
described algorithm has a worst case time 
complexity of O(|V| + |E|) and space 
complexity of Θ(|V|2), where V is the set of 
vertices and E is the set of edges in the graph.
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Initialize(Vertex V0, Vertex Vdest):
	

 F0 ← new Frontier, F1 ← new Frontier	

 	

 /* Create the two frontiers */
	

 P0 ← new PathList, P1 ← new PathList	

 	


	

 p0 ← new Path, p1 ← new Path
	

 p0.append(V0), p1.append(Vdest)
	

 P0.add(p0), P1.add(p1)
	

 F0.add(p0), F1.add(p1)	

 	

 	

 	

 	

 /* Add initial paths to the frontiers */
	

 b ← empty Path	

 	

 	

 	

 	

 /* 'b' will contain best-scored path */
	

 b.score ← ∞

Search(Vertex V0, Vertex Vdest):
	

 Initialize(V0, Vdest)
	

 while F0 or F1 are not empty:
	

 	

 Increment(F0, P0)	

 	

 	

 	


	

 	

 Increment(F1, P1)
	

 	

 i ← getIntersections(P0, P1):	

 	

 	

 /* Gets any completed paths */
	

 	

 for each Path p in i:
	

 	

 	

 if p.getScore() ≦ b.getScore():	


	

 	

 	

 	

 b ← p	

 	

 	

 	

 /* Replace 'b' if 'p' is better scored */
	

 	

 	

 F0.remove(p)	

 	

 	

 	

 /* Remove 'p' from both frontiers */
	

 	

 	

 F1.remove(p)
	

 	

 	

 	



Increment(Frontier F, PathList P):
	

 for each Path p in F:
	

 	

 if p.getScore() ≦ b.getScore():
	

 	

 	

 for each Vertex v adjacent to p.lastVertex():
	

 	

 	

 	

 pn = p.append(v)	

 	


	

 	

 	

 	

 P.add(pn)	

 	

 	

 /* Create a new path for each branch */
	

 	

 	

 	

 F.add(pn)
	

 	

 F.remove(p)
	

 	

 P.remove(p)

Figure 1
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The following figures illustrate a graph to be 
traversed by this algorithm.

Origin

Destination

10, 2

1 2 3

4 5

6 7 8 9

3, 1 4, 1

5, 0 5, 2

4, 2

4, 1 4, 1

4, 12, 21, 0

Figure 2

Each edge represents a path traversable by the 
robot, with vertices being the intersection of 
two paths. The white vertices represent 
vertices that have been added to the first 
frontier. The grey vertices represent vertices 
that have been added to the second frontier. 
Visited vertices are represented by thicker 
black circles. The bold numbers are the 
reference ID of each vertex. The set of 
numbers near each edge represent the edge's 
distance score and accuracy ranking, 
respectively. 

In the example illustrated in Figure 2, the 
accuracy rating of an edge represents the 
number of landmarks in that pathway. For this 
example, the score function is defined as s=d-
a, with d being the total distance score of a 

path and a being its total accuracy rating. As 
shown in Figure 2, the algorithm starts with 
the first frontier containing only the origin 
vertex (vertex ID 7), with the second frontier 
containing the destination vertex (vertex ID 
2). 

The frontier, path list, and "best path" 
elements corresponding to Figure 2 are as 
follows.
P0: [(7)]
P1: [(2)]
F0: [(2)]
F1: [(2)]
b: null

Origin

10, 2

1 2 3

4 5

6 7 8 9

3, 1 4, 1

5, 0 5, 2

4, 2

4, 1 4, 1

4, 12, 21, 0

Destination

Figure 3

After the first iteration of the algorithm, 
vertices are added to both frontiers. The result 
of the second frontier incrementation is 
illustrated in Figure 3, where the white and 
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grey vertices represent the vertices newly 
added to the frontiers.

The frontier, path list, and "best path" 
elements corresponding to Figure 3 are as 
follows.
P0: [(7, 6), (7, 8)]
Scores: [1, 0]
P1: [(2, 1), (2, 3), (2, 4)]
Scores: [2, 3, 5]
F0: [(7, 6), (7, 8)]
F1: [(2, 1), (2, 3), (2, 4)]
b: null

Since no complete path has been discovered 
yet, b is still undefined. Figure 4 illustrates 
the result of a second frontier incrementation.

Origin

10, 2

1 2 3

4 5

6 7 8 9

3, 1 4, 1

5, 0 5, 2

4, 2

4, 1 4, 1

4, 12, 21, 0

Destination

Figure 4

The frontier, path list, and "best path" 
elements corresponding to Figure 4 are as 
follows.
P0: [(7, 6, 1), (7, 8, 4), (7, 8, 9)]
Scores: [9, 3, 3]
P1: [(2, 1, 6), (2, 3, 5), (2, 4, 5), (2, 4, 8)]
Scores: [10, 6, 7, 8]
F0: [(7, 8, 9)]
F1: [(2, 3, 5), (2, 4, 5)]
b: (7, 8, 4, 2)

The path lists P0 and P1 intersect over the 
paths (7, 6, 1, 2) and (7, 8, 4, 2). These two 
paths correlate to the total scores 11 and 8, 
respectively. With the path (7, 8, 4, 2) 
resulting in a lower, and therefore better, 
score, b is assigned to this path.

Origin

10, 2

1 2 3

4 5

6 7 8 9

3, 1 4, 1

5, 0 5, 2

4, 2

4, 1 4, 1

4, 12, 21, 0

Destination

Figure 5

Although two complete paths have been 
identified in Figure 4, the algorithm does not 
halt until both frontiers are empty. Figure 5 

8



illustrates the result of a final frontier 
incrementation.

The frontier, path list, and "best path" 
elements corresponding to Figure 5 are as 
follows.
P0: [(7, 8, 4), (7, 8, 9, 5)]
Scores: [3, 6]
P1: [(2, 3, 5, 4), (2, 4, 5), (2, 4, 8), (2, 3, 5, 9)]
Scores: [8, 7, 8, 9]
F0: []
F1: []
b: (7, 8, 4, 2)

Since the path referenced by b correlates to a 
score of 8, the paths (7, 6, 1) and (2, 1, 6) 
have been removed from the path lists, as 
their scores were worse than the score for the 
best path. Following the final frontier 
incrementation, the additional complete paths 
(7, 8, 9, 5, 3, 2), (7, 8, 9, 5, 4, 2), and (7, 8, 4, 
5, 3, 2) have been identified. These paths 
correlate to the total scores 12, 13, and 11, 
respectively. The previously best path (7, 8, 4, 
2) remains the best scored. Since the frontiers 
F0 and F1 are empty, as shown by searched 
graph in Figure 5, the pathfinding algorithm 
has finished.

5.	

 Conclusion

For robots with limited location sensors, an 
algorithm that balances the efficiency and 
available accuracy features of a path is 
essential. While current pathfinding 
algorithms are suitable for other domains, 
they do not meet the accuracy and efficiency 
needs of navigating robots. The described 
bidirectional pathfinding algorithm is suitable 
for use in autonomous, navigating robots, as 
it uses bidirectional searching to avoid 
prioritizing paths more desirable near the 
robot's originating location (see section 2) and 
utilizes pruning techniques to limit 
complexity. 
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