
Portland State University Portland State University

PDXScholar PDXScholar

Computer Science Faculty Publications and
Presentations Computer Science

11-2012

A System for Bidirectional Robotic Pathfinding A System for Bidirectional Robotic Pathfinding

Tesca Fitzgerald
Portland State University, tesca@cs.pdx.edu

Follow this and additional works at: https://pdxscholar.library.pdx.edu/compsci_fac

 Part of the Artificial Intelligence and Robotics Commons

Let us know how access to this document benefits you.

Citation Details Citation Details
Fitzgerald, Tesca, "A System for Bidirectional Robotic Pathfinding" (2012). Computer Science Faculty
Publications and Presentations. 226.
https://pdxscholar.library.pdx.edu/compsci_fac/226

This Technical Report is brought to you for free and open access. It has been accepted for inclusion in Computer
Science Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if
we can make this document more accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/compsci_fac
https://pdxscholar.library.pdx.edu/compsci_fac
https://pdxscholar.library.pdx.edu/compsci
https://pdxscholar.library.pdx.edu/compsci_fac?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F226&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F226&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/compsci_fac/226
https://pdxscholar.library.pdx.edu/compsci_fac/226?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F226&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:pdxscholar@pdx.edu

A System for Bidirectional Robotic Pathfinding

Tesca K. Fitzgerald

Department of Computer Science, Portland State University
PO Box 751 Portland, OR 97207 USA

tesca@cs.pdx.edu

TR 12-02
November 2012

Abstract

The accuracy of an autonomous robot's intended navigation can be impacted by
environmental factors affecting the robot's movement. When sophisticated
localizing sensors cannot be used, it is important for a pathfinding algorithm to
provide opportunities for landmark usage during route execution, while balancing
the efficiency of that path. Although current pathfinding algorithms may be
applicable, they often disfavor paths that balance accuracy and efficiency needs. I
propose a bidirectional pathfinding algorithm to meet the accuracy and efficiency
needs of autonomous, navigating robots.

1.	

 Introduction

While a multitude of pathfinding algorithms
exist, pathfinding algorithms tailored for the
robotics domain are less common. The
stochastic behavior of robots in response to
environmental factors warrants pathfinding
algorithms specific to this domain. While
these environmental factors can be
counteracted via the use of precise localizing
sensors, the growing demand for inexpensive
navigational robots requires accurate

navigation without expensive sensors. As low-
cost navigating robots need to account for
potential inaccuracies without the use of
sophisticated localizing sensors, an ideal
pathfinding algorithm should favor routes that
are efficient while also providing
opportunities for landmark use. This paper
discusses pathfinding needs found in the
robotics domain, criteria for an effective
pathfinding algorithm that addresses these

1

needs, how current pathfinding algorithms
apply to robotic pathfinding, and a proposed
bidirectional pathfinding algorithm tailored
specifically for use in robotics.

Section 2 discusses the requirements for a
pathfinding algorithm tailored for use in
robotics, and why the robotics domain
warrants its own pathfinding algorithm.
Section 3 provides an overview of related
work in pathfinding algorithms and their
relation to robotic pathfinding. Section 4
describes the bidirectional algorithm I
developed for the robotic pathfinding domain.
Section 5 concludes this paper.

2.	

 Background

The following assumptions are made about
the robot and its environment:

1. 	

 The robot is surrounded by an
	

 environment consisting of known
	

 pathways and pathway intersections.

2. 	

 The robot may only travel along a defined
	

 set of pathways.

3. 	

 The robot's origin and destination are both
	

 defined intersections of multiple
	

 pathways.

4. 	

 The robot's movements are stochastic in
	

 that environmental variables, such as
	

 traffic and flooring surfaces, can alter the
	

 robot's actual location.

5. 	

 The robot maintains a belief state about its
	

 location, but cannot ensure the
	

 validity of this belief state due to a limited
	

 array of sensors.

6. 	

 Various aspects of the environment can be
	

 sensed and recognized as landmarks
	

 unique to a particular location.

To represent the robot's known environment as
a graph, each pathway is represented by a
graph edge and each pathway intersection
represented by a graph vertex. The robot's
origin and destination must both be elements
of the set of graph vertices. The pathfinding
algorithm must return a sequence of vertices
that are visited to reach the destination. The
pathfinding algorithm discussed in this paper
is not designed to include real-time
navigation, such as navigation around
unexpected obstacles.

As stated above, it is assumed that the robot's
movements are stochastic. This is a result of
environmental factors, such as variations in
the friction between the robot's wheels and
multiple flooring surfaces, that can create
discrepancies between the robot's belief state
and its actual location. Additionally, factors
such as the traffic of a pathway can impact
both the efficiency and accuracy of the robot's
movement, as a pathway with higher traffic
can introduce additional environmental forces
furthermore adjusting the robot's position
while potentially slowing the robot's
movement.

It is also assumed that the robot's precise
location and heading cannot be known due to
a limited array of sensors. Due to the cost of
precise localizing sensors, these expensive
sensors may not be feasible for use in an
inexpensive robot. The remainder of this paper
is presented under the assumption that such
precise sensors are unavailable for the robot's
use due to cost or other constraints.

Without an exact knowledge of its location, it
is possible that the robot maintains a belief
state of its position that is false due to the
effect of environmental variables on its ability
to travel. For this reason, the robot's
pathfinding algorithm should provide methods
of accounting for environmental forces that

2

would alter the robot's execution of the pre-
determined path.

As stated in the earlier assumptions, the
robot's environment should contain aspects
recognizable as landmarks to a particular
location. An example of such a landmark
would be colored tiles in an indoor
environment that are located in known, fixed
locations. Depending on the type of landmark
sensed, the robot could use its sensors to align
itself to the landmark, thus correcting the
location and direction of the robot. This
synchronizes the robot's actual location with
its belief state.

During route creation, the pathfinding
algorithm should be tailored to a robot's likely
environment. As the robot and its destination
are not likely to be on opposite sides of the
graph, the pathfinding algorithm must be able
to prune potential paths that are not directed
toward the destination. On the other hand, a
path that is very accurate but slightly less
efficient than the shortest path should not be
pruned, even if it travels away from the
destination for a short time. The algorithm
must be able to prune unfavorable paths while
considering accuracy and efficiency, while
also not taking too much time to run for large
graph input sets.

Overall, the criteria for a pathfinding
algorithm suited for robotic navigation are as
follows:

1. 	

 Must balance accuracy and efficiency

2. 	

 Must prune paths that are not directed
	

 toward the destination

3. 	

 Must be selective in prunes to prevent
	

 pruning of accurate, but slightly less
	

 efficient paths

3.	

 Existing Algorithms

3.1 	

 Breadth-First Search
An example of a common path-searching
algorithm is called breadth-first search.
Breadth first search is straightforward to
implement, but inefficient during runtime [2].
Additionally, it does not always produce the
"best" path. This algorithm searches a graph
by considering all possible branched paths in
the search frontier, visiting all vertices
adjacent to the starting vertex before
expanding its search frontier [3]. While this
would thoroughly explore paths that balance
the robot's accuracy and efficiency needs, it is
unsuitable for use in a large environment
without pruning heuristics to limit the number
of considered paths. Additionally, quite a
number of paths will be considered before the
frontier approaches the robot's destination.

3.2 	

 Depth-First Search
The depth-first search algorithm traverses the
graph using a stack to track visited vertices.
Rather than explore each vertex's neighboring
vertices sequentially prior to expanding the
frontier, the depth-first search algorithm
explores one complete path from the origin to
the destination before backtracking and
exploring a new path [3]. This algorithm is
also unsuitable for discovering paths that
balance accuracy and efficiency needs, as
paths are not directed toward the destination
vertex.

3.3 	

 Dijkstra's Algorithm
Dijkstra's algorithm is a greedy search that
also determines the lowest path cost required
to reach the goal vertex from the starting
vertex. To do this, the algorithm determines
the lowest cost to reach every vertex from the
starting vertex, and then extracts the cost of
traveling to the goal vertex [7].

However, Dijkstra’s algorithm’s “best-first"
methodology can cause it to skip or postpone

3

discovering paths that are scored poorly at
first, but later contain aspects that increase its
overall accuracy and efficiency rating. If a
pathway has a worse score than another
available pathway, it is ignored in some
circumstances, even if the pathway with the
higher score leads to much better route
options. This reduces the algorithm's
efficiency in finding paths that balance
accuracy and efficiency needs.

3.4 	

 A* Search
Another search, known as the A* search, uses
a distance heuristic to search routes that are
closest to the ending point. The point value of
each edge is the sum of G and H, where G is
the cost of traversing that edge and H is the
estimated cost of traveling from the
neighboring vertex to the destination [1].
Dijkstra's algorithm can be thought of as a
special case of A* that does not use any
heuristic for H [2]. At the starting point, the
algorithm considers the surrounding nodes
and their point values using the
aforementioned G and H heuristics. It then
calculates the point value of each surrounding
node and uses the node with the lowest point
value as its new starting point. When this is
run recursively until the path reaches the
ending point, the resulting path is very
efficient.

A* is a more attractive algorithm for the
robotics domain than Dijkstra's algorithm, as
paths that are directed toward the destination
are explored with higher priority. However,
this algorithm has the same setback as
Dijkstra's algorithm in that it may avoid paths
that are scored poorly in the edges closer to
the robot's origin, but later contains edges that
are scored very highly in their balance of
accuracy and efficiency.

4.	

 Algorithm Definition

My algorithm is based on the concept of a
bidirectional search, meaning that two search
processes run incrementally. One such search
process is run using the robot's origin as its
first vertex. The other search process uses the
robot's destination as its originating vertex.
Each search process in this bidirectional
search is a breadth-first search (see section
3.2). Once a path from the robot's origin
intersects a path originating from the
destination, the two paths are combined to
form a complete path. Any path that is not yet
a complete path will be referred to as a partial
path.

The score assigned to each graph edge is used
to determine the accuracy and efficiency that it
contributes to or detracts from each path that
includes it. This is similar to a graph edge's
weight that is used in other search algorithms.
Furthermore, the landmark availability and
traffic level of a path will be represented by its
accuracy rating. As explained in section 2, the
pathfinding algorithm must have the ability to
balance the accuracy and efficiency (total
distance) of a path. The scoring function is not
defined in this algorithm, as it should be
implemented to suit the situation.

With a bidirectional search being used, this
algorithm does not avoid paths that appear less
promising closer to the origin vertex, as is
potential for other pathfinding algorithms. To
prevent paths from branching away from the
origin or destination vertices, any partial path
with a score worse than that of any complete
path found thus far is pruned.

There are five elements involved in this
bidirectional search: the two search frontiers;
the two path lists, which are represented by a
growing list of linked lists; and a reference to
the best scored path. The two frontiers are
used to determine which paths are to be

4

expanded, and each contain a reference to a
path consisting of its ID and a list of vertices.
A single frontier can contain multiple listings
for the same node so long as they are
associated with separate path IDs. The path
lists store each paths' IDs with a list of the
vertices that comprise each. Finally, the "best
path" reference represents the complete path
with the lowest, and therefore best, cost
balancing accuracy and efficiency.

The general workflow is as follows:

1. 	

 Two path frontiers are created: one from
	

 the starting point, and one from the
	

 destination.
	

2. 	

 Per iteration, expand each path in the
	

 frontiers with their neighboring nodes.

3. 	

 When the frontiers intersect, a complete
	

 path is formed and a score is calculated

	

 representing the accuracy/efficiency
	

 tradeoff of that path. The complete path is
	

 removed from both frontiers.

4. 	

 Score is compared to best score so far,
	

 with the better scoring path being kept as
	

 the best path.

5.	

 If at any time, a partial (incomplete) path
	

 in either frontier has a worst score than the
	

 "best path", that path is removed from the
	

 frontier.

6. 	

 Route building continues until there are no
	

 more starting or ending paths to evaluate.

The following Figure 1 contains a pseudocode
definition for this pathfinding algorithm. The
described algorithm has a worst case time
complexity of O(|V| + |E|) and space
complexity of Θ(|V|2), where V is the set of
vertices and E is the set of edges in the graph.

5

Initialize(Vertex V0, Vertex Vdest):
	

 F0 ← new Frontier, F1 ← new Frontier	

 	

 /* Create the two frontiers */
	

 P0 ← new PathList, P1 ← new PathList	

 	

	

 p0 ← new Path, p1 ← new Path
	

 p0.append(V0), p1.append(Vdest)
	

 P0.add(p0), P1.add(p1)
	

 F0.add(p0), F1.add(p1)	

 	

 	

 	

 	

 /* Add initial paths to the frontiers */
	

 b ← empty Path	

 	

 	

 	

 	

 /* 'b' will contain best-scored path */
	

 b.score ← ∞

Search(Vertex V0, Vertex Vdest):
	

 Initialize(V0, Vdest)
	

 while F0 or F1 are not empty:
	

 	

 Increment(F0, P0)	

 	

 	

 	

	

 	

 Increment(F1, P1)
	

 	

 i ← getIntersections(P0, P1):	

 	

 	

 /* Gets any completed paths */
	

 	

 for each Path p in i:
	

 	

 	

 if p.getScore() ≦ b.getScore():	

	

 	

 	

 	

 b ← p	

 	

 	

 	

 /* Replace 'b' if 'p' is better scored */
	

 	

 	

 F0.remove(p)	

 	

 	

 	

 /* Remove 'p' from both frontiers */
	

 	

 	

 F1.remove(p)
	

 	

 	

 	

Increment(Frontier F, PathList P):
	

 for each Path p in F:
	

 	

 if p.getScore() ≦ b.getScore():
	

 	

 	

 for each Vertex v adjacent to p.lastVertex():
	

 	

 	

 	

 pn = p.append(v)	

 	

	

 	

 	

 	

 P.add(pn)	

 	

 	

 /* Create a new path for each branch */
	

 	

 	

 	

 F.add(pn)
	

 	

 F.remove(p)
	

 	

 P.remove(p)

Figure 1

6

The following figures illustrate a graph to be
traversed by this algorithm.

Origin

Destination

10, 2

1 2 3

4 5

6 7 8 9

3, 1 4, 1

5, 0 5, 2

4, 2

4, 1 4, 1

4, 12, 21, 0

Figure 2

Each edge represents a path traversable by the
robot, with vertices being the intersection of
two paths. The white vertices represent
vertices that have been added to the first
frontier. The grey vertices represent vertices
that have been added to the second frontier.
Visited vertices are represented by thicker
black circles. The bold numbers are the
reference ID of each vertex. The set of
numbers near each edge represent the edge's
distance score and accuracy ranking,
respectively.

In the example illustrated in Figure 2, the
accuracy rating of an edge represents the
number of landmarks in that pathway. For this
example, the score function is defined as s=d-
a, with d being the total distance score of a

path and a being its total accuracy rating. As
shown in Figure 2, the algorithm starts with
the first frontier containing only the origin
vertex (vertex ID 7), with the second frontier
containing the destination vertex (vertex ID
2).

The frontier, path list, and "best path"
elements corresponding to Figure 2 are as
follows.
P0: [(7)]
P1: [(2)]
F0: [(2)]
F1: [(2)]
b: null

Origin

10, 2

1 2 3

4 5

6 7 8 9

3, 1 4, 1

5, 0 5, 2

4, 2

4, 1 4, 1

4, 12, 21, 0

Destination

Figure 3

After the first iteration of the algorithm,
vertices are added to both frontiers. The result
of the second frontier incrementation is
illustrated in Figure 3, where the white and

7

grey vertices represent the vertices newly
added to the frontiers.

The frontier, path list, and "best path"
elements corresponding to Figure 3 are as
follows.
P0: [(7, 6), (7, 8)]
Scores: [1, 0]
P1: [(2, 1), (2, 3), (2, 4)]
Scores: [2, 3, 5]
F0: [(7, 6), (7, 8)]
F1: [(2, 1), (2, 3), (2, 4)]
b: null

Since no complete path has been discovered
yet, b is still undefined. Figure 4 illustrates
the result of a second frontier incrementation.

Origin

10, 2

1 2 3

4 5

6 7 8 9

3, 1 4, 1

5, 0 5, 2

4, 2

4, 1 4, 1

4, 12, 21, 0

Destination

Figure 4

The frontier, path list, and "best path"
elements corresponding to Figure 4 are as
follows.
P0: [(7, 6, 1), (7, 8, 4), (7, 8, 9)]
Scores: [9, 3, 3]
P1: [(2, 1, 6), (2, 3, 5), (2, 4, 5), (2, 4, 8)]
Scores: [10, 6, 7, 8]
F0: [(7, 8, 9)]
F1: [(2, 3, 5), (2, 4, 5)]
b: (7, 8, 4, 2)

The path lists P0 and P1 intersect over the
paths (7, 6, 1, 2) and (7, 8, 4, 2). These two
paths correlate to the total scores 11 and 8,
respectively. With the path (7, 8, 4, 2)
resulting in a lower, and therefore better,
score, b is assigned to this path.

Origin

10, 2

1 2 3

4 5

6 7 8 9

3, 1 4, 1

5, 0 5, 2

4, 2

4, 1 4, 1

4, 12, 21, 0

Destination

Figure 5

Although two complete paths have been
identified in Figure 4, the algorithm does not
halt until both frontiers are empty. Figure 5

8

illustrates the result of a final frontier
incrementation.

The frontier, path list, and "best path"
elements corresponding to Figure 5 are as
follows.
P0: [(7, 8, 4), (7, 8, 9, 5)]
Scores: [3, 6]
P1: [(2, 3, 5, 4), (2, 4, 5), (2, 4, 8), (2, 3, 5, 9)]
Scores: [8, 7, 8, 9]
F0: []
F1: []
b: (7, 8, 4, 2)

Since the path referenced by b correlates to a
score of 8, the paths (7, 6, 1) and (2, 1, 6)
have been removed from the path lists, as
their scores were worse than the score for the
best path. Following the final frontier
incrementation, the additional complete paths
(7, 8, 9, 5, 3, 2), (7, 8, 9, 5, 4, 2), and (7, 8, 4,
5, 3, 2) have been identified. These paths
correlate to the total scores 12, 13, and 11,
respectively. The previously best path (7, 8, 4,
2) remains the best scored. Since the frontiers
F0 and F1 are empty, as shown by searched
graph in Figure 5, the pathfinding algorithm
has finished.

5.	

 Conclusion

For robots with limited location sensors, an
algorithm that balances the efficiency and
available accuracy features of a path is
essential. While current pathfinding
algorithms are suitable for other domains,
they do not meet the accuracy and efficiency
needs of navigating robots. The described
bidirectional pathfinding algorithm is suitable
for use in autonomous, navigating robots, as
it uses bidirectional searching to avoid
prioritizing paths more desirable near the
robot's originating location (see section 2) and
utilizes pruning techniques to limit
complexity.

References

[1] Lester, P. (2005). A* Pathfinding For
Beginners. Online. GameDev Website. http://
www.gamedev.ne t / re f e rence /ar t i c l e s /
article2003.

[2] Russell, S. J., Norvig, P. (2003). Artificial
Intelligence: A Modern Approach. Upper
Saddle River, NJ: Prentice Hall.

[3] Levitin, A. (2011). Introduction to the
Design and Analysis of Algorithms (3rd ed.,
pp. 122-337). Reading, MA: Addison-Wesley.

9

	A System for Bidirectional Robotic Pathfinding
	Let us know how access to this document benefits you.
	Citation Details

	TR 12-02

