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EXECUTIVE SUMMARY 

This project is a follow-on to two prior NITC projects: (1) V2X: Adding Bikes to the Mix, 
NITC-ED-1027 (referenced hereafter as V2X) and (2) FastTrack: Allowing Bikes To 
Participate In A Smart-Transportation System, NITC-1160 (referenced hereafter as 
FastTrack).  The overall goal of these two prior projects and the current project is to give 
bicyclists a safer and more efficient use of a city’s signaled intersections. The V2X 
project focused on giving bicyclists a virtual call button that functioned on a phone app. 
From this project, we were able to collect detailed real-time data on an actuated signal 
on a busy bike corridor near the University of Oregon campus. The FastTrack project 
focused on giving bicyclists a GLOSA (Green Light Optimized Speed Advisory) or more 
colloquially, a green wave. The project focused on non-actuated (i.e., fixed-time) signals 
along a second busy bike corridor near the University of Oregon campus. The current 
project uses ideas from both prior studies: (1) It uses the data collected from the 
actuated signal to train and test two machine-learning algorithms. (2) It sets the 
groundwork to extend the FastTrack app to include both non-actuated and actuated 
signals, a situation that bicyclists are likely to encounter. In particular, this report 
summarizes our attempts to use machine-learning algorithms to predict the next phase 
of an actuated signal given a look-back of K previous phases, where K is a parameter 
that can be explored. The long-term goal is to give a bicyclist real-time information on 
whether to slow down, speed up, or maintain speed in order to make a green. Our 
earlier study did this for non-actuated signals. We are now interested in extending that 
app to actuated signals as well. This study is the first step toward that goal. 

1.0 INTRODUCTION 

1.1 BACKGROUND 

The project builds on a prior app that was designed for Green Light Optimized Speed 
Advisory (GLOSA). This is more colloquially known as keeping a vehicle in the green 
wave: you are at a location and moving at a speed that will allow you to (theoretically) 
have a green light at each intersection you encounter along a corridor. If you are not in 
the green wave, then advice will be given on adjusting your speed (Suzuki & Marumo, 
2020). GLOSA-capable systems are starting to appear in cities across the U.S. (e.g., 
Dallas; Denver; Gainesville, FL.; Houston; Kansas City, KS; Las Vegas; Los Angeles; 
New York City; Orlando, FL.; Phoenix; Portland, OR; San Francisco; and Washington, 
D.C.).  Figure 1.1 shows a simple design of a GLOSA driver interface built into the car’s 
speedometer. As part of the FastTrack project, our interest was in providing an analog 
of Figure 1.1 for bike riders. We assume that a bike rider has a phone mounted on the 
handlebar and that our app is active and visible. We expect the app to provide speed 
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adjustments (increase speed, decrease speed, hold steady) to allow the rider to pass 
through the upcoming signal safely and without stopping.  

 

 

Figure 1.1: A GLOSA interface for motor vehicles. The green band moves to place the driver in a green 
wave. 

1.2 FASTTRACK TEST SITE: 13TH AVENUE CORRIDOR 

Our FastTrack project focused on a busy bike corridor that leads into the west campus 
entrance of the University of Oregon. The corridor lies along W 13th Avenue from 
Willamette Street (on the west end of the corridor) to Hilyard Street (on the east end of 
the corridor). The corridor is roughly .5 miles long and one-way east for both cars and 
bikes. It has six fixed-time, semi-coordinated signals (discussed in more detail below). 
The speed limit along the corridor is 25 mph. Figure 1.2 shows a satellite view of the 
corridor with red dots denoting signals. Figure 1.3 shows a street-level view looking east 
on the corridor and approaching Willamette (1) with the bike lane on the right. The stop-
line in Figure 1.3 is the start of our trials. 

 
Figure 1.2: The satellite view of the entire corridor. The start is signal 1 and the end is signal 6. 
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Figure 1.3: The view approaching the first signal on the corridor. The bike lane is on the right. 

The corridor is semi-coordinated in that coordination exists between two pairs of signals 
but not for the entire corridor. In particular, the pair of signals Willamette (1) and Oak (2) 
are coordinated. The pair of signals High (3) and Pearl (4) are also coordinated for the 
speed limit. These gaps are not coordinated: between Oak (2) and High (3), between 
Pearl (4) and Patterson (5), and between Patterson (5) and Hilyard (6). Given that all 
signals are fixed-time, in theory they will all come into and out of alignment during the 
day.  
We view the semi-coordinated property of the corridor as a feature rather than a bug. It 
places more value on a GLOSA app, which needs to do real-time adjustments based on 
the shifting alignment in the gaps. In particular, if the entire corridor was coordinated, 
then a speed of 25 mph would typically allow a motorist to stay in the green wave for the 
entire corridor. But that is not the case with our test corridor. It is also not the case that 
we can reasonably expect a bike rider to maintain a 25 mph pace even if it maintained 
the green wave; a more reasonable biking speed is roughly half that. In summary, it 
becomes important to give a bike rider support in this rather challenging corridor. 

1.3 FASTTRACK GOALS 

Our primary goal was to give bike riders along the 13th Avenue bike corridor a real-time 
display that shows GLOSA information. In particular, we want to let the bicyclist know, 
given their current location, direction and speed, whether they will reach the next signal 
in their path with a green light (i.e., they are in the green wave for that signal). If they will 
not get a green given their current speed, we want to give them further information on 
reasonable speed adjustments they can take to bring them back into the green wave. 
Adjustment advice will specify whether to increase or decrease their speed and by how 
much. 
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1.4 AN EFFECTIVE USER INTERFACE 

We would like the interface to be effective (it provides speed adjustments that give the 
rider the best chance of making green lights); reasonable (it does not ask the bike rider 
for super-human performance); and safe (it does not force the rider to attend to the 
interface in a way that distracts from situational awareness). We chose to use two 
modes of information delivery based on our findings from a previous three-year NSF 
study of user interfaces for transportation information. Our earlier study found a visual 
interface slightly easier to use, but also distracting in a way that audio is not. Some 
users could use the visual interface effectively without being distracted while others 
worked most effectively with audio only (Fickas et al., 2008;Robinson & Fickas, 2009; 
Fickas et al., 2013). 
We chose to use a cell phone as the interface device. For testing, we placed the phone 
in a holder on the handlebar and provided both visual and audio information to the 
bicyclist (see Figure 1.4). However, we also ran several extra tests with the phone in a 
backpack to test the audibility of the audio interface alone. 

 
Figure 1.4: The project supplied the phone and holder for the test trials. 

The visual interface we used in our trials is shown in Figure 1.5. It consists of two 
separate information displays. The first is a large area for a set of icons we developed 
for the project. The figure shows the checkmark icon. All possible icons are shown in 
Figure 7. When the user is stopped at a signal the X icon appears and remains until the 
light turns green (as predicted by the app). 
Prior to the field trials, we tested in a virtual environment (Masud & Fickas, 2011) to 
narrow interface options. For the trials we linked both small-adjustment arrows to 
changes of 2 mph or less. The large arrows we linked to changes greater than 2 mph . 
The one exception is when a rider is starting from a full stop. In this case the app will 
display the small up-arrow icon for five seconds before calculating the actual 
adjustment. All of these values can be changed to a user’s preference but were held 
steady in our trials. 



9 

 
Figure 1.5: Delivers GLOSA information to a bike rider on a corridor. In the case shown, the rider is in 
great position to catch the next green. 

The second visual display is of a bicycle that travels back and forth across the top of the 
three text boxes. It is meant to give a more fine-grained picture of where a bike rider is 
in terms of the green-wave interval. For instance, if the bike is straddling the “Too slow” 
and “Perfect” text boxes, the user can see that they are on the edge of falling out of the 
green-wave interval. When the user is stopped at a red light, the bicycle parks on the 
left-hand edge of the display. 
The audio interface consists of six alternative messages: (1) “increase speed” (2) 
“reduce speed” (3) “in green wave” (4) “impossible” (5) “entering corridor” and (6) 
“exiting corridor.” After initial tests, the repetitiveness of the adjustment messages was 
set at every five seconds. The green-wave message was delivered immediately when 
transitioning into the green wave and then every 10 seconds. The impossible message 
was delivered just once, as were the entering and exiting messages. We also note that 
these are all settable to each individual rider’s preference. In particular, at least one 
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early tester would have liked to be reminded they were doing well more often; hearing 
the green-wave message made riding “more fun.” However, we eventually set them to 
the values above for our final trials. 
The tabs on the top of the screen are for use in debugging and were not used in the 
trials. 

 
Figure 1.6: The possible icons available to the app to convey GLOSA adjustments to the rider. 

2.0 CURRENT PROJECT GOALS 

Our long-term goal is to extend the FastTrack app described in the Background section 
to include actuated signals along a corridor. This project takes a first step by evaluating 
the effectiveness of machine-learning algorithms to predict the next phase of an 
actuated signal on a busy bike corridor, given information about the past K phases. In 
essence, this is what is called a time-series forecasting problem. If we find forecasting 
success here, then we can begin to incorporate these algorithms into a more 
comprehensive GLOSA app (post-grant). 

The project used data captured during the prior V2X project. It consists of phase-
change data for a complicated intersection that plays a key role in a bike corridor. The 
intersection has eight separate phases, all callable, that serve vehicles, bicyclists, 
pedestrians, and buses, all in various combinations. The data was taken from the month 
of June 2018. June is typically a heavy biking month near campus and, hence, a good 
test month for us. 

In the following sections we will describe the field test site, the two machine-learning 
algorithms explored, the results, and conclusions. 

2.1 FIELD TESTING LOCATION 

Our data comes from the intersection of Alder and 18th in Eugene, which is part of a 
busy bike corridor leading to and from the south end of the UO campus. Loop detectors 
and advanced loop detectors currently exist in both directions on Alder to recognize the 
presence of bicycles and vehicles; there are also pedestrian call-buttons on all four 
corners. Figures 2.1 and 2.2 give different views of the intersection. 
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Figure 2.1: Intersection of Alder and 18th (looking south on Alder) with signal phases for bike only (left) 
and car only (right) and the terminal loop detector bottom left (many people on bikes wait in the crosswalk 
not knowing what the bike loop detector symbol is for). 

 

 
Figure 2.2: Intersection of Alder and 18th (looking north on Alder). 

For our study intersection, there are eight phases possible. Three of these are what we 
call “bike friendly.” Through a combination of pedestrian and bike greens, these three 
phases allow a bike rider to travel through the intersection without stopping.  
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2.2 THE DATA 

The City of Eugene gave us access to the June data (12 days) in real time from the 
McCain Transparity server monitoring the intersection (Transparity TMS). We captured 
and then uploaded the data to a Python pandas DataFrame as seen in Figure 2.3, 
which shows a sample of five rows taken from the table. As shown, a new row was 
generated on each phase change. This could include a complete change to a new 
phase or simply an extension to the current phase. Note that a value of 0,0 for x and y 
designates a change to yellow. This will be wrangled out and not counted as an actual 
phase.  

Figure 2.3: Data as captured from McCain Transparity server. 

The raw table has 42,920 rows (i.e., separate phase changes), yellows included. 

2.3 UNIVARIATE VERSUS MULTIVARIATE  

In time-series forecasting, two types of data are possible. The simplest is univariate 
data. Think of predicting the temperature based on the past five days’ temperatures. So, 
a single variable that acts as both an independent and dependent variable. But you can 
easily view the same temperature-prediction problem from a more comprehensive 
approach by considering more variables (e.g., the humidity, barometric pressure, cloud 
cover) over the last five days. Using two or more variables to predict temperature turns 
it into a multivariate forecasting problem. 
In our case, we have two or more variables we could use, including date and time of 
day. With some wrangling, we could also add a new column for the day of week. We 
potentially could branch out and merge in weather data to a new column. In short, we 
could use multivariate forecasting approaches. In general, these will outperform 
univariate approaches given there is more information available to make predictions. 
However, they also rely on having continuous access to multiple information sources. 
While our current data has no gaps, we have worked with controllers in the past where 
things like time-stamps are randomly dropped or mangled. Hence, we decided to first 
test our algorithms on a simple univariate problem because it relies on fewer sources of 
(potentially unreliable) information. 

2.4 WRANGLING TO UNIVARIATE  

 

https://www.mccain-inc.com/products/software/central-systems/transparity-tms
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First, we removed rows of phase 0,0 that represent a phase change to yellow. Next, we 
added a new column that encoded each separate phase as a binary number: 1 for bike 
friendly and 0 for not. The three phases identified as bike friendly are 2,6 and 2,0 and 
6,0. These three-phase combinations give a bike rider a green for the intersection. The 
remaining five combinations force the rider to stop and wait. Finally, we dropped all 
other columns. We now have a univariate dataset. Figure 2.4 shows the first five rows of 
the resulting table (i.e., an interleaving of bike friendly and not). We ended up with a 
sequence of 22,535 rows in the table after removing yellows. 

Figure 2.4: Data wrangled to univariate form. 

2.5 CHOICE OF LOOK-BACK  

We next transformed the pandas table into a dataset that is suitable for TensorFlow. At 
this point we had to choose the look-back value: how many phases should we look-back 
to predict the next phase? This value can range from one (look-back to just the previous 
phase) to the hundreds. After initial exploration, we choose seven: use the past seven 
phases to predict the next. 

3.0 METHODOLOGY 

We chose to explore two separate machine-learning algorithms. Both have a good track 
record with time-series forecasting: One-Dimensional Convolutional Neural Nets (1D 
CNN for short) and Long Short-Term Memory models (LSTM for short). We chose to 
use the Python TensorFlow library (TensorFlow Overview), which has good support for 
both algorithms. We recommend two tutorials from Brownlee’s Deep Learning and Time 
Series for those wishing to dive a little deeper into the two algorithms: 1D Convolutional 
Neural Network Models for Human Activity Recognition and How to Develop LSTM 
Models for Time Series Forecasting. 

 

https://www.tensorflow.org/overview/
https://machinelearningmastery.com/cnn-models-for-human-activity-recognition-time-series-classification/
https://machinelearningmastery.com/cnn-models-for-human-activity-recognition-time-series-classification/
https://machinelearningmastery.com/how-to-develop-lstm-models-for-time-series-forecasting/
https://machinelearningmastery.com/how-to-develop-lstm-models-for-time-series-forecasting/
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3.1 THE THREE METRICS USED 

Our experience is that bike riders become more annoyed at being mistakenly told they 
will get a green (and then potentially required to slam on their brakes because of an 
unexpected red) than mistakenly told they cannot make a green (and then potentially 
missing a green).  Hence, we put more value on correct bike friendly predictions of 1. 
We chose to use three metrics because of this: Precision, Recall and Accuracy. In 
words, Precision is concerned with “when the model does predict 1, how often is it 
correct?” As a complement, Recall asks “for all the actual 1s, how many did the model 
get correct?” A high Precision score (with 1.0 being tops) says that the model is not 
prone to have the rider slamming on brakes. A high Recall score (with 1.0 being tops) 
says that the rider is not missing many greens. Finally, Accuracy is simply the number 
of correct predictions. 

3.2 LSTM 

The general idea behind an LSTM model is somewhat the opposite of a CNN model 
(discussed shortly). Whereas a CNN model uses filters to actively search for what to 
glean from the data, an LSTM stays put and lets the data come to it through a sequence 
of cells. Figure 3.1 shows a diagram from an LSTM layer with three cells. The cell itself 
has mechanisms for both remembering and forgetting what it has seen in the past. 

Figure 3.1: Cells of an LSTM. 

3.3 CHOICE OF LSTM ARCHITECTURE 

One of the complicating factors of using neural net algorithms is their large 
hyperparameter space: many choices are left to the user; there are no hard and fast 
rules on what choices work best. What you are left with is a large exploration space that 
is typically costly to explore. After this exploration process, we chose the model 
architecture shown in Figure 3.2.  
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Figure 3.2: LSTM architecture. 

As an explanation: 

• We are using two LSTM layers of 50 units/cells each. Both use the selu 
activation function (Scaled Rectified Linear Unit – see Why Scaled?). The 
return_sequences=True code is needed when stacking like this. 

• The dense portion has two hidden layers, one with 20 nodes followed by one with 
10 nodes.  

• The output layer has one node using sigmoid. 
• There are Dropout nodes interleaved throughout the layers, each with a 

percentage of .2. 
• We compile the whole model using standard parameters. 

3.4 LSTM TRAINING 

We used the same 80/20 split for training and testing data on both 1D CNN and LTSM 
models. This gave us 18,021 training rows and 4,500 testing rows.  We also chose 5 
epochs with a batch size of 1. Note the training time of the LTSM as configured was 
eight minutes or 96 seconds per epoch. 

Figure 3.3: LSTM training. 
 

training = l_model.fit(train_x, train_y, epochs=5, batch_size=1) 
CPU times: user 8min 
 

lstm_size = 50 
l_model = Sequential() 
l_model.add(LSTM(lstm_size, activation='selu', 
              input_shape=(n_timesteps,1), return_sequences=True)) 
l_model.add(Dropout(0.2)) 
l_model.add(LSTM(lstm_size, activation='selu')) 
l_model.add(Dropout(0.2)) 
l_model.add(Dense(20, activation='selu')) 
l_model.add(Dropout(0.2)) 
l_model.add(Dense(10, activation='selu')) 
l_model.add(Dropout(0.2)) 
l_model.add(Dense(1, activation='sigmoid')) 
l_model.compile(optimizer='adam', 
            loss='binary_crossentropy', 
            metrics=['accuracy']) 
 

https://towardsdatascience.com/gentle-introduction-to-selus-b19943068cd9
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3.5 LSTM RESULTS 

Figure 3.4: LSTM evaluation. 

The Recall score is good. We would expect a bike rider to miss just a few greens. The 
Precision score says we correctly predict 1 roughly 76% of the time and incorrectly 
predict 1 24% of the time. So, 24% of the time we could expect the need for braking. 

3.6 1D CNN 

The general idea behind a 1D CNN is that of moving filters or convolvers. Multiple filters 
move over a time series looking for patterns. Given multiple filters, over training each 
tends to specialize in finding specific features in the data. When combined, they often 
prove highly effective in prediction, especially over non-linear data. Figure 3.5 illustrates 
a simple 1D CNN where the filters are called “feature maps.” As shown, the back end to 
a convolution layer is a normal neural net.   

Figure 3.5: 1D CNN. 

3.7 CHOICE OF 1D CNN ARCHITECTURE 

 

Precision: 0.7545126353790613 
Recall: 0.9776507276507277 
Accuracy: 0.8544444444444445 
1s 3ms/step 
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After exploration, we chose the model architecture shown in Figure 3.6. 

Figure 3.6: 1D CNN architecture. 

As an explanation: 

• We are using three separate convolution layers: the first has 16 filters of size 3, 
(i.e., it looks at three separate phases (in series) at once, then slides to the next). 
It has a default stride of 1: it moves down one row at a time. Given seven rows in 
the look-back series, it will examine five combinations of 3 in series. All use the 
selu activation function (Scaled Rectified Linear Unit). 

• The flatten layer prepares the data for a normal (dense) neural net. 
• The dense portion has two hidden layers, one with 20 nodes followed by one with 

10 nodes.  
• Similar to the LTSM, the output layer has one node. 

3.8 1D CNN TRAINING 

We used the same 80/20 split as with the LTSM. Note that the training time was roughly 
150 seconds with this configuration or 30 seconds per epoch (three times faster than 
with the LSTM). 

Figure 3.7: 1D CNN training. 

 

c_model = Sequential() 
c_model.add(Conv1D(filters=16, kernel_size=4, activation='selu',  
                   input_shape=(n_timesteps,1))) 
c_model.add(Dropout(0.4)) 
c_model.add(Conv1D(filters=8, kernel_size=3, activation='selu')) 
c_model.add(Dropout(0.4)) 
c_model.add(Conv1D(filters=4, kernel_size=2, activation='selu')) 
c_model.add(Dropout(0.4)) 
c_model.add(Flatten()) 
c_model.add(Dense(20, activation='selu')) 
c_model.add(Dropout(0.2)) 
c_model.add(Dense(10, activation='selu')) 
c_model.add(Dropout(0.2)) 
c_model.add(Dense(1, activation='sigmoid')) 
c_model.compile(optimizer='adam', 
            loss='binary_crossentropy',  
            metrics=['accuracy']) 
 

training = c_model.fit(train_x, train_y, epochs=5, batch_size=1) 
CPU times: user 2min 28s 
 



18 

3.9 1D CNN RESULTS 

The results are nearly identical to the LSTM scores. Our takeaway is that we may have 
maxed out what a deep-learning model can do with this dataset. However, there is still 
room to explore, which we will discuss in the next section. 

Figure 3.8: 1D CNN evaluation. 

4.0 PRECISION-RECALL TRADEOFF 

 
We decided to do further exploration on Precision and Recall. From our experience, a 
Precision score of .75 is lower than we would like: it would require a bike rider to 
unexpectedly have to stop, potentially quickly, 25% of the time. The one thing we can 
tradeoff is Recall (i.e., the ability to give bike riders the opportunity to make the 
maximum number of greens). The general idea is to introduce a threshold that can be 
varied on the raw sigmoid values from a model. As a reminder, we are using sigmoid to 
give us a value from 0 to 1, e.g., .2, .45, .9. We eventually want to transform the raw 
sigmoid value to a binary 0 or 1 and, hence, match up with actual label value of 0 or 1. 
We can introduce a decision rule for this transformation that includes a threshold. Figure 
4.1 shows the general form of this type of rule in Python, where raw_sigmoid is the list 
of predictions obtained from a model as values between 0 and 1. 
Figure 4.1: A decision rule with a threshold. 

 
By default, the threshold has a value of .5: if the sigmoid output is greater than or equal 
to this value, a 1 is predicted otherwise a 0 is predicted. But we can increase the 
threshold value to increase Precision (and typically decrease Recall). We explored this 
tradeoff with the output of the LTSM model. Our results are shown in Figure 4.2. 
 
 
 
 
 
 
 
 

Precision: 0.7461180124223602 
Recall: 0.998960498960499 
Accuracy: 0.8542222222222222 
 
0s 1ms/step 
 

binary = [1 if r>=threshold else 0 for r in raw_sigmoid] 
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Figure 4.2: Threshold exploration in table form. 
 
Or in graph form in Figure 4.3. 

Figure 4.3: Threshold exploration in graph form. 
 
At this point we are making subjective choices. If we highly prize Precision, then 
perhaps we should go with a threshold of .85 with a Precision value of 1.0 (i.e., we are 
always correct when we predict the rider will make it). Of course, the accompanying 
Recall is below .02 (i.e., we are catching less than 2% of all greens). What is interesting 
about introducing a decision rule with a threshold is that the threshold can be tailored to 
individual riders’ tastes. Perhaps Smith is ok with less Precision if it provides better 
Recall. In that case, we could set the FastTrack app to include a threshold of .5 for 
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Smith. Jones, on the other hand, is worried about sudden stops with their poor brakes. 
We can set the threshold for Jones to .79 or above. 

5.0 CONCLUSION 

Our results are mixed for the 12 days in June 2018 that we were given access to. We 
were able to predict the next phase with two separate time-series forecasting algorithms 
with roughly 85% accuracy given a look-back of 7. And both algorithms were able to 
predict a single sample within one second, which is reasonable for inclusion in the 
FastTrack app. However, looking more closely at Precision and Recall, our values for 
Precision, at roughly 75%, were a bit disappointing. We did explore a means of 
increasing Precision at the cost of Recall by introducing a threshold that we could vary. 
And argued that this can be used to tailor the FastTrack app to different users’ tastes. 

We believe we are in the ballpark of being acceptable in terms of adding a prediction 
component to our existing FastTrack app. This would open up green-wave capability for 
non-fixed-time intersections. Our plans for next steps are: 

1. Gain access to a dataset with a larger range of days, perhaps an entire season. 
It appears we will be able to do this for the Naito Parkway corridor in Portland. 
This corridor contains multiple actuated intersections to draw data from. 
Typically, more data leads to stronger results when looking at machine-learning 
algorithms.  

2. We believe an effective step will be to move to a multivariate dataset that 
includes date and time, and perhaps weather as well. This would not be a huge 
change to data preparation. And it may allow a single model that covers all four 
seasons. The downside is that of mangled or corrupted data from these new data 
sources. However, looking at our upcoming access to Naito Parkway, all new 
(modern) controllers are being installed along the corridor, suggesting a clean 
real-time feed. 

Finally, our app requires a real-time feed from upcoming signals on the bicyclist’s path. 
Cities with older equipment or with older Traffic Management Systems (TMS) may not 
be able to provide this feed. We can relate to this given our challenges getting this feed 
from the Eugene TMS. However, we are optimistic. We expect that as cities replace 
older equipment and bring on a modern TMS, they will be fully capable of using a 
FastTrack app that is effective with both fixed and actuated intersections, giving their 
biking community green-wave opportunities. 

Note that following (Widder, et al., 2019), we have made our code available in a Colab 
Jupyter notebook for those interested in replicating our work or exploring further: Colab 
notebook. 

https://colab.research.google.com/drive/12Q8Sn0JnNFEfYxelGJOU3dVP0X8P191w?usp=sharing
https://colab.research.google.com/drive/12Q8Sn0JnNFEfYxelGJOU3dVP0X8P191w?usp=sharing
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