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Abstract

Given a smooth defective solid crystalline structure defined by linearly independent ‘lattice’ vector fields, the Burgers

vector construction characterizes some aspect of the ‘defectiveness’ of the crystal by virtue of its interpretation in

terms of the closure failure of appropriately defined paths in the material and this construction partly determines the

distribution of dislocations in the crystal. In the case that the topology of the body manifold M is trivial (e.g., a smooth

crystal defined on an open set in R2), it would seem at first glance that there is no corresponding construction that leads

to the notion of a distribution of disclinations, that is, defects with some kind of ‘rotational’ closure failure, even though

the existence of such discrete defects seems to be accepted in the physical literature. For if one chooses to parallel

transport a vector, given at some point P in the crystal, by requiring that the components of the transported vector on

the lattice vector fields are constant, there is no change in the vector after parallel transport along any circuit based at P.

So the corresponding curvature is zero. However, we show that one can define a certain (generally non-zero) curvature

in this context, in a natural way. In fact, we show (subject to some technical assumptions) that given a smooth solid

crystalline structure, there is a Lie group acting on the body manifold M that has dimension greater or equal to that of

M. When the dislocation density is non-constant in M the group generally has a non-trivial topology, and so there may

be an associated curvature. Using standard geometric methods in this context, we show that there is a linear connection

invariant with respect to the said Lie group, and give examples of structures where the corresponding torsion and

curvature may be non-zero even when the topology of M is trivial. So we show that there is a ‘rotational’ closure failure

associated with the group structure – however, we do not claim, as yet, that this leads to the notion of a distribution

of disclinations in the material, since we do not provide a physical interpretation of these ideas. We hope to provide a

convincing interpretation in future work. The theory of fibre bundles, in particular the theory of homogeneous spaces,

is central to the discussion.

Keywords

continuous distributions of defects, elastic crystals, disclinations, connections, homogeneous spaces

Corresponding author:
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1. Introduction

This work is an effort to further develop Davini’s proposal for a continuum theory of defective crystals [1] by
studying the geometry of the continuous structures he introduced using modern mathematical methods, moti-
vated by the assumption that an appropriately detailed description of the geometry of the crystal continuum
in the current configuration informs us of the kinematic constitutive variables. In the next section, we summa-
rize some previous work, showing that certain geometric fields are elastically invariant and such that different
crystals are (locally) elastically related only if those fields match (in a prescribed sense) in the two states. In
other words, those fields provide a complete set of ‘plastic strain variables’, and there is only a finite number of
such variables. These two facts suggest that those particular elastically invariant fields should be incorporated,
together with a measure of elastic strain, in any general list of kinematic constitutive variables in a continuum
mechanics context based on Davini’s model.

To phrase these concepts in geometrical language, we indicate in Section 2 that the ‘plastic strain variables’
can be rewritten as combinations of successive Lie brackets of the vector fields that define the crystalline struc-
ture. This reformulation effectively introduces iterations of the Burgers vector construction, and we make the
assumption that there is a finite basis for the Lie algebra of all vector fields so formed. (This does not follow
from the fact that there is a finite number of plastic strain variables). The utility of this assumption is the cen-
tral idea in Elżanowski and Preston’s analysis [2]. Then, the basis vector fields define a finite-dimensional Lie
algebra (with appropriate choice of Lie bracket) and there is generally a corresponding Lie group of dimension
strictly greater than that of M , which acts on M . It would seem, therefore, that the topology of the group act-
ing on M should play a role in the mechanics of a crystalline material with kinematic constitutive variables as
specified, and we note that this topology can be non-trivial even if that of M is trivial.

In this presentation, we focus on the mathematical apparatus required to give substance to these remarks,
introducing such concepts as the isotropy group of the action of the Lie group on M , the principal bundle struc-
ture induced on the Lie group by the isotropy group and the corresponding lattice canonical connection with
covariantly constant measures of curvature and torsion. We also give two explicit examples of lattice structures
(M is an open set in R2) where curvature and torsion do not vanish. We present here only the mathematical
foundations, but in future work we hope to provide more detailed physical interpretations of the quantities and
procedures employed in this paper, appropriate to the context and convincing from the point of view of engi-
neering applications. Note that the theory of fibre bundles, which we employ here, has long been an integral part
of the mathematical physicist’s armoury, and that insights deriving from the perspective afforded by this theory
have been instrumental in understanding and interpreting solutions of field equations with certain symmetries.

2. Continuous elastic crystals

Given a body manifold M of dimension n ≤ 3 (mathematically, the presentation is valid for any finite dimen-
sion), let the kinematic state of a continuous solid crystal body be defined by n linearly independent smooth
vector fields li : M → TM , i = 1, . . . , n, where TM denotes the tangent space of M . In other words, the state of
a continuous elastic solid crystal, called a continuous lattice or simply a lattice, is defined as a smooth (local)
section l : M → L(M) of the bundle of the linear frames [3] of the body manifold M .1 Subject to the choice
of a local chart and invoking the Euclidean structure of Rn, the lattice l(x), x ∈ M , induces a dual frame (dual
lattice) d : M → L(M), such that di(x) · lj(x) = δij, i, j = 1, . . . , n, x ∈ M , where δij denotes the usual Kronecker
delta. Some aspects of the ‘defectiveness’ of the lattice l(x), x ∈ M , may be characterized in dimension three
(as is traditional) by the dislocation density tensor field Sij, the components of which are defined by

n(x)Sij(x) = ∇ ∧ di(x) · dj(x), i, j = 1, . . . , x ∈ M , (1)

where n(x) is the lattice volume element (n(x) is the determinant of the dual lattice at x). Note that if the defining
frame field l(x) is holonomic (integrable), the corresponding dislocation density tensor vanishes everywhere,
and that the opposite is also true [4]. In particular, the dislocation density tensor of the ideal lattice defined by
the standard frame li(x) = ei, i = 1, . . . , n, vanishes identically. Alternatively, some aspects of the defectiveness
can be characterized in any dimension by the (torsion) tensor T

T =
1

2
T i

jkdi ⊗ ηj ∧ ηk , (2)

of the linear connection induced by the given lattice frame, where ηl denotes the corresponding coframe.2
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Two crystalline structures, say l(x) and l̃(x), having the same domain of definition M , are called elastically
related if there exists a diffeomorphism φ : M → M , such that

l̃i(φ(x)) = φ∗(li(x)), i = 1, . . . , n, x ∈ M , (3)

where φ∗ : TM → TM denotes the tangent map of φ. Thus, any diffeomorphism of M , when applied to a
continuous lattice via equation (3), induces an elastically related lattice structure. It is clear, however, that,
in general, two (smooth) crystalline structures are not necessarily elastically related, see Davini and Parry [4].
Indeed, given a diffeomorphism φ : M → M , the lattice l(x), and the elastically related lattice l̃(φ(x)) = φ∗(l(x)),
one may show that

S̃ij(φ(x)) = Sij(x), i, j = 1, . . . , n, x ∈ M , (4)

where S̃ij(x) are the components of the dislocation density tensor of the new structure. So the set defined by

CM = {Sij(x) : x ∈ M} (5)

is an invariant of elastic deformation, as it is unchanged by any diffeomorphism φ : M → M . Thus, a necessary
condition that two continuous lattices l and l̂ be elastically related is that

ĈM = CM , (6)

where ĈM is the set corresponding to the section l̂.
Although the dislocation density tensor field is an elastic scalar invariant in the sense that equation (4) holds,

it is not the only scalar invariant. For instance, successive directional derivatives of the dislocation density tensor,
e.g., the first-order directional derivatives li · ∇Sjk , are also unchanged under a diffeomorphism of M (we call
these the invariants of ‘first order’). In fact, there is an infinite number of scalar invariants, satisfying equations
analogous to equation (4) – however, at most n of these scalar invariant functions can be independent, since n
independent functions parameterize a local chart. Corresponding to each of the independent scalar invariants
there is a necessary condition that two continuous lattices be elastically related, analogous to equation (6).

If there are n independent scalar invariants, they must occur amongst the first (n − 1) directional derivatives
of the dislocation density tensor field: for if the first such invariant is some component of the dislocation den-
sity tensor field, and if no other component is independent of the first then a second invariant must be found
amongst the first-order directional derivatives of the dislocation density tensor field, and so on. Suppose that the
independent scalar invariants occur amongst the first k directional derivatives of the dislocation density tensor
field, where k ≤ (n − 1). Then the scalar invariants of order (k + 1) may be expressed as functions of the n
independent invariants, and given these functions it is straightforward to show by induction that any invariant
of arbitrary finite order may be similarly expressed. The case where there are fewer than n independent scalar
invariants may be treated analogously.

To progress, it is useful to generalize the definition of the set CM to incorporate all scalar invariants of
order ≤ (k + 1), not just the nine components of the dislocation density tensor field. This set represents the
‘classifying manifold’ corresponding to the crystal state, given certain regularity assumptions – this set is a
fundamental construct in Cartan’s ‘equivalence method’ (which allows one to decide whether two coframes are
mapped to each other by a diffeomorphism) [6]. The central fact that makes this definition important is the
following: if one constructs the classifying manifolds corresponding to two crystal states, and those manifolds
overlap (in a precise sense, see Olver [6]), then the two continuous lattices are locally elastically related to one
another (i.e., the lattice vector fields in certain neighbourhoods of points determined by the overlap condition
are elastically related). So the identity of classifying manifolds corresponding to two crystal states, generalizing
equation (6), is necessary if the crystal states are to be elastically related to each other, whereas, as a kind of
converse result, if the two classifying manifolds overlap, then the crystal states are locally elastically related.
By virtue of this last fact, one may regard the quantities that enter into the definition of the classifying manifold
as the ‘plastic strain variables’, which determine whether or not different crystal states are locally elastically
related to one another. (This overlap condition is ‘local’, so the topology of the classifying manifold plays no
role in this context.) See Olver [6] and Parry [7] for details.

Finally, in this section, we say that a continuous lattice is uniformly defective if its dislocation density tensor
Sij(x) is constant in M , that is, if it is material point independent. From equation (4), if two uniformly defective
lattices are elastically related, they have the same dislocation density tensor. It can be shown that if two uniformly
defective lattices have the same dislocation density tensor, they are locally elastically related (but not necessarily
elastically related). However, in the following we deal solely with non-uniformly defective structures.
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3. Non-uniformly defective structures

Consider a continuous lattice defined by the frame field l : M → L(M) and assume that the corresponding
smooth vector fields li(x), i = 1, . . . , n, induce an m-dimensional Lie subalgebra, say l, of the algebra X (M) of
all smooth vector fields on M , where n ≤ m < ∞. We shall call the subalgebra l the lattice algebra and number
its generating vector fields, say l1, l2, . . . , lm, so that li = li(x), i = 1, . . . , n, unless stated otherwise.

Our assumption that the lattice algebra l is of finite dimension is motivated by the following two observations.
First, as intimated in the previous section, the fields of scalar invariants of order less than or equal to n determine
whether or not two continuous lattices are locally elastically related, and any scalar invariants of higher order
are determined (via appropriate functional relations) by the lower-order invariants. In fact, as scalar invariants
are unchanged by elastic deformations, we may regard this finite set of scalar invariants as a rather general set of

inelastic constitutive variables. Moreover, as shown in Parry [7] and Parry and S̆ilhavý [8], this set of inelastic
variables may be expressed in terms of Lie brackets of the generating vector fields of order less than or equal
to (n + 1). (We say that terms such as [li(x), lj(x)] are Lie brackets of second order, terms such as [[li, lj], lk] are
Lie brackets of third order, etc., and refer to li as a Lie bracket of first order, for convenience.) We therefore ask
what assumption guarantees that this set of Lie brackets determines all higher-order brackets. Clearly, this is so
if the smooth vector fields li(x), i = 1, . . . , n, induce a finite-dimensional Lie subalgebra of X (M) .

Finally, we assume also that all generators of the subalgebra l are complete vector fields on the manifold M ,
implying that the algebra l consists entirely of complete3 vector fields, [9]. Thus, there exists (see Gorbatsevich
et al. [9] and Palais [10]) an abstract Lie group, say, G acting on the body manifold M , the Lie algebra of which
is isomorphic to the subalgebra l.

Theorem 1. Consider a continuous lattice defined by n linearly independent smooth vector fields li : M → TM,
i = 1, . . . , n. Let l ⊂ X (M) denote the smallest algebra of vector fields containing the given lattice vector fields.
Assume that l is finite-dimensional and complete. Then there exists a simply connected Lie group G contained
in Diff(M) as an abstract subgroup,4 such that the natural action 3 : G × M → M of the group G on M is
smooth and the algebra l is homomorphic to the Lie algebra, say g, of the group G.

Indeed, given the smooth left action 3 : G × M → M of the group G on the body manifold M , there exists
a homomorphism χ : G → Diff(M) from the group G into the group of all diffeomorphisms of M , such that

χ (g)(x) = 3(g, x), g ∈ G, x ∈ M . (7)

If, in addition, the action 3 is effective,5 the homomorphism χ identifies the group G with a subgroup, say,
χ (G) ⊂ Diff(M). Correspondingly, there exists a relation between the Lie algebra g of the group G and the
algebra of all smooth vector fields X (M). To this end, given x ∈ M , consider the smooth mapping 3x : G → M ,
such that

3x(g) = 3(g, x) (8)

for any g ∈ G, i.e., 3x maps the group G onto the orbit G(x) (under the action 3) of the point x. The mapping
3x is a morphism (but not necessarily an isomorphism) of the action of G on itself (by left translations) into
the action of 3 on M . Let d3x : TG → TM be the tangent map of 3x, where d3x : TgG → T3(g,x)M for any
g ∈ G. Identifying the tangent space TeG at the identity e of the group G with the Lie algebra g of G, define

dχ : g → X (M) (9)

by requiring that

dχ (v)(x) = de3x(v) (10)

for any v ∈ g and any x ∈ M . The following can than be shown [9].

Proposition 1. The mapping dχ : g → X (M) is a homomorphism of Lie algebras. In fact, dχ (g) = l.

Given an m-parameter Lie group G acting on the left on the body manifold M , where the Lie algebra g of G
is homomorphic to the lattice algebra l, consider a point, say x0 ∈ M , and let Gx0

be the isotropy group of the
action 3 at x0. That is, let

Gx0
:= {g ∈ G : 3(g, x0) = x0}. (11)
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If the action 3 is transitive,6 the orbit 3x0
(G) = M and the rank of the projection 3x0

is constant [9]. This, in

turn, allows one to identify M with the quotient space G/Gx0
. Namely, consider the mapping 3̂(x0) : G/Gx0

→
M , called here a realization, defined by

3̂(x0)(hGx0
) = 3x0

(h) = 3(h, x0), h ∈ G , (12)

where hGx0
denotes the left co-set of Gx0

generated by h. It can easily be shown that 3̂(x0) is a diffeomorphism
commuting with the natural left action of G on G/Gx0

. Note, that, in general, a realization is base point depen-

dent. That is, two realizations based at two different points, say, 3̂(x0) : G/Gx0
→ M and 3̂(y0) : G/Gy0

→ M ,
where y0 = 3(g, x0) for some g ∈ G, are two different mappings, with the corresponding isotropy groups being
a conjugate of each other, i.e., Gy0

= gGx0
g−1. Indeed, let g0 ∈ Gx0

; then,

3
(
gg0g−1, y0

)
= 3

(
gg0g−1, 3(g, x0)

)
= 3(gg0, x0) = 3(g, x0) = y0. (13)

Summarizing what we have just discussed, we can state the following.

Theorem 2. Consider a continuous lattice defined by n linearly independent smooth vector fields li : M → TM,
i = 1, . . . , n, where l ⊂ X (M) is the corresponding lattice algebra and where the induced action 3 : G × M →
M (Theorem 1) is transitive. Then the underlying body manifold M can be identified with the homogeneous
space G/Gx0

,7 where the subgroup Gx0
⊂ G is the isotropy group of the action 3 at the point x0 ∈ M.

In other words, the body manifold M with the lattice frame l may be viewed as the homogeneous space
G/Gx0

on which the group G acts in the natural way on the left. This generalizes the uniformly defective case
where the body manifold M is identified with a Lie group acting on itself [11].

In addition to M being identified with the homogeneous space G/Gx0
, the subgroup Gx0

(in general, any
closed subgroup of G), introduces a principal bundle structure on the group G with the bundle projection
π : G → G/Gx0

, such that π(g) = gGx0
, for any g ∈ G, and the natural right action of Gx0

on G. Moreover, as
the tangent map

deπ : TeG := g → TGx0
G/Gx0

(14)

is surjective, its kernel is the Lie algebra g0 of the isotropy group Gx0
. This allows one to identify the tangent

space TGx0
G/Gx0

with the algebra quotient g/g0 [9]. Furthermore, the specific realization 3̂(x0) : G/Gx0
→ M

induces a bundle isomorphism between the principal bundle8 G(G/Gx0
, Gx0

) and the principal bundle G(M , Gx0
)

with the projection π0 : G → M , such that

π0(g) = 3̂(x0)(π(g)) = 3̂(x0)(gGx0
) = 3(g, x0). (15)

We shall explore this way of looking at the group G acting on the body manifold M in the next section. For

now, note that, because the realization 3̂(x0) : G/Gx0
→ M is a diffeomorphism, the kernel of the tangent map

deπ0 : g → Tx0
M is again the Lie algebra g0 of the isotropy group Gx0

.

Example 1. Consider a two-dimensional continuous lattice given by the frame l1 = (1, 0) and l2 = (0, −x).
As the corresponding dislocation density tensor is not constant, the lattice is non-uniformly defective. In fact, it
generates a three-dimensional Lie algebra spanned by

l1 = (1, 0), l2 = (0, −x), l3 = (0, 1) (16)

as [l1, l2] = l3 and [l1, l3] = [l2, l3] = 0. Viewing the vector fields li, i = 1, 2, 3, as infinitesimal generators
of one-parameter groups acting on R2 and using the exponential map construction to determine the three
associated flows exp(tli) : R2 → R2, we obtain (x, y) 7→ (x + t, y), (x, y) 7→ (x, y − xt) and (x, y) 7→ (x, y + t).
The composition of these flows generates the (left) action of a three-parameter group, say G,

3((a, b, c), (x, y)) = (x + a, y − b(x + a) + c) (17)

for any (a, b, c) ∈ G and (x, y) ∈ R2, where the group multiplication

gg =
(
a + a, b + b, c + c + ba

)
, g, g ∈ G (18)
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can easily be determined from the equation

3(gg, (x, y)) = 3(g, 3(g, (x, y))) (19)

for any two g, g ∈ G. Obviously, the group G is connected (in fact, path connected) and its action 3 on R2 is
transitive. Given an arbitrary point (x, y) ∈ R2, consider its orbit map 3(x,y) : G → R2, equation (8). Its tangent

map d3(x,y) : TgG → T3(g,(x,y))R
2, where g = (a, b, c), is represented in the standard coordinate systems on

G = R3 and R2 by the matrix (
1 0 0

−b −x 1

)
(20)

inducing (at the identity of the group, e = (0, 0, 0)) our lattice algebra l. Moreover, analysing the group
multiplication of the group G, one can easily show that its Lie algebra g is generated by

l1 = (1, 0, 0), l2 = (0, 1, a), l3 = (0, 0, 1) (21)

and that the algebras l and g are isomorphic. Finally, selecting a point, say (x0, y0) ∈ R2, the corresponding
isotropy group of the action 3 at (x0, y0) is

Gx0
= {(0, b, bx0) : b ∈ R} (22)

and its one-dimensional Lie algebra g0 is spanned by (0, 1, x0).

4. The canonical connection on the reductive homogeneous space G/Gx0

As the Lie algebra g0 of the isotropy group Gx0
is a subalgebra of the Lie algebra g, there exists a complementing

vector space, say D, such that g = g0 ⊕ D. Using the realization 3̂(x0) and utilizing the fact that the tangent
Tx0

G/Gx0
is identifiable with the algebra quotient g/g0, one can easily show that the projection deπ0|D is a

linear isomorphism onto Tx0
M . This allows one to lift the generators li(x), i = 1, . . . , n of the lattice algebra

l ⊂ X (M) to the Lie algebra g of the group G by requiring that the lifted frame li, i = 1, . . . , n in g be such
that de3x(li) = dχ (li)(x) = li(x), for every x ∈ M . Note that as the complementing vector space D is not
uniquely defined, neither is the lifting of the generators of the lattice algebra (see Remark 1). However, as the
morphism dχ , see equation (9), is of the maximum rank and as the Lie algebra g is isomorphic to the space of
all left-invariant vector fields on the group G, the frame li, i = 1, . . . , n induces a left-invariant n-dimensional
distribution, say, L : G → TG, on the tangent space of the group G, such that g = g0 ⊕ L(e) and

TgG = TggGx0
⊕ L(g), g ∈ G, (23)

where the co-sets gGx0
are regarded as smooth submanifolds of G.9 Moreover, the distribution L defines a left-

invariant (by the left translations of G) horizontal distribution10 on the principal bundle G(M , Gx0
). That is, for

any g ∈ G, L(g) is a vector subspace of TgG, it depends smoothly on g and dgπ0(L(g)) = Tπ0(g)M . Although the
distribution L is, by definition, left-invariant under the action of the group G it is not, in general, right-invariant
under the action of the isotropy group Gx0

, the structure group of G(M , Gx0
). Namely, in general, there is no

guarantee that L(gg0) = Rg0∗
L(g) for every g ∈ G and every g0 ∈ Gx0

, where Rg0
= gg0. This means that,

although horizontal, the distribution L does not, in general, induce a principal connection on G(M , Gx0
). Yet it

is true that, at every g ∈ G, the kernel of the tangent bundle projection dgπ0 : TgG → Tπ0(g)M is the vertical
space TggG.

The construction of the horizontal distribution L on the principal bundle G(M , Gx0
) can be mimicked on the

bundle of linear frames of the base manifold M using the concept of the linear isotropy representation of the
isotropy group Gx0

. To this end, given g ∈ G, let us consider the mapping 3g : M → M , where 3g(x) = 3(g, x),
x ∈ M . In particular, 3g0

(x0) = x0 for any g0 ∈ Gx0
and the tangent map

dx0
3g0

: Tx0
M → Tx0

M (24)

is a linear isomorphism corresponding, subject to the choice of a basis in Tx0
M , to an element of the general

linear group GL(n, R). That is, let u0 : Rn → Tx0
M be a linear frame (a linear isomorphism) at x0 ∈ M assigning
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to an n-tuple (ξ1, . . . , ξn) ∈ Rn a vector in Tx0
M having (ξ1, . . . , ξn) as its coordinates in the selected basis. By

the linear isotropy representation of Gx0
, we shall mean the homomorphism λ : Gx0

→ GL(n, R), such that

λ(g0) = u−1
0 ◦ dx0

3g0
◦ u0 : Rn → Rn, g0 ∈ Gx0

. (25)

By selecting a particular realization 3̂(x0), identifying the tangent space of the homogeneous space G/Gx0
with

TM and fixing the choice of the frame u0 at Tx0
M ,11 one is allowed to induce through the homomorphism

λ a G-invariant Gx0
-structure (more specifically, a λ(Gx0

)-structure) on M , that is, a reduction of the bundle
of linear frames of M , L(M), to the subgroup λ(Gx0

). Namely, given the reference frame u0 at x0, a frame
at any other point, say x ∈ M (including x0), can be represented as dx0

3g ◦ u0 for some g ∈ G, such that
3g(x0) = 3(g, x0) = x; all because the action 3 of the group G on M is transitive. Moreover, the group λ(Gx0

)
acts on such a selection of frames of M on the right by

dx0
3g ◦ u0 ◦

(
u−1

0 ◦ dx0
3g0

◦ u0

)
= dx0

3gg0
◦ u0. (26)

This, in fact, shows that G(M , Gx0
) and the just-constructed λ(Gx0

)-structure, labelled P(M , Gx0
) here, are iso-

morphic via the mapping g 7→ dx0
3g ◦ u0, g ∈ G. Also, as the bundle G(M , Gx0

) is left-invariant under the
action of the group G on the quotient G/Gx0

, so is the structure π : P → M , where the left action of G on P is
given by gu 7→ dx3g ◦ u, g ∈ G, u ∈ P, π(u) = x.

The horizontal distribution L on G(M , Gx0
) can now be reconstructed on the isomorphic frame subbundle

P(M , Gx0
). However, as the distribution L is generally not invariant under the right action of the isotropy group,

its P(M , Gx0
) counterpart is not invariant under the right action of the subgroup λ(Gx0

) and it does not correspond
to a linear connection on M . Assume however, that the homogeneous space G/Gx0

is reductive, that is, there
exists a vector subspace, say M ⊂ g, such that the Lie algebra g is the direct sum of the isotropy subalgebra g0

and the vector space M, and the subspace M is invariant under the ‘action’ of the subalgebra g0 i.e., [g0, M] ⊂
M, or equivalently, it is invariant under the adjoint action of the group Gx0

, i.e., adGx0
(M) ⊂ M.12 Suppose now

that the horizontal distribution L is such that L(e) = M. As the distribution L is left-invariant under the action
of the whole group G, the condition adGx0

(M) ⊂ M implies its right invariance under the action of the isotropy

group Gx0
.

Remark 1. Note that not every homogeneous space is reductive; see for example Poor [12]. Note also that
establishing whether or not a given homogeneous space is reductive may not be easy. Indeed, the definition of
the reductive homogeneous space states that there exists a vector space M complementing the subalgebra g0

to the whole algebra g, such that M is invariant under the adjoint action of the isotropy group. The subalgebra
g0 can be complemented to the whole algebra g by a variety of different vector spaces and, in general, it is not
clear how to identify a subspace invariant under the adjoint action, if one exists at all. Moreover, one may also
ask if such a choice (if there is one) is unique.

Given the specific linear isotropy representation λ of the isotropy group Gx0
in the general linear group

GL(n, R) via equation (25), and having assumed that the homogeneous space G/Gx0
∼= M is reductive, we are

now ready to define a linear connection on P(M , Gx0
). To this end, let us define first an equivariant (as we shall

prove next) linear mapping from the Lie algebra g of the group G into the Lie algebra of the general linear
group, i.e., 5 : g → gl(n, R), such that

5(X ) =

{
λ(X ), X ∈ g0,

0, X ∈ M,
(27)

where λ denotes the homomorphism of the corresponding Lie algebras, g0 and gl(n, R), induced by the linear
isotropy representation.

Proposition 2. The mapping 5 is equivariant under the action of the isotropy group Gx0
, that is,

5(Rg0∗
X ) = ad(λ(g0))5(X ) (28)

for any X ∈ g and any g0 ∈ Gx0
.
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Proof. Note first that, as the algebra g is a collection of left-invariant vector fields, Rg0∗
X = ad(g0)X . More-

over, as the map 5 is linear, it is enough to consider two separate cases. First, suppose that X ∈ M. Then the
right-hand side vanishes from the definition of the mapping 5 and the fact that the adjoint is an inner auto-
morphism, while the left-hand side equals 0 because the subspace M is adjoint-invariant. Conversely, when
X ∈ g0, λ(ad(g0)X ) = ad(λ(g0))λ(X ), as λ is a group homomorphism and the adjoint is an algebra inner
automorphism.

We can now define a linear connection on P(M , Gx0
), called here the lattice canonical connection, by

requiring that the corresponding gl(n, R)-valued one-form (a connection form) ω on P is such that

5(X ) = ω
(
X̃

)
for any X ∈ g, (29)

where X̃ is the natural lift of X to the frame bundle P(M , Gx0
). Although the construction of the natural lift of a

vector field is thoroughly discussed in, for example, Kobayashi and Nomizu [3], we recap some relevant parts
for the readers’ benefit. That is, given an element X ∈ g, consider the one-parameter group g(t) = exp tX ⊂ G.
Its action on the body manifold M induces a vector field X ∗ on TM by

X ∗
x =

d

dt

∣∣∣∣
t=0

3(g(t), x) = de3x(X ) , (30)

where 3x(g) = 3(g, x), g ∈ G, x ∈ M ; see also equation (10). By the natural lift of X ∈ g (or the corresponding
X ∗), we mean the vector field on P(M , Gx0

), such that

X̃u =
d

dt

∣∣∣∣
t=0

dπ (u)3g(t) ◦ u, u ∈ P. (31)

As the bundles G(M , Gx0
) and P(M , Gx0

) are isomorphic and both left-invariant under the action of the group

G, the projection π : P → M ‘commutes’ with the group action, implying that the vector fields X̃ and X ∗

are π-related, that is, π∗(X̃u) = X ∗
π (u). Consequently, given the canonical form on a frame bundle, that is, an

Rn-valued one-form θ on P, such that
θ

(
X̂u

)
= u−1

(
π∗

(
X̂u

))
, (32)

for any u ∈ P, and any X̂u ∈ TuP, we have that

u
(
θ

(
X̃u

))
= π∗

(
X̃u

)
= X ∗

π (u). (33)

Moreover, as the natural lift is a Lie algebra homomorphism from the Lie algebra g of the group G into the
algebra of smooth vector fields on P(M , Gx0

), the natural lift of a Lie bracket is a Lie bracket of the natural lifts,
i.e.,

[̃X , Y ] = −
[
X̃ , Ỹ

]
(34)

for any X , Y ∈ g. Note also that if X ∈ g0, the corresponding induced vector field X̃u is vertical. Indeed, when
X ∈ g0, the one-parameter group g(t) = exp tX ∈ Gx0

and the vector X ∗
x0

= 0. Thus, owing to the left-invariance

of P(M , Gx0
), π∗(X̃u) = 0, implying that the field X̃u is vertical in P, i.e., X̃u ∈ Tuπ

−1(u) for every u ∈ P.
Given the canonical connection ω on the reductive homogeneous space G/Gx0

∼= M , where g0 ⊕ M and
[g0, M] ⊂ M, the induced vector fields corresponding to the vector space M form the horizontal distribution
of ω as ω(X̃ ) vanishes whenever X ∈ M (equation (27)), and the distribution is right-invariant under the action
of Gx0

on P(M , Gx0
).

Let 2 and � denote the torsion and the curvature forms of the connection ω, respectively. Utilizing its
standard structure equations [3], we have

22
(
X̃ , Ỹ

)
= θ

([
X̃ , Ỹ

])
+ ω

(
X̃

)
θ

(
Ỹ

)
− ω

(
Ỹ

)
θ

(
X̃

)
, (35)

and
2�

(
X̃ , Ỹ

)
= ω

([
X̃ , Ỹ

])
+ ω

(
X̃

)
ω

(
Ỹ

)
− ω

(
Ỹ

)
ω

(
X̃

)
, (36)
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for any X , Y ∈ g. In particular, if X , Y ∈ M ,

22
(
X̃ , Ỹ

)
= θ

([
X̃ , Ỹ

])
, (37)

2�
(
X̃ , Ỹ

)
= ω

([
X̃ , Ỹ

])
, (38)

as ω(X̃ ) = ω(Ỹ ) = 0. Moreover, recognizing the fact that, in general, the vector space M is not a Lie algebra
and that the algebra of the induced vector fields is homomorphic to the Lie algebra g (equation (34)), we have

[
X̃ , Ỹ

]
= [̃X , Y ] = ˜[X , Y ]M + ˜[X , Y ]g0

, (39)

where [X , Y ]M and [X , Y ]g0
denote the M and g0 components of [X , Y ], respectively. Consequently,

22
(
X̃ , Ỹ

)
= −θ

(
˜[X , Y ]M

)
(40)

and

2�
(
X̃ , Ỹ

)
= ω

(
˜[X , Y ]g0

)
= −λ([X , Y ]g0

) (41)

for any pair X , Y ∈ M, as the fundamental form θ vanishes on the vertical subbundle of TP, while the connection
form ω vanishes on its horizontal space. Finally, consider the base point x0 ∈ M and let us identify the vector
space M with the tangent space Tx0

M by identifying X ∈ M with the corresponding vector X ∗
x0

(equation (30)).

Moreover, let us identify Tx0
M with Rn by means of the frame u0 at x0. Then, as θ(X̃u) = X ∗

π (u), the torsion
tensor at x0

T(X , Y ) = u0

(
22

(
X̃u0

, Ỹu0

))
= −u0 ◦ θ

(
˜[X , Y ]M

)
= −[X , Y ]M (42)

for any X , Y ∈ M viewed as elements of Rn. Similarly, the curvature tensor

R(X , Y ) = u0

(
2�

(
X̃u0

, Ỹu0

))
= −u0 ◦ λ([X , Y ]g0

) = −[X , Y ]g0
. (43)

This gives us the value of both tensors at any and all points of the body manifold M because the canonical

connection ω is left-invariant. In summary (compare e.g., Čap and Slovàk [13] and Kobayshi and Nomizu [3]),
we have the following.

Theorem 3. Let l : M → L(M) be a continuous lattice defined on the body manifold M. Select a point x0 ∈ M
and let P(M , Gx0

) be the G-invariant Gx0
-frame structure13 generated by the lattice l. Assume that the body

manifold M, viewed as a homogeneous space G/Gx0
, is reductive with the decomposition of the Lie algebra

g = g0 ⊕ M. Then there exists a unique (G-invariant) lattice canonical connection ω in P as defined by
equation (29). The connection ω is such that its torsion tensor T and the curvature tensor R are given at x0 ∈ M
by:

•T(X , Y )x0
= −[X , Y ]M, for X , Y ∈ M;

•(R(X , Y )Z)x0
= −[[X , Y ]g0

, Z], for X , Y , Z ∈ M.

In addition, both tensors are covariantly constant.

Remark 2. Note that if a continuous lattice is uniformly defective, that is, M ∼= G as the body manifold is
viewed as a Lie group acting on itself, the lattice canonical connection ω is identical to the linear connection
induced on M by the lattice frame l. Indeed, as the isotropy group Gx0

of such an action of M on itself is
trivial, the curvature of the lattice canonical connection vanishes and the torsion is given by the Lie algebra
constants of the subalgebra M = g. This is certainly consistent with the fact that the given lattice frame induces
a long distance parallelism on M and the algebra g is isomorphic to l; the subalgebra of smooth vector fields
generated by the lattice frame. Conversely, when the continuous lattice is non-uniformly defective, its lattice
canonical connection is completely different from the linear connection induced on M by the lattice frame.
Indeed, as clearly illustrated by the examples presented in the next section, the lattice canonical connection ω
may have a non-vanishing curvature and its torsion seems to be in no relation to the torsion of the frame l. This,
in fact, begs the question of what is the relation between the flat linear connection induced on M by the lattice
frame and the lattice canonical connection ω; a question we shall investigate in forthcoming work.
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5. Examples

Example 2. Here we develop Example 1 – for completeness and for the benefit of the reader, we first restate
some facts. So, consider the three-parameter group G = R3 with the group multiplication

gg =
(
a + a, b + b, c + c + ba

)
, g, g ∈ G (44)

and assume that the group G acts on R2 (on the left) by

3((a, b, c), (x, y)) = (x + a, y − b(x + a) + c) (45)

for any (a, b, c) ∈ G and (x, y) ∈ R2. Given an arbitrary point (x, y) ∈ R2, consider its orbit map 3(x,y) : G → R2

(equation (8)) and its tangent map d3(x,y) : TgG → T3(g,(x,y))R
2, represented in the standard coordinate systems

on G = R3 and R2 by the matrix (
1 0 0

−b −x 1

)
. (46)

At the identity of the group (e = (0, 0, 0)), the tangent map induces the Lie algebra l of vector fields on R2

generated by
l1 = (1, 0), l2 = (0, −x), l3 = (0, 1). (47)

Moreover, analysing the group multiplication of the group G, one can easily show that its Lie algebra g is
generated by

l1 = (1, 0, 0), l2 = (0, 1, a), l3 = (0, 0, 1) (48)

and that the algebras l and g are isomorphic.
At the point (x0, y0) ∈ R2, the isotropy group of the action 3 is

Gx0
= {(0, b, bx0) : b ∈ R} (49)

and its one-dimensional Lie algebra g0 is spanned by (0, 1, x0). To determine whether the homogeneous space
G/Gx0

is reductive, select now a Lie algebra ĝ of vector fields on the group G generated by

l̂1 = (1, 0, b), l̂2 = (0, 1, x0), l̂3 = (0, 0, 1) (50)

to realize that it is isomorphic to the Lie algebra g and it has g0 as its subalgebra. Moreover, ĝ is the algebra of
the left-invariant vector fields on G and the vector space14

M = span
{̂
l1 ,̂ l3

}
⊂ g (51)

is invariant under the adjoint action of G0 on g, as [̂l2 ,̂ l1] = −̂l3 ∈ M and [̂l2 ,̂ l3] = 0. In fact, the vector space

M is a subalgebra of g, as [̂l1 ,̂ l3] = 0, and the group G is a semidirect product of the isotropy group Gx0
and

the additive subgroup H = {(a, 0, c) : a, c ∈ R} ⊂ G, the Lie algebra of which is isomorphic to M.
In conclusion, the homogeneous space G/Gx0

of the lattice frame l1 = (1, 0), l2 = (0, −x) is, as shown,
reductive via the decomposition g = g0 ⊕ M. The isotropy group Gx0

is isomorphic, via the isotropy linear
representation, to the subgroup {(

1 0
−b 1

)
: b ∈ R

}
⊂ GL(2, R) (52)

and the corresponding lattice canonical connection ω is both curvature and torsion free as [M, M] = 0; see
Theorem 3. Thus, there exists a local coordinate system on R2, such that the corresponding Christoffel symbols
0i

jk , i, j, k = 1, 2, vanish.

Example 3. Consider the continuous lattice on R2 given (in the standard coordinate system) by the frame

l1 = (y, −x), l2 =

(
1

2

(
1 + x2 − y2

)
, xy

)
. (53)
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As [l1, l2] = 1
2
(2xy, 1 + y2 − x2) = l3 and as [l2, l3] = l1 and [l3, l1] = l2, the given lattice frame generates

the three-dimensional Lie algebra of vector fields l, which is isomorphic to the Lie algebra so(3) of the special
orthogonal group SO(3).15 In turn, the algebra so(3) is isomorphic to the Lie algebra su(2) of the special unitary
group SU(2), which can be spanned, for example, by the basis

E =
1

2

(
0 i
i 0

)
, F =

1

2

(
i 0
0 −i

)
, H =

1

2

(
0 1

−1 0

)
. (54)

As the group SU(2) is homomorphic to the group SO(3) via the covering isomorphism p : SU(2)/{I , −I} →
SO(3), rather than investigating the action of SO(3) on R2 corresponding to our lattice algebra l, we shall
consider the analogous action of SU(2) on the complex space C; viewed as R2. Namely, given

SU(2) =

{(
a −b̄
b ā

)
: aā + bb̄ = 1; a, b ∈ C

}
, (55)

consider the action 3 : SU(2) × C → C , such that

3

((
a −b̄
b ā

)
, z

)
=

b + āz

a − b̄z
. (56)

As the action 3 is transitive, the isotropy groups at different points in C are conjugate to each other. Thus, to
simplify our calculations, let us consider z0 = 1. It is then easy to show that the isotropy group of the action 3
at z0 is

Gz0
=

{(
α βi
βi α

)
: α2 + β2 = 1; α, β ∈ R

}
(57)

and that its Lie algebra g0 is spanned by

E =
1

2

(
0 i
i 0

)
.

As [E, F] = −H and [E, H] = F, one can see that the homogeneous space SU(2)/Gz0
is reductive, that is,

su(3) = g0 ⊕ M, where the vector space M = span{H , F} and [g0, M] ⊂ M. Moreover, as [H , F] = E, that
is, as [M, M] ⊂ g0, the lattice canonical connection ω, although torsion free, has non-vanishing curvature. In
fact, as the isotropy group Gz0

is isomorphic to the special orthogonal group SO(2),

{(
p r

−r p

)
: p2 + r2 = 1, p, r ∈ R

}
, (58)

the lattice canonical connection ω is a pull-back of the Gz0
-component of the Maurer–Cartan form of G to the

manifold M isomorphic via the linear isotropy representation to the quotient SO(3)/SO(2).
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Notes

1. In general, a differentiable manifold may not admit a global section of its frame bundle. As our approach is local, we shall only

consider local section of L(M). So the reader may think about the manifold M as an open neighbourhood in Rn.

2. For the relation between the components of the dislocation density tensor field Sij and the tensor T i
jk

, see Elżanowski and Parry

[5].

3. A vector field on M is complete if the corresponding flow on M is global.
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4. Note that although the set Diff(M) of all diffeomorphisms of M is a group, it is not a Lie group.

5. If, for any g ∈ G, there exists x ∈ M , such that 3(g, x) 6= x, the action of G on M is said to be effective.

6. The group action is transitive if there is only one orbit.

7. A homogeneous space is the quotient space of a Lie group by a closed subgroup.

8. We use here the standard principal bundle notation P(N , K) [3], where P denotes the total space of the bundle, K is its structure

group and N is its base.

9. Obviously, all tangent spaces TggGx0 , g ∈ G, are isomorphic (as vector subspaces) to the subalgebra g0.

10. The distribution L is horizontal in the sense that its projection dπ0(L) = TM .

11. These specific choices are maintained henceforward.

12. The reductivity of a homogeneous space is usually defined by requiring the invariance of the vector space M under the adjoint

action of the subalgebra of the isotropy group, that is, adGx0
(M) ⊂ M. The condition [g0, M] ⊂ M implies the invariance of M

under the adjoint action of the isotropy group, but not vice versa. However, when the isotropy group is a connected Lie group,

both conditions are equivalent [13].

13. To avoid any notational confusion, by a Gx0 -frame structure, we mean a reduction of the bundle of frames L(M) to the subgroup

Gx0 .

14. The induced left action of the group G on its Lie algebra is given by the matrix




1 0 0

0 1 0

0 a 1


 . (59)

15. One may select

P =




0 0 0

0 0 −1

0 1 0


 , Q =




0 −1 0

1 0 0

0 0 0


 , R =




0 0 −1

0 0 0

1 0 0




as a basis of so(3) [14].
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