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EXECUTIVE SUMMARY 

Intelligent transportation systems (ITS) significantly change our communities by 
improving the safety and convenience of people’s daily mobility. The system relies on 
multimodal traffic monitoring that needs to provide reliable, efficient and detailed traffic 
information for traffic safety and planning. Signalized traffic intersections are critical 
spots for collecting such mixed traffic data because  most conflicts and crash 
occurrences involve multiple transportation modes, such as pedestrians, bicyclists, 
motorcyclists, and cars. How to reliably and intelligently monitor intersection traffic with 
multimodal information is one of the most critical topics in intelligent transportation 
research. 

This project investigated a low-cost, low-weight, compact, and reliable monitoring 
platform. This platform,  which incorporates high-resolution millimeter-wave(mmWave) 
radar and the machine-learning technique to collect multimodal traffic data at 
intersections, is robust to light and adverse weather conditions. The products of this 
project consist of 1) a prototype of the proposed multimodal traffic monitoring platform 
using mmWave radar; 2) the real-world experimental dataset collected by the platform 
for multimodal traffic; and 3) a demo platform at a road intersection to illustrate the 
performance in terms of measuring multimodal traffic counts, speeds, and directions.  

Our primary goal is to improve multimodal traffic monitoring at intersections. The 
developed platform can play an important role in providing a reliable and accurate city-
wide traffic network. In addition, the outcome of this research can provide useful insight 
into advanced innovations technologies for developing equitable, healthy, and 
sustainable communities and smart cities. 
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1.0 INTRODUCTION 

1.1 PROJECT OVERVIEW 

Intelligent transportation systems (ITS) significantly change our communities by 
improving the safety and convenience of people’s daily mobility. The system relies on 
multimodal traffic monitoring that needs to provide reliable, efficient and detailed traffic 
information for traffic safety and planning. Signalized traffic intersections are critical 
spots for collecting such mixed traffic data because  most conflicts and crash 
occurrences involve multiple transportation modes, such as pedestrians, bicyclists, 
motorcyclists, and cars. How to reliably and intelligently monitor intersection traffic with 
multimodal information is one of the most critical topics in intelligent transportation 
research. 

Technically speaking, in multimodal traffic monitoring we gather traffic statistics for 
distinct transportation modes, such as pedestrians, cars and bicycles, in order to 
analyze and improve people’s daily mobility in terms of safety and convenience. On 
account of its robustness to bad light and adverse weather conditions, and inherent 
speed measurement ability, the radar sensor is a suitable option for this application. 
However, the sparse radar data from conventional commercial radars make it extremely 
challenging for transportation mode classification, this is a common difficulty in radar 
point cloud segmentation research [6]. Thus, we propose to use a high-resolution 
millimeter-wave (mmWave) radar sensor to obtain a relatively richer radar point cloud 
representation for a traffic monitoring scenario. Based on a new feature vector, we use 
the multivariate Gaussian mixture model (GMM) to do the radar point cloud 
segmentation (i.e., “pointwise” classification), in an unsupervised learning environment. 
In our experiment, we collected radar point clouds for pedestrians and cars, which also 
contained the inevitable clutter from the surroundings. The experimental results using 
GMM on the new feature vector demonstrated a good segmentation performance in 
terms of the intersection-over-union (IoU) metrics. The detailed methodology and 
validation metrics are presented and discussed. 

1.2 TECHNICAL BACKGROUND 

Using traditional radar signal processing, we obtain the position and Doppler information 
of reflection points from the scene after a suitable detection stage, such as Constant 
False Alarm Rate (CFAR) processing. The resulting positional representation in 3D 
space is referred to as a radar point cloud, derived from a similar terminology used for 
LiDAR point cloud. Radar point cloud segmentation is a point-wise classification, which 
means it would classify each reflection point into a specific class. Segmentation for data 
obtained using camera (image or pixel array) and LiDAR (point cloud) have been 
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continuously and extensively studied, primarily for autonomous driving and machine 
perception. 

Although relatively new, radar point cloud segmentation has also started to garner 
attention, given its several advantages over the other sensor modalities. Traditional 
commercial radars offer limited resolutions, in both range and angle, which leads to a 
very sparse representation of the object from the radar’s perspective. 

This also implies that segmentation on the sparse data is extremely difficult to model, 
often yielding sub-par results. On the other hand, camera and LiDAR provide a very 
dense pixel array and point cloud representation of the scene, respectively, that in turn 
yields a superior segmentation performance. 

The recently emerging millimeter-wave (mmWave) frequency modulated continuous 
wave (FMCW) radar devices offer range resolution of up to 5 cm on account of an ultra-
bandwidth of up to 4 GHz, using carrier frequencies of 60GHz, 77GHz and 80GHz, 
depending on the area of application. Furthermore, with advanced semiconductor 
fabrication process, more radio frequency channels are interpreted into a single 
monolithic microwave integrated circuit (MMIC) chip. This allows compact mmWave 
radars to provide relatively good angle resolution compared to outdated bulky 
commercial radars. Several examples of these mmWave FMCW MMIC radar chips 
include the Texas Instruments AWR1843 [1], NXP TEF810X [2] and Infineon 
RXS816xPL [3]. 

With the availability of such high-resolution radars, we can now obtain a relatively richer 
reflection point cloud representation of a single object, especially in the near range 
operation (less than 30 meters). Therefore, radar point cloud segmentation could be 
targeted by utilizing techniques from the traditional image and LiDAR processing 
domains.  

Furthermore, subsequent radar data post-processing, such as object clustering, tracking 
and classification, could be rebuilt using machine learning and deep-learning 
architectures, similar to the ones used for images and/or LiDAR data, that have shown 
to yield very promising results. 

Particularly, in multimodal traffic monitoring, sensors need to be employed to (i) 
estimate the traffic volume of different transportation modes, such as pedestrian, 
motorcycle and car, and (ii) estimate their average speeds. In order to achieve that, the 
sensor needs to be robust to operating all day and in any weather condition with the 
additional capability to accurately estimate the speed of the objects, which makes 
radars a suitable choice. With the high-resolution relatively dense point cloud 
representation of each object, classification to a suitable transportation mode can be 
feasible by using a segmentation approach. 

In this report, we use a single high-resolution mmWave radar device to monitor an 
experimental scene with pedestrians and cars in it, and gather the radar point clouds. 
We propose to compute a new feature vector for each radar point. Then, we use a 
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multivariate Gaussian mixture model (GMM) as the decision algorithm to perform the 
radar point cloud segmentation (i.e., point-wise classification). 

1.3 TECHNICAL REVIEW 

This section reviews some of the latest segmentation techniques in the application 
domains of image, LiDAR and radar processing, as shown in Fig. 1.1. 

 

Figure 1.1: Segmentation examples in which the color represents the class of object. (a) In the image 
segmentation [4], pixels are classified as different objects. (b) In the 3D (or LiDAR) point cloud 

segmentation [5], points are classified. (c) Similarly, in the radar point cloud segmentation [6], points are 
also classified. 

1.3.1 Image Segmentation 

Although image segmentation has had very broad approaches with a long research 
history, those methods, such as thresholding-based, edge-based and region-based [7], 
heavily depend on the intensity (in grey or color) scale of each pixel. However, the radar 
cross section , which is analogous to the intensity in the radar point cloud domain, may 
be too vague to be used. 

On the other hand, the clustering-based methods, such as k-means, Gaussian mixture 
model (GMM) and density-based spatial clustering of applications with noise 
(DBSCAN), that realize models to estimate the density or intensity scale of the pixels 
and could be considered as valid choices for radar point cloud segmentation. 
Specifically, k-means assigns all the pixels into k clusters by minimizing the sum of the 
squared distance of all the pixels to its own cluster, as intuitively a cluster is thought of a 
group of data points whose inter-point distances are small compared to the distances to 
points outside of the cluster [8]. The GMM models a group of data as a weighted sum of 
Gaussian distributions, where each distribution accounts for a unique cluster. A cluster, 
in this case, is formed if all the points obey the same Gaussian distribution [9]. In 
DBSCAN, a core point is defined if in its neighborhood of a given radius, there are at 
least a given minimum number of points. Then, the DBSCAN algorithm forms a cluster 
for all density-reachable points (i.e., each point is within the neighborhood of the core 
point and all density-connected points; there is a third point from which both of these 
two points are reachable [9]). 
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Recently, deep-learning-based approaches have shown very promising results in image 
segmentation. In [4], the authors proposed a fully convolutional network  with end-to-
end training on pixel-level labeled images. In [10], the authors proposed the R-CNN: 
regions with CNN features to first extract the region of interest (ROI) along with CNN 
features computation, and then to classify the region using a linear support vector 
machine . The success of supervised deep-learning approaches motivates the 
researchers to apply it on the LiDAR point cloud segmentation. 

1.3.2 LiDAR Point Cloud Segmentation 

Each LiDAR point contains the information of 3D position and intensity. With a dense 
3D point cloud representation of the object, the authors from Stanford proposed the 
PointNets family, including the PointNet [5], PointNet++ [11] and Frustum PointNet [12], 
to learn the 3D spatial feature of the object, which is a pioneering work on directly 
processing LiDAR point cloud, compared to the other traditional ways that may do the 
voxelization first and make the data unnecessarily voluminous. The authors first 
proposed a vanilla PointNet to transform the three-dimensional LiDAR point to the 1024-
dimensional space in which the pattern of the different object can be more likely 
separable, according to the Cover’s theorem on the separability of patterns [13]. The 
basic architecture of the vanilla PointNet consists of multilayer perceptions to learn the 
feature space transformation in a supervised fashion with numerous labeled point data. 
And then, the authors devised the T-Net, a simplified vanilla PointNet, to learn the 
transformation of the object, such as translation, rotation and scaling, so that the entire 
PointNet architecture can be transformation invariant. 

In PointNet++, an extension of the PointNet, the authors introduced (i) the convolution 
operation with the PointNet as the kernel to learn the local spatial features; (ii) the 
multiscale and multiresolution grouping to deal with the variation in different areas; and 
(iii) and the farthest point sampling  to sample the points in a more efficient way. 

Finally, in Frustum PointNet, the authors first used the typical convolution neural 
network (CNN) to detect the region of interest (ROI) in the 2D images, and then 
extracted the frustum of ROI in the 3D point cloud to represent the object followed by a 
PointNet++ model to do the classification. The PointNet family can do one object 
classification and scene segmentation. 

1.3.3 Radar Point Cloud Segmentation 

Although segmentation in the synthetic aperture radar  image processing [14] has been 
studied several years ago, segmentation on the radar point cloud has a very short 
history. This is on account of the previous real aperture radar’s limited resolution, 
resulting in poor segmentation results, while the synthetic aperture radar  has a 
relatively better resolution.  

With the great success of the PointNet family on LiDAR and 3D point cloud processing, 
researchers have attempted to try it out on radar point cloud, expecting promising 
results. In [6], the authors first accumulated multiple radar frames to obtain a richer point 
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cloud, and then applied the Frustum PointNet with some minor adaptations on the 2D 
radar point cloud and claimed better segmentation results over their previous work [15], 
in which they used a combination of DBSCAN and long short-term memory (LSTM) 
network to predict the class for each radar point. And in [16], the authors applied 
PointNets on the 2D radar point cloud to differentiate the vehicle from clutter with the 
vehicle bounding box estimation. 

However, from our understanding, because the PointNet family is designed for learning 
the spatial 3D features of the object, it may not have  meaningful and practical results 
on the radar point cloud. As the radar point cloud is still very sparse compared to the 
LiDAR point cloud, it leads to the loss of some spatial features. Accumulation of multiple 
radar frames can improve the data. For a high-speed vehicle, however, its radar points 
would have moved a significant distance just after a few frames so that the 
accumulation does not make sense. Moreover, the availability of labeled radar point 
cloud is rare and difficult to gather, so the supervised learning approaches may not be a 
good option. 

1.3.4 Basics of Multivariate Gaussian Mixture Model [8] 

Given a set of data points in which each point is a vector, the goal is to classify each 
point into a single class. We assume there are a total of K classes these points may 
belong to. For a data point x, given that it belongs to the k-th class (i.e.,  = 1, k ∈ {1, 
...,K}), it is assumed to follow a certain multivariate Gaussian distribution as 

 

where   is the mean and  is the covariance matrix for the k-th class. 

Then a data point with an unknown class should follow a GMM, which is a linear 
superposition of Gaussian distributions of all the K classes, by the law of total 
probability, as 

 

where the p( = 1), also denoted as πk, is the prior probability of  = 1 or x belongs to 
the class . 

If the parameters (i.e. ( ) for all the K classes), are given, so the posterior 
probability of  = 1 for a given radar point, by the Bayes’ theorem, is 
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where γ( ) can also be viewed as the responsibility that the class K takes for 
“explaining” the data point x.  

Then, we can use the maximum a posterior  criterion to determine the class of each 
radar point, that is 

 

Thus, the remaining question is how to determine all the parameters in GMM. The 
expectation maximization (EM) algorithm can be applied as following. Assuming a set of 
data points X{x1, ...,xN } with unknown classes is collected, the optimal parameters 
( ) are those to maximize the likelihood function based on the maximum 
likelihood esn , given by 

 

The optimal parameters occur when the partial derivative of the likelihood function with 
respective to each parameter is zero. Then we have 

 

where  and  means the n-th point belongs to the k-th class. 

So, the EM algorithm, as in Fig. 1.2, will iteratively update the parameters until the 
convergence of either the parameters or the log likelihood has been achieved. 



11 

 

Figure 1.2: The EM algorithm flow chart 

1.3.5 MmWave Radar Point Cloud in Multimodal Traffic Monitoring 

After the traditional FMCW radar signal processing chain (i.e., range-FFT, Doppler-FFT, 
angle-FFT, moving target indication (MTI), constant false alarm rate (CFAR), clustering 
and tracking), we obtain the radar point cloud, in which each point is a vector x(r, , 

 , vD, snr, noise, pX, pY, pZ, vX, vY, vZ). Its parameters are listed in Table I, in which 
the point data represents the radar measurement of each radar reflection point in the 
polar coordinate, and the centroid data represents the Kalman filtering based tracking 
results of the centroid of each tracked object in the Cartesian coordinate. 

Table 1.1: Radar point cloud data 
 

 

Then we propose the feature vector (Δx,Δy,Δz,ΔD,σ) for each radar point, where 
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Figure 1.3: MmWave radar point cloud example. Red axis: x; Green axis: y; Blue axis: z. On the left, it’s 
the camera video for ground truth as reference; on the right, it’s the radar point cloud in which two 

clusters are detected for two moving objects, i.e., the walking pedestrian and the running sedan in the 
image on the left. 

As a result, (i) the (Δx,Δy,Δz) is the relative position of each point with respect to the 
object centroid, and represents the extent of the object body; (ii) the ΔD represents the 
relative Doppler; (iii) and the σ is the radar cross section  in the unit of dBsm. We 
observe that each point from one kind of object obeys a certain Gaussian distribution 
with its own mean and variance. In the multimodal traffic monitoring, because the size, 
speed and reflection coefficient of a pedestrian is less distinguishable than these of a 
sedan, GMM can be applied for classification between these two. It is the same for the 
other transportation modes. Fig. 1.3 shows an example of a radar point cloud including 
a car and a pedestrian from our data collection that will be further described in Section 
IV. Here we can see the differences between the distributions of points from these two 
kinds of objects. 
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2.0 PROJECT DETAILS 

2.1 EXPERIMENT SETUP 

We used a TI mmWave radar evaluation board AWR1843BOOST [17] to get the radar 
point cloud, the Nvidia Nano [18] to process the data, and one USB camera for 
capturing the video as a reference. Fig. 2.1 shows how we collected the experimental 
data in a parking lot and an intersection. The device was raised up to 3 meters high, 
and all the data was wirelessly transferred to a laptop for storage. 

 

(a) Parking lot     (b) Intersection 
Figure 2.1: Experimental setup that includes one laptop for device control and data storage, one 

mmWave radar for data collection, one wifi module for data wirelessly transferring and one camera for 
visual ground truth recording. The mmWave radar, wifi module and camera are bounded together and 

raised to about 3 meters for the height of a traffic light. (a) Setup in a parking lot for a preliminary 
experimental testing; (b) Setup in the intersection for a more realistic experimental testing. 

With proper FMCW waveform design and the implementation of multiple-input-multiple-
output  direction-of-arrive  algorithm, we achieved about 9 centimeters of range 
resolution, 0.8 m/s of Doppler resolution, 15 degrees of azimuth angle resolution, and 
28 degrees of elevation angle resolution. For now, we only collected the data with two 
different kinds of transportation modes (i.e., pedestrian and car). The effective radar 
detection area is up to 15 meters in range and 18 meters in cross-range, for both car 
and pedestrian. The data may also include the inevitable clutter or noise. 

When we set up the device at the intersection, we first set up a wifi router to build a 
local area network (LAN). After that, for the first time we need to use an external HDMI 
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LCD screen, keyboard and mouse to configure the Nano to connect to the wifi network. 
This is one-time work, and next time the Nano will automatically connect to the 
remembered wifi network. Then we connected the radar to the Nano. Once it’s ready, 
we disconnect LCD, keyboard and mouse from the Nano and raised the Nano and radar 
to 3 meters high, as shown in the figure above. On the computer that was connected to 
the same wifi network, we then used the remote software called NoMachine to remotely 
control the Nano. Until now, we were able to execute Linux commands on Nano 
remotely to start the radar for continuous data collection. 

2.2 REAL-TIME DATA COLLECTION 

Detailed data collection instructions are as: 

1. Set up a wifi router to build a LAN. 
2. Plug in the wifi module to Nvidia Jetson Nano. 
3. On the first time, power up Nvidia Jetson Nano using HDMI LCD screen, 

keyboard and mouse. And connect to the wifi router using correct password. And 
then install the NoMachine software, which is for remote control, on Nvidia 
Jetson Nano. Set NoMachine to automatically start when the system starts. Note 
that, this step is only once. 

4. Power off Nvidia Jetson Nano and remove LCD screen, keyboard and mouse, 
but keep the wifi module on it. 

5. Connect the TI AWR1843BOOST radar sensor and camera to the Nvidia Jetson 
Nano through USB cable. 

6. Power on Nvidia Jetson Nano. Then it will automatically connect to the wifi router 
using stored password. 

7. Power on radar sensor. 
8. On laptop side, install NoMachine software and connect to the same wifi router. 
9. On laptop side, open NoMachine and search for the Nvidia Jetson Nano which is 

in the same LAN. Connect to Jetson Nano through NoMachine, and it will show a 
small screen of Jetson Nano. 

10. Now, you can control Jetson Nano remotely. 
11. To open the radar, execute the commands: 

a. sudo chmod 666 /dev/ttyACM0 
b. sudo chmod 666 /dev/ttyACM1 
c. roslaunch traffic_monitoring traffic_monitoring.launch 

12. To record the radar data on USB stick, you first need to insert the USB stick in 
Jetson Nano. And switch to USB stick folder. And then execute the command:  
rosbag record /traffic_monitoring/radar_scan 
/traffic_monitoring/radar_scan_markers /usb_webcam/image_raw/compressed -b 
-0 -O file_name.bag 
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(a) Previous frame 

 

 
(b) Later frame 

Figure 2.2: Real-time data collection for a running sedan. (a) Left is video view; (b) Right is radar view 
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For the training data collection, because the GMM fitting is an unsupervised way, we 
kept one person continuously walking in the radar detection area, and one car driving 
through periodically. For the testing data collection, because the ground truth is needed 
to evaluate the model performance,  we let the person walk on the left side of the radar 
line-of-sight (y = 0), and the car drive on the right side. Then we labeled all the points 
with centroid (y > 0) as a pedestrian, all the points with centroid (y <= 0) as a car, and all 
the points without an associated centroid as clutter.  

Finally, we collected 8,035 frames of training data with a duration of about 13 minutes, 
and 1,222 frames of testing data with a duration of about two minutes. 

2.3 EXPERIMENT RESULTS 

We used the scikit-learn APIs to fit the GMM using the training dataset, and saved the 
model to disk. Then we used the saved model to predict the testing dataset. Because 
the GMM fitting is an unsupervised approach, the GMM does not necessarily predict the 
same label as the ground truth. For example, the GMM may predict the pedestrian as 
an integer label, say, 0, while the ground truth for pedestrian would be another integer 
label, say, 1.  

So, we visually associated the prediction label with the ground truth label. Fortunately, 
for a saved GMM model, this manual association just needs to be quickly done once. 

Finally, we evaluated the segmentation results. Fig. 2.3 shows one frame of the results. 
Referring to Fig. 1.3, it is one example before the segmentation as all the radar points 
are colored in black, which means it has no class information. 

 

 
Figure 2.3: One frame of results. Red point: clutter; Green point: car; Blue point: pedestrian. (a) Prediction 
result shows that for the pedestrian on the left most of its points are correctly classified as blue, which is 
very promising, while for the vehicle on the right there are a few clutter points as in red. (b) Ground truth. 
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To evaluate GMM in radar point cloud segmentation, we calculated the precision, recall 
and intersection-over-union (IoU) [19] as the performance metrics, as in the traditional 
image/LiDAR segmentation domain. In the interpretation of these metrics, the precision 
is intuitively the confidence that the model correctly classifies a point, and the recall is 
intuitively the confidence the model does not miss the detection of this object class. 
From the perspective of radar signal processing, high precision means a low false alarm 
rate; high recall means a low missed detection rate.  

Thus, a good model should have high precision and high recall simultaneously. And the 
F1 score, which is equal to , can be interpreted as one value metric of 
this model. The IoU, also called the Jaccard index, represents the percentage of overlap 
between the prediction and the ground truth. According to [19], the IoU is recognized as 
the segmentation accuracy, and a model with 50 percent overlap is considered good by 
standard. The results of GMM on the radar point cloud was presented in Table II. As we 
can see here, the IoU of both pedestrian and car is above 50 percent. 

Table 2.1: Performance matrices 

 

To further evaluate the model performance, we plot the precision-recall curve as shown 
in Fig. 2.4. In general, a point will be classified into class A, if the posterior probability of 
class A is greater than the threshold = 0.5. As we adjust this threshold, the precision 
and recall changes accordingly. 

Normally, if we increase this probability threshold the precision will be increased while 
the recall will be decreased and vice versa. The precision-recall curve shows the trade-
off between these two. A good model has a position with both high precision and high 
recall. And we also computed the confusion matrix, as shown in Fig. 2.5. 
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Figure 2.4: Precision-recall curve 

 

Figure 2.5: Confusion matrix 

Due to some difficulties in the data collection, the collected car data was less than the 
pedestrian data. Thus, the GMM model fitting was biased more on the pedestrian. And 
the performance of car point classification was relatively poor compared to that of the 
pedestrian. This can be alleviated if more data for both classes can be collected.  
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It is noted that this result is on a single-frame basis, which means we do not accumulate 
multiple frames, such as in [6], as accumulation of multiple radar frames does not make 
sense in a scenario where vehicles are moving at high speed. 

 
As a comparison, LiDAR is more popular in a point cloud segmentation research as 
LiDAR provides more points with higher angular resolutions. In recent, researchers can 
achieve very high performance with more object class segmentation [20-22]. The 
performance we achieved is relatively worse than the star-of-art LiDAR segmentation 
results. However, our work is very promising as radar is more suitable than LiDAR for a   
traffic monitoring application.
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3.0 PROJECT CONCLUSION 

In this study, we used a mmWave radar to capture the radar point cloud in which there 
are three kinds of objects (i.e., clutter, pedestrian and sedan). Then we implemented the 
GMM to perform the segmentation (i.e., the pointwise classification), and calculated the 
performance metrics such as precision, recall and IoU. And we found the GMM is 
simple but effectively achieves promising segmentation results. 

In the future, we aim to put the device at a traffic intersection to continuously collect 
more data with more transportation modes, such as pedestrian, motorcycle, bicycle, 
sedan, truck and bus, to further evaluate the GMM performance. As we expect, as the 
data complexity is increased, the simple GMM would fail to achieve a good 
performance. 

However, we will use the GMM as a preliminary classifier to help the DBSCAN 
algorithm, whose parameters are object specific, to more robustly group the radar points 
from one object as one cluster. In return, the correctly clustered points will improve the 
object classification accuracy. So, the work in this report will be a part of our future 
work, which is to implement a joint clustering/tracking and classification in the 
multimodal traffic monitoring application using the mmWave radar sensor. In the 
meanwhile, we will explore other detection devices which are also robust to adverse 
weather conditions and poor illumination, and then we will build a fusion framework that 
take advantage of multiple detection methodologies. 
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