Portland State University

PDXScholar

Engineering and Technology Management

Faculty Publications and Presentations Engineering and Technology Management

2019

Domain Process Model Overcome Limitations of
Engineering Models for Developing Artificial
Intelligent Systems

Gary 0. Langford
Portland State University, gary.langford@pdx.edu

John Green
Naval Postgraduate School

Daniel P. Burns
Home Port Solutions

Alexander Keller
United States Air Force Nuclear Command

Dean C. Schmidt
qu\?vliﬁggr? gg%onal works at: https://pdxscholar.library.pdx.edu/etm_fac

b Part of the Artificial Intelligence and Robotics Commons, and the Technology and Innovation

Commons

Let us know how access to this document benefits you.

Citation Details

G. O. Langford, J. Green, D. P. Burns, A. Keller and D. C. Schmidt, "Domain Process Model Overcome
Limitations of Engineering Models for Developing Artificial Intelligent Systems," 2019 Portland
International Conference on Management of Engineering and Technology (PICMET), Portland, OR, USA,
2019, pp. 1-11.

This Article is brought to you for free and open access. It has been accepted for inclusion in Engineering and
Technology Management Faculty Publications and Presentations by an authorized administrator of PDXScholar.
Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/etm_fac
https://pdxscholar.library.pdx.edu/etm_fac
https://pdxscholar.library.pdx.edu/etm
https://pdxscholar.library.pdx.edu/etm_fac?utm_source=pdxscholar.library.pdx.edu%2Fetm_fac%2F234&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=pdxscholar.library.pdx.edu%2Fetm_fac%2F234&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/644?utm_source=pdxscholar.library.pdx.edu%2Fetm_fac%2F234&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/644?utm_source=pdxscholar.library.pdx.edu%2Fetm_fac%2F234&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/etm_fac/234
mailto:pdxscholar@pdx.edu

2019 Proceedings of PICMET '19: Technology Management in the World of Intelligent Systems

Domain Process Model Overcome Limitations of
Engineering Models for Developing
Artificial Intelligent Systems

Gary O. Langford', John Green®, Daniel P. Burns®, Alexander Keller!, Dean C. Schmidt®

"Engineering & Technology Management Department, Systems Engineering, Portland State University, Portland, Oregon, USA
2Systems Engineering Department, Naval Postgraduate School, Monterey, California, USA
3Home Port Solutions, LLC, Monterey, California, USA
4United States Air Force Nuclear Command, Control and Communications Center, Barksdale AFB, LA, USA

Abstract—The integrated set of prognostic domains (ISPD) of
technology presented here provides a normative means to
construct a wholly new process model for guiding Technology
Management of Artificial Intelligent Systems (AIS). Seventeen
domains represent all-inclusive stakeholder perspectives that
encapsulate lifecycle analyses, evaluations, feasibilities, and
tradeoffs with the domain contexts. Following Systems Model-
Based thinking (SMBT), a postulated focal point interaction is
the entry condition from which each domain is considered and
thereafter traversed. Domains are interactive with each other
through concurrent, iterative, recursive, and non-recursive
processes. This interactive work continues until the completion
milestones of each domain are satisfied. Techniques such as agile,
progressive, prescriptive, and spiral are used as appropriate to
reconcile functional and process requirements, risk, schedule,
and budget. An important factor of ISPD is that multiple
concepts of operation, widely diverse architectures, and explicitly
differentiable designs are inevitable and highly desirable. The
entire gamut of interactions of AIS with other posited systems is
exposed and examined by the work carried out in each domain.
While the ISPD was inspired by the use of SMBT with traditional
process models, the essences of ISPD were extracted from
developing systems of systems products and services. SMBT was
piloted on a one-year project to integrate informational, social,
and behavioral exchanges between humans and intelligent
systems. This paper introduces SMBT for designing and building
AIS by applying ISPD.

1. INTRODUCTION

Traditional process models navigate milestones through
netted-workflows by identifying and completing schedule and
unscheduled work in blockchain fashion. As used by the
project team, these process models are structured and intended
to develop systems. While Artificial Intelligent Systems (AIS)
are thought to be systems (as is purposely incorporated into the
naming convention for AIS), the immense scope and enormity
of interactions that must take place demand more sensitivity to
the diversity of inputs from other systems. Advanced AIS must
deal with a great deal of information that traditional process
models either cannot discover early in the development process
or are able to accommodate in design or architecture. The
traditional process model is limited to systems rather than
systems of systems. The same limitation has been discovered
in systems engineering, necessitating a new thinking about
process models predicated on system inputs and outputs. The

AIS of tomorrow — the challenge for Technology Management
of AIS — requires advanced process models that carefully
dissect complexity to facilitate better behavioral models,
incorporate the amount and diversity of content that must be
handled by AIS, and recognize the necessary kinds and
quantities of inputs that are needed. For example, AIS for retail
applications must view the systems exemplified by the
individual, the social, the cultural, the buyer, and the seller.

Each system brings with it interactions and a plethora of
use cases that drive behavior, content, and inputs. Healthcare,
banking, and entertainment each have potential for AIS to have
impact in excess of hundreds of billion dollars. A systems of
systems’ perspective is paramount.

A fundamental aspect of coordinating AIS through the
interactions of systems in a system of systems is the
distribution of work products with a common update protocol
and time stamp. Blockchains are a recent advancement that
may evolve to improve concurrency and reduce latency in
systems of systems.

A. Blockchains

A Dblockchain model is essentially a distribution of work
products, such that every location that has a set of work
products from a particular Domain or Model has the entire
record of work products available from that domain. In that
manner, the work products become part of the entire set of
blockchain work products available to all in their instantiated
form. Version control is essential for blockchains, so that an
update to one is an update to all.

A key factor in architecting an AIS is to incorporate event-
driven blockchains into the development process model so that
asynchronous distribution of information and data can
accommodate the disparate data structures and delivery modes.
The event-driven paradigm organizes flow of information to
instantiate immutable, verified transactions (i.e., blockchains).
Within the process model, data has provenance, latency,
security, and trust. Provenance provides history of data and
formation of information; latency needs to be incorporated into
the uncertainty associated with interpretation; security must
encompass real-time applications; and trust relies on
provenance, a query or concatenation/verification mechanism
at runtime, and an analysis of provenance patterns. The process

978-1-890843-39-7 © 2019 PICMET

model phases need to capture interactions and their provenance
between all sources of data and information, i.e., throughout
the systems of systems involved with the AIS.

B. Process Model Phases

Defining phases within the process model differentiates
work by project maturity and worker’s experience in the
maturity cycle of their set of knowledge, skills, and abilities
[1]. Phases are usually based on events rather than on time.
Events are definitive, as such, defined work processes are
considered either complete or incomplete. Event-based
planning and execution offer a means to track work process
completion and start of next work processes. Process models
have two parts — the objective and subjective parts. The
objective part of the model deals with the physical objects, i.e.,
people who carry out tasks. The subjective part of the model
deals with the thinking, acts of doing something that
accomplishes work, and the cognitive modeling of how that
work is and is to be accomplished. The process model is the
relations between the objective and subjective parts. As such,
the process model corresponds to the perspectives of the
stakeholders who control various aspects of the model (such as
the customer who pays for and lays out requirements to ensure
their completion; the users who express their needs to achieve
operational success; the developers who endeavor to deliver
improved performance and quality higher than previous
products or services; and the project managers who need to
deliver on schedule, on budget, on performance). The principle
of planning states “Integration planning is predicated on
pattern scheduling (lowest impact on budget), network
scheduling (determinable impact on budget), and ad hoc
scheduling (undetermined impact on budget)” [2]. Applying
this principle to theory, brings about process models that are
structured to lay out tasks with work packages that encompass
all the work for which an agreement to pay is enacted. The key
issues for planning involve the type, amount, and availability
of required resources, determining the internal and external
factors that conspire to delay work progress, and ameliorating
the consequential impacts of missing a milestone or delivery.

C. Integration and Interoperability

The process model facilitates the integration and
interoperability of the ideas, mechanisms, and models of
thinking and behavior [2]. Integration can create tension
amongst stakeholders to support their own agendas, between
priorities, how products and services are managed and
resourced, to highlight a few stresses. Interoperability creates
loss, yet helps to control emergence. Without interoperability,
much might not happen that is expected and much that might
happen might not be expected. Integration results in
connectivity, i.e., physical interaction that bind things physical,
e.g., objects. Interoperability achieves functional performances.

D. Process Model Selection and Tailoring

The initial challenge facing AIS developers is how to
evaluate and select an appropriate process model for the tasks.
The objective is to gain a sufficiency of understanding about
the implications and consequences of the model as it impacts
schedule, costs, worker’s performance, and quality of the final

product or service. Moreover, the goal of the model is to allow
exploratory thinking early in the process phase(s) to provide a
modicum of predictiveness about the unidentified problems
that may lurk in current and future work. A primary condition
for selecting an appropriate process model is that the scope and
depth of the work be within the model boundaries of
extensibility and scalability. All these considerations that
impact model selection are bifurcated between systems and a
system of systems or systems of systems.

The notion of process models for systems has been sought
after as a harbinger of projects that build and deliver systems to
meet their objectives. Since the mid 1960’s, developing
software using process models (notably the Waterfall [3]) has
garnered great interest in business and government and has
found a home in systems engineering. Many process models
are in use, each having merits and shortcomings vis-a-vis the
preferences of the project’s key stakeholders. All process
models can be tailored to accommodate various constructs in
keeping with the limits of extensibility and scalability.

Tailoring of a process model [2] can mean to break apart
work modules by partitioning, regranularizing the functional
synthesis, redacting the work breakdown structure, reanalyzing
functions by changing inputs and outputs of modular objects or
functions, change the boundaries or boundary conditions for
objects or aggregations of objects, change interoperability
between objects by adjusting connectivity, coupling, and
cohesion, or modifying the lifecycle of the product or service.

Modeling processes benefits from contributions in scripting
workflows, identifying and solving difficulties with sequential
and concurrent processes, mapping activities and context into
idealized use cases [4], capturing actual events in reificatory
use cases [5], utilizing systems model-based functional
analysis to thread sequential and concurrent behavioral patterns
[6], applying the speech-act model developed by Winograd et
al. [7], formulating task scripts [8], abstracting business
processes [9], incorporating event driven workflows [10], and
including the notion of persistent workflows [11].

II. BRIEF HISTORY OF PROCESS MODELS

The overall gestalt of task and process is early written by
Adam Smith (1827), extrapolated by Elbert Hubbard and the
Roycrofters (1895) with enlightened views on worker-
controlled processes, and then extended by Gantt (1910) to
combine the two activities of planning and scheduling. In the
1930s, scheduling tasks expanded to sequential and parallel
tasks; and in the early 1940s a method to identify the critical
path was introduced by Morgan Walker of DuPont and James
Kelley of Remington Rand. Soon after in 1957, Booz Allen
Hamilton and the U.S. Navy laid out processes using a network
diagram approach, referred to as PERT (Program Evaluation
and Review Technique). In 1984, Eliyahu Goldratt posed the
Theory of Constraints that noted most projects have
chokepoints that require due attention to restructure,
orchestrate, and implement work expeditiously. The Theory of
Constraints, different than all previous organizing methods,
deviated from a task-schedule model of processes to represent
process that were time-critical to completion into a chain of
tasks that have flexible start times and leveled resources

project-wide. Respect for the project, the task-customer-worker
triad, the Theory of Constraints, and the Roycrofter passion for
improving work that was seen as the means for personal
achievement and pride, may inspire the best model of
processes to deliver products and services. A process model is
structured to track and measure what work is accomplished and
what tasks need to be done to satisfy a customer and user.
Adopting the process approach subsumes the importance of the
customer, the user, the worker, and the project’s organizational
policies and rules.

Adding 200 years of thinking and applying process models,
has evolved to a process model as a set of activities, structured
by the dictates of key stakeholders (a business or organization,
their customers, users of their products or services, regulators).
A process model should be set up to reflect the rules of an
activity, task, project, or business. Further, a process model
should respect its stakeholders’ political, economic, and social
boundaries [2]. Modeling a work effort in such manner is the
intention of modern process models.

III. ORGANIZING DOMAINS

Domains, discussed in detail in published Langford lecture
notes [12], organize the process models by arranging stages
according to aggregate groups of like-kind structures. These
structures advance work products so that tasks that need to be
completed can be enhanced with knowledge necessary to
design, then build, then test the required product or service.
One such process model, “build a little, test a little”, suggests a
concerted effort to figure out what will work to a high level of
precision, i.e., the specifications are at a highly-advanced level
of technology that pushes the state-of-the-art to an extreme.
The domains are structures of processes to demonstrate
snippets of subfunctionality could be built, integrated and then
concatenated into threads of functionality that flowed
throughout the subsystems of the product or service. Such was
the case for the Hubble Telescope. For AIS, the discovery
process for requirements was beyond the state-of-the-art from a
technological perspective hampered by a systems of systems
development.

Domain design means to translate functions into SoS uses
and capabilities. Boundaries and boundary conditions of the
problem must be known, stakeholder needs should be at least
partially determined, the purpose for the product or service
should be determined, the goal of the work effort should be
spelled out clearly and coordinated with key stakeholders, the
objectives of each task should be written and discussed with
the development team, and the principles related to each of the
process areas must be carefully implement to ensure efficient
and effective execution of development work. The team should
be well-versed on recent advances in technology, and
appreciate the disruptive innovations that might ensure during
the development and delivery phase of the product or service.
And, the current and proposed systems need to be identified
and described sufficiently so that the interfaces, exchanges of
EMMI, and the temporal sequences for integration and
interoperability can be planned and laid out for testing and
verification.

The various domains that span the issues with systems of
systems are shown in Figure 1 [12] on the next page. Each of
the domain models and schemas are meant to help determine
the systems of systems capabilities, users’ needs and
requirements. Note: the movement of work products from one
domain to another is not a distribution, but rather a blockchain.

A. Problem Domain

The problem domain encapsulates the simultaneous
considerations of problem and relation with stakeholder’s need
to solve the problem. A problem is something (objects or
processes) that causes or will cause great harm, mayhem,
disruption of civility, or loss of a system’s ability to fend off its
destruction or degradation to the point of being precipitously
close to near destruction. A massive meteorite is a problem for
the continuing existence of human lifeforms. If one refuses to
believe that a problem exists, then that problem either does not
exist for them, or exists but is deemed immaterial to their well-
being, or is not yet relevant to their interests. Therefore, a
problem is recognized as intense state of difficulty leading to
irreparable harm that needs to be solved. The problem
continues to exist when either you do not have a way of
satisfying the stakeholders’ requirements or that satisfying their
requirements requires more than you are willing or able to
invest in EMMI. If you determine you have a problem, then
stating that problem determines how you think about the
problem and its context. The problem statement is a brief
discussion of the observations that lead you to believe there is a
state of difficulty that is required to be resolved; a discussion
about the physical, functional, and behavioral boundaries that
demark the problem domain; consideration of emergence by an
investigation of the boundary conditions by which boundaries
are changed or permit input/output transactions of EMMI; and
the salient issues that characterize the problem through
measures, independent and dependent variables, and metrics. A
problem is thus given characteristics that determine its merit or
ranking amount problems that need to be solved. The problem
domain is the only domain that has its drivers from outside all
other domains. Without a statement of the problem there are no
boundaries to delimit the problem, all objects and processes are
likely candidates for inclusion, the solution is unbounded, all
products and services necessarily need to be included, all
mechanisms and all interactions necessarily are operative, and
everyone is a user of whatever is discussed. The problem
domain needs to be at least partially defined so that through a
highly iterative process, the other domains may be enlightened
enough to contribute to the problem statement. The Domain
Problem Model provides inputs to the Domain Boundary
Model, the Domain Object Model and the Domain Process
Model (since each of these three receiving models can best
benefit at the top-most portion of systems thinking, i.e.,
boundary, objects and processes).

Domain design (within the problem domain) captures the
solution and scope of the development work. Limiting the
scope of the solution, in effect, limits the amount of the
problem that will be address.

Domain

Boundary
Model

Domaln
Problem
Model

;\

Modularity

Schemas

Modularity
Domaln
Models of
Behavlor 505
Model

r

——

Domain
Solutions
Models

/v

Local
Interactlon

A 4

Model

Mechanlsms

LI

Domaln Process
Model

Domaln Domain
Domaln Service Product
Functlon Model Model
Model | |
\ 4
Capabllitles j
|
r#] > Naeds
Uses ']

= Requirements

Fig. 1. Domain Models and Schemas Meant to Determine SoS Capabilities, Needs and Requirements

B. Domain Boundary Model

The Domain Boundary Model reflects the boundaries of
physical objects. There are three types of boundaries: physical,
functional, and behavioral [2]. Physical boundaries are the
corporeal surfaces, functional boundaries are determined by the
interaction between two physical objects that results in
something that is used, and behavioral boundaries exist when
objects either exist or do not exist (and are expected) and when
functions exist or do not exist (and are expected). The Principle
of Partitioning states, “Partitioning of objects can create
tractable problems to solve if and only if boundary contiguity
is achieved” [2]. The condition of contiguity ensures all that
was conceptualized at the highest level of abstraction was
indeed included in all subordinate levels of abstraction, nothing
more (i.e., no overlapping boundaries) and nothing less (no
underlapping boundaries). Successful integration depends on
partitioning in accordance with the Principle of Partitioning.
The Domain Boundary Model receives input on the problem
from the Domain Problem Model; and provides its output to
the Modularity Schemas.

C. Modularity Schemas

The assumptions for design of products and services are
expressed through various characteristics including that of
modularity. The Modularity Schemas embodies its design
environment by implementing an indivisible function or
subfunctions, has only one input and one output, is Markov
process-like, i.e., not affected by input’s source or output’s
destination or module history. Important to the schemas,
characteristics of modularity are represented by a single
requirement statement, with all requirements within the domain
restricting the impacts locally. The process model would need
to be accommodate functional equivalency through modularity.
Domain analysis determines operations of unit modularity of
data and associated processing (data). The Modularity Schemas
reflects the overall structure of modules and is therefore a form
of partitioning from the bottom-up (as is erroneously often
espoused from the top-down). The Modularity Schemas
receive input from the Domain Boundary Model, the Domain
Object Model, the Domain Function Model, and the Domain
Behavior Model. The Modularity Schemas are outputs to the
Modularity Models of Systems of Systems.

D. Domain Object Model

The Domain Object Model provides a representation of the
requirements described within the domain through the objects
and their intellectual representations [2]. The Domain Object
Model describes the structure and flow of data due to the
objects, functionality due to interactions of objects, limitations
due to object boundaries, constraints due to object boundary
conditions, and controls (i.e., mechanisms) within the domain.
The object model provides the representation of the rule set as
enacted by processes within the Domain Object Model. The
Domain Object Model receives input from the Domain
Problem Model; and outputs to the Modularity Schemas, the
Domain Behavior Model, the Local Interaction Model, and the
Domain Function Model; and outputs to the Local Interaction
Model, the Domain Function Model, the Modularity Schemas,
and to the Domain Behavior Model.

E. Domain Behavior Model

The Domain Behavior Model depicts the behaviors due to
objects (note software instantiations are objects [2]) and
interactions between physical objects. From the rule set (a part
of the domain object model), an object’s behavior can be
premised on the existence of an object and its expected
behavior or the non-existence of an object and its lack of
behavior. Further, the rule set may prescribe the same logic for
functions as for objects — implying an object’s behavior can be
premised on the existence of interacting objects and it’s the
expected functional performance or the non-existence of an
object and its lack of functional performance. The Domain
Behavior Model receives input from the Domain Object Model
and the Domain Behavior Model, and outputs to the
Modularity Schemas.

F. Local Interaction Model

The Local Interaction Model describes the emergence from
interacting objects and the lack of emergence that may be
expected. Notably, product and service designers are focused
on the emergence that is useful, i.e., functions [13]. However
worthy, AIS design means to detect unwanted emergence, such
as excess waste in EMMI or time, unwanted and spurious
implementations of expected behaviors at unexpected times, or
unintended mechanisms inserted by an object or enabled
because of inadvertent or unplanned interactions or lack of
interactions. A careful examination of the what inputs are
needed when and by whom should be included in the Local
Interaction Model. The Local Interaction Model receives inputs
from domain object model and the mechanisms; and has no
outputs to other domain models. The Local Interaction Model
captures emergence that is not useful. Most importantly,
unwanted or disruptive emergence is exactly what can be
gleaned from objects and Mechanisms or lack thereof.

G. Domain Process Model

The Domain Process Model configures four structures —
requirements, behaviors, architecture, and verification/
validation to capture the customer view (requirements), the
mechanisms (behaviors), the priorities of operations
(architecture), and the verification to requirements and the
fitness for use. The Domain Process Model typifies the

dependencies of objects (e.g., requirements, views, behaviors,
priorities, architecture, fitness) and processes (e.g.,
mechanisms, operations, verification, requirements, use)
through the interpretive integrative framework [2], [4], [14],
[15]. That framework is formed by the nexus of the object
ontology and the process ontology. The purpose of the Domain
Process Model is to relate the acts, activities, and processes to
the cogitating, mechanizing, and representing of enablers of
force that are causal to actions from influences on physical
objects. The Domain Process Model interacts with the Domain
Function Model exchanging inputs and receiving outputs. The
Domain Process Model outputs mechanisms.

H. Domain Function Model

The Domain Function Model translates the interactions
between physical objects into uses and capabilities. For
example, the domain design methodology transforms and
combines the model of designing a product or service with the
model of a design task and the model of the design process into
the function of ‘to design’. The Domain Function Model is
operative at both the product and service level (during the
lifecycles) as well as the implementations for development.
Functions are measurable and as such readily lend themselves
to the machines that people use. The boundary of the object’s
functional domain is reached when the use that originated with
the user through interactions with a physical object has ended
when the user ceases interaction with the physical object. If the
user continues to look at the physical object, form an image of
that physical object, or behaves as if the physical object must
be avoided (even if the physical object is not visible), then the
function of ‘to see’, ‘to image’, ‘to behave’, or ‘to avoid’,
respectively, are considered functions within the domain
function model. The Domain Function Model takes inputs
from the Domain Process Model and the Domain Object
Model; and outputs to the Domain Process Model, the Domain
Behavior Model, the Modularity Schemas, and the
Capabilities.

1. Mechanisms

Mechanisms are broadly defined to be that which influence
objects by means of forces. Mechanisms are made up of the
impact of EMMI on objects. A simple mechanism can be a
single input of EMMI received by an object by which that
object releases EMMI — the mechanism of to move object by
applying a force. Complex mechanisms result from the
combining of many simple mechanisms that can offer
mechanical advantage, electrical transformation, or magnetic
influence. Mechanisms derive from the Domain Process Model
and influence the Local Interaction Model. The inputs for
Mechanisms are the Domain Process Model, i.e., the elements
of influence [2] and force [16].

J. Modularity Models of Sysems of Systems

The Modularity Models of SoS depend on the inputs from
the Modularity Schemas. These inputs are driven by the
problem, the domain objects and processes, the behaviors, the
interactions between objects, the boundaries, and Modularity
Schemas. Typically, when a lack of appropriate work products
is discovered within the Local Interaction Model, the process

model evaluation and use flounder and attempts to use the
traditional stages, phases, and milestones to fill in what is
found to be missing will cause inordinate delays. Disruption of
work products that are either not needed for a particular
milestone or work products that have not been started or
proceeded to maturity will cause a milestone to be missed.
Indeed, these ill-fated attempts to improvise with provisional
work products assumes that the process model is salvageable
and that progress can continue until an acceptable replacement
can be made. For the particular problem of process models that
are geared for notasystem or systems, the challenge of a system
of systems or systems of systems is beyond the validity of
these traditional process models. When such issues of missing
work products arise, the key management and technical people
need to consider non-traditional process models. When
significant issues are discovered, a new exemplar for managing
the development process must be sought and put into action.

K. Domain Solutions Models

For systems of systems, the Domain Solutions Models
prescribe a manner of regaining control over the origination
and flow of work products. A process model for developing
complex systems of systems such as AIS is heterarchical in
structure (posing each attribute of development on equal
footing) and focused on achieving requisite systems and
system of systems behaviors and functionalities. During
product or service development, the domains of each
constituent system are interactive with the domain of the
system of systems in a reflexive, self-referent manner.
Therefore, each work product used one domain and will be
used similarly in all other domains. A change in the work
product is a change in all work like-kind work products. To
maintain objective control over the work package, the system
of systems development needs to be implemented in
blockchain fashion. The inputs of the Modularity Models of
Systems of Systems into the Domain Solutions Models have all
blockchains of work products from all the Domains and
Models. The output work products from the Domain Solutions
Models is the input to the Domain Service Model and the
Domain Product Model. All products have complements from
the Domain Service Model and the Domain Product Model;
same as all services have complements from the rom the
Domain Service Model and the Domain Product Model.

L. Domain Service Model

The Domain Service Model recognizes that service is done
by an intelligent system for an individual. The risk of the
individual who takes part in receiving the service (offered or
provided by AIS) is identified, evaluated, assessed, and
determined to be acceptable or not acceptable. As a key factor
in design, this decision based on risk may impugn an inherent
portion of the AIS business model before, during, or after
development and being put into operations. From a social
perspective, the Domain Service Model should incorporate the
emotional, social, ethical, cultural, equality, and level of
conviviality. There needs to be several forms of feedback that
indicate how the interactions between AIS and humans
measure up in terms of stakeholders’ standards for success — to
imply that the standards and measures for success is an integral
part of the Domain Service Model. Overall, the top-level

functions and processes for the Domain Service Model could
be parsed as “to request (service)”, “to provide (service)”, and
“to status activities (service)”. Moreover, the apprehension and
realization of loss of EMMI is a useful consideration to assist

with work products in the Domain Service Model.

A general loss function quantifies the loss as a metric to be
used in tradeoff studies [2]. Determining losses as part of the
key interactions within the Domain Service Model serves to
quantify more versus less for all domain tradeoffs and
development of work packages. With regards to effectiveness
of the Domain Service Model the output of the Domain Service
Model is to Capabilities.

M. Domain Product Model

The Domain Product Model incorporates the physical
objects, processes, and mechanisms embodied in the thing with
certain capabilities that is produced or manufactured. For those
familiar with systems engineering of products, the Domain
Product Model is the representation of the work flows and
work products of systems engineering. Conceptual design,
detailed design, architecture, prototypes, verification and
testing, and validation testing are incorporated into the Domain
Product Model. As with the Domain Service Model, the
concept of risk is incorporated, not from the perspective of the
individual, but rather from the views of the AIS through its
stakeholders in their business models. The risk associated with
the AIS that provides the service (received by the individual
interacting with the AIS) is identified, evaluated, assessed, and
determined to be acceptable or not acceptable. The risks
associated with the product design and operations is an integral
part of the Domain Product Model. Of primary concern and
focus is the development of the product’s capability, to include
product effectiveness. With regards to product effectiveness,
the output of the Domain Product Model is to Capabilities.

N. Capabilities

The inputs to the Capabilities are work products from the
Domain Service Model, the Domain Product Model, and the
Domain Function Model. Capabilities are determinable as a set
of measures of effectiveness (derived from functional
performances) [2], [13]-[15] along with measures of the degree
of dependability and measures of the availability of the product
or service. Combined, Capabilities, dependability, and
availability form a tuple known as effectiveness. For a system,
that tuple is sufficient to help determine effectiveness.
However, for systems of systems, the overall effectiveness of
the whole of systems may or may not be impacted if a system
is degraded and another system is enhanced — suggesting the
net effects of efficiency may be applicable. Further, we
distinguish between operational effectiveness when the product
is first delivered (i.e., for initial capabilities) [17] and after
maturation in the product’s or service’s operational
environment (i.e., for dynamic capabilities). Operational
effectiveness for systems of systems planned for development
and those delivered for initial use have the benefit of planning
for initial use. Operational effectiveness for systems of systems
that are mature in their use face environments that may have
changed from their design intent and initial usage. A key
distinction between initial capabilities and matured capabilities

is the impacts of updates and improvements to technology,
maturation of systems and systems of systems management,
improvements in operational skills and abilities, and overall
coming to a high-level of competencies with the full
development of product or service intricacies and complexities.
The notion of dynamic capabilities suggests that products and
services can be changed after first operations through
adaptations, upgrades and improvements to remain responsive
to a changing environment and variabilities in context.
Consequently, Capabilities encompasses the acquisition
process, development, concept of operations, operations
sustainment, and end-of-lifecycle utility. As a part of systems
of systems effectiveness, we view Capabilities as the
penultimate consideration for work-products fitness for use,
and satisfying needs to solve stakeholders’ problems.

0. Uses

The uses of the service and product Capabilities interact
with work products from the service and product components
as well as the functional performances of physical objects by
users. The broad term user is meant as the aggregate of all
users of the product or service. Consequently, the net actions of
the users take its inputs from Capabilities. This distinction
between an individual user of product or service and the
aggregation of users (as the organization), averages the policy,
training, availability, dependability and capability of individual
users. The users have two primary considerations —net results
from interactions with the interfaces with service/product
components and the users’ interactions with service/product as
measured by speed and accuracy. Users have needs and if
functional performances are involved, users have requirements.
As such, users are part of the system of systems architecture.
The perspective of the designer (developer), the customer (who
pays), the user (who use), and other key stakeholders, initially
will have different needs and different requirements. Those
differences reflect their different boundaries of the issues they
perceive, i.e., the various patterns of the objects and processes
that present as capabilities. Consequently, the views of those
boundaries. “Different observers may perceive boundaries
differently and in conflict with other observers” [2]. Users have
the greatest sensitivities to boundaries. For AIS interactions
with humans, the users should be considered the most
important stakeholder, who’s actions, opinions, propensities,
and habits wholly determine the outcome of effectiveness for
the proposed and actualized Capabilities.

Uses are elementary forms of accomplishing or achieving
something for a practical purpose, for changing value or worth,
or for offering benefit or convenience. Use derives from
Capabilities as having meaning to the user. System and system
of systems behaviors reveal their intended uses through
functional performances and quality.

P. Needs

A need is a condition requiring relief dye to problem(s). The
output of Uses and the output of Capabilities are the inputs for
Needs. Needs can be managed and resolved. Needs derive
from stakeholders who are willing to recognize their problems.
A stakeholder is anyone or anything that can have agent
representation for the concerns of a thing and who significantly

affects or is affected by the influences of a product or service.
In a broader sense, the stakeholder is someone at risk due to the
product or service; and particularly associated with the user
and uses of the product or service. The Need encircles the
problem, stakeholder, and product and service models.

Needs are perceived by the stakeholders, expressed by
those stakeholders who realize there is a problem, and retained
by those stakeholders who are resolute in finding solution(s) to
the problem. There can be described a hierarchy of needs that
delineate stages of progress in determining a requirement.
Figure 2 expresses the hierarchy of Needs to Requirements.
The output of Needs is the input of Requirements.

NEEDS

=

Retamed

/ Testable \

/ Verifiable \
/ Stipulated \

REQUIREMENTS

Fig. 2. Needs to Requirements

Q. Requirements

The interactions between AIS and Humans result in
functional requirements with various performance(s). From
stakeholders needs there may be products or services that must
be acquired, tailored, or developed. IF, the stakeholders deem it
necessary to accept these products or services with compulsory
testing to determine if certain specifications are met, then those
products or services are determined to be systems requirement.
It is the sustained interactions that result in useful emergence,
i.e., functions that have testable performance(s). The method of
Needs to Requirements indicated in Figure 2 is used for both
system requirements as well as system of systems
requirements. The structure and stages in Figure 2 are
reminiscent of Maslow’s hierarchical model of instinctual
needs [19].

IV. BASICS FOR PHASES IN A SYSTEMS OF SYSTEMS PROCESS
MODEL

Every system and system of systems has multiple
concurrent interactions both internally and externally enacted.
The arrangement of objects and the execution of processes (in
the form of architecture) can be structured in part as
hierarchical inferences and rule sets that both mediate and
resource access to capacity and movement of capacity with
distributed priorities. The contraposition of priority and control
in such architectures leads to latency and wvariability to
processing and throughput; ambiguation of input and output
anteriority for processing and caching; and inefficient
partitioning in processing pipelines. These challenging tensions
that moderate flow of EMMI in resource constrained
hierarchical architectures reduce effectiveness from that
modeled using standard tools. Complete analyses on key
threads of concatenated functions that are step-wise continuous
is essential to discovering missing functions, identifying
redundancy of functionality, detecting and tracing contention
for control of an object, and determining the effectiveness of
poorly designed modules that enwrap functions and
subfunctions. Analyses of functional threads is a convenient
method to check the synthesis of the functional design as well
as to begin the allocation of functional requirements to the
software and hardware work packages.

The premises of the authors are that modeling of processes
must be based on theory that engenders rules; be formed from
principles that guide integration of processes or structuring of
models of processing; be dependent on using a systems
approach to ferret out the complexities of interactions; and be
classified by strict definitionals that are consistent and
compatible with the mereology of objects and processes, such
that there is no ambiguity or epistemological problems.
Without theory, there is no predictive capability; without
principles that apply to the processes of integrating processes
there are only ad hoc methods to help surpass the limits of
praxis reached with best practice; without a systems approach
there will be missed opportunities, ambiguities in outcomes,
and ineffective understanding of causal mechanisms that result
in negative emergence; without strict definitionals and well-
defined categories and clear classifications, instructions and
specifications will be misinterpreted, nuances and subtleties
will create doubt which will delay progress, and the requisite
formalization and clarity needed for project success will be
wanting.

In blunt contrast to the failed attempts to use traditional
process models for system of systems development, the effects
of concurrency and their emergent traits must be properly
recognized as the primary spoiler of predictable project
behavior. A complete revamping of the notion of how work
products from one stage contribute to the needs of another
stage of pending work products is warranted. Therefore, a new
process model paradigm is needed to span both the temporal
needs of each phase of process model work as well as
accommodating the inputs of multiple sources of work
products event-based needs for inputs as the project progresses.
Figure 3 displays a multi input-dependent labyrinth of work-
product flows from tasks to tasks, some in concurrent phases of
work and some in sequential phases. These work-product flows

provide for a well-behaved process model that can properly
handle the needs and issues of the AIS lifecycle as a system of
systems or as systems of systems. In particular, the
interweaving of process derived work-flows in the temporal
phases are juxtaposed with the concurrent needs of the process
phases. On the next page, Figure 3 depicts these various
phases.

Analytical modeling and simulations do not and cannot
capture all things necessary to prevent degradation. The
phasing without degradation begin with each constituent
system beginning with phase of determining feasibility and
exploring the design. Feasibility analyses are necessary for new
systems (those to be built) and for existing systems to
determine if the problem solved by each system is in keeping
with the overall problem that is planned to be solved by the
system of systems.

V. DOMAIN STRUCTURES TO PROCESS MODELS

The domains form the essential elements from which to
layout the relationships between work products within the
process model. Accordingly, there are multiple stages in a
process model that form to generate work products that result
in milestone reviews. For the simple case of starting with a
problem, defining the necessary functions, laying out those
functions according to design principles, formulating an
architecture that moves EMMI appropriately to support the
four conditions of systemsness in keeping with the requisite
priorities, then test, verify, and validate to ensure requirements
are satisfied and needs are met. The simple case is not
sufficient for a system of systems. Therefore, the process
model must be able to handle multiple differences in systems,
competing priorities amongst the needs of the constituent
systems, optimizing the system of systems performance across
all operations. All the while, the criteria for systemsness must
be maintained. The four conditions for systemsness to
expedite the metastable operations for key meta-functionalities
(at the system of systems-level) and provide for each system’s
requirement for their respective metastable operations;
continually promote and enable the agile movement of internal
EMMI to satisfy the system-level and the system of systems-
level needs; remain responsive to external conditions so as to
smoothly adapt without precipitous demands on internal
operations; and ensure non-reciprocal / irreversible processes
are carried out when decisions must be determined, made, and
enforced. These four conditions for systemsness are inviolable
(2], [4], [12]-{15], [20].

A. SMBT Step One

To construct the set of processes necessary to build a
system of systems product or service, a starting point must first
be selected from which all else follows. Applying SMBT to the
task, the first issue is to identify the action center of the basic
interaction, i.e., the problem to solve, the question to answer,
the conflict to resolve [2], [20]. The action center for a system
of systems is the primary aim that drives all stakeholders. The
aim of AIS is to first serve a customer (one who pays) to solve
a problem, to answer a question (to solve or avoid having a

Concurrency Time

System Feasibility
and Design Exploration

)

\%Feasibility & Desi?/ \
Evaluation Architecture Objectives

SoS

SoS System
Operational Analyse Lifecycle Analyses

System Operationa
Analysis

SoS
ngineerin

SoS

Architecting
System System

\qrchitectin Engineering
SoS
Capabilities

Fig. 3. System of Systems Process Model — a New Paradigm

problem), or to resolve a conflict between two parties before
there is a problem. In this regard, AIS is intended to have all
the novelty of another person, with better competency, greater
knowledge, omni-present availability, and reliable, accurate,
and precise fixes to address the requester’s needs. Note: the
user is the one who accomplishes something of value [2].

B. SMBT Step Two

The second step is to determine whether the primary
domain of activity is at the system level or the system of
systems level. If the product or service is at the systems level,
then the standard systems model (i.e., that used in systems
engineering) should be tailored to be adequate). If the product
or service is at the systems of systems level, then dealing with
a constituent system must be handled before concatenating
activities into meta-functions that work across systems, i.e., at
the system of systems level. Few users will interact at the
system of systems level of activities, the vast majority will
engage with a system that has been enhanced or supplemented
with meta-functionalities.

Thus, in Figure 3, the first action is with each individual
system to determine the feasibility of each and then explore the
design space of each. Feasibility studies are design to facilitate
a decision. For example, should an investment of EMMI be
limited in terms of time and skills implies a study focused on
the practicality of the project and a determination of the
likelihood the project achieves its expected outcomes.
Feasibility studies encompass technical, financial, managerial,
operational, social, and legal issues. The limitations or time and

EMMI. Feasibility implies strategy is time of use and
EMMI. In other words, feasible is determinable within the
limits of maximum commitment and capability.

C. SMBT Step Three

Somewhat concurrent in time as the analysis for
feasibility and design for each of the constituent systems in the
system of systems, the system of systems undergoes the same
evaluation for feasibility and design. Note the vertical overlap
in Figure 3 for the Systems Feasibility and Design Exploration
with the System of Systems (SoS) Feasibility and Design
Evaluation with the SoS Operational Analyses and the
Systems Operational Analysis. These four stages in the system
of systems process model provide interactive work products
that culminate in event-space with exchange of those work
products to assist with the respective tasks. Horizontally, the
tasks proceed through milestone reviews, each review marking
the documentation that is exchange or provided to other tasks
within the model

D. SMBT Step Four

As the milestones progress and work products mature by
highly iterative, incremental improvements, the build-up of
system capability moves from System Feasibility and Design
Exploration to System Operational Analysis to System
Lifecycle Analyses, to System Architecting, and then to
Systems Engineering. At that stage, an existing system can be
fitted with appropriate requirements and the system of systems
can be defined. If the systems are to be newly built, then those
system requirements will be assured of satisfying the system
of systems operational needs.

E. SMBT Step Five

A key objective is to provide those system of systems
meta-functions with full performances and quality along with
operational, yet degraded functional performances when the

architecture is unable to sustain full functional performances.
Testing and verification, then validation are typical activities
carried out in SMBT Step Five. Early validation is possible
with a top-down approach to determining system of systems
capability. For out purposes, a system of systems is an
integrated, interoperable set of systems that achieve a set of
meta-system functionalities in which all constituent systems
participate to varying degrees.

VI. SMBT DOMAIN ACTIVITIES

Work products are developed by using such methods as
agile work groups that cross domain boundaries and work
simultaneous in both domains; progressive work products that
have a “boss” that leads tasks in multiple domains as the work
package is moved from domain to domain; prescriptive work
packages that produce products according to a master plan
(involving multiple domains); and spiral process work flows
that move sequentially from one domain to the next, then
returning to an earlier domain to update and mature the work
package. These groups that coordinate within and cross
domains are the interfaces for the work flows who plan and
schedule depending on the detail and level of content. Agile,
progressive, prescriptive, and spiral methods are used as
appropriate to reconcile functional and process requirements,
risk, schedule, and budget. In addition, various common
techniques are used to organize and develop work packages,
including the work breakdown structure. Work breakdown
structure can be based on physical, functional, process,
behavioral — with physical and functional being the primary
categories. Hybrid mixes of physical and functional as well as
interacting objects (function) and mechanisms (process) have
been used on military and commercial products and services
(Intel Corp, U.S. Navy, U.S. Army, Department of Homeland
Security, and NASA.

An important factor of ISPD is that multiple concepts of
operation are necessarily developed during the early
development of work packages through the paths of work
flow. These concepts of operation, though with many elements
in common, are typically without enough overlap. Part of the
determination of capability (Capability) is to resolve
discrepancies. There will also result a widely diverse set of
architectures. With some developments, the concept of
operations will emerge before the architecture has completed
its maturation through the ISPD processes. The prognosis for a
better architecture is increased if the concept of operations
proceeds at a faster pace than the architecture work products.
In that manner, the concept of operations can enlighten both
the design and the architecture. However, the prognosis for a
more effective integration plan and execution results with the
architecture precedes the concept of operations. In this latter
instance, the design suffers by not having a better-developed
concept of operations. This tradeoff highlights the type of
process flows that are active when developing work products.

Rather than deep development of a particular aspect of a
domain, the work products append multiple layers of detail to
update a previous incarnation of the work product. For
example, an interface might be suggested by particular
functionality that would benefit from modularization. An

interface is suggested due to partitioning. However, the
partitioning task has not yet begun, so this initial
modularization is only a starting point. As the iterations
incorporate additional functionalities that also appear to
benefit from modularization (albeit with incomplete data), a
pattern begins to emerge as to the preliminary list of
interfaces. With an increasing number of domain perspective
adding to the work package a typical outcome is to have a few
competing ideas begin to develop with different partitioning.
Those competing ideas are then subject to a tradeoff study that
will cultivate higher-level concepts and meta-functionalities.
Instead of leaving tradeoffs and stakeholder posturing for late
in design or architecting, significant issues materialize and
become factors to investigate and discuss, instead of taking
sides. For a system of systems, the SMBT has shown to save
significant time, achieve consensus quicker, and in the long-
run to work through significantly more robust and achievable
requirements.

VII. CONCLUSIONS

A new paradigm in process models helps to build an AIS
that promotes deep investigation into literally thousands of
trade-spaces. Existing process models meant for systems
development are prone to fail in delivering on cost, on
schedule, and on performance products and services.
Historically, most development efforts neither instigate such
number of tradeoff nor spend the time during the formative
stages of design to identify the ramification of such a large
number of tradeoffs. Usually there are a few “big” mistakes
made when stakeholders cannot agree or when there is a major
investment of EMMI at stake. That situation is not the case
with SMBT work through the newly introduced system of
systems process model. SMBT embraces tradeoffs as a natural
consequence of its structure and ISPD supports the interaction
between the work products for constituent systems for the
system of systems.

The procedural steps for SMBT illustrate the entry point
and conditions to begin thinking systems — the key interaction
that couples the AIS with the Human. If another starting point
is selected (such as by a system within the system of systems),
the SMBT work will show the relative importance during the
evaluation of loss functions applied in the Domain Service
Model. Use of the new systems of systems process model over
the past 9 years support both the approach using SMBT as
well as the methods of investigating each of the domains in a
step-wise fashion to account for trade spaces, entry points,
conditions for systemsness, and effectiveness.

Comparing the systems domains with the systems of
systems domains through inputs, outputs, interfaces, and
tradeoffs promotes a thorough investigation of requirements.

REFERENCES

[1] R. A. de Souza, “Maturity Curve of Systems Engineering,” Master’s
Thesis, Systems Engineering Department, Naval Postgraduate School,
Dec. 2008.

[2] G. O. Langford, Engineering Systems Integration: Theory, Metrics and
Methods. Boca Raton, Florida, CRC Press/Taylor & Francis. 2012.

[3] W. Royce, “Managing the development of large software systems,”
Proceedings of IEEE WESCON 26, August. 1-9, The Institute of

[5]
(6]

[8]

[9]
[10]

[11]

[12]

[13]

Electrical and Electronics Engineering, Inc (originally published by
TRW) 1970.

A. Cockburn, "Structuring Use cases with goals" — JOOP/ROAD 10(5),
Sep 1997 and 10 (7) Nov 1997.

M. Jackson, "Problems, Methods and Specialisation," in Special Issue of
Systems Engineering Journal on Software Engineering in the Year 2001.
G. O. Langford. “System of Systems Process Model,” Chapter 7,
Engineering Emergence: A Modeling and Simulation Approach, L.
Rainey and M. Jamshidi, Eds. Boca Raton, Florida: CRC Press/Taylor &
Francis, 2018.

R. Medina-Mora, T. Winograd, R. Flores, F. Flores, "The Action
Workflow Approach to Workflow Management Technology," CSCW 92
Proceedings, November 1992.

B. Henderson-Sellers, D. G. Firesmith, and I. Graham, "OML
Metamodel: Relationships and state modeling," JOOP 10,1, March/April
1997.

T. Gale and J. Eldred, "The Abstract Business Process," Object
Magazine, 6(11) 21-37, Jan 1997.

P. Fingar, J. Clarke, and J. Stikeleather, "The business of distributed
object computing," Object Magazine - 7(2) Apr 28-33, 1997.

M. A, Beedle "A 'light' distributed OO Workflow Management System
for the creation of OO Enterprise System Architectures in BPR
environments," OOPSLA-97 conference, 1997.

G. O. Langford, Engineerng Systems Integration Lecture Notes,
Published Dec 2016 — Feb 2017.

G. O. Langford, Verification of requirements: system of systems theory,
framework, formalisms, validity. 27th Annual INCOSE International

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Symposium (IS 2017), International Council on Systems Engineering,
Adelaide, Australia, July 15-20, 2017.

G. O. Langford. “Phenomenological and ontological models for
predicting emergence,” Chapter 6, Engineering Emergence: A Modeling
and Simulation Approach, L. Rainey and M. Jamshidi, Eds. Boca Raton,
Florida: CRC Press/Taylor & Francis, 2018.

G. O. Langford and T.S-Y. Langford, “The making of a system of
systems: Ontology reveals the true nature of emergence,” in Conf. Proc.
2017 12th Annual System of Systems Engineering Conference IEEE Int.
R. Feynman, The Feynman Lectures on Physics — 3 Volume Set,
Addison-Wesley Longman. 1970.

G. O. Langford and T.S-Y Langford, “The Changing Moral Mirror of
Society,” Paper 19R0256, Portland International Center for Management
of Engineering and Technology (PICMET), Technology Management in
the World of Intelligent Systems, 25- 29 August 2019.

D J. Teece, G. Pisano and A. Shuen, Dynamic Capabilities and
Strategic Management. Strategic Management Journal 18(7): 509-533,
1997.

A. H. Maslow, Eupsychian Management: A Journal. Homewood, IL:
The Dorsey Press, 1965.

G. O. Langford and T. S-Y Langford, “Building A Sustainable Business
Model Through Technology Entrepreneurship: An Analysis Of Business
Models From A System And A Systems Of Systems Perspective,” Paper
19R0256, Portland International Center for Management of Engineering
and Technology (PICMET), Technology Management in the World of
Intelligent Systems, 25- 29 August 2019.

	Domain Process Model Overcome Limitations of Engineering Models for Developing Artificial Intelligent Systems
	Let us know how access to this document benefits you.
	Citation Details

	Domain Process Model Overcome Limitations of Engineering Models for Developing Artificial Intelligent Systems

