2011

Crystallite Phase and Orientation Determinations of (Mn, Ga) As/GaAs-crystallites using Analyzed (Precession) Electron Diffraction Patterns

Ines Häusler
Humboldt University of Berlin

Stavros Nicolopoulos
NanoMEGAS SPRL

Edgar F. Rauch
SIMAP/GPM2 Laboratory

K. Volz
Philipps-University Marburg

Peter Moeck
Portland State University, pmoeck@pdx.edu

Let us know how access to this document benefits you.

Follow this and additional works at: https://pdxscholar.library.pdx.edu/phy_fac

Part of the [Nanoscience and Nanotechnology Commons](https://pdxscholar.library.pdx.edu/phy_fac), and the [Physics Commons](https://pdxscholar.library.pdx.edu/phy_fac)

Citation Details

This Presentation is brought to you for free and open access. It has been accepted for inclusion in Physics Faculty Publications and Presentations by an authorized administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.
Crystallite phase and orientation determinations of (Mn,Ga)As/GaAs-crystallites using analyzed (precession) electron diffraction patterns

Ines Häusler

Humboldt University of Berlin

S. Nicolopoulos
NanoMEGAS

E.F. Rauch
SIMaP, Grenoble INP

K. Volz
Philipps-University Marburg

P. Moeck
Portland State University
Outline

1. Material system: (Mn,Ga)As/GaAs-crystallites
2. Structure analysis using
 Nano-beam Diffraction (NBD)
 Precession Electron Diffraction Technique (PED)
 → Structure type I + II
3. Phase and orientation mapping using ASTAR
4. Conclusion
Material system: MnAs/GaAs

Motivation
- α-MnAs: ferromagnetic properties (Curie temperature above room temp.)
- combination of α-MnAs and paramagnetic semiconductor materials (e.g. GaAs) for spintronic devices
 \[\rightarrow \text{fast information transport} \text{ basing on the intrinsic electron spin} \]

Growth process
- Metal-organic chemical vapor deposition (MOCVD)
- [001]-oriented GaAs substrate
- Deposition of Ga, Mn and As at 870K
- Formation of crystallites during cooling process
Phases of MnAs

α–MnAs
hexagonal
ferromagnetic
Space group: P6₃/mmc

β–MnAs
orthorhombic
paramagnetic
Space group: Pnma
Phases of MnAs

α–MnAs
hexagonal
ferromagnetic
Space group: P6₃/mmc

β–MnAs
orthorhombic
paramagnetic
Space group: Pnma

313 K
Phases of MnAs

α–MnAs
hexagonal
ferromagnetic
Space group: P6₃/mmc

β–MnAs
orthorhombic
paramagnetic
Space group: Pnma

313 K

[Image of crystal structures for α–MnAs and β–MnAs]
Instrumentation

JEOL JEM-2200FS @ HU Berlin

- Field-emission gun
- In-column energy filter
- Energy dispersive X-ray detector (EDXS)
- High angle annular dark-field (HAADF) detector
- Beam precession unit
- Electron biprism

Accelerating voltage: 200 kV
Energy resolution: 0.7 eV
Point resolution: 0.19 nm
Probe size STEM: 0.14 nm
Probe size NBD: 0.5 nm
Energy dispersive X-ray spectroscopy

HAADF STEM

Elemental mapping

Mn-K

Ga-K

GaAs

Mn_xGa_{1-x}As crystallite

Ga-L

As-L

Ga-Kα

As-Kα

Ga-Kβ

As-Kβ

Ga-L

Mn-Kα

Mn-Kβ

Ga-Kα

As-Kα

As-Kβ
Energy dispersive X-ray spectroscopy

HAADF STEM Elemental mapping

$\text{Mn}_{0.75}\text{Ga}_{0.25}\text{As}$

GaAs crystallite
Assumption: Statistically distribution of Manganese atoms (75%) and Gallium atoms (25%) at cation positions

\[\text{Short: } \alpha-\text{Mn}_{0.75}\text{Ga}_{0.25}\text{As (hex)} \]

\[\text{Short: } \beta-\text{Mn}_{0.75}\text{Ga}_{0.25}\text{As (orth)} \]
Nano-beam electron diffraction (NBD)

Poly-crystalline sample

Parallel beam

Nano-probe mode

Electron beam

Probe size: 0.5 - 1.5 nm

Nano-beam electron diffraction

Diffraction pattern
Structure analysis of Mn$_{0.75}$Ga$_{0.25}$As
Nano-beam electron diffraction

Nano-beam mode
Spot size: 1.0 nm
Structure analysis of Mn$_{0.75}$Ga$_{0.25}$As
Nano-beam electron diffraction

Nano-beam mode
Spot size: 1.0 nm

Crystallite A

Crystallite B

Templates

α-(Mn,Ga)As

β-(Mn,Ga)As
Reflection conditions (kinematic)

Hexagonal

<table>
<thead>
<tr>
<th>Space Group</th>
<th>Reflection Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P6_3/mmc)</td>
<td>General: (hh2hl : l = 2n) (000l : l = 2n)</td>
</tr>
</tbody>
</table>

No. 194

\(P 6_3/m 2/m 2/c\)

Orthorhombic

<table>
<thead>
<tr>
<th>Space Group</th>
<th>Reflection Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Pnma)</td>
<td>General: (0kl : k + l = 2n) (hk0 : h = 2n) (h00 : h = 2n) (0k0 : k = 2n) (00l : l = 2n)</td>
</tr>
</tbody>
</table>

No. 62

\(P 2_1/n 2_1/m 2_1/a\)

* International Tables for Crystallography: Volume A – space group symmetry; ed. Th. Hahn
Kinematic versus Dynamic ED

Kinematic Electron Diffraction:
- Only single scattering processes take place
- No double diffraction
- Each individual diffraction event acts independently of the others
- Two-beam condition (just the undiffracted beam and one diffracted beam are only excited)

Dynamic Electron Diffraction:
- Interaction of waves
- Multiple scattering effects
- Double diffraction possible (strong reflections behave like new primary beams)
- Dynamical effects increase with the number of excited reflections

Very thin crystals

Thick crystals
Precession Electron Diffraction (PED)

- Tilting the incident electron beam away from the zone axis (tilting angle = precession angle ε, typically 1°-3°) → less beams are simultaneously excited
- Continuous integration of the reflections over the entire range of angle ω
Precession Electron Diffraction (PED)

Advantages:

- Symmetrical precession patterns are obtained also for off-zone orientation tilted by less than 1°
- Dynamical effects are reduced due to the off-axis beam inclinations because less beams are simultaneously excited
- The number of reflections is higher than in conventional electron diffraction
Precession Electron Diffraction (PED)

Problems:

- The loss of the spatial resolution (depends on the precession angle and spherical aberation)
- Overlaps between Laue zones are possible for high precession angles
- Information about the shape of the reflections is lost by integration over ω
- Reflections at low angle stay in Bragg condition for longer time than reflections at high angles (Lorentz effect)
Instrumentation – ASTAR

JEOL JEM-2200FS @ HU Berlin
PED Simulation of Mn$_{0.75}$Ga$_{0.25}$As Structure Type I

ZA: [0 21 22]

jem - Simulation
Precession angle: 0.00 deg Thickness: 100 nm

β-Mn$_{0.75}$Ga$_{0.25}$As
space group: Pnma (orthorhombic)
Structure analysis of (Mn,Ga)As

Nano-beam mode, spot size: 1.0 nm

Precession OFF

Precession ON: 0.96°

Crystallite A

Crystallite A

Precession ON: 0.95°

Crystallite B

Crystallite B

Simulation

Precession angle: 0.95 deg
Thickness: 100 nm
ZA: [0 21 22]

β-Mn_{0.75}Ga_{0.25}As
Space group: Pnma (orthorhombic)
Structure analysis of (Mn,Ga)As

Nano-beam mode, spot size: 1.0 nm

Precession OFF

Precession ON: 0.96°

As

Mn 75%, Ga 25%

Crystallite A

Crystallite A

Crystallite B

Crystallite B

Superlattice reflections

Modification of structure
Assumption: Superstructure

Each second cation lattice plane of the superlattice is completely occupied with Manganese atoms. 50% of Manganese and 50% of Gallium are statistically distributed on the other cation lattice planes.

α–superstructure \(\text{Mn}_{0.75}\text{Ga}_{0.25}\text{As} \)
trigonal
Space group: \(\overline{\text{P}3\text{m}1}\)

Short: \(\alpha\text{–Mn}_{0.75}\text{Ga}_{0.25}\text{As (tri)}\)

β–superstructure \(\text{Mn}_{0.75}\text{Ga}_{0.25}\text{As} \)
monoclinic
Space group: \(\text{P}2_1/m\)

Short: \(\beta\text{–Mn}_{0.75}\text{Ga}_{0.25}\text{As (mono)}\)
PED Simulation of Mn$_{0.75}$Ga$_{0.25}$As
Superstructure Type II

ZA: [0 21 22]

jemS - Simulation
Precession angle: 1.00 deg
Thickness: 1 nm

β-superstructure Mn$_{0.75}$Ga$_{0.25}$As
space group: P2$_1$/m (monoclinic)
Structure analysis of (Mn,Ga)As

Nano-beam mode, spot size: 1.0 nm

- Precession OFF
- Precession ON: 0.96°

Crystallite A

- Structure type I
 - Mn 75%, Ga 25%

Crystallite B

- Superlattice structure type II
 - Mn 50%, Ga 50%

Phases of $\text{Mn}_{0.75}\text{Ga}_{0.25}\text{As}$

\[\alpha-\text{Mn}_{0.75}\text{Ga}_{0.25}\text{As}(\text{hex}) \]

space group: $\text{P6}_3/\text{mmm}$ (hexagonal)

Laue class: $\begin{array}{ccc} 6 & 2 & 2 \\ m & m & m \end{array}$

2701 templates

\[\beta-\text{Mn}_{0.75}\text{Ga}_{0.25}\text{As}(\text{orth}) \]

Space group: Pnma (orthorhombic)

Laue class: $\begin{array}{ccc} 2 & 2 & 2 \\ m & m & m \end{array}$

8001 templates

\[\alpha-\text{Mn}_{0.75}\text{Ga}_{0.25}\text{As}(\text{tri}) \]

space group: $\text{P}3\text{m}1$ (trigonal)

Laue class: $\overline{3}m$

10404 templates

\[\beta-\text{Mn}_{0.75}\text{Ga}_{0.25}\text{As}(\text{mono}) \]

space group: $\text{P}2_1/\text{m}$ (monoclinic)

Laue class: $\begin{array}{c} 2 \\ m \end{array}$

16129 templates
Phases of Mn$_{0.75}$Ga$_{0.25}$As

α–Mn$_{0.75}$Ga$_{0.25}$As(hex)
space group: P6$_3$/mmm (hexagonal)
Laue class: 6 2 2
m m m

β–Mn$_{0.75}$Ga$_{0.25}$As(orth)
Space group: Pnma (orthorhombic)
Laue class: 8001 templates

α–Mn$_{0.75}$Ga$_{0.25}$As(tri)
space group: (trigonal)
Laue class: 10404 templates

GaAs
space group: F$\bar{4}3m$ (cubic)
Laue class: $\frac{4}{m} \frac{3}{m} \frac{2}{m}$

β–Mn$_{0.75}$Ga$_{0.25}$As(mono)
space group: P2$_1$/m (monoclinic)
Laue class: $\frac{2}{m}$
16129 templates

Mn 75%, Ga 25%
As

1 m 3 \bar{P}
2 m 2 m 2 m

Mn 50%, Ga 50%
GaAs
m 3 4 F
23m 4
Phases of $\text{Mn}_{0.75}\text{Ga}_{0.25}\text{As}$

α-$\text{Mn}_{0.75}\text{Ga}_{0.25}\text{As}$ (hex)
- Space group: $\text{P6}_3/\text{mmm}$ (hexagonal)
- Laue class: $6\ 2\ 2$

β-$\text{Mn}_{0.75}\text{Ga}_{0.25}\text{As}$ (orth)
- Space group: Pnma (orthorhombic)
- Laue class: $8\ 0\ 0\ 1$

α-$\text{Mn}_{0.75}\text{Ga}_{0.25}\text{As}$ (tri)
- Space group: R3 (trigonal)
- Laue class: $10\ 4\ 0\ 4$

β-$\text{Mn}_{0.75}\text{Ga}_{0.25}\text{As}$ (mono)
- Space group: $\text{P2}_1/\text{m}$ (monoclinic)
- Laue class: $16\ 1\ 2\ 9$

GaAs
- Space group: $\text{F}4\text{3}m$ (cubic)
- Laue class: $4\ \frac{3}{2}\ \frac{2}{m}$

\[\Sigma \ 38561 \ templates \]

Mn 50%, Ga 50%

$\text{Mn} \quad \text{Ga}$

As 1 m 3 P

GaAs
Scanning nano-beam diffraction (SNBD)

Electron beam

Probe size: 0.5 - 1.5 nm

Poly-crystalline sample

Diffraction pattern

Probe size: 0.5 - 1.5 nm
Virtual BF

300 nm

without precession
Phase map

GaAs (cubic)
α–Mn$_{0.75}$Ga$_{0.25}$As(hex)
β–Mn$_{0.75}$Ga$_{0.25}$As(orth)
α–Mn$_{0.75}$Ga$_{0.25}$As(tri)
β–Mn$_{0.75}$Ga$_{0.25}$As(mono)

without precession
ASTAR: Phase and Orientation Maps

Phase map

Orientation maps

GaAs matrix (cubic)

without precession

Legend:
- Red: GaAs (cubic)
- Blue: α-Mn_{0.75}Ga_{0.25}As (hex)
- Green: β-Mn_{0.75}Ga_{0.25}As (orth)
- Pink: α-Mn_{0.75}Ga_{0.25}As (tri)
- Yellow: β-Mn_{0.75}Ga_{0.25}As (mono)
ASTAR: Phase and Orientation Maps

Phase map

Orientation maps

GaAs (cubic)
α–Mn$_{0.75}$Ga$_{0.25}$As (hex)
β–Mn$_{0.75}$Ga$_{0.25}$As (orth)
α–Mn$_{0.75}$Ga$_{0.25}$As (tri)
β–Mn$_{0.75}$Ga$_{0.25}$As (mono)

without precession
ASTAR: Phase and Orientation Maps

Phase map

Orientation maps

- **GaAs (cubic)**
- **α–Mn_{0.75}Ga_{0.25}As (hex)**
- **β–Mn_{0.75}Ga_{0.25}As (orth)**
- **α–Mn_{0.75}Ga_{0.25}As (tri)**
- **β–Mn_{0.75}Ga_{0.25}As (mono)**

Without precession
ASTAR: Phase and Orientation Maps

Phase map

Orientation maps

β–Mn$_{0.75}$Ga$_{0.25}$As (monoclinic)

<colors>
- GaAs (cubic)
- α–Mn$_{0.75}$Ga$_{0.25}$As (hex)
- β–Mn$_{0.75}$Ga$_{0.25}$As (orth)
- α–Mn$_{0.75}$Ga$_{0.25}$As (tri)
- β–Mn$_{0.75}$Ga$_{0.25}$As (mono)

without precession
ASTAR: Phase and Orientation Maps

Phase map

- GaAs (cubic)
- α–Mn$_{0.75}$Ga$_{0.25}$As (hex)
- β–Mn$_{0.75}$Ga$_{0.25}$As (orth)
- α–Mn$_{0.75}$Ga$_{0.25}$As (tri)
- β–Mn$_{0.75}$Ga$_{0.25}$As (mono)

Orientation maps

- β–Mn$_{0.75}$Ga$_{0.25}$As (monoclinic)

without precession
ASTAR: Phase and Orientation Maps

\[\beta-\text{Mn}_{0.75}\text{Ga}_{0.25}\text{As} \text{ (monoclinic)} \]

- As
- Mn
- Mn 50%, Ga 50%

GaAs matrix (cubic)

- As
- Ga
ASTAR: Phase and Orientation Maps

Phase map

Orientation maps

β–Mn$_{0.75}$Ga$_{0.25}$As (monoclinic)

GaAs (cubic)
α–Mn$_{0.75}$Ga$_{0.25}$As(hex)
β–Mn$_{0.75}$Ga$_{0.25}$As(orth)
α–Mn$_{0.75}$Ga$_{0.25}$As(tri)
β–Mn$_{0.75}$Ga$_{0.25}$As(mono)

without precession
ASTAR: Phase and Orientation Maps

\(\beta-\text{Mn}_{0.75}\text{Ga}_{0.25}\text{As} \) (monoclinic)
Materials analysis:

• Chemical composition of crystallites as found by EDXS: $\text{Mn}_{0.75}\text{Ga}_{0.25}\text{As}$

• Formation of superstructure in $\text{Mn}_{0.75}\text{Ga}_{0.25}\text{As}$ as revealed by PED

• Proposal of structure models of a trigonal phase (derived from the hexagonal α-phase of $\text{Mn}_{0.75}\text{Ga}_{0.25}\text{As}$) and of a monoclinic phase (derived from the orthorhombic β-phase of $\text{Mn}_{0.75}\text{Ga}_{0.25}\text{As}$)

• Phase and orientation mapping
 – Identification of two phases within the crystallites:
 monoclinic β-$\text{Mn}_{0.75}\text{Ga}_{0.25}\text{As}$
 hexagonal α-$\text{Mn}_{0.75}\text{Ga}_{0.25}\text{As}$
 – Oriented growth of (Mn,Ga)As with respect to the GaAs matrix
 – Multi-grain growth found for individual crystallites
Acknowledgements

W. Neumann, H. Kirmse, A. Mogilatenko, E. Oehlschlegel
AG TEM Humboldt University of Berlin

Group of K. Volz
Philipps-University Marburg

P. Moeck & S. Rouvimov
Portland State University, Oregon, USA

NanoMEGAS company

Financial support: Deutsche Forschungsgemeinschaft (DFG)
Acknowledgements

W. Neumann, H. Kirmse, A. Mogilatenko, E. Oehlschlegel
AG TEM Humboldt University of Berlin

Group of K. Volz
Philipps-University Marburg

P. Moeck & S. Rouvimov
Portland State University, Oregon, USA

NanoMEGAS company

Financial support: Deutsche Forschungsgemeinschaft (DFG)

Thank you for your attention