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High-resolution bottom-loss estimation using the ambient-noise
vertical coherence function
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Jorge E. Quijano and Stan E. Dosso
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(Received 14 February 2014; revised 15 September 2014; accepted 12 November 2014)

The seabed reflection loss (shortly “bottom loss”) is an important quantity for predicting transmis-

sion loss in the ocean. A recent passive technique for estimating the bottom loss as a function of fre-

quency and grazing angle exploits marine ambient noise (originating at the surface from breaking

waves, wind, and rain) as an acoustic source. Conventional beamforming of the noise field at a ver-

tical line array of hydrophones is a fundamental step in this technique, and the beamformer resolu-

tion in grazing angle affects the quality of the estimated bottom loss. Implementation of this

technique with short arrays can be hindered by their inherently poor angular resolution. This paper

presents a derivation of the bottom reflection coefficient from the ambient-noise spatial coherence

function, and a technique based on this derivation for obtaining higher angular resolution bottom-

loss estimates. The technique, which exploits the (approximate) spatial stationarity of the ambient-

noise spatial coherence function, is demonstrated on both simulated and experimental data.
VC 2015 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4904508]

[JAC] Pages: 481–491

I. INTRODUCTION

Underwater acoustic-propagation models rely on accurate

information about the acoustic properties of the two bounda-

ries of the ocean waveguide: the sea surface and the bottom.

Especially for models based on ray tracing, this information

can be in the form of the reflection loss as a function of graz-

ing angle and frequency. The dependence of the bottom

reflection loss (hereafter, also referred to as “bottom loss”) on

the grazing angle and on the frequency of the incident wave is

determined by the thickness and physical properties of the

layers, which can vary dramatically within a few hundred

meters in lateral directions.1,2 The bottom properties are costly

and difficult to measure directly in situ (e.g., by collection and

analysis of seabed cores),3,4 and are typically obtained either

from existing environmental databases (when available), or

by geoacoustic inversion of measured acoustic data, with the

latter method potentially capable of providing adequate spatial

resolution for accurate propagation modeling.

Perhaps the most widely employed methodology for geo-

acoustic inversion has, so far, been deploying acoustic sour-

ces (such as sound projectors or explosive charges—or

exploiting sources of opportunity, such as ship noise) and

hydrophone arrays, measuring the acoustic field, and employ-

ing model-based matched-field processing to determine the

seabed properties by minimizing the mismatch between

model predictions and measurement. Typical disadvantages

of systems that use acoustic sources are the environmental

impact and the costly deploying techniques and equipment.

Passive systems (which only exploit acoustic sources already

present in the environment) have the advantage of reduced

environmental impact and can be easier to deploy and oper-

ate. The work described in this paper focuses on improving

the grazing-angle resolution of bottom-loss estimates

obtained from passive data collected by vertical line arrays.

Marine ambient noise generated at the surface by break-

ing waves, wind, and rain has received increased interest

lately as an acoustic source, allowing the development of

passive techniques for surveying the sea bottom, such as

Harrison and Simons’ technique for bottom-loss estima-

tion5–10 (and its extension to the investigation of bottom

layering11,12) and the passive fathometer.13–17 Harrison and

Simons’ technique produces an estimate of the bottom loss,

as a function of frequency and grazing angle, by beamform-

ing ambient-noise data collected by a vertical line array of

hydrophones. The resulting data could be input directly to

some propagation models, or used for geoacoustic inversion

to estimate seabed properties, such as sediment sound speed,

density, and attenuation.8,9 However, with this technique the

angular resolution of bottom-loss estimates is affected by the

limited aperture of the array: All other parameters being

equal, the resolution improves when the array length (and

number of sensors) increases.18

Harrison and Simons’ technique has been applied to data

collected by moored or drifting arrays,11,12 with the latter

deployment technique affording the possibility of surveying

an extensive area as the array is carried by the current. The

arrays were several meters long and had a flexible construc-

tion, which can make beamforming more challenging if the

array shape departs from a straight vertical line during data

collection (“array mismatch” error). This problem could be
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eliminated by using rigid arrays, and some authors7,8 have

proposed mounting short, rigid arrays on autonomous under-

water vehicles to obtain an efficient, cost-effective survey tool

for seabed characterization, providing long duration at sea

and coverage of extended areas with minimal demands on

vessel or human resources. However, for the purpose of

bottom-loss estimation, with short arrays poor angular resolu-

tion becomes a matter of concern. The consequences on the

estimated bottom loss can include a shift in the location of the

critical angle and, if the seabed is layered, poor definition of

interference features in the computed bottom loss.8 These

errors are not desirable when the estimated bottom loss is

used directly in propagation models, or in an inversion

scheme to estimate geoacoustic properties of the seabed.

This paper illustrates a technique for improving the angu-

lar resolution of the bottom-loss estimation. The technique was

introduced by Siderius et al. in a previous publication,10 and

shown in simulation to outperform conventional delay-and-

sum beamforming in bottom-loss estimation. Here, the theoret-

ical treatment is expanded to include volume attenuation and

variable sound speed in the water column, and results are pre-

sented from its application to measured data from several

at-sea experiments. In particular, one example is shown that

illustrates how contamination of the ambient-noise field by

other sources (e.g., shipping noise) can alter the structure of

the cross-spectral-density matrix in a way that can make the

results of these bottom-loss estimation techniques less reliable.

The remainder of this paper is organized as follows.

Section II summarizes Harrison and Simons’ technique to

obtain the bottom-loss estimates from ambient-noise beam-

forming. Section III presents the derivation, in the

frequency-wave number domain, for obtaining the bottom

power reflection coefficient from the noise spatial coherence

function and analyzes the conditions under which the result

holds. Section IV illustrates the implementation of the pro-

posed technique. Section V shows the results of the tech-

nique on simulation data, investigates how the structure of

the cross-spectral-density matrix influences the bottom-loss

estimate, and introduces the problems that can arise when

applying this technique to measured data. Section VI shows

the results of the technique on experimental data collected at

three different locations and employing two different arrays.

Section VII summarizes the main findings of this study.

II. BOTTOM-LOSS ESTIMATION AND BEAMFORMING

A passive technique for estimating the bottom loss was

first introduced by Harrison and Simons,5 and has proven

effective in several studies.6,8,9 In this technique, the marine

ambient-noise field, mainly originating from breaking

waves, wind, and rain at the surface, is sampled at discrete

locations in space by a vertical line array of hydrophones.

The data are then beamformed to obtain estimates of the

power impinging on the array from different angles. The ra-

tio of the noise coming from the seabed to that coming from

the surface (at opposite angles with respect to the horizontal)

reveals the loss due to interaction with the seabed, which by

definition is the bottom loss. Since this technique is the focus

of this paper, this section describes in some detail its basics

and how it is implemented in practice. Beamforming of a

vertical line array is presented here in angle space, rather

than the equivalent wave number-space treatment, as this

has more intuitive appeal in the context of this technique.

For a wave front of angular frequency, x, incident upon

the bottom at grazing angle, hb > 0 (see Fig. 1 for the defini-

tion of all geometric quantities), the bottom loss is defined as

BLðhb;xÞ ¼ �10 log10Rðhb;xÞ; (1)

where Rðhb;xÞ is the plane-wave power reflection coeffi-

cient of the bottom. Harrison and Simons show that the bot-

tom loss can be computed from an estimate, R̂ðhb;xÞ, of the

power reflection coefficient obtained from array data as the

ratio of the downward and upward average beam powers

R̂ hb;xð Þ ¼ B̂ �hb;xð Þ
B̂ hb;xð Þ

: (2)

The average beam power, Bð#;xÞ, at the steering angle, #,

is defined as

Bð#; xÞ ¼ E½wHpðwHpÞH� ¼ wHE½ppH�w: (3)

(For the sake of simplicity, in this treatment, the dependence

on frequency and angle will often be dropped in the right-hand

side of equations.) In Eq. (3), H denotes the conjugate trans-

pose operation, E½ � � denotes expectation, and wð#;xÞ
¼ ½w1;w2;…;wM�T is the weight vector (T denotes the trans-

pose operation). Note that with the conventions defined in Fig.

1, # has the same value as the angle at the receiver, hr . The

angle # ¼ 0 corresponds to the array being steered toward

broadside (i.e., horizontally for a vertical array), # > 0 toward

the surface, and # < 0 toward the bottom. The vector, pðxÞ
¼ ½p1ðxÞ; p2ðxÞ;…; pMðxÞ�T , where pmðxÞ ¼FfpmðtÞg,
represents the data from the M hydrophones in the array

FIG. 1. (Color online) Definition of coordinate system and geometric quan-

tities. The origin of the reference frame is at the location of sensor 1, which,

in this case, is the shallowest sensor. For constant sound speed, the rays are

straight lines (dashed) and h0s ¼ h0b ¼ jhrj. The thick solid lines represent ray

paths in the presence of a non-constant sound-speed profile. The same angle

at the receiver, hr , is considered in both cases; sc is the length of a surface-

bottom-surface ray path.
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(Ff � g denotes the Fourier transform and the array-element

index, m, increases in the same direction as the z-axis—i.e.,

the shallowest element corresponds to m ¼ 1). For the

“conventional beamformer” (CBF), the weight for the mth ele-

ment in the array is computed as

wm #;xð Þ ¼ wmffiffiffiffiffi
M
p e�i m�1ð Þ x=cð Þd sin #; (4)

where c is the sound speed at the receiver, d is the array

inter-element spacing (assumed constant throughout the

array), and wm is a windowing coefficient (equal to 1 if no

shading window is applied to the array).

The unnormalized spatial coherence matrix (or cross-

spectral-density matrix, hereafter also referred to as “CSD

matrix”), Cx, is defined as the expected value of the outer

product pðxÞpHðxÞ,

Cx ¼ E½ppH�: (5)

In real-world applications, an estimate, Ĉx, of Cx is

obtained by averaging the outer product over K snapshots as

Ĉx ¼
1

K

XK

i¼1

pip
H
i : (6)

This estimate is then used to replace E½ppH� in Eq. (3),

yielding

B̂ð#; xÞ ¼ wHĈxw: (7)

Equation (2) shows that, in bottom-loss estimation, the ratio

of the beamformer output power is used to estimate the

power ratio of (plane) wave fronts incident upon the array

from angles symmetric with respect to the horizontal. It may

be useful at this point to note that in the rest of this paper the

direction of propagation of a plane wave will be identified

by its angle of incidence at the array (also referred to as

angle at the receiver and indicated by hr in Fig. 1). Although

this differs from the convention usually adopted in physics,

it is common in array processing and, therefore, a more natu-

ral choice for this paper. For a plane wave propagating in

direction hr, the wave number, j, is defined as

j � ½ jr jz � � x=c½ �cosðhrÞ sinðhrÞ�; (8)

whose Cartesian components, jr and jz, are the horizontal

and vertical wave numbers, respectively; then Eq. (8) estab-

lishes the correspondence between hr, jr, and jz.

The beamformer resolution is the ability of the beam-

former to discriminate between wave fronts incident from

closely spaced directions. Adopting the definition based on

the Rayleigh criterion, the resolution in the vertical-wave-

number domain for a linear array is18

Djz ¼ 2p=L; (9)

where Djz is the distance between the two closest values of

jz that can be resolved and L ¼ dðM � 1Þ is the total length

of the array. Equation (9) shows that, for a given sensor

spacing, increasing the array length (and therefore the num-

ber of sensors) results in a finer resolution in jz.

III. DERIVATION OF THE POWER REFLECTION
COEFFICIENT FROM THE NOISE SPATIAL
COHERENCE FUNCTION

A. Derivation

This section presents the derivation in the frequency-

wave number domain of a formula for computing the

power reflection coefficient from the unnormalized spatial

coherence function of the surface-generated marine noise

field as recorded by the array (for the sake of brevity,

“unnormalized” will be omitted in the remainder of the pa-

per, but the spatial coherence function should always be con-

sidered in this form, unless otherwise specified). The spatial

coherence function of the pressure field, pðr; tÞ, between two

points in space, r1 and r2, is defined as the ensemble average

of the product, pr1
ðxÞp�r2

ðxÞ,

Cxðr1; r2Þ � hpr1
ðxÞp�r2

ðxÞi; (10)

where * indicates complex conjugate and prðxÞ is the

coefficient of the Fourier expansion of pðr; tÞ at angular

frequency x. To make an explicit link to beamforming, in

Eq. (5), element ði; jÞ in Cx is given by Cxðri; rjÞ.
Using a ray-based approach, Harrison derived a formula

for the spatial coherence function of surface-generated noise

in the ocean, which for the case of two hydrophones joined

by a perfectly vertical line and separated by a distance z is

written19,20

Cx zð Þ ¼
ðp=2

0

2p sin hs cos hr

1� Rs hsð ÞR hbð Þe�asc hrð Þ

�
n

ei x=cð Þz sin hr e�asp þ R hbð Þ

� e�i x=cð Þz sin hr e�a sc hrð Þ�sp hrð Þ½ �
o

dhr: (11)

In Eq. (11), CxðzÞ introduces a more compact notation,

CxðzÞ � Cxðr1; r2Þ, where it is assumed that r1 ¼ ð0; 0Þ
and r2 ¼ ð0; zÞ—i.e., the hydrophone pair is assumed to be

aligned with the z axis, whose origin is at the depth of

hydrophone 1. Furthermore, hr , hs, and hb are the ray angles

at the receiver, the surface, and the bottom, respectively; sc

and sp are the complete and partial ray-path lengths, respec-

tively (specifically, sc is the length of a surface-bottom-sur-

face ray path), whose dependence on hr is determined by

the sound-speed profile in the water column; x is the angu-

lar frequency; c is the sound speed at the receiver, and R
and Rs are the bottom and surface power reflection coeffi-

cients, respectively. In general, besides the ray angle, the

reflection coefficients are also a function of frequency, but

for the sake of simplicity, this dependence will not be indi-

cated explicitly. Note that a is the power attenuation per

unit length along the ray path. The model assumes that the

hydrophones are “close,” so that a single ray path and sound

speed can be defined for the sensor pair (see Fig. 1 for the

definition of the coordinate system and all geometric

quantities).

Since hr is limited in Eq. (11) to non-negative values,

by defining h � jhrj and using Snell’s law

J. Acoust. Soc. Am., Vol. 137, No. 1, January 2015 Muzi et al.: High-resolution bottom-loss estimation 483



hs � sin�1 c

cs
sin h

� �
;

hb � sin�1 c

cb
sin h

� �
(12)

(where c, cs, and cb indicate the sound speed at the receiver,

surface, and bottom, respectively), the equation can be

rewritten as a function of the sole angle h,

Cx zð Þ ¼
ðp=2

0

2p c=csð Þsin h cos h

1� Rs hð ÞR hð Þe�asc hð Þ

�
n

ei x=cð Þz sin he�asp þ R hð Þ

� e�i x=cð Þz sin he�a sc hð Þ�sp hð Þ½ �
o

dh: (13)

Now let

k � x
2pc

sin hr ¼
sin hr

k
; (14)

where k is the signal wavelength; then hr ¼ sin�1ðkkÞ and

0 < hr ¼ sin�1ðkkÞ < p=2 gives the bounds 0 < k < 1=k
[note that Eq. (14) defines k as a scaled vertical wave

number at the receiver: k ¼ jz=2p]. By substituting

h ¼ sin�1ðkjkjÞ into Eqs. (12) and (13), and defining

~G kð Þ
k
� 2p c=csð Þkjkj

1� Rs kð ÞR kð Þe�a~sc kð Þ ; (15)

Eq. (11) can be rewritten as

CxðzÞ ¼
ð1=k

0

~GðkÞe�a~spðkÞei2pzkdk

þ
ð1=k

0

~GðkÞRðkÞ e�a½~scðkÞ�~spðkÞ�e�i2pzkdk: (16)

Now by letting

~G1ðkÞ � ~GðkÞe�a~spðkÞ;

~G2ðkÞ � ~GðkÞe�a½~scðkÞ�~spðkÞ�; (17)

and by introducing the generalized rectangle function

PðxÞ �
�

0 for jxj > 1=2;

1 for jxj � 1=2;
(18)

Eq. (16) can be rewritten as

CxðzÞ ¼
ð1=k

0

~G1ðkÞei2pzkdk þ
ð1=k

0

~G2ðkÞRðkÞe�i2pzkdk

¼
ð1
�1

~G1ðkÞPðkk � 1=2Þei2pzkdk

þ
ð1
�1

~G2ðkÞRðkÞPðkk � 1=2Þe�i2pzkdk

¼F �1f ~G1ðkÞPðkk � 1=2Þg
þFf ~G2ðkÞRðkÞPðkk � 1=2Þg: (19)

Equation (19) states that the two addends can be expressed

as a direct and an inverse Fourier transform between the z
and the k domains. Taking the Fourier transform of both

sides yields

FfCxðzÞg ¼FfF�1f ~G1ðkÞPðkk � 1=2gg
þFfFf ~G2ðkÞRðkÞPðkk � 1=2gg
� FþðkÞ þ F�ðkÞ: (20)

The first addend in Eq. (20) reduces to the argument of the

inner inverse Fourier transform

FþðkÞ �FfF�1f ~G1ðkÞPðkk � 1=2Þgg

¼ ~G1ðkÞPðkk � 1=2Þ; (21)

whereas the second addend, by applying the duality property

of the Fourier transform, yields

F�
�

kÞ �FfFf ~G2ðkÞRðkÞPðkk � 1=2Þgg

¼ ~G2ð�kÞRð�kÞPðkk þ 1=2Þ: (22)

Equations (20)–(22) show that FfCxðzÞg, the k-spectrum of

the coherence function, is split into a portion, FþðkÞ, which

is nonzero only for positive k values, and a portion, F�ðkÞ,
which is nonzero only for negative k values. RðkÞ can now

be computed as the ratio

R kð Þ ¼ F
� �kð Þ
Fþ kð Þ

~G1 kð Þ
~G2 kð Þ

¼ F
� �kð Þ
Fþ kð Þ

e�a 2~sp kð Þ�~sc kð Þ½ �;

k 2 0
1

k

� �
; (23)

where, recalling that both ~GðkÞ and RðkÞ are even functions

of k, F�ð�kÞ is given by

F�ð�kÞ ¼ ~G2ðkÞRðkÞPðkk � 1=2Þ: (24)

Note that, because of the rectangle functions in FþðkÞ and

F�ðkÞ, the power reflection coefficient, RðkÞ, is defined only

for k 2 ½ 0 1=k �, i.e., hr 2 ½ 0 p=2 �, which are the integra-

tion limits in Eq. (11). Since negative values of k correspond

to hr < 0 in Eq. (14)—i.e., waves reaching the hydrophones

after reflection from the bottom—and positive values of k
correspond to hr > 0—i.e., reflection from the surface—the

result in Eq. (23) is reminiscent of the method for estimating

R described by Harrison and Simons,5 which in the original

reference is derived through an energy-flux argument.

If volume attenuation in the water column is neglected,

Eqs. (15), (17), and (23) can be simplified by dropping the ex-

ponential factors. For a lossy medium, Eq. (23) shows that the

ratio of the two halves of FfCxðzÞg must be corrected by the

additional exponential factor, which takes into account volume

attenuation along the partial and complete ray paths. In gen-

eral, the exact form of ~sc and ~sp depends on the sound-speed

profile, and given the definition in Eq. (1), this factor adds to

the bottom loss a correction of 10 Log f exp ½2a ~sp ðkÞ
�a ~sc ðkÞ�g. However, Eq. (23) also shows that this correction

484 J. Acoust. Soc. Am., Vol. 137, No. 1, January 2015 Muzi et al.: High-resolution bottom-loss estimation



can be minimized by positioning the array close to the bottom

(a similar conclusion was reached by Arvelo,7 although in the

context of a different derivation): In this case, the approxima-

tion, 2~sp 	 ~sc, can be considered valid for most grazing angles

(see Fig. 1), and the value of the exponential term approaches

one.

For the special case of an isospeed water column of

depth H, assuming the hydrophone pair is at depth h, the

complete and partial ray-path lengths are

~sc kð Þ � 2H

kjkj ;

~sp kð Þ � h

kjkj ; (25)

and Eq. (23) becomes

R kð Þ ¼ F
� �kð Þ
Fþ kð Þ

e�ð2a=kjkjÞ h�Hð Þ; k 2 0
1

k

� �
: (26)

B. Applicability of the approach

The conditions under which the results shown above

apply are determined by the assumptions underlying

Eq. (11). For this study, the most important assumption is

that the acoustic field be generated by surface noise: The

derivation does not make allowances for sources of a differ-

ent kind. In the real world, this implies being able to acquire

data when the surface noise is sufficiently high and shipping

interference is negligible. The derivation also assumes that

the spacing between the hydrophones whose data are being

correlated is small enough to guarantee that the angle at the

receiver for a given ray is the same for both hydrophones.

This condition is usually well approximated for vertical line

arrays, especially those used for beamforming. In the deriva-

tion, the hydrophones are also assumed to be joined by a per-

fectly vertical line. When this is not the case (e.g., for a

tilted array), the accuracy in the estimate of RðkÞ deterio-

rates, but this is not investigated in this study.

Finally, a correction is required in Eq. (11) in the prox-

imity of boundaries. Harrison19 shows that such a correction

can be safely neglected at distances from the boundaries on

the order of k= sin hc (where hc is the critical angle), which,

e.g., corresponds to about 1.5 m for hc¼ 20
 and a 3 kHz sig-

nal. When these conditions are met, CSD matrices produced

by Eq. (11) result in estimates of R(k) in excellent agreement

with those produced using OASN, the noise-propagation

module of OASES,21 which implements a full wave solution

based on wave number integration for horizontally stratified

media.

IV. ARRAY PROCESSING FOR HIGH-RESOLUTION
BOTTOM-LOSS ESTIMATION

A. Technique implementation

When working with array data, measurements are only

available at the locations of the sensors, so the coherence

function, CxðzÞ, is sampled at integer multiples of d along

the z axis, and its Fourier transform in Eq. (20) must be inter-

preted as a discrete Fourier transform (DFT). The resolution

of the DFT in spatial wave number, k, increases with the

number of samples available to the transform, i.e., with the

number of array elements. This translates into better estima-

tion of the seabed bottom loss, but it comes at the price of

physically increasing the array length. An alternative

approach is proposed here, which is based on the idea of

exploiting the physical properties of CxðzÞ, before applying

the DFT.

In order to explain the technique, a first important con-

sideration is the dependence of the coherence function on

the hydrophone-pair depth, h. This dependence appears im-

plicitly in Eq. (11) in the difference between sc and sp, and

its effect on the bottom reflection coefficient is quantified by

the exponential correction factor in Eq. (23). This correction

can become important at very shallow grazing angles, but

this effect can be minimized by positioning the array close

to the bottom.

When this is added to the conditions outlined in Sec.

III B, the noise coherence function between two hydro-

phones depends primarily on the distance between the

hydrophones, rather than their absolute position in the water

column. In other words, equally spaced hydrophones have

the same coherence function, regardless of their position in

the array. This spatial stationarity of the marine ambient-

noise field has been theoretically proved and verified against

experimental data for both deep22,23 and shallow water19,24

(at sufficient distance from the waveguide boundaries).

Harrison’s ray treatment estimated that the spatial coherence

function becomes weakly dependent on sensor depth at a dis-

tance from the waveguide boundaries on the order of a few

wavelengths.19

For the CSD matrix, Cx, the spatial stationarity of CxðzÞ
implies that Cxðri; rjÞ ¼ Cxðrl; rmÞ when ði� jÞ ¼ ðl� mÞ,
i.e., besides being Hermitian by construction, the matrix is

Toeplitz. Finally, the spatial stationarity also implies that

CxðzÞ is (approximately) conjugate symmetric

Cxð�zÞ 	 C�xðzÞ: (27)

The Toeplitz structure of Cx implies that all the relevant in-

formation is contained in its first row. The elements in each

of the diagonals parallel to the main diagonal are all equal

and all correspond to the same value of z. However, the num-

ber of (repeated) elements in each diagonal decreases line-

arly with increasing z. When CBF is implemented as a

matrix product, as in Eq. (7), this circumstance has an effect

equivalent to applying a triangular shading window to the

array. This type of window is not necessarily the most desir-

able for this application.

However, the results in Eqs. (23) and (27) can be used to

implement an algorithm for fast, improved-resolution bottom-

loss (BL) estimation from array data, without the limitations

imposed by Eq. (7). First, Cx is estimated by averaging array

data over an adequate number of snapshots [see Eq. (6)]. If

the field is only due to surface ambient noise, the CSD matrix

is (approximately) Toeplitz and an average along the diago-

nals provides an estimate, ĈxðzÞ, of CxðzÞ. Furthermore, the
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estimated ĈxðzÞ can be extended to the negative side of z
according to Eq. (27), windowed as desired, and its DFT taken

between Ĉxð�LÞ and ĈxðLÞ, i.e., over 2 M� 1 samples,

rather than just M samples. The ratio of the portions of the

DFT of ĈxðzÞ on the positive and negative sides of the k-axis

[the discrete equivalent of Eq. (23)] provides an estimate of

the power reflection coefficient, RðkÞ. No further correction is

needed if the array is sufficiently close to the bottom, and

RðkÞ can then be mapped back to angle space, hr, and used to

estimate the BL according to Eq. (1).

Sections V and VI show how this technique can increase

the angular resolution of the estimated bottom loss both in

simulated and experimental shallow-water scenarios.

B. Examples in simple scenarios

The result in Eq. (27) deserves some more attention, as

it may appear counterintuitive initially: For example, it does

not hold for the case of a single point source. If such source

were at depth, hs, and range, r, from a receiver at depth, h
(Fig. 1 can still be used as reference), the normal-mode

expression for the resulting pressure field at the receivers at

a given frequency, x, would be25

px r; hð Þ 	 A hsð Þ
X1
m¼1

wm hsð Þwm hð ÞiH 1ð Þ
0 jmrð Þ;

A hsð Þ ¼
1

4q hsð Þ
; (28)

where q is the water density, wm is the mode shape function,

jm is the modal wave number, and H
ð1Þ
0 ðjmrÞ is the Hankel

function of the first kind [note that in the interest of readabil-

ity, in this section, the notation is slightly different from that

in Sec. III; letting r ¼ ðr; hÞ, the equivalence between the

two notations is given by pxðr; hÞ ¼ prðxÞ].
Using three receivers positioned along a vertical line at

depths ðD� dÞ, D, and ðDþ dÞ, the resulting coherence

functions between the center receiver and the other two

would be

CxðdÞ ¼ pxðr;DÞp�xðr; Dþ dÞ

	A2ðhsÞ
X1
m¼1

X1
n¼1

wmðhsÞwmðDþ dÞ

� wnðhsÞwnðDÞ ½iH
ð1Þ
0 ðjmrÞ��Hð1Þ0 ðjn; rÞ;

Cxð�dÞ ¼ pxðr;DÞp�xðr;D� dÞ

	A2ðhsÞ
X1
m¼1

X1
n¼1

wmðhsÞwmðD� dÞ

� wnðhsÞwnðDÞ ½iH
ð1Þ
0 ðjmrÞ��Hð1Þ0 ðjn; rÞ:

(29)

Due to the differences in the depth dependence of the mode

shape functions, wm, Eq. (29) does not necessarily imply that

Eq. (27) would hold in this case. However, the surface noise

considered in this paper is different from a single point

source, and its peculiar nature gives rise to the result in

Eq. (27). For instance, in the case of surface noise in an

isospeed deep ocean, Cron and Sherman’s model26,27

expresses the spatial coherence function as23

Cx zð Þ ¼ 2
sin 2pz=kð Þ

2pz=k
þ cos 2pz=kð Þ � 1

2pz=kð Þ2

" #

� 2i
cos 2pz=kð Þ

2pz=k
� sin 2pz=kð Þ

2pz=kð Þ2

" #
; (30)

which yields the result in Eq. (27) exactly.

V. APPLICATION TO DATA

A. Application to simulated data

Section VI presents the results of applying the technique

proposed in this paper to measured data. In order to facilitate

the interpretation of those results, this section applies both

this technique and Harrison and Simons’ technique to CSD

matrices obtained from an OASN simulation. Since the

simulated environment is perfectly known, in this case,

ground truth bottom loss can be obtained from the power

reflection coefficient computed by a theoretical model,1 and

used to judge the quality of the results.

The geoacoustic parameters for this test are shown in

Table I. Two array configurations are used, with 16 and 32

hydrophones; the inter-sensor spacing is 0.18 m in both

cases, with the shallowest hydrophone at a depth of 180 m,

i.e., at 20 m from the bottom, to minimize the effect of

attenuation. In the remainder of this paper, the proposed

technique will be referred to as “high-resolution bottom-loss

estimation” (HR-BL). Figure 2 shows the BL theoretical pre-

diction, the HR-BL, and the CBF estimate at 2500 Hz, from

OASN-generated CSD matrices of sizes 32� 32 and

16� 16. The spatial coherence function for HR-BL is esti-

mated by averaging the elements of the CSD matrix along

the diagonals parallel to the main diagonal (exploiting the

Toeplitz character of the matrix); the function is then

“doubled” by extension to the negative z values and tapered

with a Tukey window with 0.6 taper width (the same used to

shade the array when computing the CBF estimate). The

DFT of this extended coherence function is computed as a

fast Fourier transform and the reflection coefficient is esti-

mated as the ratio of the halves of the resulting k spectrum,

as indicated in Eq. (23).

For both array lengths, the HR-BL results follow more

closely the theoretical prediction, particularly in the 32-

element case [Fig. 2(a)]. Moving from 32 to 16 elements

[Fig. 2(b)], the CBF experiences a significant loss of resolu-

tion, failing to recover most of the details of the peaks. On

the other hand, the result of the 16-element HR-BL processor

TABLE I. Bottom configuration for the OASN simulations. Attenuation in

water is set by OASN to its lower bound; k is the signal wavelength.

D ðmÞ cp (m/s) cs (m/s) q(kg/m3) ac ðdB=kÞ as ðdB=kÞ

Water 200 1500 0 1000 — 0

Sediment 0.75 1550 0 1500 0.2 0

Halfspace 1 1600 0 2000 0.15 0
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is very close to the longer CBF over almost the entire angu-

lar range (except between the peaks). Results in Sec. VI con-

firm that a 16-element HR-BL processor can perform at a

level comparable to a 32-element physical array when

applied to measured data.

To further highlight the benefits of HR-BL processing

over CBF, Fig. 3 shows the bottom loss estimated over the

frequency range 25–4166 Hz for the same OASN data used

in Fig. 2, this time using a Hanning taper (the Tukey taper

used in Fig. 2 can be too “aggressive” at low frequencies),

and the pixel-by-pixel error between the values predicted by

the theoretical model and the estimated ones. Although the

Hanning taper does not maximize the performance of either

technique in the upper part of the frequency range, the HR-

BL processor is closer to the theoretical prediction along the

ridge peaks and performs particularly well at the lower

frequencies.

B. More on the Toeplitz character of the CSD matrix

HR-BL processing is based on the assumption that the

CSD matrix of the original array is Toeplitz, which is a

known property for a surface-noise-only field.19,22–24,28

However, measured CSD matrices do not always exhibit a

Toeplitz structure. As an example, Fig. 4 shows the real and

imaginary part of two CSD matrices obtained from the

BOUNDARY-03 experiment11 by averaging 5-min seg-

ments collected about 40 min apart. Since the interest here is

in the geometric structure of the matrices, rather than the val-

ues of their elements, to ease the comparison, each matrix

has been normalized so that the maximum absolute value of

its elements is 1. Two important differences are apparent.

First, the CSD matrix in Figs. 4(a) and 4(b) does not show as

clear a Toeplitz structure as the matrix in Figs. 4(c) and 4(d).

FIG. 2. (Color online) Estimated bottom loss at 2500 Hz from OASN data

for the environment in Table I. (a) Ground truth from theoretical bottom

loss (“Theory”), HR-BL processor and CBF using 32� 32 CSD matrices

produced by OASN. (b) Same as in (a), but using 16� 16 matrices (the CBF

32 curve is repeated to facilitate a direct comparison). In both cases, when

using the same number of physical sensors, the HR-BL curve is closer to the

theoretical prediction than the CBF curve over almost the entire angular

range. Note the significant degradation of the CBF when moving from 32 to

16 elements, and how the HR-BL 16 curve is very close to the CBF 32

curve.

FIG. 3. (Color online) Estimated bot-

tom loss and error over the frequency

range 25–4166 Hz from OASN data for

the environment in Table I. The bottom

loss is estimated from the same 32� 32

CSD matrix using a Hanning taper and

CBF (a) and HR-BL processing (b).

The error is computed as the pixel-by-

pixel difference in dB between the bot-

tom loss predicted using the model by

Jensen et al. (Ref. 1) and the bottom

loss estimated by the CBF (c) and the

HR-BL processor (d).

J. Acoust. Soc. Am., Vol. 137, No. 1, January 2015 Muzi et al.: High-resolution bottom-loss estimation 487



Second, its diagonal bands are wider, and do not decay as

markedly when moving away from the main diagonal. These

two differences appear to have a strong influence on the bot-

tom loss estimated from these CSD matrices. The results

shown in Fig. 5 were obtained by applying conventional

beamforming and HR-BL processing to the 32� 32 matrices

shown in Fig. 4. In Fig. 5(a), both curves drop below zero at

low grazing angles, an implausible result for a field gener-

ated only by surface noise and, therefore, an indication that

some fundamental assumption in the model is violated. In

this case, the HR-BL curve shows very large oscillations,

which are inconsistent with the curves in Fig. 5(b) (from

data collected about 40 min later), which shows more plausi-

ble curves: The physical-array curve appears to be a

smoothed version of the HR-BL curve and the latter shows

more marked oscillations and a higher bottom loss around

endfire. In other words, the HR-BL processor results com-

pare to the CBF results in a manner similar to what was

observed for the OASN simulation (see Fig. 2).

The comparison between the two CSD matrices in Fig.

4 raises the question of what is inducing such dramatic alter-

ations in the structure of the matrices. One possible cause of

the non-Toeplitz character of the matrix is array deforma-

tion. Harrison’s model for the spatial coherence function

contains a term that is a function of the elevation angle of

the line joining the two receivers. When the array is assumed

to be perfectly vertical (as in this study), this term equals one

and therefore does not appear in Eq. (11). But if the array is

deformed, in general, the elevation angle of the line joining

an arbitrary pair of sensors will vary depending on the partic-

ular pair chosen, changing the value of the additional term.

This variation will reflect on the CSD matrix by introducing

some variability along the diagonals. Given the arbitrary

character of array deformation, it is hard to provide a sys-

tematic study of the influence of this effect on the CSD mat-

rices. OASN simulations conducted with rather severe

FIG. 4. (Color online) Real (top) and

imaginary (bottom) parts of the nor-

malized CSD matrices at 2156 Hz,

computed from two 5-min snapshots

(collected about 40 min apart) from the

BOUNDARY-03 experiment. The

matrices in (c) and (d) appear to be

closer to Toeplitz than the matrices in

(a) and (b).

FIG. 5. BL curves: 32-element CBF vs HR-BL for the same data as in

Fig. 4. The drop below zero of the BL curves visible below 20
 in (a) [corre-

sponding to Figs. 4(a) and 4(b)] is an indication that some violation of the

model assumptions is occurring in this 5-min average. The large oscillations

of the HR-BL curve are also inconsistent with the curve from data collected

about 40 min later (b) [corresponding to Figs. 4(c) and 4(d)], where the two

techniques compare in a manner analogous to what was observed for the

OASN simulation (see Fig. 2).
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deformations showed increased variability along the diago-

nals, but not to the extent visible in Fig. 4, failing, in particu-

lar, to produce the alteration of the band structure.

It is reasonable to think that a nearby discrete source,

such as a ship, could be responsible for the effects observed

in Figs. 4 and 5; Fig. 6 seems to support this hypothesis by

plotting the beamformer output at 2156 Hz, as a function of

steering angle and time. A loud interferer appears close to

broadside around time 19:25, and approaches the array

reaching the closest point around time 19:40, as indicated by

the broadening of the angle covered by the interferer. The

CSD matrix shown in Figs. 4(a) and 4(b) corresponds to a 5-

min time average centered around time 19:27:30 (when the

interferer’s presence is quite strongly affecting the array out-

put), while the matrix in Figs. 4(c) and 4(d) is based on a

time average centered around time 20:07:30 (when the inter-

ferer’s influence is much reduced).

VI. RESULTS

In this section, the procedures described in Sec. V for

simulated data are applied to the CSD matrices obtained

from data collected at sea by 32-element arrays during three

separate experiments by the NATO-STO Centre for

Maritime Research and Experimentation11,12 (CMRE—for-

merly NATO Undersea Research Centre). The data represent

measurements from two different vertical arrays, at six dif-

ferent locations. The dataset identifiers used in this paper are

reported in Table II, together with the basic features of the

array and acquisition system.

For the location of these measurements, the only ground

truth available is in the form of normal incidence measure-

ments (e.g., seismic chirp sonar), which can provide infor-

mation about the layering of the bottom, but not the bottom

loss, which is of interest in this paper. For this reason,

Figs. 7–9 show two CBF lines, corresponding to BL esti-

mates obtained using the full array (32 elements), and a

sub-array composed of the first 16 elements. The third line,

in each of the plots, is the bottom loss estimated by the

HR-BL processor using data from the same sensors as the
16-element CBF. Since no BL ground truth is available, the

estimate from the longer array is assumed to be the better

one, and the performance of the 16-element HR-BL proces-

sor can be assessed by comparison with that of the two CBF

results. All the CSD matrices were obtained by averaging

5 min of data. Both the HR-BL coherence function before

the DFT, and the array data used by the CBF are tapered

using a Taylor window with �30 dB maximum sidelobe

level (compared to the main lobe).

FIG. 6. (Color online) Beamformer output at 2156 Hz, as a function of steer-

ing angle and time, from the dataset used to produce the CSD matrices in

Fig. 4. A loud interferer appears close to broadside around time 19:25, and

approaches the array reaching the closest point around time 19:40, as indi-

cated by the broadening of the angle covered by the interferer. The CSD ma-

trix shown in Figs. 4(a) and 4(b) corresponds to a 5-min time average

centered around time 19:27:30 (when the interferer is quite strongly affect-

ing the array output), while the matrix in Figs. 4(c) and 4(d) is based on an

average centered around time 20:07:30 (when the interferer’s influence is

much reduced).

TABLE II. Datasets and array basic features—all deployments were drifting.

Dataset identification Number of elements Spacing (m) Sampling frequency (Hz) Design frequency (Hz) at c¼ 1500 m/s

MFA-03 32 0.18 12 000 4166

MFA-04 32 0.18 12 000 4166

VLA-03 32 0.50 6000 1500

FIG. 7. (Color online) BL curves computed from two 5-min averages (data

from the VLA-03 dataset) at 1313 Hz (a) and 972 Hz (b): Conventional

beamforming (CBF) for 32-element and 16-element physical array vs 16-

element HR-BL processor using a Taylor taper with �30 dB sidelobe level.

In both cases, the 16-element HR-BL processor reproduces the features of

the 32-element CBF curve more faithfully than the 16-element CBF, and

limits the BL disruption around endfire.
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For the 16-element cases, the CBF curves show a

marked degradation in angular resolution, in the form of less

pronounced, wider peaks and valleys, and a generally lower

loss estimated toward 90
. The HR-BL curves are obtained

by processing only the first 16 elements of the array. The

HR-BL curves appear largely immune to the degradation

experienced by the 16-element CBF, very closely resembling

the performance of the 32-element CBF. Note that, given the

larger inter-element spacing, the frequencies in the VLA-03

case are lower than in the others, but CBF and HR-BL com-

pare in similar terms.

VII. CONCLUSIONS

A previously introduced derivation in frequency-wave

number domain of the bottom plane-wave power reflection

coefficient from the array coherence function has been

extended to include the effects of volume attenuation and

variable sound speed in the water column. The main result is

that, under certain conditions, for a surface-noise-only field, it

is possible to obtain the reflection coefficient (and therefore

the bottom loss) by computing the Fourier transform of the

coherence function Cx(z). A technique has been presented,

and theoretically justified, that improves on the BL estimate

provided by conventional beamforming by exploiting the

Toeplitz structure of the noise-only CSD matrix and a DFT

implementation of beamforming. The technique has been

demonstrated both on simulated and measured data. When the

estimated CSD matrix obtained from array data is sufficiently

close to Toeplitz, experimental results show that a 16-element

array can improve the estimated bottom loss, achieving an

angular resolution comparable to that of a matrix-product

implementation of CBF on a 32-element array.
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