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Abstract—A study of the online social networks of six Twitter
conversations about six YouTube product categories reveals that
directionality and network size affect the structure of online social
networks. Our results indicate that large networks tend to be non-
random, regardless of whether they are directional or not,
suggesting that structural attributes of the online networks under
study are a true reflection of network’s features. Smaller non-
directional networks also tend to be non-random, whereas smaller
directional networks tend to be random in nature. However, very
small networks tend to be random in nature, whether they are
directional or not.

Our results suggest that larger online networks undergo
different generation mechanisms than smaller real-world
networks, especially if these networks are directional. Extant
theory, which is almost exclusively derived from observation of
real-world networks, may thus not adequately describe the
behavior of online networks. We propose research to remedy this
deficiency at the end of this paper.

I. INTRODUCTION

Traditional marketing models are swiftly being upended by
the advent of online social networks (Deighton [45]). Yet,
practicing firms that are engaging with online social networks
neither have a reliable theory (Mayande [76]) nor enough
practical experience (Wiertz, et al. [131]) to make sense of the
phenomenon. Extant theory is based on observations of the real
world and may thus not apply to online social networks (Weber
and Mayande [121]). Practicing firms may consequently be
misallocating a large amount of resources (Edwards [52]),
simply because they do not know how the online social
networks with which they interact are organized (4ral, et al.
[10], Cha, et al. [40] [41], Li and Bernoff [71], Mayande [76],
Weber and Mayande [121]).

Practitioners in the online social media space are currently
interacting with networks of unprecedented size. They may
consequently encounter phenomena that have never been
observed in the real world. Furthermore, propagating messages
by ‘word of mouth’ online may utilize different mechanisms
than doing so literally in the real world. Online conversations
could be more reciprocal (bi-directional) than their counterparts
in the real-world, or less so. In either case, directionality of
information flow could affect network structure in online
networks in ways that have hitherto not been observed. It has
thus been argued that scale and directionality constitute two

attributes of social networks that have not been studied
sufficiently in the online context (Mayande [76]).

The purpose of this paper is to investigate how online
social networks that are in stark contrast to real-world social
networks get organized. In particular, we (the authors of this
paper) explore how scale and directionality affect the structure
of online social networks. We test the following null
hypothesis: Directionality and scale do not impact the structure
of online social networks.

To test this null hypothesis, we have collected retrospective
data from Twitter conversations about six YouTube product
categories (Music, Entertainment, Comedy, Science, Howto
and Sports) in continuous time for a period of three months.
These Twitter conversations vary considerably in scale, as does
the popularity of the product conversations that comprise the
subjects of the conversations (Mayande & Weber [79]). We
have calculated the clustering coefficients for the networks that
pertain to each of these conversations and compared them to the
clustering coefficients of random networks of equivalent size
and density (Erdés and Rényi [53]). If the clustering
coefficients of the network under observation are equal to
naught or to the clustering coefficient of the random network,
then the network under observation was generated at random.
If the clustering coefficients of the networks under observation
neither equal naught nor the clustering coefficients of their
corresponding random networks, then networks under
observation are not random and the clustering coefficients are a
true reflection of network’s features.

The results of our study indicate that large networks tend
to be non-random, regardless of whether they are directional or
not. Smaller non-directional networks also tend to be non-
random, whereas smaller directional networks tend to be
random in nature. However, very small networks (define very
small) tend to be random in nature, whether they are directional
or not. Thus, the null hypothesis had to be rejected.

Our results suggest that scale and directionality affect
network structure. Larger networks undergo different
generation mechanisms than smaller networks do, especially if
these networks are directional. However, these generation
mechanisms could not be characterized in this study. Given the
importance of online social networks to modern commerce, we
propose in depth, follow-on research of this subject matter at
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the end of this paper. We also discuss how our findings
potentially contribute to a structural theory of online social
networks.

II. BACKGROUND

Extant theory of social networks was developed almost
entirely from observing social networks in the real world (e.g.,
Bailey [13], Luhmann [74], Miller [81], Parson, [90]), where
practitioners track the deliberate propagation of information
from one user to another through word of mouth (Granovetter
[60], Rogers [98], Tichy, et al. [105]). These network flows
(Aral & Walker [11] [12], Burt et al. [36], Dellarocas et al.
[46], Hodas and Lerman [63], Weber and Mayande [121]) take
place between the source of information and the seeker of
information, and they transpire exclusively within existing
social relationships (Bristor [30], Burt [32], Burt and Doreaian
[35], Duhan et al. [51], Money et al. [84]), which Weber and
Mayande /121] have defined as network structure. Network
structure determines the boundaries of communities (/13] [74]
[81] [90] [121]), and it guides the network flows within
communities (/13] [74] [90]). Network flows, in turn, enable
network phenomena such as social capital (Bourdieu [27], Burt
[33] [34], Coleman [43], Putnam [97]), social behavior (Allen
[6], Burt [31], Granovetter [60]), economic benefit (/6] [27]
[31] [33] [39] [43] [60]) and social influence, which is exerted
when an actor adapts his/her behavior to the behavior of other
actors in the community (Cartwright [39], March [75], Simon

[101]).

A. Topological Organization of Social Networks

A variety of theories have attempted to explain the
topological organization of social networks. These include the
theory of social systems, autopoietic theory, living systems
theory and social entropy theory. All these theories explain the
organization of network structure (groups, societies,
organizations, countries, etc...) through network flows
(processes like communication, collaboration, reproduction,
coordination, control, etc...) and through constraints that impact
network  structure and network flow  (geographic
distance/boundaries, land availability etc...).

The theory of social systems was initially proposed by
Talcott Parson in 1951 /[90]. The author advocated a
functionalist approach and hypothesized that all social systems
perform the following basic functions:

1. Adaptation: acquiring enough resources

2. Goal Attainment: setting and achieving goals

3. Integration: maintaining coordination amongst sub-
systems.

4. Latency: creating, preserving and propagating systems
distinct culture and values.

Parsons states that a social system comprises one of the
three aspects of structuring a completely concrete system of
social action /90]. The other two are the “personality system”
of the individual actors and the “cultural system,” which is built
into the individuals’ actions /90].

In the theory of social systems /90/, individuals do not act
as the fundamental units of society. Instead, society is based the
actions out of which personality systems and cultural systems
are built. Therefore, the theory of social systems does not treat
the personality systems and the cultural systems independently.
Instead, it is concerned with how these components of the social
system affect the overall structure of the social system and how
it functions. The theory analyzes social processes in relation to
the structure of social systems and their variability. It describes
the mechanisms of socialization, patterns of orientation in
social roles, tendencies toward deviant behavior and
mechanisms of social control.

Niklas Luhman applied autopoietic theory to social
systems and suggested that social systems use communication
as their mechanism for autopoietic reproduction [74].
Communications are not living units; they are not conscious
units; and they are not actions. A unit of communication
consists of a synthesis of three components: information,
utterance and understanding (including misunderstanding).
Essentially, every actor within the social system must make
three choices: 1) whether to accept or reject information; 2)
understand (or perhaps misunderstand) the information; and 3)
and propagate it to other actors. The synthesis that results in
communication is produced by the network in which the
communication takes place; it is not derived from an inherent
power of consciousness or from the inherent quality of the
information. In addition, the synthesis of information, utterance
and understanding cannot be preprogrammed by language. It
must be recreated from situation to situation by referring to
previous communications and to the possibility of further
communications. In every situation, communication is
restricted by the actual event, requiring self-reference.
Furthermore, information, utterance and understanding cannot
reside independently in a system; they are inherently co-
created.

Living systems theory (Miller [81]) is a general theory
about how living systems work. It deals with the notion of
emergence and interaction. A system is defined as a set of
interacting units and the relationships among them. Miller’s
model of living systems constitutes a hierarchy that consists of
the following eight levels:

e Cells: the basic building block of life

e Organs: the principle components are cells, organized in
simple, multi-cellular systems.

e Organisms: there are three kinds of organisms: fungi,
plants and animals. Each has distinctive cells, tissues and
body plans and carries out life processes differently.

e Groups: these contain two or more organisms and their
relationships.

e Organizations: these involve one of more groups with their
own control systems for doing work.

e Communities: these include individual persons and groups,
as well as groups which are formed and are responsible for
governing or providing services to them.

e Societies: these are loose associations of communities,
with systematic relationships between and among them.



»  Supranational systems: organizations of societies with a
supra-ordinate system of influence and control.

The properties (behavior) of a system emerge from the
interaction between the components that comprise the system.
Regardless of their complexity, they each depend upon the
same essential twenty subsystems that perform specific
processes, in order to survive and to continue the propagation
of their species or types beyond a single generation. The twenty
subsystems and the processes of all living systems are arranged
by input-throughput-output processes. Some of these processes
deal with material and energy for the metabolic processes of the
system. Other subsystems process information for the
coordination, guidance and control of the system. Some
subsystems and their processes are concerned with both. /81]

Social Entropy Theory (SET) (Bailey [13]) uses the
system’s internal entropy level as an indicator of system state,
where entropy is a measure of system disorder. Entropy can
show up in the system as various indicators of system disorder,
such as faulty communication, errors, inadequate supply levels,
lack of energy, resources, or even clutter. If entropy gets too
high, the functionality of the system is impaired or even
threatened. From the standpoint of SET, entropy can best be
properly managed by a self-steering process, where the chief
goal of self-steering is to keep system entropy levels from
getting too high.

B. Network Flows in Social Phenomena

Theories of social phenomena show that social phenomena
within a social network are caused by network flows. These
theories, in contrast to theories of social organization, do not
address the structure of a social network. Instead, they try to
explain a specific social phenomenon within the broader
context of social networks that occur in the real world.

In his book Diffusion of Innovations [98], Everett Rogers
describes the process of adoption of new innovations. He
emphasizes the role of interpersonal communication in the
adoption of innovations. According to Rogers, diffusion is “the
process in which an innovation is communicated through
certain channels over time among the members of a social
system” (98], p. 5), the key components in this definition being
innovation, communication channel, time and social system.

For Rogers, “diffusion is a very social process that involves
interpersonal communication relationships™ (/98/, p.19). He
defines communication as “a process in which participants
create and share information with one another, in order to reach
a mutual understanding” (/98/, p. 5). This communication
occurs through channels between sources. Rogers defined a
source as “an individual or an institution that originates the
message and an interpersonal channel consists of two-way
communication between two or more individuals through
which the message gets to the receiver” (/98], p. 204). These
interpersonal channels are powerful enough to create or change
strong attitudes held by an individual.

Rogers defined the social system as “a set of interrelated
units engaged in joint problem solving to accomplish a common

goal” (/98], p. 23). Since diffusion of innovations takes place
in the social system, it is influenced by the social structure of
the social system. For Rogers, structure is “the patterned
arrangements of the units in a system” (/98/, p. 24). He further
claimed that the nature of the social system affects individuals’
innovativeness, which is the main criterion for categorizing
adopters into innovators, early adopters, early majority, late
majority and laggards (/98], p. 22).

Granovetter /60] asserts that acquaintances (weak ties) are
less likely to be socially involved with one another than close
friends (strong ties). Thus, the set of people made up of any
individual and his or her acquaintances comprises a low-density
network (one in which many of the possible relational lines are
absent), whereas the set consisting of the same individual and
his or her close friends will be densely knit (many of the
possible lines are present).

Burt /31]-/34] proposes the construct of structural holes,
which suggests that social capital is created by a network in
which people can broker connections between disconnected
network segments. He views society as a network in which
people or groups of people can exchange all types of goods and
ideas in order to achieve their goals. Some of these people or
groups of people achieve better returns in lieu of their efforts
than others do. For example, some people earn a better
remuneration, some become more important and some lead
more important projects. The human capital explanation of this
inequity is that people who do better are more able people, more
intelligent, more articulate, more attractive or more skilled.
Social capital is a contextual complement of human capital,
suggesting that people who are better connected should be more
successful. Thus, holding a specific position in the network
structure is associated with a certain level of social capital.

Burt /32] defines structural holes as weaker connections
between two groups in a social structure. These holes in the
structure create competitive advantage for the people who have
relationship that span these holes. This does not mean that the
people in each group are unaware of the existence of the other
group. Instead, the people in each group are more focused on
their own activities and do not participate in the activities of the
other group. Thus, structural holes are an opportunity to broker
and control the flow of information across groups /76].

Coleman’s network closure argument /43] suggests that
networks in which everybody is connected to everybody and no
one can escape notice of the other (in other words dense
networks) are the source of social capital. He defines social
capital as a resource for action within a social structure [43].
Network closure does two things for people in a network. First,
it affects access to information. Second, network closure
facilitates collective sanctions, and fear of sanctions for
behavior that is out of the norm fosters conformity. It also
reinforces trust between those who already conform.

The theories of social phenomena described above identify
a social phenomenon within a network and explain the
phenomenon within the broader context of a social network that
exists in the real world. These theories do not attempt to explain



the organization of the social network. In all instances, the
social phenomena under observation within a network structure
are caused by network flow. For example, Rogers /98] talks
about the importance of interpersonal communication within a
social system for diffusion of innovation. Granovetter /60]
suggests that weak ties are the sources of new information that
flows into the network from the outside. In his structural holes
theory /31]-/34], Burt talks about competitive advantage being
derived by creating network flows between two different
cliques. This suggests competitive advantage is obtained from
being on the fringe of a network (Burt [31]-[34]). In
contradiction to Burt, Coleman /43] talks about the advantage
of being in the middle of network flows within a clique and the
risks of being on the fringe of a network. In summary, theories
of social phenomena are different elaborations of the impact of
network flow on social phenomena.

C. Real World versus Online

A key factor that differentiates online social networks from
their real-world counterparts is scale (Weber and Mayande
[121]). Social networks in the real world tend to consist of
fewer than 1000 people (e.g., Burt [32], Granovetter [60],
Rogers [98], Tichy et al. [105]), whereas the scale of online
networks is, in principle unlimited; they may contain hundreds
of thousands or millions of people (Dodds et al. [47] [48],
Mislove et al. [82]). Very large online networks may thus be
driven by processes that are not observed in real-world
networks. Conversely, real-world networks may be driven by
social processes that cannot be found in online networks. Scale
could consequently be a factor that influences network structure

[121].

In most analyses of real-world social networks,
relationships have been treated as reciprocal (e.g., Burt, [31],
Burt and Doreian [35], Granovetter, [60]), i.e. we assume that
a person that propagates information to another also receives
information from that person. However, directionality has been
a factor in some studies (e.g., Allen [6], Rogers [98]) because
social relationships are not necessarily reciprocal. This is
especially true online, where a few highly influential people act
as opinion leaders for large communities (e.g., Weber,
Hasenauer and Mayande, [119] [120]), and the structure of an
online social network in which directionality is considered may
vary significantly from one where it is not.

III. RESEARCH METHODS

A. Research Design

The methods deployed in this study approximately follow
those of prior investigations of dynamic networks (e.g.,
Mayande and Weber [79]). We have chosen Twitter
conversations about six YouTube product categories as the unit
of analysis of our study for a variety of reasons. First, the
selected YouTube product categories allow us to advantage of
natural discrepancies in scale. In addition, Twitter is the only
social media platform that can capture changes in the context
and content of online conversations at the rate at which they

occur. Furthermore, all data on Twitter are available in the
public domain. Finally, Twitter is popular enough for it to cover
enough conversations to enable a comprehensive analysis of the
product categories under study (e.g., Huberman et al. [65]). As
early as 2014, Twitter received almost 190 million unique visits
every month (4lexa [7]), which makes it the eighth most
popular website in the world, and over 1 billion tweets were
generated on Twitter every 5 days (Statistichbrain [102]). All
product categories under study are sufficiently mature to avoid
any bias associated with startup effects /79/. They are also not
in rapid decline; thus, any bias pertaining to rapid decay of the
social network under observation can be avoided /79].

B. Data Collection and Filtration

The study described in this paper utilizes the dataset from
[79], a retrospective population study for which data were
collected in continuous time. Under these circumstances, the
number and sequence of events, as well as the duration between
them, can be calculated. The main advantage of this approach
lies in the greater detail and precision of information (Blossfeld
and Rohwer [18]). It also reduces time required to collect data,
and it enhances the chances of recognizing the overall patterns
(Leonard-Barton [70]). In addition, modern data extraction
capabilities on the Internet enable the study of whole
populations. “This approach not only eliminates sample
selection bias; it also ensures that the results observed are valid
and generalizable to the entire population under study. This is
especially important in studies that involve networks, as
selecting only a sample instead of the population can break a
network into multiple small networks (Goggins and Petakovic
[58]), which can lead to faulty results. Furthermore, the data
collection method deployed in this study allows us to extract
large amount of data from which statistically significant
conclusions can be drawn” (Mayande and Weber [79], p. 3).

Twitter data are readily available through application
programming interfaces (API’s) from which the networks
forming within a context can easily be deduced. For the sake of
simplicity, we use keyword searches as a means of finding
contextual networks (Jansen, et al. [66]). Both the Twitter
platform as a data source and keyword search as data filter have
been used in previous studies [66] [79] [132].

As mentioned in Mayande and Weber /79/, p. 3, “data
were gathered for a period of three months (a total of 91 days),
from December 31%, 2013 to March 31%, 2014, in order to
control for any monthly periodicity in the data (Gongalves and
Ramasco [59], Meiss, et al. [80]). The time period for data
collection was chosen at random. The data have been analyzed
in daily intervals, in order to capture tweet volatility patterns
caused by daily routine (Dodds et al., [48]). (For example,
Twitter users in Tokyo tweet a lot less during working hours
(Gigaom [57]).) The 24 hours started in accordance with
Greenwich Meridian Time (GMT).”

We collected the cumulative sum of the daily volume of
tweets that were associated with a topic of interest (for example,
YouTube + Music). However, only the tweets with an
(@mention or a re-tweet were included in the sample, because



these tweets could be associated with the engaged activity
pertaining to a topic. Of this set of ‘engaged tweets’ we only
kept the set of ‘community tweets’ in the sample. These tweets
were associated with the largest network engaged in the
collective conversations within a topic. Finally, we have filtered
out the redundancies generated by multiple tweets per day.
Participants are only counted once as a ‘daily unique’, even if
they tweet more than once on a specific day. Thus, the largest
community of a network consists of the cumulative sum of daily
unique people associated with the largest network engaged in
the collective conversation within a topic. /79]

C. Variables and Measures (Wassermann and Faust [109])

1) Networks, Vertices and Edges

In this study, anyone that has been active in the largest
community during the 91-day period of study constitutes a
vertex. Any @mention or retweet that occurred between any
two vertices V; and V; in the largest community would denote
an edge between vertex V; and V;. We can then let the graph G
be a network such that

G=(, E), (1)
where

V is a finite and non-empty set of vertices;

V determines the size of the network; and
E is a finite and non-empty set of edges.
Therefore,

the edge (i,j) € E is incident with vertices V; and Vj;
(ij) € Eis alink, if i #j ; (2)
(ij) € Eis aloop, ifi =] . (3)

2) Adjacency Matrixes

If two vertices are incident with the same edge, then they
are adjacent or neighbors. We can then define the NxN
adjacency matrix A = (a;) by setting o equal to 1, if (i, j) € E,
and to 0, if it is not. Therefore, the adjacency matrix is a matrix
representation of a graph that displays the connectivity of the
graph. The rows and columns of the graph are labeled by the
vertices. If there is an edge between two vertices, then the edge
is indicated in the matrix as 1; otherwise the link takes the value
of 0. This is also the first order adjacency matrix, i.e., it defines
vertices that are connected directly. The first order adjacency
matrix does not define relations that are not direct. For that, a
higher order of adjacency matrices is required, which can be
achieved by the multiplying the first order adjacency matrix
with itself. For example, to identify vertices that have just one
vertex between them, a first order adjacency is multiplied with
itself. The resultant matrix is called the second order adjacency
matrix.

Similarly, let “A” be an NXN adjacency matrix; then a
degree matrix “D” is a second order adjacency matrix in which

all the elements except the diagonal elements are non-zero.
Then the second adjacency matrix is given by

A? (0ij) = A' * Al (4)
Hence, an NxN degree matrix (D) is given by

D=4 (5)
where

Qij = Qiyj, (6)

iff i=j and (i,j) € A? ,

and

aij=0, (7)

iffi#j and (i,j) € A? .

3) Clustering Coefficient

Clustering is a typical property of acquaintance networks,
where two individuals with a common friend are likely to know
each other [709]). Watts and Strogatz [/11] describe the
clustering coefficient in the context of social networking as the
degree to which the vertices in the graph cluster together.
Newman et al. /87] describe the clustering coefficient to be
same as the transitivity of a graph and defined it as follows:

CG) = [3*4(G)] /4(G), (%)

where C(G) denotes the clustering coefficient of the graph,
A(G) is total number of triangles in the graph, and t©(G)
represents the total number of connected triples in the graph.

The total number of triangles is calculated by letting A3
denote third order adjacency matrix of a graph. The diagonal
elements of A® contain elements that start from vertex V; and,
after passing through 2 other vertices, end at the same vertex
Vi. This can happen only if it is triangle. The diagonal element
counts each triangle 3 times. Example: triangle ijk is counted i
toj to k and i to k to j. Thus, every triangle is counted 6 times,
and

1
A(G) = gZ?i,,-)=1A3i,j I )|

wherei=j.

To calculate the total number of connected triples, let A2
represent the second order adjacency matrix of a graph. The
elements of A? contain elements that start from vertex V; and
after passing through 2 other vertices ends at the same vertex
Vi or any other vertex in the network V;. These are called
connected triples. Thus, every connected triple is counted 4
times. Therefore,

1
©(6) = ~Xlij=14%;

wherei#] .

e (10)

4) Density
The graph density (D) measures the fullness of a graph. It
looks at all the existing edges in the graph (E) and compares



them all to the all the possible edges in a graph (Er)
(Wasserman and Faust [109]). Therefore,

D=E/ET.

5) Reciprocity

Reciprocity is an important characteristic of directed
networks, which helps quantify tendency of vertex pairs to form
mutual connections with each other (Newman et al. [87]). The
reciprocity R is a ratio of the quantity of bi-directional edges
(Eij 24¢ir) in the network to the quantity of non-bi-directional
edges (Ei; naqir) in the network. Therefore,

R = Eij 2dir /' Eij n2dir.
6) Control Variable: Network Size

(11)

(12)

TABLE 1: SizEsS OF TWITTER CONVERSATIONS OF THE LARGEST
COMMUNITIES AND THEIR ASSOCIATED YOUTUBE PRODUCT
CATEGORIES. [79]

Product Community Largest
Category Tweets Community
Music 1,586,149 1,456,770
Sports 32,778 29,998
Comedy 25,624 24,555
Science 22,598 21,277
Entertainment 16,365 15,822
Howto 4,299 4,203

Table 1 illustrates why the number of tweets in the
conversations of the largest community of the six selected
YouTube product categories constitutes a control variable
(Table 1 covers the complete 91-day period of observation).
The largest community in Music, the biggest conversation in
the sample, is more than an order of magnitude larger than
largest community of Sports, the next biggest conversation in
the sample, and more than two orders of magnitude larger than
the largest community in Howto, the smallest conversation in
the sample. If the clustering coefficients of these largest
communities vary as a function of scale, then this variation
should become clearly discernable.

It should be noted that online social networks can be highly
dynamic. The degree of activity can vary by orders of
magnitude from day to day; network structure and the
information flow within the network can undergo dramatic
daily changes as well. For example, in the “Music” category,
the maximum of the total number of daily tweets and the
maximum of the total number of daily unique people observed
on a single day (the daily uniques) are 62,380 and 59,666,
respectively. Similarly, the minimum of the total number of
daily tweets and the minimum of the number of daily uniques
are 19,700 and 18,333, respectively. The size of the largest
community on a particular day and the largest number of
community tweets on that day also seem to follow the trend of
total people and total tweets. The largest number of daily
community tweets and the largest number of daily unique
people are 48,720 and 47,630, respectively. Similarly, the
smallest number of daily community tweets and the smallest
number of daily unique people are 10,830 and 10,324,

respectively. Thus, we cannot simply take the mean and
standard deviation of the community tweets across the 91-day
period of observation and assume that reflects network
behavior. Instead, we chose to analyze the networks under
study on a daily basis.

D. Hypothesis Testing in Networks

In hypothesis testing, it is important to minimize the odds
of an a-error (Type-1 error) or a B-error (Type-2 error), which
Montgomery /85] defined as follows:

1. a-error: The study results lead to the rejection of null
hypothesis even though it’s true.

2. B-error: The study results lead to the acceptance of null
hypothesis even though it’s false.

In this study, an a-error would consist of concluding that scale
or directionality affect network structure even though this is not
the case. Concluding that scale or directionality do not affect
network structure even though it does would constitute a -
error.

In principle, one can compute any network measure for any
network that is built on empirical data. Many conclusions can
be drawn based on these network measures. Unfortunately, one
cannot be confident that the network measure that has been
computed is a true reflection of the network’s structural features
or a random variation. To overcome this predicament, Erdés
and Rényi /53] proposed comparing the network and the
network measures of the network in question to the network and
the network measures of a randomly generated network with
same number of vertices and edges such that every edge is
chosen with equal probability. (Kejzar et al. /67] used such
networks as the basis for modeling the dynamics of
acquaintanceships. Donninger [49] deployed this approach to
derive the distribution of degree centralization. Anderson et al.
[9] used it to simulate the distribution of degree centralization
and betweenness centralization.)

The deployed method is very similar to testing a mean with
a z-test. In a z-test, a sample of data is taken where the value of
each data point is considered a random value. One single mean
is calculated for the sample and every random value is
compared with this mean. The mean in question is the expected
value. If the random value is different from the expected value,
then one rejects the hypothesis that the true mean is equal to
expected mean.

In case of a network, the random values are the edges. A
single network is observed, and the network measures are
calculated for this network. These network measures are
compared with the expected network measures of a network in
which every edge has an equal probability. If the expected and
the random network measures are different, then one can
conclude that random network has different characteristics than
the expected network. If the network measure is non-existent
for the network in question, then the network is considered
random.



This method also prevents one from drawing the wrong
conclusions because of a lack of reference point. For example,
let’s consider a network A with a clustering coefficient of 0.25
and a network B with a clustering coefficient of 0.5. It is easy
to conclude that network B is highly clustered when compared
to network A, because 0.5 is greater than 0.25. But it may be
that network A has a higher clustering coefficient than one
would expect in a random network, whereas network B has a
clustering coefficient that is same as that of a random network.
As a result, one would consider the clustering coefficient of
network A as a true network feature, whereas the clustering
coefficient of network B could be considered equivalent to what
one might observe in a random network.

To perform meaningful comparisons of a network measure
and to eliminate o- error and f- error, we generate for every
network under study (Music, Sports, Comedy, Entertainment,
Science and Howto) an Erdds-Rényi (E-R) random network
with the same number of vertices, the same number of edges
and the same density. We subsequently compare the clustering
coefficients of the undirected and directed networks under
study to their corresponding random E-R networks. If the
clustering coefficients of the undirected and directed (CC_ud,
CC_d) networks are equal to those of the corresponding E-R
random network (CCudran, CCdran), then the directed and
undirected networks are considered random. If they are not
equal, then they are not random, and the computed variables are
a true reflection of network’s features. [f CC_ud or CC_d equal
naught, then the networks with which these cluster coefficients
are associated are also considered random.

To further elucidate, consider the “Howto” community that
formed on January 6th, 2014. The directed network, which is
displayed in fig. 1a, has 15 vertices and 15 directed edges (self-
edges, i.e. edges where both ends connect to one vetex, are
ignored). In the undirected version of the network, which is
displayed in fig. 1b, all edges are considered symmetric.
Therefore, there are 30 edges in the network in fig. 1b, two for
each connection that is displayed.

In the undirected network, in which all relationships are bi-
directional, the information flows beyond the connected vertex.
There are reciprocal relationships and instances where two
different vertices connected to a vertex and exchange
information with each other. The clustering coefficient of the
undirected network in fig. 1b (CC_ud) is 0.07894. The
undirected network still needs to be compared to an equivalent
E-R random undirected network (CCudran) to ascertain if it’s
random or not.

In the directed version of the network, there is no
transitivity, i.e. the information only moves from a vertex to the
connected vertex in a single direction. The information does not
go beyond the connected vertex. There are no reciprocal
relationships or instances where two different vertices
connected to a vertex exchanging information with each other.
The clustering coefficient (CC_d) of the network equals 0.
Therefore, the directed network in fig. 1a is a random network.
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Fig. 1a. The directed “Howto” network on Jan. 6%, 2014.
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Fig. 1b. The undirected “Howto” network on Jan. 6%, 2014,

Fig. 2. Equivalent E-R network of the undirected network in fig. 1b.

Fig. 2 displays the equivalent E-R random of the
undirected network fig. 1b. Fig. 2 illustrates that there are
instances where two different vertices connected to one vertex
and exchange information with each other. The clustering
coefficient (CCudran) of the random undirected network in fig.
2 is 0.133333, which is higher than CC ud. Therefore,



comparing the clustering coefficients of the undirected network
in fig. 1b to that of its equivalent random undirected network
clearly illustrates that the undirected network is not a random
network.

TABLE 2. NUMBER OF DAYS (OUT OF 91) FOR WHICH THE CLUSTERING
COEFFICIENTS OF THE LARGEST COMMUNITY EQUALS OR DOES NOT

EQUAL 0.
Un-directed Directed
Product CC_ud#0 |CC_ud=0 |CC_d#0 |CC_d=0
Category (days) (days) (days) (days)
Music 91 0 91 0
Sports 79 12 2 89
Comedy 76 15 2 89
Science 67 26 0 91
Entertainment 45 46 2 89
Howto 7 84 3 88|
IV. RESULTS

Table 2 and fig. 3 display the results of our study. Table 2
denotes the number of days (out of 91) for which the clustering
coefficients of the largest community that discusses each
product category equals or does not equal naught, and it does
so for the undirected and directed networks. Fig. 3 graphs the
percentage of days (out of 91) that the clustering coefficient
does not equal naught as a function of the size of the largest
community (over 91 days) that discusses each product category
under study, and it does so for the undirected and directed
networks. The sizes of these largest communities are given in
table 1.

Table 2 and fig. 3 clearly illustrate that the directed
networks and the undirected networks behave differently, and
the regression results in table 3 show that the difference is
significant. The clustering coefficient for the very large Music
conversation does not equal naught on any of the 91 days under
study, whether the network is directed or not. However, for the
conversations about the five out of the six product categories
whose largest community is smaller than 30,000 over 91 days
(Sports, Comedy, Science, Entertainment and Howto), CC_ud
behaves very differently from CC_d. Fig. 3 shows that CC d
deviates from naught on relatively rare occasions, whereas
CC_ud increases linearly as a function of the largest community
and begins to saturate at about 25,000.

% of Days CCz0
100%
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40%
20%
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0 10,000 20,000 30,000
Size of Largest Community over 91 Days

—o—CC_udz0 —=—CC_d=z0

Fig. 3. Percentage of days (out of 91) for which the clustering
coefficient does not equal naught versus size of the largest
community (over 91 days) that discusses each product category.

TABLE 3: RESULTS OF REGRESSION OF DATA IN FIG. 3

Undirected Directed
Best-fit values
Slope 0.002980 + 0.0003439  -4.970e-005 + 5.764e-005
Y-intercept -2.337 £7.253 2.753 + 1.216
X-intercept 784.1 55387
1/Slope 335.5 -20120
95% Confidence
Intervals
Slope 0.001886 to 0.004075 -0.0002331 to 0.0001337
Y-intercept -25.42t020.74 -1.115t0 6.621
X-intercept -10622 to 6459 21675 to +infinity
R square 0.9616 0.1986
Sy.x 6.757 1.132
Is slope significantly
non-zero?
F 75.09 0.7434
DFn,DFd 1,3 1,3
P Value 0.0032 0.452
Deviation from horizontal?  Significant Not Significant
Data
Number of XY pairs 5 5
Equation Y =0.002980*X-2.337 Y =-4.970e-005*X + 2.753

Figs. 4a through 4f in appendix A show that CC_ud does
not equal CCudran on all days for which CC_ud does not equal
naught. Fig. 5a in appendix B shows that CC_d does not equal
CCdran on all days for which CC_d does not equal naught. This
suggests the following:

e The directed and the undirected networks for Twitter
conversations about the product category Music are not
random networks. Their clustering coefficients are a true
reflection of networks’ features.



e  The undirected networks for Twitter conversations about
the Sports, Comedy, Science and Entertainment product
categories tend to be non-random on a significant amount
of the days that they were observed. On these days, their
clustering coefficients are a true reflection of networks’
features. By contrast, the undirected networks for Twitter
conversations about Howto tend to be random on most
days.

e  The directed networks for Twitter conversations about the
other product category Music are random networks on
almost all days of the 91 days under study. Their clustering
coefficients are not a true reflection of network’s features.

e Finally, our day-to-day observation of the social networks
under study imply evolutionary path dependence as
described by Utterback and Sudrez /107]. No network in
our study changes structure like any other. And, very
importantly, online social networks can change structure
from minute to minute, perhaps at a pace that exceed our
ability to analyze them [121].

V. DISCUSSION

We believe the research described in this paper is unique
in a variety of ways. First and foremost, our study is the first
that measures the impact of scale and directionality on online
network phenomena. It is also the first study that attempts to
measure the degree of randomness in online social networks by
comparing the reciprocal and directional networks in our
sample to randomly generated Erdds-Rényi [53] networks.
This allowed us to discover that the degree of randomness
within a network is a function of directionality and scale.

We can infer from the results of our study that larger social
networks undergo different generation mechanisms than
smaller networks do, especially if these networks are directed.
Our paper consequently makes a contribution to theory by
demonstrating that extant theoretical frameworks, which were
developed from observing relatively smaller social networks in
the real world (e.g., /6] [13] [27] [31] [33] [34] [39] [43] [60]
[74] [81] [90] [98] [105]), cannot explain network structure or
phenomena associated with online social networks in their
entirety, especially if directionality is not taken into account in
the analysis of said networks. We also consider these
discoveries a contribution to management practice. Henceforth,
all managers and analysts of online social networks need to be
aware of the need to analyze online communities both as
reciprocal and directed networks. Managers and analysts that
fail to do so, are likely to misallocate a large amount of
resources (Edwards [52]), simply because they do not
understand how the online social networks with which they
interact are organized (Aral, et al. [10], Cha, et al. [40] [41],
Li and Bernoff [71], Mayande [76], Weber and Mayande

[121]).

We have observed in this study that, due to the ability to
conduct searches in online social networks (Adamic and Adar
[2], Watts et al. [110]), the structure of online social networks
is emergent (in the sense of Drazin and Sandelands /507 [99]).

As a consequence, online social networks exhibit a highly
dynamic network structure (Dodds et al. [47], Wiertz et al.
[131]), in which real-world constraints such as connectedness
and distance may not affect the behavior of online networks in
a significant way (Borgatti et al. [22]-[26]). Instead, factors
such as “scalefreeness” (Barabasi, et al. [4] [5] [14] [15]),
“assortativity” (Newman et al. [8§7]) and ‘“smallworldness”
(Watts and Strogatz [111]), which can alter the topological
organization of network structure, could be paramount. Thus,
we cannot attribute all network flows in online social networks
to social relationships (Greenemeier [61], Pei et al. [91]). For
example, we know from the study of hashtag communities
(Weng et al. [130]) that a two people can discuss a topic of
mutual interest online without having a permanent connection.
By contrast, the structure of real-world social networks, upon
which extant theory is based, tends to be static (Burt [32],
Moffitt [83]). Furthermore, existing measures of the network
phenomenon of influence, such as centrality metrics derived
from graph theory (e.g., Freeman [54] [55]), may be
inadequate; they may not really measure influence (Mayande
[76]). By contrast, eigenvector centrality (Bonacich [20] [21])
measures influence as a function of the spread of information
but not as a function of how fast the information spreads
through the network /76/]. All this reinforces the notion that
extant theory does not characterize the behavior of online social
networks to a sufficient degree of satisfaction.

While the study described in this paper has pointed out the
deficiencies of extant theory, it has provided little insight into
the generation mechanisms that are specific to online social
networks. This constitutes a limitation the study, and further
research of this topic is consequently warranted. Specifically,
the relationships between network flows, network structure and
network phenomena like influence need to be explored and
characterized. The authors of this paper and their colleagues are
particularly interested in the following research questions /76/-
[79]:

1. How do network flows impact network structure?

2.  How does network structure impact network flows?

3. How do network flows and network structure impact
network phenomena such as influence?

To answer these questions, we propose building on
research that has been described in this paper and in prior
studies on the behavior of online social networks (Mayande, et
al. [76]-[79]). The proposed research will primarily consist of
exploratory population studies of online communities. We
intend to include all the basic network metrics that were utilized
for the study in this paper: the number of nodes and ties;
reciprocity; network density; and the clustering coefficient. We
will add structural metrics such as scalefreeness,
smallworldness and assortativity, as well as variables provided
by graph theory (Borgatti [22]) and information theory (e.g.,
[1] [16] [44] [62] [69] [100] [123] [124]), which act as
proxies for measuring the degree of or impedance to network
flow [121]. Information theory also provides a set of metrics
for influence, which measure how much information can



concentrate at a specific node (Mayande and Weber [77],
Nikolaev, et al. [88], Tutzauer [106]). Eigenvector centrality
(Bonacich [20] [21]) complements entropy centrality as a
measure of influence. It is a function of the extent that
information has spread, but it does not measure the speed at
which information spreads /76].

The results of this study also suggest that scale and
directionality should be added as control variables. Including
network size as a control variable will facilitate the observation
of effects that result from scale. The impact of directionality can
be assessed by analyzing directed and undirected networks as
has been done in the study in this paper. However, it has been
suggested that a person within a social network who influences
how information is consumed may not necessarily influence
how it is propagated, and conversely /[/21]. Identifying key
influencers and deducing the behavioral characteristics of
individuals within a network may consequently mandate an
analysis of four networks: the undirected network, the directed
network, the network that is focused on consumption and
another that is focused on propagation.

When addressing the abovementioned research questions,
it is of paramount importance to recognize that network flows
are knowledge flows rather than information flows /721]. Thus,
research that attempts to answer the questions from above is
highly likely to be context-specific. Fortunately, research
pertaining to knowledge flows in the real world is plentiful and
has been conducted in a variety of contexts (/3] [8] [17] [19]
[29] [37] [38] [42] [56] [86] [89] [92]-[96] [103]-[105]
[112]-[120] [122]-[129] [133]-[136]). The question is, do its
conclusions carry over into the online domain?

To address issues pertaining to knowledge we propose
engaging in what Weber and Mayande [121] call virtual field
work, an approach that has been utilized successfully by a
variety of researchers (e.g., Jansen, et al. [66], Williams, et al.
[132]). We collect data about a social network from the
Internet, which we analyze using statistical methods. We repeat
this analysis for the various contexts in which the network
operates. These contexts will be explored in keyword searches,
in which each set of keywords acts as a proxy for different kinds
of knowledge.

Once again, most of these limitations can be addressed by
further study. For example, issues pertaining to limited number
of Twitter conversations could be addressed by repeating this
study in a setting in which many more Twitter conversations
are available. Broader generalizability could be achieved, if
similar studies would be conducted across a variety of social
media platforms. We consequently view our paper as an
impetus for further research into online phenomena, which—
despite a recent surge in attention—still constitute a topic that
remains underexplored. Given the increasing importance of
social media in fields such as advertising and marketing (e.g.,
Bressler and Grantham [28], Honeycutt and Herring [64],
Huberman et al. [65], Jansen et al. [66], Khammash and
Griffith [68], Li and Bernoff [71], Lindsay et al [72] Longart
[73]), the proposed research and novel theory resulting

therefrom should make a contribution to

management practice.

significant

Finally, it should be noted that our study is subject to a
limitation that could affect the conclusions from section V. Our
study is based exclusively on conversations from one social
media platform—Twitter—about six product categories from
one entertainment platform—YouTube /79/. The conclusion
about directed networks and scale could thus constitute an
oversimplification. The propensity for directed networks to be
non-random as a function of the size of the largest community
could instead the take the shape of an S-curve in the domain
between 30,000 and 1.5 million—we have no way of knowing
from this study. One could also conclude for analogous reasons
that one result of our study—the one which states that scale
increases linearly as a function of the largest community for
undirected networks and subsequently saturates—is not
necessarily statistically significant. Moreover, as Goggins and
Petakovic /58] have shown, the behavior of online social
networks can vary greatly from platform to platform,
suggesting that the results of our Twitter-based study may not
be valid for discussions that are carried out on, say, Facebook.

VI. CONCLUSION

The results of our study lead to the conclusion that the null
hypothesis that was proposed at the beginning of this paper
must be rejected—clearly, directionality and scale do impact
network structure. The two networks that pertained to Music,
whose largest conversations exceed a total of 1 million over 91
days, were not random on any of these days, regardless of
whether they were directed or undirected. For the undirected
networks of the Twitter conversations about the remaining
product categories, non-randomness was a function of scale.
Undirected networks with bigger largest communities tended to
be random on fewer days, than undirected networks with
smaller largest communities. By contrast, the directed networks
associated with the Twitter conversations that involved smaller
largest communities were random on almost all days of the 91-
day period under observation. This suggests that directed
networks tend to be random unless they are very large, whereas
the propensity for undirected networks to be non-random tends
to increase with network size and saturate.
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APPENDIX: VISUAL DISPLAYS OF COMPARISONS OF CLUSTERING COEFFICIENTS

For the six Twitter conversations about the product categories under study (Music, Sports, Comedy, Science, Entertainment and

Howto), we compare the clustering coefficients of the largest communities to those of an equivalent E-R network. We do this for undirected and
directed networks.
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B. Directed Networks (CC_d and CCdran)
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