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EXECUTIVE SUMMARY 

In the past few years, shared e-scooter systems have gained increased popularity 
around the world because of their benefits to health, traffic congestion, the environment, 
and accessibility. As of 2018, approximately 100 U.S. cities have launched shared e-
scooter programs, accounting for 38.5 million trips. However, the business model to 
manage e-scooter sharing remains nascent, with many challenges still poorly 
addressed and outstanding. In this project, we propose to solve several urgent 
questions that arise at the company and policymaker levels for e-scooter sharing (e.g., 
planning, operations), by developing a data-driven optimization model to provide 
decision makers with a robust solution that enables low cost and high service quality. 
Specifically,  we develop a two-stage stochastic programming (SP) model for the 
planning of the e-scooters in the presence of demand uncertainty. In the first stage, we 
address the major planning decisions for an e-scooter network, including “how many e-
scooters are needed in the network and in which locations”? The second-stage is 
evaluated daily based on the planning decisions from the first stage and the uncertain 
demand realizations, while its objective is to minimize the costs of an extended spacial-
temporal-SoC network (SoC stands for state-of-charge). We then apply the sample 
average approximation method to solve the two-stage SP problem, and compare the 
proposed model with some benchmark planning approaches in a numerical study. 
 
In line with the NITC themes, these research results have the potential to provide e-
scooter companies with new decision-making tools and methodologies to effectively 
design and operate shared e-scooter systems, and thus help to ensure system reliability 
and cost effectiveness. 
 

 



1. Introduction

Shared mobility is the future of the customer transportation industry. The main ben-
efits of the shared mobility agenda are threefold. First, it is an economic solution for
many customers who cannot afford the high costs of vehicle ownership. Second, it
is environmentally friendly, and it allows less resources to be used more efficiently.
And third, it offers a novel solution to the problem of traffic congestion, which is a
major issue in many large cities. Micromobility solutions, in particular e-scooter and
e-bicycle share programs, are popular due to their effectiveness, especially for the
last mile trips (e.g., trips between homes and metro stations). From one side, the
technological advances in recent years, especially in the fields of communication
(e.g., 5G networks), electronics (e.g., smartphones and on board GPS devices),
and energy storage (e.g., lithium-ion batteries) have allowed for the implementa-
tion and manufacturing of very economical yet efficient e-scooters and e-bicycles.
Moreover, from customers’ perspective, e-scooters and e-bikes are much easier to
access and utilize compared to the traditional bike-station setup. In addition, the
governments in larger cities have provided financial incentives to such solutions,
with an effort to solving the high traffic congestion problem and promoting clean
means of transport. As a result, many cities across the globe are adapting the e-
scooter and e-bike resolution to their transportation portfolio. For instance, the City
of Tucson launched a pilot program in 2019 with 1,000 e-scooters which average
about 600 trips a day [1].

Successful operation of the e-scooters from a managerial point of view re-
quires both careful planning and operational strategies for the e-scooter renting
company. Such strategies for instance aim at decreasing the amount of unused
(idle) e-scooters by carefully placing them in popular locations and re-balancing
them on a tentative schedule. In particular and from a day-to-day operational per-
spective, careful strategies minimize the operational costs for the company while
also increasing the costumer satisfaction rate (e.g., by having enough e-scooters
available at potential demand locations). From a longer-term planning perspec-
tive, it is necessary to consider e-scooter demand patterns (e.g., on a seasonal
basis) and devise planning strategies accordingly that lead to long-term economic
benefits while achieving the efficient operation of the system.

Hereafter, we first lay out the literature review for designing a set of planning
decisions for micromobility sharing systems. The idea of bike sharing has been
scrutinized as early as 1965 when a group of bicycles were painted white and
left in the city of Amsterdam for people to use for free. However, within a month
these bikes were either stolen or lost. Indeed, the idea of shared mobility was not
successful until smart technologies such as electronic card readers were used to
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unlock bikes from a storage rack to prevent theft. Moreover, many of the early
bike-share projects failed due to the need for the presence of dock stations, which
required manpower and had limited capacity. Recently, and due to the advance-
ment of personal smartphones, the idea of shared bike systems has become more
prevalent. In particular, the development of GPS technology and fast internet (4G,
5G) has made it possible to establish dockless bicycle or scooter sharing facilities
that decreases operational costs by eliminating the need to establish and oper-
ate dock stations. Moreover, e-scooter sharing is a fairly recent technology that
is currently booming due to the lowering of the costs of lithium-ion batteries and
the recent technological advancements of smartphone and communication tech-
nologies [2, 3]. Consequently, the literature on the e-scooter planning problem is
relatively sparse. However, bike sharing and e-bike sharing (docked or dockless)
have been going on for a longer time, which are similar to e-scooters from the
perspective of planning and operation [4].

In particular, these groups of small, lightweight vehicles operated at speeds
typically below 25 km/h and personally driven by users are commonly referred to as
micromobility. The planning problem for the micromobility technologies has a long
history. In summary, a chronological list of the shared micromobility technologies
and research is classified as follows:

• Docked sharing: Bike-sharing and electric bike sharing [5]

• Dockless sharing: Free-floating bike sharing [6] and e-scooter sharing [7]

• Customer oriented sharing: Dockless sharing that is customer operated (i.e.,
it considers customer charging incentive, relocation incentive) [8].

Next, we present a modeling and methodology overview for the e-scooter shar-
ing and micromobility planning problem.

Modeling and Methodology Literature: Two-stage stochastic programming
(SP) is a popular technique often used for modeling planning decisions under un-
certainty. This problem is particularly popular for formulating long-term planning
decisions, such as renewable planning and transportation planning. The reason is
that its particular two-stage form allows for modeling two sets of decisions simul-
taneously. In particular, a here-and-now decision in the first stage and a wait-and-
see decision in the second stage. Consequently, two-stage SP modeling tool has
been widely adopted to address micromobility planning problems. For instance,
[9] proposes a two-stage SP model where the first stage is the re-balancing plan-
ning and the second stage is expected costs in terms of fulfilled and unfulfilled
demands. In addition, [10] proposes two-stage and multistage SP models for de-
termining the optimal number of bikes to assign at each station at the beginning of
each operational period.

Other methodologies besides the two-stage SP have also been used in the lit-
erature to address the micromobility planning problem. For instance, [11] applies
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agent-based simulation to find an optimal rebalancing strategy for bike sharing sys-
tems. And [12] develops a mixed-integer linear programming (MILP) formulation
for bike relocation problem, which is solved via a branch-and-cut algorithm. More-
over, [7] proposes an MILP model for assigning e-scooters to chargers and solves
the problem using a college admission heuristic algorithm, which is compared with
a black hole optimizer heuristic algorithm. Furthermore, others, such as [8], use a
Markov chain paired with deep reinforcement learning techniques for rebalancing
of dockless bike sharing systems, where the user is incentivized to do the rebal-
ancing.

In this study, we develop a two-stage SP model for the planning of the e-
scooters in the presence of demand uncertainty. In particular, we address the
major planning decisions for an e-scooter network (i.e., “how many e-scooters
are needed in the network and in which locations?”, “how many charging facili-
ties are needed in the network and at which locations and at what capacities?”,
and, lastly, “how do we rebalance the network periodically so the e-scooters are
available when and where they are needed?”). These planning decisions are for-
mulated in the first stage of the problem. The second stage is evaluated daily
based on the planning decisions from the first stage and the uncertain demand
realizations. These operational decisions for an e-scooter network involve renting
out the e-scooters to the customers, charging the e-scooters, and rebalancing or
relocating e-scooters in the course of a day. The second-stage problem is modeled
to minimize the costs of an extended spacial-temporal-SoC network (SoC stands
for state-of-charge). This model also is designed to provide economic incentive to
customers to walk to a neighboring location to rent out the e-scooters when there is
no availability at their current location. The demands in the second-stage problem
are considered uncertain to more accurately represent the nature of the problem.
We apply the sample average approximation method [13] to solve the two-stage
SP problem, and compare the proposed model with some benchmark planning
approaches in a numerical study at the end.

2. Mathematical Modeling

In this section, the e-scooter planning problem is modeled as a two-stage stochas-
tic optimization problem. The general form for a two-stage stochastic program is
given as follows:

min
x∈X

[C1(x)+E [Q(x,ξ )]]. (1)

where x is the first-stage decision, ξ is the vector of uncertainty, C1(x) is the first-
stage objective function, X is the feasibility set of the first-stage problem, and
Q(x,ξ ) is the optimal value of the second-stage problem. For the e-scooter plan-
ning problem, the first-stage decision variables x consist of the long-term (monthly
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or yearly) planning decisions, while the second-stage optimization problem in-
volved in Q(x,ξ ) represents the operational decisions of the network, given a first-
stage decision x and uncertain parameter ξ . The detailed mathematical models
for the first- and second-stage problems are introduced in subsections 2.1 and 2.2,
respectively. Lastly, the overall two-stage program for the e-scooter planning is
summarized in subsection 2.2.

2.1 First-stage planning model

The objective of the first-stage problem is to minimize the investment costs which,
in particular, includes investments costs for installing charging facilities, for adapt-
ing relocation schedules into the network, and increasing the e-scooter fleet size.
Let L denote the set of all the locations in the network. Some of these locations
can be selected to host charging facilities. Let ϕ represent the set of potential en-
terprise charging facility locations. Then the binary decision ui, ∀i ∈ ϕ is introduced
such that ui = 1 if a charging facility is allocated at location i, otherwise ui = 0.
Moreover, an integer variable qi indicates the capacity of the charging facility at
location i. Next, we assume that the relocations follow some schedules which in-
dicate the time-wise relocation path (i.e., the locations that the relocation vehicle
visits at specific times to collect or drop off e-scooters). And let K to be a set of
potential schedules that one or some of them are selected by the service company
to do the relocating task. The binary variable pk,∀k ∈ K is introduced such that
pk = 1 indicates the relocation schedule k is selected and is active in our model.
Each relocation schedule k ∈ K has a certain capacity indicated by an integer vari-
able ok. Finally, consider zi, ∀i ∈ ϕ to denote the number of e-scooters allocated to
location i at the beginning of the day. Furthermore, we summarize the associated
parameters in the first-stage in Table 1.

With the introduction of the variables and parameters above, the first-stage
model for the e-scooter planning problem is represented as follows:
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Table 1. Parameters and decision variables in the first stage.

Para. & Vari. Description
ĉp

t /ĉq
t Electricity price of purchasing active / reactive power from the

transmission system at period t.
cCF

i The fixed cost of installing a charging facility at location i ∈ ϕ.
cCV

i The variable cost of installing a charging facility at location i ∈ ϕ.
cRF

i The fixed cost of employing a relocation schedule k ∈ K.
cRV

i The variable cost of employing a relocation schedule k ∈ K.
cEA

i The cost associated to deploying one e-scooter at location i ∈ ϕ.
Bi The maximum e-scooter fleet size at location i ∈ L .
Mi The maximum capacity for charging facility at location i ∈ ϕ.
M The total capacity for charging facilities.
Gk The maximum capacity for the relocation schedule k ∈ K.
G The total capacity for the relocation schedules.

min
x:={z,p,o,u,q} ∑

i∈ϕ

(cCF
i ui + cCV

i qi + cEA
i zi)+

∑
k∈K

(cRF
k pk + cRV

k ok)+EQ(x,ξ ) (2a)

s.t. qi ≤ Miui, ∀ i ∈ ϕ, (2b)
qi ≥ ui, ∀ i ∈ ϕ, (2c)

∑
i∈ϕ

qi ≥ M, ∀ i ∈ ϕ, (2d)

zi ≤ Bi, ∀ i ∈ ϕ, (2e)
ok ≤ Gk pk, ∀ k ∈ K, (2f)
ok ≥ pk, ∀ k ∈ K, (2g)

∑
k∈K

ok ≤ G, (2h)

ui, pk ∈ {0,1},zi,qi,oi ∈ Z+∪{0}, ∀i ∈ ϕ,∀k ∈ K (2i)

where the objective is to minimize the total investment costs and the expected
second-stage cost, Q(x,ξ ), which is described in detail in section 2.2. Constraints
(2b) impose an upper bound on the size of the charging facility at location i ∈ ϕ.
Constraints (2c) described the relationship between the binary and integer vari-
ables ui and qi, indicating that if a location is selected for installing a charging
facility, it must have non-zero charging capacity. Also, an upper bound on the to-
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tal capacity of all charging facilities via constraints (2d). Moreover, the number
of e-scooters allocated to location i ∈ ϕ at the beginning of the day is restricted
via constraint (2e). Furthermore, constraints (2f) and constraints (2g) describe the
relationship between pk and ok (similar to constraints (2c)).

2.2 Second-stage operational model

After making the planning decision for the e-scooter network in the first stage (the
long-term planning decisions), the e-scooter operations need be adjusted to meet
demands after realization of uncertainty. In the second stage we aim to mini-
mize the operational costs, including the cost of vehicle movement in the spacial-
temporal-SoC network (e.g., relocation and charging costs) and a penalty cost for
unserved demands. In this subsection, we first introduce the spacial-temporal-
SoC network and its characterizing arcs, and then we present the mathematical
reformulation for the second-stage problem.

2.2.1 Spatial-Temporal-SoC Network

A spatial-temporal-SoC network is developed to represent the operations of the
system. Let L denote the set of all the locations in the network, and T = {1,2, ..,T}
and Sp = {0,1, . . . ,sp} denote the sets of time periods and state-of-charge levels,
respectively. Here, T denotes the number of operational time-periods in a day,
and sp is the full capacity of the battery (type p) when charged. Let di jtt ′ be the
number of trips demanded from i at time t to j at time t ′, where obviously t ′ ≥
t + tm

i j , and tm
i j is the minimum travelling time required from i to j. We assume SoC

changes linearly in time for charging and discharging. Also, SoC consumption
is assumed to be linear with the traveling time, and we denote the number of SoC
used (discharged) per time period by sd. Moreover, sc

c and sc
e are the number of SoC

increased per time period when charging by a customer or enterprise, respectively.
We further assume an e-Scooter cannot be rented when the SoC falls below a
certain threshold so it must be charged, relocated or idle in the current location.
There is also a degradation cost for batteries, which we consider to be relative to
the number of SoC that an e-Scooter uses/charges, and it has a unit cost of cdeg

p .
Let ri j be the revenue generated by a trip from i to j, and ωik be the discount

rate for customers to walk from i to k (we assume it is proportional to the physical
distance). We denote by crlcn,k

i j the relocation cost from i to j through schedule k,

cidle
i the idle cost at location i, and cchrg

it the charging cost at location i and time t.
The network is then modeled as a graph G = (V,E). The nodes vits ∈V denote

the state of the e-scooters (i.e., location i ∈ ϕ time t ∈ T SoC s ∈ S), and the arcs
e ∈ E represent the movement of the e-scooters in the network. We consider the
following type of arcs in E :
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1. Rental arcs e = (vits,v jt ′s′) for di jtt ′ > 0, s′ ≥ 0, and t ′− t ≥ tm
i j , with demand

amount di jtt ′ and cost −ri j(t ′− t). To be a demand arc, an arc should satisfy
s ≥ s′+(t ′− t)sd, and also s be above SoC threshold. Flows on these arcs
represent the rental movement of e-scooters with SoC s being rented from
location i starting at time t, and being returned to location j at time t ′ and
SoC s′.

2. Routed Rental arcs e = (vkt̃s,v jt ′s′) for di jtt ′ > 0 and in case when there are
no available e-scooters in location i, the customer is encouraged to walk to
a neighboring location ĩ ∈ Li, where Li denoted the neighboring locations to
zone i, and rent from there. However, the starting time for this trip after walk-
ing from i to ĩ changes to t̃ = t + tw

iĩ , where tw
iĩ denotes the walking time from

zone i to ĩ, and the actual e-scooter travel from location ĩ to j is performed
at a discounted rate to enable an economic incentive for the rider. Cost is
−(1−ωiĩ)rĩ j(t

′− t − tw
iĩ ). For example if ωiĩ = 5%, then the revenue for the trip

from ĩ to j is calculated at a 95% rate.

3. Relocation arcs e = (vits,v jt ′s) for t ′ ≥ t + tm
i j . The relocation schedules are

selected in the first-stage. Each schedule denotes “a utility vehicle that goes
a certain path during the day and can do relocation along that path.” For
instance, Table 2 shows two demonstrative schedules that could be imple-
mented for a network of T = 5 time periods and 3 locations L = {A,B,C}. The
cost for relocating an e-scooter from i to j through schedule k ∈ K is noted by
crlcn,k

i j tm
i j . Moreover, each schedule has a capacity that is also selected in the

first-stage model.

Table 2. Example of schedule.

Time Period 1 2 3 4 5
Schedule 1 A B C A B
Schedule 2 A B A

4. Idle arcs e = (vits,vi,t+1,s) for i ∈ L , and 1 ≤ t ≤ T with cost cidle
i , representing

e-scooters staying in location i from period t to t +1 and with the SoC of s.

5. Charging arcs To model the charging arcs in our network, we introduce
charging locations (or shadow locations) corresponding to the charging loca-
tions from the first-stage (i.e., ϕ). Total locations are denoted by L = L

⋃
ϕ.

To perform the act of charging, an e-scooter must move to and back from the
shadow locations. Therefore, there will be (1) transportation arcs (movement
of e-scooters between the physical locations and the charging locations) and
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(2) the actual charging arcs, which increase the SoC of batteries. There-
fore, the following arcs are added to consider an enterprise-wide charging
capability into the network.

• Enterprise Charger Transportation arcs e= (vits,v ĵ,t+tE
iî
,s) for collecting

the e-scooters from the physical locations and taking them to the charg-
ing facilities (racks) only if available at that location, and e= (v ĵ,ts,vi,t+tE

iî
,s)

for taking the e-scooters back to the physical locations after they are
charged. Here, tE

iî
is the average time that it takes to collect the e-

scooters from a physical location i and take them to the charging facility
î by the service company.

• Enterprise Charging arcs e = (vî,ts,vî,t+1,s+sc
e
) for charging facility î ∈ ϕ̂,

and 0 ≤ s+ sc
e ≤ sp, and flows on these arcs mean that e-scooters are

being charged from s to s+ sc
e at charging zone î in one time period be-

tween t to t+1. Note that the enterprise charging can only happen at the
locations in the network (regions in the city) that are allocated charging
capabilities by the first-stage decision. Therefore, a collaboration be-
tween the planning of the relocation schedules and charging facilities is
needed to charge e-scooters in an efficient manner.

Finally, customer-wide charging capability could also be included into the net-
work. That is, instead of the enterprise collecting the e-scooters from a region
and charging them at the charging facilities in that region (only at the loca-
tions allowed by the first-stage decision), now the customers could take the
e-scooters to their home and charge them. The following arcs are introduced
in the network to reflect customer-wide charging:

• Customer Charger Transportation arcs e = (vits,vî,t+1,s) for going from
physical locations to charging locations and e = (vî,t p,vi,t+1,p) for coming
back to physical locations. Here, we assume that the customer takes
the e-scooter home to charge so charging node î should be the same
as the physical location where the e-scooter is located. Moreover, an
e-scooter can be moved by the customers for charging if the SoC level
of the e-scooter is less than full ( i.e., s < p), and the e-scooters are fully
charged when returned to the network by the customers.

• Customer Charging arcs e = (vî,t,s,vî,t+1,s+sc
c
) for shadow zone î, and

0 ≤ s+ sc
c ≤ sp, and flows on these arcs mean that the e-scooter is being

charged from SoC s to s+ sc
c in zone i in one time period between t to

t +1. Here, cchrg
it is the charging cost incurred by a customer at location i

and time t. This cost to the company can be interpreted as an incentive
or discount to the customers. There is also a degradation cost here for
every SoC level changed.

9



2.2.2 Mathematical Modeling of Second Stage

The unit flow cost and capacity of each arc are summarized in Table 3. For each
realization of the uncertain demand di jtt ′, the recourse decisions ye ≥ 0 ∀e ∈ E ,
represents e-scooter movement on the network indicating the flow on the Rental,
Routed Rental, Idle, Relocation, and Charging arcs. Let the slack variable wi jtt ′

represent the unsatisfied demands corresponding to di jtt ′ ≥ wi jtt ′. In vector notation
y = (ye ≥ 0 ∀e ∈ E )⊤, and w = (wi jtt ′ ≥ 0 ∀di jtt ′ > 0, i, j ∈ L , t, t ′ ∈ T )⊤. The respec-
tive costs are 1) c1 in Table 3 cost of vehicle movement in the spacial-temporal-SoC
network (i.e., Rental, Routed Rental, Relocation (transshipment), Idle, Charging),
and 2) c2 expected cost of unserved demands. For unserved demands in partic-
ular, clost

i jtt ′ denotes the penalty for losing demand from i at time t to location j at
time t ′. Furthermore, p denotes the maximum state-of-charge of battery. We also
let δ+(vits) and δ−(vits) denote the set of arcs leaving and entering node vits, re-
spectively. Moreover, let the set DRent

i jtt ′ denote the set of Rental or Routed Rental
arcs corresponding to demands from location i at period t to location j at period
t ′, and DChar

ît
denote the set of charging arcs at charging location î at period t,

and DSche
kt denote the set of Relocation Schedule arcs corresponding to schedule

k that are active at period t. Furthermore, each relocation schedule and charging
capacity has their corresponding capacities which are decided in the first stage
(ok, k ∈ K, qi i ∈ ϕ). Then, the full mathematical model is as follows:

Table 3. Unit flow costs.

Type of Arc Cost per unit flow

Rental arc −ri j(t ′− t)
Routed Rental arc −(1−ωiĩ)rk j(t ′− t − tw

iĩ )

Relocation arc crlcn,k
i j tm

i j

Idle arc cidle
i

Cstmr Charging Transport. arc
Cstmr Charging arc (s′− s)cchrg

it + cdeg
p

Srvc Charging Transport. arc ctrans
serv + cdeg

p

Srvc Charging arc cchrg
serv + cdeg

p

10



Q(x,ξ ) = min
y,w

c⊤1 y+ c⊤2 w (3a)

s.t. ∑
e∈δ+(vi,1,p)

ye = zi, ∀ i ∈ L, (3b)

∑
e∈δ−(vits)

ye − ∑
e∈δ+(vits)

ye = 0, i ∈ L, t ∈ T /1,T ,s ∈ Sp, (3c)

∑
e∈δ−(vi,T,p)

ye = zi, ∀ i ∈ L, (3d)

∑
e∈DRent

i jtt′

ye +wi jtt ′ = di jtt ′ , ∀ i, j ∈ L , t ∈ T , t ′ = t + tm
i j (3e)

∑
e∈DSche

kt

ye ≤ ok, ∀t ∈ T ,k ∈ K (3f)

∑
e∈DChar

ît

ye ≤ qi, ∀t ∈ {2,3, . . . ,T}, i ∈ ϕ (3g)

ye = 0 ∀e ∈ δ
+(vi,1,p),s ̸= sp,s ∈ Sp, (3h)

ye = 0 ∀e ∈ δ
−(vi,T,p),s ̸= sp,s ∈ Sp. (3i)

The objective is to minimize the total cost. Constraints (3b), (3c) (3d) balance
the flow of e-scooters in the network. Constraint (3e) is added for meeting the
demands. Constraint (3f) is to limit the amount of relocation per each schedule to
its capacity. The number of e-scooters being charged simultaneously at a particular
charging location is bounded from above by constraint (3g). Lastly, constraints (3h)
and (3i) are introduced based on the assumption of the problem that the battery
SoC should be full at the beginning and end of the planning horizon.

2.3 Two-stage stochastic program of e-scooter planning prob-
lem

The overall two-stage stochastic program of the e-scooter planning problem is then
formulated as follows:

min
x∈X

[C1(x)+E [Q(x,ξ )]]. (4)

This problem is, in particular, a two-stage stochastic mixed-integer program where
both the first- and second-stage problems are mixed-integer linear programs and
the demand parameters in the second stage are random. In general, two-stage
stochastic mixed-integer programs are computationally challenging to solve exactly
for large-scale instances. Next, a sample-based approximation of the problem is
discussed.
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When historical data are available for the random variables, one popular ap-
proximation approach for solving the stochastic programming problem (4) is the
sample average approximation method [13], which is to replace the underlying
probability distribution of the random variables with their empirical distribution ob-
tained from the historical samples. However, the resulting approximation problem is
a large-scale mixed-integer problem, and therefore, it is computationally challeng-
ing to be solved in practice. To alleviate this issue, we adopt a scenario reduction
technique to further approximate the stochastic programming problem (4), where a
subset of the data set is employed instead of the entire data set. In this report, we
refer the solution approach for solving the two-stage e-scooter planning problem
(4) as sample average approximation (SAA) method.

3. Numerical Results

In this section, a set of computational results for the two-stage stochastic e-scooter
planning problem are reported. In particular, the SAA results for solving the plan-
ning problem are reported as compared with a deterministic version of the model
where the underlying uncertainty is overlooked. First the characteristics and data
for a hypothetical network regarding the e-scooter planning problem are intro-
duced. The purpose for the development of this network is to perform tangible
analysis on the two-stage model performance. In the entire section, the planning
horizon is considered to be one year long. The raw demand data for the test were
from the City of Tucson. All numerical tests were implemented on a computer with
an Intel Core i7-7700 CPU and 16 GB memory. All optimization problems were
solved by Gurobi solver in Python.

3.1 Problem setup and parameters

We consider an extended spatial-temporal-SoC network with seven locations, 24
time intervals and 10 SoC levels. The maximum number of e-scooters that can
be allocated to each location is as follows; {B1 = 40,B2 = 20,B3 = 40,B4 = 28,B5 =
20,B6 = 32,B7 = 20}. The cost of deploying one e-scooter is assumed to be $400.
A set of 12 relocation schedules for the problem are considered, as presented in
Table 13 in Appendix A. The total relocation capacity is assumed to be G = 25,
which is to be divided among multiple schedules. Each of these schedules can
have a minimum of five and a maximum of 10 e-scooters on board at one time. That
is to reflect the size of the vehicle that carries the e-scooters through the schedules.
Moreover, a total charging capacity of M = 25 is available which is to be assigned
to different charging facilities. The minimum and maximum sizes of each charging
facility are set to be five and 10 e-scooters at a time, respectively. Moreover, the
fixed costs for installing charging facilities at each of the locations and for deploying
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each of the relocation schedules are given in Tables 4 and 5, respectively. Note
that the costs here are on a yearly basis and they need to be converted to daily
costs to be comparable with the second-stage costs in the problem (4). In the
numerical tests, an interest rate of zero is assumed for this conversion (i.e., simply
diving the yearly costs by number of days in a year). Table 4 indicates that no
charging facilities are to be installed at locations L4 and L7. The variable costs for
installing a charging facility and for deploying relocation schedules are set at 5$ per
e-scooter and 2$ per e-scooter, respectively.

Table 4. Fixed costs of installing charging facilities (yearly).

Location L1 L2 L3 L4 L5 L6 L7
Cost ($) 9,125 7,300 8,030 - 11,680 12,775 -

Table 5. Fixed costs of deploying relocation schedules (yearly).

Location S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12
Cost ($) 5110 4015 3650 2190 5110 4015 3650 2190 5475 5840 6205 7300

For the second-stage problem, the problem setting is as follows. The minimum
travelling time between the locations tm

i j is assumed to follow a discrete uniform
distribution as Unif(1,2). The unit costs for each arc (i.e., relocation, idle, charging,
and rental arcs) are given in Table 6.

Table 6. Unit flow costs.

Arc Parameter Cost ($)
crlcn,k

i j Unif(1.7,2.9)
cidle

i Unif(0.05,0.15)
ri j −Uni f (2,6)∗ tm

i j

cchrg
serv Unif(0.3,0.5)

ctrans
serv 0.4

cchrg
it Unif(1.5,2.1)

The demands are uncertain with an empirical distribution (based on historical
data). However, this data set (from the City of Tucson) did not report starting and
finishing time for the e-scooter trips. As a result, the data were adjusted to follow
typical e-scooter demand trends, similar to other data sets that are available online
such as at [14–16]. Figure 1 represents the modified demands in one region at
different time periods of a day. The demands at each location are first satisfied by
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Fig. 1. E-scooter demand over a day.

the e-scooters at that location. If no e-scooters are available at the current location,
the customer is encouraged to walk to a neighboring location to rent e-scooters.
The walking time to a neighboring region is considered to be one time interval for all
cases. The discount rate for customers who walk from i to a neighboring location
ĩ to rent out e-scooters is set to 20% at all locations, that is ωiĩ = 0.20 ∀i ∈ L, and
the cost of lost demand clost

i j is considered to be 50% more than the income for
that demand, that is clost

i j = 1.5ri j. That is to consider an extra cost for customer
dissatisfaction.

3.2 Computational study and optimal costs

In this section, the computational performance of the two-stage e-scooter planning
problem (4) is reported.

Optimality and customer rejection costs. First, the sample average approxi-
mation of the model (4) is compared with a deterministic version of the model, that
is model (4) with a deterministic demand parameter. The “optimal value” and “CPU
times” for each method are reported in Table 7. Additionally, out-of-sample simu-
lation results, particularly “customer rejection costs” and “average second-stage
(operational) costs”, are presented to evaluate the performance of the planning
decisions for each method. For the in-sample test, a set of 10 data samples are
selected randomly from the data set for the SAA method. These samples are then
averaged to obtain one average demand for the deterministic model. For the out-
of-sample, a set of additional 100 samples from the data set are then selected
(excluding the initial selected samples in the in-sample test) to analyze the quality
of the solutions obtained from both methods. The optimal first-stage solutions ob-
tained from both methods are then evaluated by fixing the first-stage variables on
the second-stage operation problem.

In terms of optimal values, the results in Table 7 demonstrate that the SAA
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Table 7. Optimality and performance for the stochastic vs deterministic cases.

Two-stage model (4) Simulation performance
Optimal value ($) CPU time (s) Average cost ($) Customer rejection cost

SAA -758.032 1000 -1199.11 314.19
Deterministic -891.394 1 -1024.98 437.76

method achieves higher costs than the deterministic version of the model. Note
that the negative costs indicate an income. Also note that these two models are
not directly comparable, as their second stage varies significantly. Therefore, next
and to evaluate the quality of the solutions obtained from each method (on equal
grounds), out-of-sample simulation tests are performed. The out-of-sample sim-
ulation results show that the SAA planning decision leads to better operational
performance compared to the deterministic planning decision. More precisely, the
SAA planning decision results in higher profit (lower operational cost and higher
income). It is observed that the solution obtained from the SAA method has signifi-
cantly less customer rejection costs. Thus, the customer satisfaction is significantly
higher under the planning strategies from the SAA method. At last, the results in
Table 7 indicate that the benefits from the SAA method come at a cost of higher
CPU times than the deterministic case, which is due to the larger size of the op-
timization problem using the SAA approach (larger set of constraints and integer
variables).

Optimality and relaxed second stage. Relaxing the second-stage integer
variables (y,w) to continuous variables could be a potential way of dealing with the
high computational times for the SAA formulation of the problem. Next, a relaxed
version of the SAA problem is solved and compared with the original SAA problem,
and the results are shown in Table 8.

Table 8. SAA results for the relaxed vs integer second-stage variables.

Model (2) Relaxed second-stage
CPU time (s) 1000 62
First-stage investment costs 397.9 396.81
Second-stage (average) costs -1483.42 -1483.14

From Table 8, we can observe that relaxing the second-stage integer vari-
ables in this planning problem does not affect the optimal values significantly. On
the other hand, relaxing the variables leads to much faster computational results.
These results are essential in implementing further efficient methodologies (such
as benders decomposition) to speed up the solution procedure for the SAA formu-
lation of the two-stage planning problem.
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3.3 Sensitivity analysis

In this section, sensitivity analysis results (i.e., the effects of varying some of the
parameters of the model on the optimal costs) are reported. In particular, sensitivity
analysis with respect to the walking distance parameter (ω), maximum capacity of
the relocation schedules (G), maximum capacity of the charging facilities (M), and
the maximum e-scooter fleet size (∑∀i Bi) are presented in Tables 9, 10, 11, and
12, respectively. For each case, the detailed optimal cost components (i.e., the
first-stage planning and the second-stage operational costs) are reported.

First, and regarding the walking distance parameter ω, let all of the locations
incur the same discount rate (i.e., ωiĩ = ω ∀i ∈ L and ω is either 0.1 or 0.4) to
represent a low and aggressive discount strategy respectively. The detailed costs
are reported in Table 9 for the two strategies regarding the economic incentive to
customers who walk to a neighboring location when there are no e-scooters readily
available at their current location. It is observed that increasing the discount rate
to 40% leads to an increase in the total costs for the two-stage planning problem.
This increase occurs in both the first-stage and second-stage costs. Moreover, the
cost of lost demand in the system is also increased as a result of the aggressive
discount rate to the customers. Lastly, and regarding the first-stage costs, the
results from Table 9 indicate that that the aggressive strategy leads to investing
more into the system infrastructure, that is charging facilities, relocation schedules,
and e-scooter fleet size, in order to avoid a shortage of e-scooters. Consequently,
the first-stage costs are high. Secondly, and as a result of such investments, the
system is more likely to provide e-scooters at the location of the customers. Thus,
the system is more likely to satisfy the demands directly through profitable Rental
arcs and not rely much on the less profitable Routed Rental arcs.

Table 10 reports sensitivity results for the case of varying the upper bound on
the relocation schedules capacity parameter (G) in constraints (2h). Increasing this
bound from 15 to 25 does not changes the total costs of the system significantly.
In particular, we observe that the fixed cost associated with relocation schedules
remains constant, and there is only a small increase in the variable costs of the
relocation schedules. That means, for instance, a larger vehicle is assigned to
some existing relocation schedules.

Next the sensitivity analysis is performed with regards to the maximum charging
capacity parameter (M) from constraints (2d). Table 11 summarizes the detailed
optimal costs of problem (4) with three levels of maximum charging capacities. As
the maximum charging capacity parameter increases from 20 to 30, the total costs
of the system decrease. In particular, the first-stage investment costs increase,
but that leads to a significant increase of the income in the second stage. The
customer rejection costs of the planning horizon decrease when increased levels
of charging capacities are available for planning. It is also important to note that
the relocation capacities of the system, as well as the e-scooter fleet size, have
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Table 9. Sensitivity analysis of economic incentive.

Economic incentive (ω)
0.1 0.4

Total costs -1106.78 -1066.45
First-stage investment costs 398.81 428.54

Charging facilites
Fixed 87.0 112.0
Variable 125.0 125.0

Relocation Schedule
Fixed 28.0 34.0
Variable 40.0 42.0

E-scooter flee 118.81 115.54
Second-stage (average) costs -1505.59 -1494.99

Rental -2040.46 -2234.57
Routed rental -234.3 -5.07
Relocation 211.4 150.07
Idle 98.02 96.83

Charging
Electricity 221.92 223.16
Transport 96.0 104.4

Customer rejection cost 141.84 170.18

increased, and that all has lead to increased profit in the system. Therefore, this
strategy (i.e., increasing the maximum charging capacity parameter) is strongly
supported by our planning model (4).

From the second-stage operational perspective, it is important to note that the
increased investment in charging facilities has translated to a decrease in the
relocation costs. That is because the increased fixed cost of charging facilities
means opening new charging facilities in new locations, and that indicates that
the e-scooters are more likely to be charged in their own location, so the need for
transportation in the second stage is decreased.

Last but not least, Table 12 displays the effect of changing the maximum e-
scooter fleet size (or maximum allowed e-scooters), that is ∑i Bi, on the total costs.
It is observed that decreasing the maximum allowed e-scooter fleet size leads to
less efficient plans for the system. In particular, by limiting the maximum allowed
e-scooter flee size from 200 to 100 a 10% increase in the total cost is observed.
Decreasing this limit to 50 leads to a 70% increase in the costs. This increase in
costs mainly occurs at the second stage when the cost of customer rejection has
increased while the rental income has decreased. And that is straightforward as a
result of a shortage of e-scooters in the system.
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Table 10. Sensitivity analysis of relocation capacity.

Relocation Capacity (G)
15 25

Total costs -1082.63 -1085.52
First-stage investment costs 390.99 397.9

Charging facilities
Fixed 87.0 87.0
Variable 125.0 125.0

Relocation Schedule
Fixed 28.0 28.0
Variable 30.0 38.0

E-scooter flee 120.99 119.9
Second-stage (average) costs -1473.62 -1483.42

Rental -2131.26 -2117.37
Routed rental -121.1 -131.43
Relocation 195.25 194.87
Idle 103.82 100.26

Charging
Electricity 221.6 222.21
Transport 97.2 96.8

Customer rejection cost 160.86 151.23

The results in the last column of Table 12 correspond to the event where the
total number of e-scooters in the system is enforced to be equal to 200 (that is
by setting the inequality constraints in (2e) to equality constraints). Furthermore,
it is observed that the second-stage costs, in particular idle costs, have increased
significantly (about $100 per day) by this strategy, while the total renting income
remains almost the same. This indicates that the last column is reporting a subop-
timal solution. It can be concluded that suboptimally distributing many e-scooters
into the system not only increases the investment costs, but also adds to the oper-
ational costs of the system.

4. Conclusions and Future Research Directions

In this study, we developed a two-stage stochastic programming model for the
planning of e-scooters systems in the presence of demand uncertainty. In par-
ticular, we addressed the major planning decisions for an e-scooter network (i.e.,
“how many e-scooters are needed in the network and in which locations?” “how
many charging facilities are needed in the network and at which locations and
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Table 11. Sensitivity analysis of charging capacity.

Charging Capacity
20 25 30

Total costs -769.7 -1085.52 -1378.96
First-stage investment costs 325.64 397.9 470.44

Charging facilites
Fixed 55.0 87.0 112.0
Variable 100.0 125.0 150.0

Relocation Schedule
Fixed 28.0 28.0 34.0
Variable 38.0 38.0 48.0

E-scooter flee 104.64 119.9 126.44
Second-stage (average) costs -1095.34 -1483.42 -1849.4

Rental -1738.58 -2117.37 -2524.1
Routed rental -131.43 -131.43 -103.47
Relocation 217.57 194.87 196.51
Idle 91.44 100.26 94.8

Charging
Electricity 179.63 222.21 265.34
Transport 76.8 96.8 119.6

Customer rejection cost 209.23 151.23 101.91

at what capacities?”, and, lastly, “how do we rebalance the network periodically
so the e-scooters are available when and where they are needed?”). Through
numerical results, we showed that our optimal planning of the e-scooter system
will lead to minimum planning and operational cost and high demand satisfaction
rates. Overall, we provided an optimal planning tool for decision makers when e-
scooter planning decisions are not trivial due to uncertainties in data and the size
of the problem. In the future, this research can be extended to the following di-
rections. First, to increase the robustness in uncertainty modeling, we may model
uncertainty through a distributionally robust optimization framework, in which the
distribution of the uncertain variables is assumed to be unknown but belongs to an
ambiguity set (i.e., probability distribution family). In this case a minimum of first-
stage plus the expected second-stage costs under the worst-case distribution is
pursued. An event-wised ambiguity set (e.g., different seasons have different am-
biguity sets) with a Wasserstein distance metric can be used to model the e-scooter
demand uncertainty. Another direction is to develop decomposition approaches to
solve the e-scooter planning problem (4) when a large network is considered, such
as Benders decomposition approach.
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Table 12. Sensitivity analysis of fleet size.

E-scooter flee size Unforced
50 75 100 200 200

Total costs -333.85 -743.58 -973.63 -1085.52 -853.64
First-stage investment costs 348.78 336.58 361.65 397.9 521.55

Charging facilities
Fixed 112.0 80.0 80.0 87.0 112.0
Variable 125.0 125.0 125.0 125.0 125.0

Relocation Schedule
Fixed 28.0 28.0 28.0 28.0 34.0
Variable 38.0 36.0 36.0 38.0 38.0

E-scooter flee 45.78 67.58 92.65 119.9 212.55
Second-stage (average) costs -682.63 -1080.16 -1335.28 -1483.42 -1375.19

Rental -1324.38 -1764.21 -2011.17 -2117.37 -2273.79
Routed rental -63.58 -65.49 -108.95 -131.43 -30.13
Relocation 118.17 149.92 181.69 194.87 182.3
Idle 17.4 34.08 62.69 100.26 256.24

Charging
Electricity 140.93 188.4 214.83 222.21 224.46
Transport 42.4 66.8 93.2 96.8 110.0

Customer rejection cost 386.42 310.34 232.42 151.23 155.73
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[12] Bulhões T, Subramanian A, Erdoğan G, Laporte G (2018) The static bike re-
location problem with multiple vehicles and visits. European Journal of Oper-
ational Research 264(2):508–523.

[13] Kleywegt AJ, Shapiro A, Homem-de Mello T (2002) The sample average ap-
proximation method for stochastic discrete optimization. SIAM Journal on Op-
timization 12(2):479–502.

[14] louisville data open access, https://data.louisvilleky.gov/dataset/dockless-vehicles.
[15] E-scooter trips - 2019 pilot transportation, https://data.cityofchicago.org/

Transportation/E-Scooter-Trips-2019-Pilot/2kfw-zvte.
[16] E-scooter trips similar datasets, https://data.world/datasets/scooter.
[17] Bikeshare (docked and dockless) and e-scooter systems by

year and city served, https://data.bts.gov/Bicycles-and-Pedestrians/
Bikeshare-Docked-and-Dockless-and-E-scooter-System/cqdc-cm7d.

[18] Austin dataset, https://data.austintexas.gov/Transportation-and-Mobility/
Shared-Micromobility-Vehicle-Trips/7d8e-dm7r.

[19] Austin dataset report summary, https://data.mobility.austin.gov/
micromobility-data/.

[20] Austin dataset visual, https://micro.mobility.austin.gov.

Appendix

A. Data for relocation schedules

The following relocation schedules are assumed for the problem. In particular,
the stops for each schedule in particular the time and location of each schedule
are given in the Table 13. If a schedule is selected then it repeats during the whole
operational day after a rest of 1 periods. For example, when the operational periods
T = 24 then “S1” starts at time period 1 at location L1 and finished at time period
23 at L3 after repeating six times.
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https://data.cityofchicago.org/Transportation/E-Scooter-Trips-2019-Pilot/2kfw-zvte
https://data.world/datasets/scooter
https://data.bts.gov/Bicycles-and-Pedestrians/Bikeshare-Docked-and-Dockless-and-E-scooter-System/cqdc-cm7d 
https://data.bts.gov/Bicycles-and-Pedestrians/Bikeshare-Docked-and-Dockless-and-E-scooter-System/cqdc-cm7d 
https://data.austintexas.gov/Transportation-and-Mobility/Shared-Micromobility-Vehicle-Trips/7d8e-dm7r 
https://data.austintexas.gov/Transportation-and-Mobility/Shared-Micromobility-Vehicle-Trips/7d8e-dm7r 
https://data.mobility.austin.gov/micromobility-data/ 
https://data.mobility.austin.gov/micromobility-data/ 
https://micro.mobility.austin.gov 


Table 13. Relocation schedules.

Schedules Stop 1 Stop 2 Stop 3 Stop 4
S1 (1,L1) (2, L2) (3, L3)
S2 (1,L1) (2, L2) (4, L3)
S3 (1,L1) (3, L2) (6, L3)
S4 (1,L1) (4, L2)
S5 (1, L5) (2, L6) (3, L7)
S6 (1, L5) (2, L6) (4, L7)
S7 (1, L5) (3, L6) (6, L7)
S8 (1, L5) (4, L6)
S9 (1,L1) (2, L2) (3, L3) (6, L6)
S10 (1,L1) (2, L2) (3, L3) (6, L7)
S11 (1,L1) (2, L3) (4, L5) (6, L6)
S12 (1,L1) (2, L3) (4, L5) (6, L7)

B. Online data sets

Below we present a list of data sets available online on shared mobility. For each
data set some brief description is mentioned.

• Louisville data open access [14].
It includes several types of data. Main data set includes following: Start-
ing time, end time, trip duration, trip distance, starting GPS and end GPS
(rounded 3 decimals).

• Bike-share (Docked and Dockless) and E-scooter Systems [17].
Large scale metadata on planning level across country (by year and city
served). Sharing mobility in general, both dockless and docked.

• Escooter data, City of Chicago [15, 16].
E-scooter data includes GPS as well.

• Texas, Austin scooter and bicycle data [18–20]. More than 9 million rows of
data. Includes the following information on each trip: Starting time, end time,
starting location and end location.
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