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Abstract: Herein, we report an aerobic synthesis method to produce bismuth nanoparticles (Bi NPs) with average 

diameters in the range 40-80 nm using commercially available bismuth triiodide (BiI3) as starting material; the 

method uses only readily available chemicals and conventional laboratory equipment. Furthermore, size data from 

replicates of the synthesis under standard reaction conditions indicate that this method is highly reproducible in 

achieving Bi NP populations with low standard deviations in the mean diameters. We also investigated the 

mechanism of the reaction, which we determined results from the reduction of a soluble alkylammonium 

iodobismuthate precursor species formed in situ.  Under appropriate concentration conditions of iodobismuthate 

anion, we demonstrate that burst nucleation of Bi NPs results from reduction of Bi
3+

 by the coordinated, redox non-

innocent iodide ligands when a threshold temperature is exceeded. Finally, we demonstrate phase transfer and silica 

coating of the Bi NPs, which results in stable aqueous colloids with retention of size, morphology, and colloidal 

stability. The resultant, high atomic number, hydrophilic Bi NPs prepared using this synthesis method have 

potential for application in emerging X-ray contrast and X-ray therapeutic applications.

Introduction: Bismuth nanoparticles (Bi NPs) have garnered attention through the development of technologies 

ranging from nanoelectronics,
1–8

 to catalysis,
9,10

 to medical contrast agents.
11–21

  For example, in the field of 

nanoelectronics, Bi NPs have been shown to be ideal catalysts for the growth of quantum-confined semiconductor 

nanowires (e.g., of CdSe, ZnS) due to their low melting point and wide precursor miscibility, properties which 

facilitate vapor- or solution-liquid-solid growth of size-uniform, anisotropic nanostructures.
1,3,7

 Additionally, 

elemental Bi NPs have demonstrated promise for use as blood-pool contrast agents in computed tomography (CT) 

X-ray imaging, as well as the possibility of enabling molecular X-ray imaging and providing radiation dose 

enhancement in cancer treatment.
13–21

 Furthermore, our group has also realized the value of size-uniform Bi NPs that 

are miscible at high weight percent within a polymer matrix in the fabrication of flexible X-ray opaque shielding 
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materials.
22
 Our ensuing work has thus focused on improving the synthesis of Bi NPs to achieve better size 

uniformity using more practical methods, which will be essential for the further exploration of these nanomaterials 

in an applied context.  

Relative to the well-established synthesis methodology and excellent size uniformity achievable for some elemental 

NPs (e.g., Ag, Au, and Pt NPs), the majority of Bi NP synthetic methods to date have resulted in relatively poor 

size or morphology control. Many challenges have been encountered in the synthesis of size-monodisperse Bi NPs, 

including the absence of commercially available starting materials that are highly soluble in traditional solvents. 

Furthermore, the low, but still thermodynamically favorable, reduction potential of Bi
3+

 is responsible for the ready 

environmental oxidation of Bi
0
 once formed. Consequently, oxidative dissolution represents a challenge for the 

synthesis and storage of Bi NPs in aqueous solution, if the Bi NP surfaces are not well-protected against oxidants.     

Previously, the production of size-uniform Bi NPs has been accomplished in several cases; these methods typically 

proceed via thermolysis of Bi
3+

 precursors in high boiling organic solvents.
1,2,6,8,9,15,23

 Soluble precursors are necessary 

to achieve size-uniformity, and can be formed in situ by dissolving a bismuth salt in a coordinating ligand, such as 

oleylamine, or ex-situ using a coordinating ligand and a strong organic base such as n-BuLi.
24
 To form size-uniform 

Bi NPs, the Bi
3+

 within the precursor must be rapidly reduced, leading to the buildup of Bi
0
 monomer in solution 

and a burst nucleation of Bi NPs above a certain critical monomer concentration. To ensure a single nucleation 

event, and therefore a single size of NPs, this burst must occur under specific conditions, such as an activation 

temperature or upon the addition of a reducing agent.
25
 For example, Kovalenko and coworkers accomplished burst 

nucleation through the injection of n-butyllithium (n-BuLi) into a solution of Bi(III)-oleylamine complex (prepared 

by dissolving BiCl3 in oleylamine) at 160°C, and were able to produce highly size-uniform Bi NPs with average 

diameters between 10 and 21 nm, having standard deviations of ~6% of the mean diameter.
23
 This method was also 

extensible to the synthesis of a variety of other metallic NPs.  As a second example, Buhro and coworkers 

accomplished a burst nucleation synthesis of Bi NPs through the ex situ production of semi-stable bismuth(III) 

trimethylsilylamide (Bi[N(SiMe3)2]3, prepared from BiCl3, Na[N(SiMe3)2], and n-BuLi) and its subsequent 

thermolysis in a non-coordinating solvent.
2
 This method achieved highly size monodisperse Bi NPs with average 
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diameters tunable over a wide range of 3 – 115 nm and standard deviations of 5-10% of the mean diameter. Though 

these methods result in excellent size control, both are highly air-sensitive and performed under stringent air-free 

conditions. 

Herein, we present a one-pot aerobic synthesis of Bi NPs in the size range 40-80 nm using commercially available 

BiI3 as a precursor. Although similar to the two syntheses outlined above, the reaction requires neither high 

temperature injection of highly reactive chemicals, nor air sensitive precursors. Instead, our method takes advantage 

of the solubility and thermal instability of an iodobismuthate species generated in situ when BiI3 is dissolved in a 

primary amine solvent, such as hexadecylamine (HDA), which allows the reaction to be performed in conventional 

glassware under ambient conditions. We further investigated the reproducibility of our method in producing ~60 

nm diameter Bi NPs, and we have additionally examined the method scope (i.e., parameter variation tolerance) and 

reaction mechanism by variation of the reaction conditions. Finally, we demonstrate the silica coating and phase 

exchange of ~60 nm diameter Bi NPs to aqueous solution. These results provide a simple synthesis method to 

produce monodisperse Bi NPs for further investigation in the biological and technological applications outlined 

above.  For comparison with the method we present, Table S1 provides a survey of reagents, size and size 

polydispersity, and product solvent dispersibility information for a representative selection of prior methods that 

produce Bi NPs.  Notably, different size ranges are afforded under different synthesis conditions, and aerobic 

syntheses are uncommon, as are hydrophilic products.  To the best of our knowledge, this work describes for the 

first time the use of a redox non-innocent iodobismuthate precursor in the synthesis of Bi NPs.       

Materials and Methods 

Materials: The following chemicals were purchased and used without purification: For Bi NP synthesis, parameter 

variations, and controls: bismuth triiodide (BiI3, 99.999%, Strem), bismuth tribromide (BiBr3, 98%+, Sigma-

Aldrich), bismuth trichloride (BiCl3, 98%+, Acros), potassium hydroxide (KOH, 99%, VWR), di-isopropylbenzene 

(DIPB, 98%, 2:1 mixture of m and p isomers, Acros), 1-hexadecylamine (HDA, 90%, Technical Grade, Alfa Aesar), 

poly(1-vinylpyrrolidone)-graft-(1-triacontene) (PVPT, Sigma-Aldrich), hexane (ACS grade, mixture of isomers, 

Fisher), and ethanol (ACS grade, Fisher). For phase exchange: chloroform (ACS grade, Fisher), and poly(1-
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vinylpyrrolidone) (PVP, 29k MW, Sigma-Aldrich). For silica coating: tetraethoxysilane (TEOS, 98%, Sigma-

Aldrich), and ammonium hydroxide (NH4OH, 30% aq. solution, Fisher). In the water control reaction, phase 

exchange, and silica coating procedure, electrophoretically pure water (18 MΩ•cm resistivity) was used. All 

reactions, purifications, and analyses were performed in ambient laboratory air and light conditions, unless 

otherwise indicated.  

Standard synthesis conditions: All procedural steps were carried out in a chemical fume hood; caution must be 

taken due to the release of iodine (I2) gas.  

In a standard synthesis, 300 mg BiI3 was loaded into a 100 mL one-neck round bottom flask and dispersed in 16 

mL of DIPB. This suspension, containing colorless solvent and black BiI3 as a dispersed solid powder, was stirred 

at 650 rpm and heated to 180°C for 15 minutes. At 180°C, I2 was observed to evolve as a purple gas. A solution 

color change (to pale orange) was also observed, in addition to the formation of a brown-orange solid suspended in 

the mixture. The temperature was subsequently lowered to 100°C, followed by addition of 3.75 g of HDA and 345 

mg of PVPT. This suspension was then stirred open to the atmosphere for 30 minutes, resulting in an orange opaque 

suspension. The flask was then closed to atmosphere and stirred at 100°C for an additional 30 minutes, during which 

time, no additional changes to the atmosphere in the flask were made. The temperature was then raised to 180°C 

over a period of 2.5 minutes. During heating, the orange solution color gradually intensified, and within seconds of 

reaching 180°C, became a homogeneous black colloid. The reaction was allowed to proceed at 180°C for 12.5 

minutes before it was quenched (total reaction duration including heating interval = 15 minutes). To quench the 

reaction, the flask was removed from heat and cooled in a room temperature water bath for one minute. To isolate 

the Bi NPs, a 50 mL mixture of 1:1 hexane: ethanol was added to the reaction flask, followed by collecting the 

contents in a conical tube, sonicating for one minute, and centrifuging at 3000 rcf for 15 minutes. The Bi NPs were 

twice re-dispersed and centrifuged out of solution using 80 mL of 1:1 hexane: ethanol. The Bi NPs could then be 

stored, either as a stable colloid in toluene, or as a fully re-dispersible (in toluene) dry powder. 
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Variation of reagent quantities vs. the standard reaction conditions: Modifications to the standard reaction 

conditions were done to examine the parameter variation tolerance of the reaction. The reagent quantities used in 

individual parameter variation experiments are shown in Table S2.  

Bi precursor substitution controls: In control experiments to determine the role of the bismuth starting material in 

the formation of Bi NPs produced under the standard conditions, the BiI3 starting material was replaced with the 

same molar amount of bismuth oxyiodide (BiOI), BiCl3, or BiBr3. The remainder of the procedure remained the 

same, including the heating of only the starting material in DIPB at 180°C for 15 minutes. BiOI was prepared by 

dissolving 0.5 g of BiI3 in 25 mL of aqueous 0.1 M KOH and briefly vortexing.
26
 BiOI was collected by vacuum 

filtration.  

Reagent exclusion controls: An HDA+PVPT exclusion control was run as follows: 300 mg BiI3 was combined with 

16 mL DIPB in a 100 mL round bottom flask and heated to 180°C for two hours. A purple gas was evolved from 

the flask, and over the course of two hours, an orange insoluble solid was formed. The reaction was cooled, and the 

solids were collected by brief centrifugation.  

A DIPB+PVPT exclusion control was run as follows: BiI3 and HDA were added to a 100 mL round bottom flask. 

This mixture was first heated at 100°C for 1 hour, resulting in an orange opaque suspension. After 1 hour, the 

reaction was closed to atmosphere and the temperature was increased to 180°C over a period of 2.5 minutes and 

held at 180°C for 12.5 minutes, followed by cooling in a water bath. The black insoluble reaction product was 

afterwards dispersed in 40 mL hexane and collected by brief centrifugation.  

Oxygen exclusion and water addition controls: BiI3 and HDA were added into two separate 100 mL, 2-neck round 

bottom flasks, each fitted with a stopper and a line valve. Each reaction mixture was freeze-pump-thawed three 

times (thawing at 50°C on a heating mantle) to remove atmospheric and dissolved oxygen, and subsequently back 

filled with argon and heated to 100°C for 1 hour. The oxygen exclusion control reaction was then heated to 180°C 

over a period of 2.5 minutes, and held at 180°C for 12.5 minutes, turning from an orange suspension to a black 

suspension after 3 minutes at the reaction temperature. After 12.5 minutes, the reaction progress was quenched by 

Page 5 of 23 AUTHOR SUBMITTED MANUSCRIPT - NANO-116273.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



 6 

cooling the reaction vessel in a water bath. Solid products were collected by centrifugation and washed with 1:1 

ethanol: hexane.  

For the water addition control, the same steps were taken as in the oxygen exclusion control, except that 100 μL 

H2O was added after 1 hour of heating at 100°C. The water addition control was next heated at 180°C for 1 hour, 

which did not result in the formation of Bi
0
, but rather in the formation of an orange precipitate.  

Surface modification to accomplish phase transfer to aqueous solution: To achieve phase transfer of the PVPT-

coated Bi NPs to water, it was necessary to further coat the as-prepared nanoparticles with hydrophilic, unmodified 

PVP. To accomplish this, ~100 mg of Bi NPs (a typical yield when using the standard reaction conditions) were 

dispersed in 50 mL of chloroform by sonication, followed by the addition of one gram of PVP (29k MW) to the 

flask. The solution was subsequently stirred and refluxed for ~10 hours, and afterwards, the Bi NPs were collected 

by centrifugation. Excess PVP was removed by twice re-dispersing the Bi NPs in 25 mL of ethanol followed by 

centrifugation. The solid obtained by centrifugation was then dried in air at 125°C for 15 minutes.  

Silica coating: Dry PVP-coated Bi NPs (~20 mg) were dispersed in a solution containing 90 mL ethanol and 10 mL 

deionized H2O by sonicating the mixture for ~30 minutes. Subsequently, 2 mL of 30% aqueous NH4OH and then 

25 µL of TEOS were added while stirring. Stirring was continued for 30 minutes at room temperature, and then the 

flask was moved to a 4°C freezer and cooled for ~15 hours. Afterwards, silica-coated Bi NPs were collected by 

centrifugation. The silica-coated Bi NPs were isolated by twice re-dispersing them in 25 mL of ethanol followed 

by centrifugation, then dried at 80°C.  

Crystallographic, microscopic, and spectroscopic characterizations of Bi NPs:  Bi NP imaging was performed on 

a Technai F20 TEM operating at 4500 eV and equipped with an Oxford Instruments EDX detector. Samples were 

prepared by drop casting Bi NP dispersions in toluene (~4 mg/mL) onto type-B carbon-coated copper TEM grids 

(Ted Pella product #1844-F). Samples were allowed to air-dry for at least 10 minutes at room temperature followed 

by at least 5 minutes at 125°C.  Images were processed using the FIJI software package. All mean diameter and 

standard deviation data was derived from at least 200 NP diameter measurements per synthesis. For any TEM image 

used, all NPs in the image were included to eliminate selective measuring.  
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X-ray diffraction (XRD) samples were prepared by drying Bi NPs or other solid precipitates in a drying oven at 

125°C, then grinding them into a fine powder using a mortar and pestle. These powders were then placed in a zero-

background (Si
 
(100)) micro-holder slide. Characterization was performed using a Rigaku Ultima IV X-ray 

diffraction system in focused beam (Bragg-Brentano) geometry with graphite monochromatized Cu Kalpha radiation.  

FT-IR spectra were obtained using a Thermo Scientific Nicolet iS10 spectrometer fitted with an attenuated total 

reflectance attachment having a diamond window. Solid samples were first dried of solvents by heating at 125°C, 

then placed directly on the diamond window and compressed.   

Results and Discussion: 

 

Figure 1. TEM images of Bi NPs from Sample 1 of the replicate experiments with scale bars of A) 500 nm and 
B) 200 nm. 

 

Using a one-pot aerobic method, highly size and shape-monodisperse Bi NPs have been synthesized using 

commercially available bismuth triiodide (BiI3) as starting material.  As we support by mechanistic studies (vide 

infra), Bi NPs are formed through the thermolysis of a dissolved iodobismuthate precursor in a high-boiling solvent 

mixture of di-isopropylbenzene (DIPB) and hexadecylamine (HDA), in the presence of a polymeric surface-

stabilizing agent, poly(1-vinylpyrrolidone)-graft-(1-triacontene) (PVPT). As a result of the triacontene chains of 
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 8 

the PVPT on the surface, the as-prepared Bi NPs are hydrophobic and readily dispersed as stable colloids in toluene, 

hexane, or other apolar solvents.  

Table 1. Size and polydispersity data from five replicate syntheses of Bi NPs using the standard reaction 
conditions.  For Samples 1-5, greater than 200 NPs per sample were measured from various areas of the TEM 

images. 

Sample    
Number 

Mean      
Diameter 

(nm) 

Standard 
Deviation 

(nm) 

% Std. Dev. 

1 37.0 5.9 15.9 

2 60.3 9.8 16.3 

3 49.7 4.1 8.2 

4 77.9 11.1 14.2 

5 67.4 8.7 12.9 

Pooled (1-5) 64.8 11.9 18.3 

 

Using the standard reaction conditions (with respect to reagent quantities, see Table S2), the product Bi NPs were 

observed by TEM to have spherical morphologies, a mean diameter between 40 nm and 80 nm that varies between 

replicate syntheses, and low percent standard deviations in the mean diameters for each replicate synthesis. Table 

1 contains size and standard deviation statistics for five replicates of the standard reaction conditions, which were 

performed over a time period spanning 5 months. Overall, the low standard deviations, which are between 8% and 

17% of their respective population mean diameters, lead us to categorize the products of individual replicate 

syntheses as being nearly size-monodisperse. As seen in Table 1, the most size-uniform replicate yielded Bi NPs 

with a mean diameter of 49.7 nm ± 4.1 nm (Sample 3, 8% std. dev.), while for a slightly more size-polydisperse 

sample (Sample 1, 16% std. dev.), Figure 1A and 1B show representative TEM micrographs in which a predominant 

population of ~40 nm diameter Bi NPs is apparent.  In these images, a sparse population of ~20 nm Bi NPs is also 

observed. However, despite the presence of the sparse, smaller population, the larger population is size-

monodisperse enough to produce regions of close-packed Bi NPs, which exclude the smaller population to the edges 

of the superlattice.  The measured average inter-particle spacing between these close-packed Bi NPs is 2.2 nm, 
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 9 

which provides an estimate of the PVPT polymer coating thickness of 1.1 nm (i.e., 2.2 nm divided by 2 particles).  

The TEM image of Sample 1 shown in Figure 1 is representative of the replicate samples produced using the 

standard reaction conditions (see Figure S1 for TEM of Samples 2-5), although the mean size and standard deviation 

were observed to vary between replicate syntheses. To illustrate the usefulness of this synthesis method in producing 

Bi NPs for biological or other applications, a simulated pooled batch was created by combining the TEM diameter 

data for 200 NPs from each replicate and treating the 1000 NP population as a single batch. This hypothetical pooled 

sample would result in a 64.8 nm ± 11.9 nm (18.3% std. dev.) Bi NP population that can still be considered to have 

low size-polydispersity.  

Versus the standard reaction conditions, we performed additional experiments where we varied the quantities of 

HDA, BiI3, and PVPT, as well as the reaction temperature and time, to determine size and size polydispersity trends 

as a function of these parameters (Table S2). In all of these experiments, the volume of DIPB solvent was held 

constant.  

While the results of these variations are shown and discussed in greater detail in the Supporting Information, 

analysis of TEM images showed that reducing the HDA quantity to 50% did not result in the formation of Bi NPs, 

even when the reaction time was extended to 30 minutes, while reducing the HDA quantity to 75% of the standard 

quantity produced a bimodal distribution of Bi NP sizes with much greater polydispersity (79 ± 23 nm, 29% std. 

dev., Figure S2A) vs. the standard conditions. Conversely, increased amounts of HDA or BiI3 resulted in diameter 

distributions at the high end of the range observed under the standard reaction conditions (i.e., for 200% of the 

standard HDA quantity, 51 ± 9 nm, 18% std. dev., Figure S2B; for 125% of the standard BiI3 quantity, 77 ± 10 nm, 

13% std. dev., Figure S2D), while reducing the BiI3 quantity to 50% resulted in highly monodisperse, disk-shaped 

Bi NPs (31 ± 2 nm, 6 % std. dev., Figure S2C). Overall, these results suggest that the reaction feasibility and size 

homogeneity of the Bi NP products have a greater dependence on the quantity of HDA than on the quantity of BiI3, 

which prompted us to take a closer look at the reaction mechanism to examine the role of each reagent in the 

formation of Bi NPs.    
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 10 

In an experiment to determine if the reaction is feasible at lower temperatures, a synthesis under the standard 

conditions was performed at 170°C (Table S2).  For this synthesis, a longer induction period (i.e., 20 vs. 2.5 minutes) 

before appearance of a black colloid of Bi NPs indicated that the reaction is feasible at 170°C, while TEM imaging 

revealed a substantially widened size distribution (82±44 nm, 53% std. dev.) vs. synthesis at 180°C, which is likely 

attributable to a prolonged nucleation event.  Temperature variants higher than 180°C were not performed since the 

size distributions at 180°C were relatively narrow, but the boiling point of the DIPB solvent is ~210°C, which may 

be considered a practical upper limit of synthesis temperature. 

Finally, in experiments varying the reaction time while using standard reagent quantities, TEM images taken after 

reaction durations of 3 minutes, 10 minutes, 6 hours, and 20 hours (Figure S3) showed that Bi NP growth is complete 

after approximately 10 minutes, with little change in the population size statistics occurring between 10 minutes 

and 6 hours (see Table S2).  However, for very long heating times, some further size changes that can be attributed 

to mass transfer between the nanoparticles is noticeable. These results indicate that PVPT is, as expected, an 

effective surface stabilizer for the Bi NPs, preventing rapid oxidative dissolution of the Bi NPs after they are formed.   

Investigation of the Mechanism of Bi NP Formation: Using BiI3, HDA, PVPT, and DIPB as reagents under the 

standard reaction conditions, the reaction was observed to occur in three distinct stages (Scheme 1). We further 

interrogated these stages to gain mechanistic understanding of the reaction.  

 

 

Scheme 1. Proposed identities of the predominant bismuth species in the three different stages of the reaction.  
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In the first stage of the reaction, BiI3 was suspended in DIPB and heated to 180°C for 15 minutes while open to 

ambient atmosphere. At first, no significant dissolution of the solid or change in solution color was observed (Figure 

2A); however, upon heating to 180°C, the formation of I2 was observed as an evolving purple gas (Figure 2B). 

Additionally, during this initial heating interval, a pale yellow-orange solution containing an orange insoluble solid 

was formed (Figure 2C), and the solid was identified by powder X-ray diffraction (XRD) as bismuth oxyiodide 

(BiOI). In a separate HDA+PVPT exclusion control, we determined that heating BiI3 in only DIPB at 180°C did 

not produce elemental Bi within 2 hours, although a greater mass of BiOI was produced with extended heating 

(Figure 3A, PDF Card 9009164). 

 

Figure 2. Photographs of the Bi NP synthesis at different procedural points. (A) BiI3 in DIPB prior to heating. (B) 
I2 gas being released from a mixture of BiI3 in DIPB at 180°C. (C) Reaction solution after 15 minutes at 180°C. 

(D) Reaction solution after addition of HDA and PVPT and 1 hour of heating at 100°C. (E) Bi NP colloid formed 
after heating mixture in “D” at 180°C for 15 minutes including the heat ramping interval. 

 

The second stage was initiated by lowering the reaction temperature to 100°C, at which point PVPT and HDA were 

added.  After these additions, the reaction was held at 100°C for 1 hour, during which time a bright orange solution 

containing an orange precipitate was formed (Figure 2D). The reaction mixture was subsequently increased in 

temperature to 180°C to initiate the third stage, which resulted in the rapid loss of both orange solution color and 

solid to yield a homogeneous black solution of colloidal Bi NPs (Figure 2E). XRD analysis of the final product 

showed that the NPs produced under the standard reaction conditions are composed of highly crystalline 

rhombohedral Bi
0 
(Figure 3B, PDF Card 2310889). A separate DIPB+PVPT exclusion control containing only BiI3 

and HDA was run in air at 180°C, initially resulting in the formation of a bright orange solution and orange 

precipitate, which quickly darkened to a black suspension within 3 minutes and produced bulk, elemental Bi rather 
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 12 

than Bi NPs.  From the results of the HDA+PVPT and DIPB+PVPT exclusion control reactions, it can be concluded 

that DIPB and PVPT function only to modulate the growth of the Bi NPs, and that only BiI3 and HDA are necessary 

to produce Bi
0
. The roles of DIPB and PVPT in the reaction are therefore to control the soluble precursor 

concentration and to limit the growth of the Bi NPs, respectively.   

In further equimolar substitution controls to examine the role of the halide in the starting material, we determined 

that BiOI and BiBr3 can be used as alternate starting materials to produce Bi NPs under the standard reaction 

conditions. Interestingly, Bi NPs produced using BiBr3 as a precursor had a mixture of spherical and cuboid 

morphologies as shown in Figure S4. However, a control experiment using BiCl3 as precursor failed to produce Bi
0
. 

In light of the result that iodide- and bromide-containing salts produce Bi
0
, while chloride-containing salts do not, 

it can be concluded that the identity of the halide ion is pivotal in the reduction of Bi
3+

.   

 

Figure 3. XRD patterns of solids collected from Bi NP synthesis and control experiments. (A) BiOI produced by 
heating BiI3 in DIPB only. (B) Bi NPs from Sample 2, produced under the standard reaction conditions. (C) Bulk 

Bi
0
 recovered from the oxygen exclusion control in the absence of DIPB and PVPT. 

 

Examination of the literature provides support for the identity of the soluble, orange precursor as an anionic 

iodobismuthate species. A large number of halobismuthate salts containing a variety of anions are known, e.g., 

discrete Bi2X9

3-
, Bi3X11

2-
, Bi4X16

4-
, Bi6X22

4-
, and polymeric BiX4

-
 and BiX5

2-
 (X = Cl, Br, or I),

27–30
 and such anions are 

generally polynuclear, being composed of corner or edge-sharing BiX6

3-
 octahedra. Frequently, ammonium cations 
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provide charge balance for the polynuclear halobismuthate anions in these salts, although sometimes cations are 

generated in situ via the formation of Bi
3+

-solvent complexes.
31
  

Though the precise composition of the proposed iodobismuthate solution precursor was not identified, the 

characteristic orange color of the solution observed during the second stage of the reaction is likely due to a ligand-

to-metal charge transfer (LMCT) transition between iodide ligands and coordinated Bi
3+

 cation(s).
29,32–36

 The 

observation that our standard reaction conditions result in elemental bismuth when using BiI3, BiOI, or BiBr3 as 

starting materials, but not when using BiCl3, indicate that the LMCT is responsible for initiating Bi
0
 formation at a 

reaction temperature of 180ºC. This observation is consistent with the lower bond and LMCT energies reported for 

iodo- vs. bromo- vs. chlorobismuthate compounds.  Typically reported bond energies are highest for Bi-Cl at ~300 

kJ/mol and lowest for Bi-I at ~190 kJ/mol,
37,38

 and values for the energies of the LMCT transitions are known to be 

red-shifted for iodo- vs. bromo- vs. chlorobismuthates.
32,35,39

 For example, for a series of compounds containing 

BiCl6

3-
, BiBr6

3-
, and BiI6

3-
 anions, the lowest energy spectral feature assigned as LMCT is present at 231 nm (X = 

Cl) vs. 274 nm (X = Br) vs. 412 nm (X = I).
40
 Thus, under the standard conditions of our aerobic synthesis, it can be 

inferred that iodide anions are complexed with the Bi
3+

 ions until reduction and behave as non-innocent ligands in 

the reduction of Bi
3+

 to form Bi NPs.  

Under the standard reaction conditions, protonated HDA is the likely counter-cation for the iodobismuthate anion 

that is formed in situ.  Both as-received HDA and DIPB contain trace water, and were not purified prior to use; 

thus, trace water is expected to protonate HDA to some extent.  Supportive of the formation of an alkylammonium 

iodobismuthate precursor en route to Bi NPs, FT-IR spectroscopy of the reaction products prior to isolation by 

centrifugation (Figure S5) indicates the formation of hexadecylammonium, as evidenced by a broad peak at 3031 

cm
-1
 that is characteristic of N-H bonding in primary ammonium species. The role of hexadecylammonium cations 

in charge balancing iodobismuthate anions formed in situ is also consistent with the qualitative observation that the 

intensity of the orange color, assigned as an I-Bi LMCT, increases upon HDA addition, due to increasing 

iodobismuthate concentration in solution.  Here, it should be noted that the orange solution color indicative of 
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iodobismuthate was also formed in DIPB, although to a lesser extent and apparently at an insufficient concentration 

to initiate particle nucleation at 180ºC.   

Of importance for both Bi NP size-homogeneity and reaction feasibility is the concentration of the soluble 

iodobismuthate species, which is expected to be modulated by the concentration of protonated HDA.  The 

protonated HDA concentration is expected to be affected by the concentration of water, which can not only 

protonate HDA but also reduce solution concentrations of Bi
3+

 and I
-
 ions in the formation of BiOI (i.e., reaction of 

BiI3 with H2O is used to quantitatively prepare BiOI) or other precipitates (vide infra).  Thus, a water addition 

control reaction was performed. 

In the water addition control reaction, BiI3 and HDA were first heated at 100°C for one hour to produce a bright 

orange solution, followed by injection of 0.1 mL of water into the flask. Upon water addition, the orange solution 

color was observed to decrease in intensity and the formation of a brown-orange precipitate was observed. 

Afterwards, the temperature of the solution was increased to 180°C and held for one hour; however, no color change 

was observed. The precipitate recovered at the end of one hour at the reaction temperature was analyzed by XRD 

(Figure S6), and neither Bi
0
 or BiOI could be identified. The brown-orange polycrystalline solid was not further 

characterized, but is likely a hexadecylammonium iodobismuthate salt with low crystallographic symmetry. These 

results indicate that very high cation concentrations are correlated to high iodobismuthate anion concentrations, 

sufficient to result in salt precipitation at 100°C.  Conversely, when there is not enough water or protonated cation 

present, as is likely in the case of heating BiI3 in DIPB only, insufficient iodobismuthate precursor is formed, and 

nucleation also does not occur at 180°C.  A water exclusion control reaction was not done, since this synthesis 

method produces low-polydispersity Bi NP samples in ambient, humidified air.  However, based on the result in 

DIPB only, we would expect that use of completely anhydrous conditions would also effectively lower the solution 

concentration of the iodobismuthate precursor and prevent nucleation of Bi
0 
NPs at 180°C.   Overall, the high degree 

of water sensitivity could explain the batch-to-batch variability observed when using hygroscopic solvents in 

ambient humidity conditions, suggesting that to improve batch-to-batch size variability, the water content should 

be measured and kept consistent between replicate syntheses.  
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A further oxygen exclusion control reaction was also done using only HDA as solvent. Prior to heating, the flask 

containing only HDA and BiI3 was freeze-pump-thawed to remove O2, and subsequently kept under an argon 

atmosphere. Just as in air, a bright orange solution was produced at 100°C, followed by a rapid color change from 

orange to black upon increasing the temperature to 180°C. The black solid isolated from this reaction was identified 

as Bi
0
 by XRD (Figure 3C). We can conclude from this experiment that atmospheric oxygen neither promotes, nor 

inhibits, the reduction of the iodobismuthate precursor.  

 

Phase transfer and silica coating: The as-prepared PVPT-coated Bi NPs are readily dispersible in nonpolar solvents 

(e.g., toluene), and therefore of use to researchers interested in catalysis or quantum wire growth. However, in order 

to obtain water-soluble Bi NPs for biological applications, and to prevent rapid oxidative dissolution when dispersed 

as an aqueous colloid, additional surface treatments were necessary. Consequently, the as prepared PVPT-coated 

Bi NPs were first pre-coated with hydrophilic PVP, then subsequently coated with a thin silica shell. Silica surfaces 

are useful for further functionalization of NPs using widely available and simplistic silane conjugation techniques.
41–

44
 

 

Figure 4. FT-IR spectra of as-prepared Bi NPs (A), Bi NPs after additional PVP pre-treatment (B), and Bi NPs 
after silica coating (C). 
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To accomplish this, the hydrophobic PVPT-coated Bi NPs were first pre-coated in PVP by refluxing the as-prepared 

Bi NPs in chloroform containing 29k MW PVP. This treatment yielded hydrophilic Bi NPs which could be 

dispersed as a stable colloid in the polar solvents which make up the Stöber environment (i.e., aqueous NH3 and 

ethanol), in which a silica shell can be deposited. Comparison of the FT-IR spectra of as-prepared Bi NPs (Figure 

4A) vs. Bi NPs after pre-treatment with PVP (Figure 4B) reveal a difference in the intensity ratio of sp
3
 C-H 

stretching (2916cm
-1
) to sp

2
 C-O stretching (1653 cm

-1
), which is expected for the addition of unmodified PVP to 

the triacontene-bearing PVPT on the as-prepared Bi NP surfaces. TEM imaging established that the Bi NPs retained 

their original core size distribution and morphology during this phase transfer step, and also established that there 

is not observable degradation of the surfaces in an aqueous environment (Figure S7).  

 

Figure 5. A) TEM image showing Bi NPs with silica coatings. B) EDX compositional map of Bi NPs with silica 
coatings.  

 

Following pre-treatment with unmodified PVP, Bi NPs coated could then be put in a Stöber environment, in which 

NH4OH hydrolyses TEOS, producing SiO2 that is deposited onto the Bi NP surfaces. Through optimization of water 

to ethanol ratios, TEOS amounts, and reaction time, we identified parameters that result in a thin ~10 nm silica layer 

on the majority of the recovered Bi NPs (Figure 5A). However, co-encapsulation of multiple Bi NPs into a single 

SiO2 shell was sparsely observed. The FT-IR spectrum of the resulting silica-coated Bi NPs (Figure 4C) shows a 

strong absorbance at 1045 cm
-1
 from Si-O stretching. EDX compositional mapping was also used to confirm the 
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identity of the coating as silica, with silicon and oxygen characteristic X-rays being emitted from the areas outside 

of the bismuth cores (Figure 5B). The silica-coated Bi NPs were readily dispersible in water (pH ~7) as a stable 

black colloid, which showed no signs of significant degradation or dissolution over the course of two months.  

Conclusion: Nearly monodisperse Bi NPs with sizes between 40 and 80 nm were synthesized through an aerobic 

reaction of bismuth triiodide in hexadecylamine and di-isopropylbenzene, using a hydrophobic polymer to prevent 

aggregation and oxidative dissolution. In this reaction, a soluble iodobismuthate anion forms in situ and serves as 

both oxidant and reductant in the formation of Bi NPs, resulting from burst nucleation and growth due to thermolysis 

of the iodobismuthate. The method is simple and reproducible, with an average standard deviation in the mean 

diameter of ~14% over five replicate syntheses. While in-batch variability in size was observed to be low, batch-

to-batch variability in the mean population diameter was relatively high (± 20 nm over 5 syntheses).  We attribute 

this to the variable concentration of alkylammonium cation that provides charge balance for the iodobismuthate 

anion, which is sensitive to the water content of the reaction.  

The as-prepared Bi NPs produced by this method were coated in PVP-graft-triacontene, making them highly 

dispersible in nonpolar solvents, and therefore of use to researchers interested in templating quantum wires. Surface 

treatment with PVP and silica coating procedures have also been performed to result in water-dispersible Bi NPs 

with retention of size, morphology and colloidal stability. Our future work will focus on further improving the 

batch-to-batch consistency of the Bi NP synthesis as well as evaluation of their biocompatibility and X-ray 

attenuation properties. 

ASSOCIATED CONTENT  

Supporting Information: Comparison of other literature preparations of Bi NPs vs. this work; reagent quantities and 

size distributions for replicate, parameter modification, and control experiments; TEM micrographs of all standard 

condition replicates; TEM micrographs and histograms from parameter modification studies; a detailed analysis of 

the parameter modification results; TEM micrograph of Bi NPs produced using BiBr3 as precursor; FT-IR spectra 

of neat hexadecylamine compared to hexadecylammonium from un-isolated Bi NP products; XRD pattern of the 

unidentified solid from the water addition control; and a TEM micrograph of PVP-coated Bi NPs are provided.  
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