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A B S T R A C T

Residential lawns are highly managed ecosystems that occur in urbanized landscapes across the United States.
Because they are ubiquitous, lawns are good systems in which to study the potential homogenizing effects of
urban land use and management together with the continental-scale effects of climate on ecosystem structure
and functioning. We hypothesized that similar homeowner preferences and management in residential areas
across the United States would lead to low plant species diversity in lawns and relatively homogeneous
vegetation across broad geographical regions. We also hypothesized that lawn plant species richness would
increase with regional temperature and precipitation due to the presence of spontaneous, weedy vegetation, but
would decrease with household income and fertilizer use. To test these predictions, we compared plant species
composition and richness in residential lawns in seven U.S. metropolitan regions. We also compared species
composition in lawns with understory vegetation in minimally-managed reference areas in each city. As
expected, the composition of cultivated turfgrasses was more similar among lawns than among reference areas,
but this pattern also held among spontaneous species. Plant species richness and diversity varied more among
lawns than among reference areas, and more diverse lawns occurred in metropolitan areas with higher
precipitation. Native forb diversity increased with precipitation and decreased with income, driving overall lawn
diversity trends with these predictors as well. Our results showed that both management and regional climate
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shaped lawn species composition, but the overall homogeneity of species regardless of regional context strongly
suggested that management was a more important driver.

1. Introduction

The expansion of large areas devoted to single-family residential
housing has been postulated to create ecosystems in urban and
suburban areas that are much more homogeneous than regional native
ecosystems (Kühn & Klotz, 2006; McKinney, 2006; Schwartz,
Thorne, & Viers, 2006). This pattern occurs in part because people
select a relatively uniform mixture of grass, trees, ornamental plantings,
and open areas (Groffman et al., 2014), which homogenizes many plant
taxa on multiple spatial scales (McKinney, 2006). Homogenization of
urban and suburban plant communities likely occurs through a variety
of mechanisms that are both direct and indirect results of human
actions. In residential areas, many homeowners obtain plants from
nationwide garden and home improvement stores in which sales are
dominated by a relatively small pool of plant species (Smith,
Thompson, Hodgson, Warren, & Gaston, 2006; Yue & Behe, 2008).
However, homogenization is not limited to planted areas or gardens,
but also occurs in non-planted urban plant communities, such as
spontaneous communities around urban street trees (Del Tredici,
2010; Wittig & Becker, 2010).

Lawns, or the turfgrass-dominated and maintained areas in yards,
are a widespread and characteristic element of urban and suburban
landscapes. Lawns cover more land than any other irrigated crop in the
United States (Milesi et al., 2005; Robbins & Birkenholtz, 2003). Lawns
provide ecological services such as water filtration (Beard & Green,
1994), moderation of the urban heat island effect (Hall et al., 2016;
Jenerette, Harlan, Stefanov, &Martin, 2011), stormwater management
(Mueller & Thompson, 2009), floral resources for pollinators (Larson,
Kesheimer, & Potter, 2014), and connectivity between populations or
reservoirs of species (Dearborn & Kark, 2010; Stewart et al., 2009), as
well as recreational and aesthetic benefits to people and their pets
(Beard & Green, 1994; Dearborn & Kark, 2010).

Although lawns are often assumed to be relatively uniform and
species-poor, they can be diverse and rich in native species (Bertoncini,
Machon, Pavoine, &Muratet, 2012; Thompson, Hodgson, Smith,
Warren, & Gaston, 2004) or dominated by non-native species (Stewart
et al., 2009). Residential lawns are typically designed to contain a
limited number of turfgrass species. They are often maintained to
reduce or eliminate weeds, and are continuously shaped through
management with mowing, watering, fertilizing and use of pesticides.
However, it remains unclear what species are actually present in typical
residential lawns across broad regions and what management or

regional environmental drivers may lead to different lawn species
compositions.

Lawn management varies within and among cities (Polsky et al.,
2014). The ways people choose to manage their lawns varies with
characteristics such as resident beliefs and norms, population density,
and housing density (Martini, Nelson, Hobbie, & Baker, 2015; Zhou,
Troy, Grove, & Jenkins, 2009), and these management choices in turn
affect lawn species composition (Bertoncini et al., 2012). Cultural and
socioeconomic factors such as family income and resident age also
influence urban plant diversity (Hope et al., 2003; Kinzig, Warren,
Martin, Hope, & Katti, 2005; Meléndez-Ackerman et al., 2014). The
urban “luxury effect” describes the tendency of plant diversity in urban
greenspace to increase with increasing socioeconomic status (Hope
et al., 2003; Martin, Warren, & Kinzig, 2004). Moreover, urban envir-
onments are known to select for species that have functional attributes
that allow them to disperse and persist in settings subject to higher
pollution levels, heat island effects, altered wind patterns and contrast-
ing dispersal agents (Knapp et al., 2012). At the same time, lawns are
subject to the same aspects of the regional climate that affect native
communities (Thompson et al., 2004). Interestingly, management
practices such as irrigation and fertilization may not be linked to
regional abundance of water and nitrogen (Groffman et al., 2016).
While there have been a number of studies of controls on lawn species
composition in individual cities (e.g., Stewart et al., 2009; Thompson
et al., 2004), continental scale patterns of lawn plant species composi-
tion associated with climate or large regional variations in lawn
management have not been well explored. These patterns are important
because they could reveal how management and regional environmen-
tal drivers together shape lawn species composition.

In this study, we measured lawn plant species composition across
different levels of housing density in seven cities and their associated
Metropolitan Statistical Areas (MSAs) spanning climatic zones across
the United States. We also measured plant species composition in
representative natural reference areas in each MSA. These included, for
example, Sonoran desert parks in Phoenix, tallgrass prairie in
Minneapolis, and northern hardwood forest in Boston. We determined
homeowner income and management practices with a phone survey.
Because actions by residents may strongly influence plant species
composition in lawns, we hypothesized that the plant species composi-
tion, richness and diversity of lawns, both including and excluding
planted turfgrasses, would be similar among different MSAs and that
lawns across the country would be more similar than reference areas

Table 1
Climate, native vegetation, and number of plots sampled in each MSA. Climate data are 30-year means from 1981 to 2010. Number of sites or locations/transects shows the number of
residential lawns and the number of different reference areas and transects sampled, with total number of plots sampled in parentheses. The number of transects in each type of reference
vegetation is shown in parentheses after the vegetation type.

Abbreviation MSA State Mean Annual
Precipitation (cm)

Annual Mean Daily
Temperature (°C)

Number of Sites or Locations/
Transects (No. of Plots)

Reference Area Vegetation (No. of
Transects)

Reference Lawn

BAL Baltimore MD 106 12.8 3/24 (68) 23 (123) Oak and tulip poplar forest (24)
BOS Boston MA 111 10.8 6/21 (63) 31 (186) Northern hardwood forest (18), pasture (3)
LA Los Angeles CA 33 17.0 3/21 (63) 20 (90) Southern California coastal scrub (21)
MIA Miami FL 157 25.1 4/23 (70) 21 (121) Pine rockland (4), subtropical hardwood

hammock (3), coastal hammock (8), pine
flatwoods (8)

MSP Minneapolis −St.
Paul

MN 78 7.9 6/24 (66) 21 (126) Oak savannah (8), tallgrass prairie (4),
bluff prairie (4), maple-basswood forest (8)

PHX Phoenix AZ 20 23.9 3/24 (72) 28 (130) Sonoran desert (24)
SLC Salt Lake City UT 41 11.6 3/24 (71) 30 (180) Sagebrush shrub-steppe (24)
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across the country. We also hypothesized that residential characteristics
would affect lawn species composition regardless of MSA and that lawn
species diversity would decrease with urban density, homeowner
income and fertilizer use.

2. Methods

2.1. Lawn selection and sampling

We selected seven cities across the continental United States that
represented different climates and vegetation types: Baltimore, MD
(BAL), Boston, MA (BOS), Los Angeles, CA (LA), Miami, FL (MIA),
Minneapolis-St. Paul, MN (MSP), Phoenix, AZ (PHX), and Salt Lake
City, UT (SLC) (Table 1). We first conducted a telephone survey of 9480
residents, equally distributed among six of the seven MSAs (all but
SLC), to identify individual residential properties as potential sampling
sites (Polsky et al., 2014). Telephone interviews were conducted
between November 21 and December 29, 2011. More than 100,000
households were initially contacted, with ∼13,500 homes identified
where the property contained a front or back yard and the respondent
was over 18 years of age. From these households, approximately 70% of
homeowners completed a 32 multi-part question telephone survey.
Surveyed properties were stratified by urban density (urban, suburban,
exurban) and socioeconomic status using the income and lifestyle
categories defined by the Potential Rating Index for Zip Markets
(PRIZM) (CLARITAS, 2013; Polsky et al., 2014). From the 9480
households surveyed by telephone, we selected 21–31 residential
properties per MSA for field sampling. All selected properties were
single-family homes with turfgrass lawns. Salt Lake City was not
included in the telephone survey and lawns were selected at a later
date. In Salt Lake City, 50 letters were randomly sent to homeowners in
each of six targeted PRIZM categories asking permission to visit their
home for sampling. Within each PRIZM category, we visited 5 homes
randomly selected from the positive respondents, for a total of 30 yards.

In addition to site selection, responses to the initial telephone survey
in all MSAs except Salt Lake City were used to determine household
income and whether or not each household applied fertilizer, pesti-
cides, or water to lawns (Polsky et al., 2014). No information was
collected about other lawn management practices.

Within each MSA, we also selected three to six reference areas that
contained minimally-managed vegetation. These reference areas were
typically parks or publicly-owned reserves that ranged in structure and
type, but were chosen to represent the predominant natural vegetation
in each MSA (Table 1). In each reference area, we sampled the forest
understory or all low-lying vegetation in non-forest communities,
including herbaceous plants, woody seedlings, and shrubs less than
1 m tall, but not overhanging trees. We used these measurements to
compare species in lawns to those found in unmanaged areas and to test
for the possibility that lawns acted as species reservoirs. We also used
these communities to test for homogenization of lawns compared with
unmanaged vegetation found in remaining natural communities.

To sample each residential property, we placed three 1 × 1 m plots
randomly in the turfgrass area of front and back lawns, for a total of six
plots per property. Where there was not both a front and back lawn or
where lawns were too small to allow placement of three plots, fewer
plots were sampled. Within each reference area, we located one to four
1 × 1 m plots along 100 m transects. In most cases, more than one
transect was located in the same reference area, but transects were
distributed to capture the vegetation composition of the reference area.
We selected three to six reference areas per MSA, with a total of 21–24
transects in each MSA. We sampled all areas during the growing season
(spring for LA, PHX; summer for BAL, BOS, MIA, MSP, SLC). All
sampling in Baltimore, Miami, Minneapolis-St. Paul, and Phoenix and
residential sampling in Boston was done in 2012. All Los Angeles lawns
and reference areas and Salt Lake City lawns were sampled in 2013, Salt
Lake City reference areas were sampled in 2014 and some additional

Boston reference areas were sampled in 2015.
In each plot, we identified plants to species or the lowest possible

taxon. The cover of each species within the plot was estimated and
species were assigned to a cover class ( < 1%, 1–3%, 3–5%, 6–15%,
16–25%, 26–50%, 51–75%, 76–100%). The midpoints of each cover
class range were used in further analysis. Species were identified as
native or non-native to the state in which they were recorded and were
classified by functional group (turfgrass, other graminoid, forb, or
shrub/tree) using species data from the USDA PLANTS Database (USDA
NRCS, 2015). Nomenclature follows the USDA PLANTS Database.

Climatic data representing 1981–2010 means for annual precipita-
tion and annual mean daily temperature were obtained from NOAA’s
National Climate Data Center (NOAA, n.d.). Stations located at each
city’s international airport were used for consistency.

2.2. Data analysis

We used species richness and the Shannon-Wiener diversity index to
quantitatively compare diversity among MSAs and between lawns and
reference areas, and we used the Bray-Curtis dissimilarity index to
compare species composition within and among MSAs. The Bray-Curtis
index yields a measure of the dissimilarity of communities based on the
species present and the Shannon-Weiner index represents the number of
species and evenness of a community. We also compared overlap
between species lists for lawns in each MSA, with comparisons to
reference areas as well. We performed ordinations of the lawn and
reference area species data with non-metric multidimensional scaling
(NMDS) with the Bray-Curtis dissimilarity index. We ran three NMDS
analyses, one considering all species in both residential and reference
areas and two considering only residential lawns, one with all species
and one with turfgrass species removed from the analysis. We used
cover values and species names to create the NMDS. One Boston lawn
and one Phoenix lawn that were composed almost entirely of turf-
grasses were removed from the analysis without turfgrass species.

As a category for inclusion or exclusion in our analyses, turfgrass
species were defined using three sources: a University of California
publication on residential turfgrass selection (Harivandi et al., 2001), a
lawn grass selection page on a national home improvement store
website (Lowe’s, n.d.) and a page on types of turfgrasses on a lawn
care company website (Scotts Lawn Service, n.d.). Sixteen species were
recorded in our plots and considered to be turfgrass species for this
analysis (Table S1).

All calculations and analyses were performed in R (R Core Team,
2014). Calculations of NMDS, species diversity, and dissimilarity were
performed using the Vegan: Community Ecology package in R (Oksanen
et al., 2015). NMDS was calculated with the metaMDS function. For
calculations of species richness, diversity and NMDS, a reference area
was defined as a reference transect of one to four plots. No significant
differences were found between community composition in front and
back lawns (Locke, 2017), so lawns were analyzed as a composite of the
three to six plots from the front and back lawns of a single residential
lot. All plots in each reference and residential area were averaged to
give a single species richness and diversity value for each site.

Analyses of income, housing density, and lawn management
(fertilizer, pesticide and water application) effects did not include Salt
Lake City because it was not included in the original phone survey. We
used climate data, lawn management factors, and housing density to
create linear models of Shannon-Wiener diversity and species richness
using backward elimination to select a subset of significant predictors
for each measure of diversity. Differences in species richness and
diversity among MSAs were tested using ANOVA with Tukey HSD tests
used to determine pairwise differences.
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3. Results

3.1. Functional group and species composition

The functional group composition of lawns across MSAs was very
similar (Fig. 1). Across all MSAs, average turfgrass cover in the sampled
areas of lawns was 76 ± 30%, and averages for individual MSAs
ranged from 60 ± 25% to 98 ± 11%. Forb cover in lawns varied both
between and within MSAs, with 14 ± 18% forb cover overall and
7 ± 12% to 33 ± 28% cover across MSAs. Shrub and tree seedlings
were absent from most lawns.

When all plant species were considered, lawns in the four cooler
MSAs (BAL, BOS, MSP, SLC) were generally similar to each other and
lawns in the three warmer MSAs (LA, MIA, PHX) were distinct from the
cool cities but less similar to each other (Fig. 2A). However, when
turfgrass species were removed from the NMDS analysis and only
spontaneous or unintentionally planted species were included, lawns
from all cities grouped very closely together, indicating higher similar-
ity of the spontaneous plant communities than the planted turfgrasses
both between and within MSAs (Fig. 2B).

When compared with reference vegetation, lawns in all MSAs had
similar species composition and grouped closely together (Fig. 2C). In
contrast, species composition of reference areas varied widely by MSA
(Fig. 2C).

One notable difference between Miami lawns and lawns in all other
MSAs was the proportion of native to non-native species. While lawns
in the other six MSAs contained 13–37% native species with an average
cover of 3–28%, Miami lawns on average contained 61% native species
with 76% native species cover (Fig. 3). Most native cover in Miami
lawns was caused by the prevalence of the native turfgrass Stenotaph-
rum secundatum (Walter) Kuntze (St. Augustine grass). However, the
number and percentage of species in Miami lawns that were native was

also much higher than in lawns in other MSAs (Fig. 3).
Bray-Curtis dissimilarity among lawn species composition in differ-

ent MSAs was significantly positively correlated with differences in
precipitation (Mantel test, r = 0.38, p = 0.001) and temperature
(Mantel test, r = 0.59, p = 0.001), and with increasing geographic
distance between MSAs (Mantel test, r = 0.51, p = 0.001). This
indicated that lawn species composition became less similar with
greater climatic difference and greater geographic distance.
Similarities between some MSAs with very different temperatures
(e.g., PHX-MSP, BOS-MIA) were higher with turfgrasses removed,
indicating that the spontaneous plant community was more similar
than the planted turfgrasses (Table S2).

On average, 18% (range 3–48%) of species were shared among
lawns (Table S3). For most MSAs, lawns shared more species with lawns
in other MSAs than they did with the associated reference areas (Fig. 4).
Miami, however, shared more species with Miami reference areas than
with lawns in any other city. Less than 25% of species in lawns in each
MSA were also found in the reference vegetation of that MSA (Fig. 4),
and less than 30% of species recorded in the reference areas were found
in lawns in that MSA (Fig. S1). Overall, more species were shared
among lawns in different MSAs than among reference areas in different
MSAs. A total of 93 species were found in lawns in multiple MSAs,
while only 32 species were found in reference areas in more than one
MSA and no species were found in reference areas in more than three
MSAs.

Lawns in the seven MSAs shared a few very common species (Table
S4). Poa pratensis was the most commonly recorded species, and was
found in lawns in Salt Lake City (100% of lawns), Boston (97%),
Baltimore (96%), Minneapolis-St. Paul (95%), and Los Angeles (10%).
All lawns in Boston, Minneapolis-St. Paul, and Salt Lake City contained
one or more species of Poa, and Miami was the only MSA without Poa in
any lawns. Schedonorus arundinaceus (Schreb.) Dumort. (Tall fescue)

Fig. 1. Average cover (as percent of area sampled) of plant functional groups in lawns within each Metropolitan Statistical Area. Error bars shown are standard deviation. Cover was the
average of the summed cover of all species in the functional group in a plot and may be greater than 100.
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was prevalent in Baltimore (100% of lawns) and Los Angeles (95%) and
also occurred in Salt Lake City (53%) and Minneapolis-St. Paul (24%).
Festuca rubra L. (Red fescue) was common in lawns in Minneapolis-St.
Paul (100%) and Salt Lake City (70%). Festuca species were also
prevalent in lawns in Boston (90%), Baltimore (35%) and Los Angeles
(20%). Lolium perenne L. (Perennial ryegrass) was found in lawns in
Boston (90%), Salt Lake City (50%), Phoenix (24%), Minneapolis-St.
Paul (10%), and Baltimore (9%). Cynodon dactylon (L.) Pers.
(Bermudagrass) was the most widespread graminoid species, and
occurred in all lawns in Phoenix and in a few lawns in five of the six
other MSAs (all except MSP). While a few Miami lawns contained C.
dactylon, the most common turfgrass there was Stenotaphrum secunda-
tum, which was found in all Miami lawns and also found in lawns in Los
Angeles (20%) and Phoenix (20%).

In addition to turfgrasses, three common lawn weeds were prevalent
in multiple MSAs: Taraxacum officinale F.H. Wigg. (Common dandelion;
BAL, BOS, LA, MSP, PHX, SLC), Oxalis stricta L. (Common yellow oxalis;
BAL, BOS, MIA, MSP, SLC), and Trifolium repens L. (White clover; BAL,
BOS, MSP, SLC). At least one species of Oxalis was found in lawns in
every MSA, while no reference areas in any MSA contained any Oxalis
species.

3.2. Species richness and diversity

Combined, lawns from all seven MSAs contained a total of 353
species from 74 families, while reference areas contained 397 species
from 93 families. Forb and graminoid species diversity were higher in
lawns (215 forb species, 18 turfgrass species, 54 other graminoid
species) than in reference areas (199 forb species, 5 turfgrass species,
64 other graminoid species), while many more woody species were
present in reference areas (130 species) than in lawns (66 species).

While functional group and species composition were more homo-
geneous in lawns than in reference areas, Shannon-Wiener diversity and
species richness varied more in lawns across MSAs than in reference
areas (Fig. 5). Lawns across MSAs differed significantly in both diversity
(F[6,164] = 13.95, p < 0.0001) and species richness (F[6,164] = 20.6,
p < 0.0001). There were no significant differences in diversity be-
tween reference areas in different MSAs (F[6,154] = 1.84, p = 0.1),
although richness did differ slightly (F[6,154] = 6.11, p < 0.0001).

Although turfgrasses formed the dominant proportion of total cover
in lawns in all MSAs (Fig. 1), they were only a small part of species
richness. Lawns in each MSA had 1–5 turfgrass species compared with
1–25 non-turfgrass species. On average, lawns contained 1–3 turfgrass
species and 4–15 non-turfgrass species. Trends in species richness and
diversity did not change when turfgrasses were removed from con-
sideration.

3.3. Climate and management effects

Some of the variation in lawn richness and diversity among MSAs
was explained by differences in climate. Annual precipitation explained
some differences in lawn species richness (r2 = 0.38) and diversity
(r2 = 0.21), with higher plant species richness and diversity in wetter
MSAs, while reference site diversity and richness remained relatively
constant over the gradient (Fig. 5). Annual mean temperature did not
explain differences in richness in lawns (p > 0.1) and was a poor
predictor of richness in reference areas (r2 = 0.04) and diversity in
lawns (r2 = 0.03) or reference areas (r2 = 0.02).

Lawn species diversity did not differ with urban density
(F[2,132] = 1.79, p = 0.2; Fig. S2). Species richness and diversity
decreased with increasing household income (richness F[5,107] = 3.30,
p = 0.008; diversity F[5,107] = 2.79, p = 0.02; Fig. 6).

Fig. 2. Non-metric multidimensional scaling (NMDS) of lawn and reference vegetation in seven Metropolitan Statistical Areas across the US. Panels show NMDS of lawns only with all
species (A) or excluding turfgrass species (B), and of lawns plus reference areas with all species included (C).
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The household surveys showed that all lawns in Phoenix and Los
Angeles received supplemental water, as did most lawns in the other
MSAs. Thirty eight percent of the 141 lawns for which survey data were
available received fertilizer, pesticide and water, while 18% received
fertilizer and water, 11% received pesticide and water, 2% received
fertilizer and pesticide, 18% received only water, 4% only fertilizer, 2%
only pesticide, and 7% had no additions. Lawn diversity was lower

(model r2 = 0.14) when fertilizer (p = 0.01) and water (p = 0.0004;
Fig. 7) were applied.

The observed differences in species richness with climate and
income were primarily related to differences in the number of native
forbs. Native forb richness increased significantly with increasing
precipitation (r2 = 0.39, p < 0.00001; Fig. S3). Species richness of
non-native forbs and native graminoids also increased, but native forbs
increased the most rapidly (Fig. S3). Income was the only variable that
explained more than 10% of the variance in native forbs (r2 = 0.23,
p < 0.00001). Shannon-Wiener diversity and lawn plant species
richness were both best described by a linear combination of precipita-
tion, temperature, fertilizer application and household income (diver-
sity r2 = 0.40, richness r2 = 0.49; Table 2). Fertilizer application and
increasing temperature and income were associated with lower plant
species richness and diversity, while increasing precipitation was
associated with greater species richness and diversity.

4. Discussion

4.1. Homogenization of lawn flora

Lawns across the country had highly similar functional group and
species composition. As expected, lawns across the U.S. were much
more similar than were corresponding reference areas of unmanaged
vegetation. This pattern supported the idea that by creating lawns in
areas of residential land use across the U.S., humans have caused
ecological homogenization at the continental scale (Groffman et al.,
2014; McKinney, 2006) that creates and maintains similar ecosystems
across a broad range of ecoregions.

More surprisingly, the similarity of the spontaneous vegetation in
lawns across the country indicated that homogenization was related to
factors beyond the similarity of human planting practices, as has been

Fig. 3. Average number of native and non-native species per site in lawns of each Metropolitan Statistical Area. Species were considered native if they were native to the state in which
they were observed. Error bars are standard deviation.

Fig. 4. Fraction of species shared among lawns and reference areas across seven
Metropolitan Statistical Areas (MSAs). Points show the fraction of all species in lawns
in that MSA that are shared with lawns in other MSAs, with species shared with the
corresponding reference area shown for comparison.
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found for spontaneous communities around street trees
(Wittig & Becker, 2010). Some of these species are common weeds
present in turfgrass seed sources (Stewart et al., 2009) and may be
maintained in the soil seed bank from past as well as current lawn
cultivation. It is also likely that factors such as lawn maintenance (e.g.,
mowing), urban temperature, and disturbed soils create a distinct
environment in which certain species are successful (Bertoncini et al.,
2012).

Many of the common species found in lawns in this study were
common to lawns beyond these seven MSAs. Lawns in Ohio also
contained common turfgrass species such as Poa pratensis and
Schedonorus arundinaceus (as Festuca arundinacea) as well as weed
species such as Taraxacum officinale and Trifolium repens (Cheng,
Richmond, Salminen, & Grewal, 2008). Thompson et al. (2004) found
species including Taraxacum sp., Festuca rubra, Lolium perenne, and
Trifolium repens with the highest cover in lawns in Sheffield, UK. Lolium
perenne and Trifolium repens were found in more than half of surveyed
lawns in Paris, France (Bertoncini et al., 2012) and more than 80% of
lawns in Christchurch, New Zealand (Stewart et al., 2009). These
similarities indicate that lawn species homogenization may extend
more broadly within the U.S. as well as beyond North America.

Lawn species composition was more similar among lawns in
different MSAs when only spontaneous species were considered than
when all species were considered. This result indicated that lawns in
different MSAs commonly contained different turfgrasses, but sup-
ported a more similar mix of spontaneous species. One explanation
for this difference may be that there is regional variation in recom-
mendations provided by home improvement stores, lawn care profes-
sionals, and turfgrass extension programs for what species of turfgrass
to plant. In addition, turfgrass species originally planted by housing

developers may vary regionally.
One positive aspect of the homogeneity of the spontaneous lawn

flora is the abundance and ubiquity of the flowering forbs T. officinale,
T. repens, and Oxalis stricta, which may act as floral resources for urban
pollinator populations (Larson et al., 2014; Lerman &Milam, 2016).
The presence of these species in the majority of lawns surveyed
indicates that this may be a prominent service provided by lawns as a
whole, and therefore the use of lawn floral resources by urban
pollinator communities warrants further study.

4.2. Drivers of lawn diversity and composition

Plant species richness and diversity in lawns were more strongly
associated with annual precipitation than with mean annual tempera-
ture. However, lawns in warm and cool MSAs grouped separately when
species composition was considered. This indicated that temperature
was correlated with species composition but not overall diversity. The
reduction in diversity at the drier end of the continental precipitation
gradient was largely caused by the presence of fewer native forbs.
Native forbs in drier areas may be unsuited to the supplemental
irrigation applied to all lawns in Los Angeles and Phoenix. In wetter
climates, native forbs adapted to local conditions may be better suited
to, and more able to invade, lawn environments. Alternatively,
differences in management (e.g., increased herbicide use) could be
responsible for reductions in lawn native forb diversity in drier MSAs.
Common forb species found in most lawns are likely adapted to the
lawn environment rather than local climates, so may be able to persist
in lawns across the precipitation gradient. Thompson et al. (2004) also
found local climate to be a primary determinate of lawn species
composition along an altitude gradient in Sheffield, UK.

Fig. 5. Species richness and Shannon-Wiener diversity index in lawns and reference area vegetation in seven Metropolitan Statistical Areas (MSAs) plotted across a precipitation gradient.
Points show richness and diversity values for each lawn and thick dashes show the average value for each MSA. MSAs that did not differ significantly (Tukey HSD, p > 0.05) are marked
with the same letter.
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Overall species diversity across lawns in all MSAs was lower than
diversity across all reference areas. Similar to a previous study that
compared household yard diversity to reference areas in Minneapolis-
St. Paul, MN (Knapp et al., 2012), individual lawn diversity was lower
than diversity in the associated reference areas in most MSAs, and
species in the lawns and those in the reference vegetation overlapped
little. This result indicated that lawns as a whole had limited ability to
act as species reservoirs or corridors for native species
(Dearborn & Kark, 2010). Miami, the only subtropical and peninsular
location, was an exception to this general pattern. The dominant
turfgrass in Miami, Stenotaphrum secundatum, was a native tropical
species and differed from the dominant turfgrasses in any other MSA.
Miami lawns also contained far more non-turfgrass native species than
lawns in any other MSA. Tropical and subtropical lawns generally may
be more hospitable to native species, and therefore may be more
important as urban reservoirs of native species than lawns in temperate
cities (Cook, Hall, & Larson, 2012; Stewart et al., 2009).

The lawns sampled in this study were only a single component of
the assemblages of plant species that occurred in urban, suburban, and
exurban residential yards. Other cover types that include gardens,
plantings, and patches of more natural vegetation were common as
well. We found that while overall species diversity was lower in lawns
than in reference areas, forb and graminoid diversity was higher. It is
likely that if entire yards were considered together with lawns,
continental-scale plant species diversity of residential parcels would
be higher than in reference areas (Cook et al., 2012; McKinney, 2008;
Smith et al., 2006).

Species diversity was lower in lawns with higher household income
and in fertilized lawns. Other studies have shown higher fertilization
rates in higher income households (Fraser, Bazuin, Band, & Grove,
2013; Zhou et al., 2009), but we did not find this correlation to be
significant. Fertilization may reduce diversity by favoring the growth of
a small number of species, and it is also possible that there was high co-
variation between application of fertilizer and herbicides, the use of
which was not included in our survey. The association of decreasing
lawn species diversity with increasing income was opposite the effect
observed in studies focused on urban gardens as a whole (Hope et al.,
2003). This trend appeared to indicate a preference among residential
homeowners for diverse gardens but more uniform and weed-free lawns
(Larson & Brumand, 2014; Larson et al., 2016), which may be more
effectively achieved when household income is higher. Questions about
mowing regimes were not included in the resident surveys in this study,
so the possible effects of mowing on lawn diversity and species
composition cannot be excluded. While many differences in diversity
can be explained by the variables considered here, additional con-
sideration of lawn mowing may provide further insight. However, prior
studies have shown little effect of mowing on lawn species composition
(Thompson et al., 2004).

We did not find that residential density was significantly related to
lawn diversity, contrary to findings by others that distance from the city
center and position along urban-rural gradients were significant pre-
dictors of diversity (Bertoncini et al., 2012; McKinney, 2002; Pickett
et al., 2011). However, we did not consider either highly urban
residences (that were not single-family homes) or very rural residences

Fig. 6. Species richness and Shannon-Wiener diversity index in lawns of households with different annual income levels. Bars show mean values for six Metropolitan Statistical Areas
(BOS, BAL, LA, MIA, MSP, PHX). Error is standard deviation. Income categories are less than $35,000 (n = 10), $35,000-$50,000 (n = 11), $50,000-$75,000 (n = 26), $75,000-
$100,000 (n = 22), $100,000-$150,000 (n = 25), and more than $150,000 (n = 19). Significant differences (Tukey HSD, p < 0.05) are marked with different letters.
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that were outside MSAs. A larger range of housing density and land uses
may have captured a greater influence of urban density on lawn
diversity.

Lawns have been shown to provide a variety of services such as heat
reduction and stormwater management in residential yards
(Beard & Green, 1994; Mueller & Thompson, 2009), and our results
support the potential ability of lawns to sustain urban pollinators
(Larson et al., 2014; Lerman &Milam, 2016). However, because of
consistent and very low levels of species overlap in lawns and reference
areas and the high proportion of non-native species in lawns in most
places in the U.S., we found that the role of lawns as reservoirs of native

species is low. Plant diversity in lawns could be increased by reduction
or elimination of lawn fertilizer application, but these changes are
unlikely to significantly increase the connection between lawns and the
regional flora. Rather, increased regional species presence in lawns
would require a more dramatic rethinking of lawn design in U.S.
residential landscapes.

5. Conclusions

This study showed that human actions in residential lawns created a
continental-scale lawn flora that was much more similar than the
regional understory flora of minimally-managed reference areas. This
national lawn flora was far more diverse than the idealized mono-
culture and contained nearly as many species as reference area
understories across the U.S. However, most species represented were
non-native and not place-specific, limiting the ability of lawns to act as
species reservoirs. These results show that while lawns contain a wider-
than-expected array of species, these species largely belonged to a
continental-scale homogenized lawn community that was shaped by
both climatic factors and lawn management.
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