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Abstract

Semiconductor manufacturing companies aim to achieve shortest test times for

products while maintaining the product quality. Achieving shortest test times for

devices requires multiple updates to the test flow and test content. Test cost varies

in direct proportion to production test time required to test chips and detect fails.

This thesis presents a method to achieve shortest test times by determining when

the updates are needed and what are the changes to the test flow and test content.

This thesis introduces a new Adaptive Test Scheme (ATS). ATS estimates individ-

ual test fail rates dynamically, per die, and makes real-time modifications to test

order and test contents. ATS computes data-driven test fail rate estimates and

uses the estimates to identify the required changes and trigger updates to test flow

and test content. ATS uses Bayesian statistics to model the per test fail rates and

update the test orders. ATS achieves test time reductions by employing per wafer

elimination. ATS also incorporates a simple quality monitor, by resetting the test

content at the start of next wafer.

This thesis evaluates the performance of ATS with synthetic data generated by a

Monte Carlo method and with production wafer sort data for two manufactured

products. The product data results show ATS reduced by 20% the total test-time

for one product and by 40% for a second product, with changes in product quality

level below industry targets.
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Chapter 1

Introduction: Need, Contribution and Organization

1.1 Need and Emergence of Adaptive IC Test

Semiconductor manufacturing companies aim to achieve a very cost effective man-

ufacturing environment to maximize their profits. Continual device scaling and

integration reduces chip manufacturing cost but it does not diminish cost of test-

ing these chips. Aggressive scaling introduces process variation in addition to the

equipment variation making it harder to test the same circuits [1, 2]. Test cost

does not directly scale with transistor count, die size, device pin count, or process

technology. Figure 1.1 shows the trends in test cost and silicon manufacturing

cost of semiconductor devices. For products in some market segments, test may

account for more than 70% of the total manufacturing cost [3].

Figure 1.1: Cost of test vs. cost of manufacturing semiconductors from ITRS 2001
[1]
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The chip manufacturers are constantly attempting to improve product quality by

minimizing number of faulty chips that escape their testing procedures. These

faulty chips are called test escapes. Chip manufacturers have to make reliable

products and guarantee a certain quality level by limiting the number of test

escapes. This quality level is measured in terms of defective parts per million

(DPPM) shipped to the customer. Today these quality requirements have become

increasingly stringent with target DPPMs being continually driven downward [3].

This results in cost of test being a significant component in the manufacturing

cost of the chip. Test cost reduction has become a crucial issue in the overall cost

control of the product.

Test cost varies in direct proportion to production test time. Production test time

for a failing part is the time required to detect the first fail. This depends on the

test application order or test flow and the location of the test that fails the die in

the test flow. Achieving shortest test times for devices reqiures multiple updates

to the test flow and test content. This thesis presents a method to achieve shortest

test times by determining when the updates are needed and what are the changes

to the test flow and test content.

Equipment and process variation leads to various test inadequacies such as high test

data volumes, longer test application times, increasing number of test patterns and

repetition of tests at different test insertions (like wafer-sort, package, burn-in and

final). These test inefficiencies lead to increased test time and test cost. Process

and equipment variations result in a non-uniform defect occurrence probability.

Moreover, vatiations result in a highly skewed defect detection probability of the

tests or varying test fail rates [4]. The variation in test fail rates suggests emergence
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of an approach that can enable test cost reduction by applying a reduced set of

test while quanitifying associated quality tradeoff [5,6].

Semiconductor manufacturing variation is either spatial or temporal variation.

Variation appears on three different scales: lot-to-lot variation, wafer-to-wafer

variation and die-to-die variation. Spatial variations are caused by non-uniform

process while temporal variations are caused by the drift in process over a period

of time [1]. Traditionally, temporal and spatial variation were managed by using

proper test and design margins, while defects were screened at test. Today, both

variations and defects must be screened at test [2]. When a product is introduced,

the initial test content and test order is based on experience, previous similar prod-

ucts and fault simulation. As test fallout data accumulates periodic test program

releases are employed to reorder and eliminate tests and test content. Besides

being labor-intensive the above method is unresponsive to short term temporal

variation or spatial variation.

Over the last few years, adaptive test has been proposed as a test strategy to

simultaneously reduce the effect of product variation and screen defects. Adaptive

test is recognized as a key driver for future of semiconductor test and was formally

defined in International Technology Roadmap of Semiconductors (ITRS), 2009,

Test and Test Equipment section [3]. “Adaptive Test is a broad term used to

describe methods that change test conditions, test flow, test content and test limits

(potentially at the die/unit or sub-die level) based on manufacturing test data and

statistical data analysis. This includes feed-forward data from inline test and early

test steps to later test steps and feed-back data from post-test statistical analysis

that is used to optimize testing of future products.”
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The key to adaptive test is to utilize data generated from testing the part or rele-

vant data from previous processes or measurements in predicting the appropriate

process for the future tests. Adaptive test needs to make decisions to reduce or

increase testing as and when required. The ultimate goal is to apply only the min-

imum set of tests required to screen each part that will fail in the system either as

shipped or over time [6].

1.2 Brief Description and Contribution of this Research

This thesis proposes a new Adaptive Test Scheme (ATS) to learn test fail rates

dynamically, per die and make real-time modifications to test order and test con-

tents. The thesis describes this adaptive test scheme that reorders and eliminates

tests to reduce test times without compromising quality. Test elimination and

reordering schemes need to estimate and model test fail rate of each test. Data

already generated by the tester needs to be effectively utilized to provide statisti-

cal information for future test guidance. ATS utilizes Bayesian statistics to make

dynamic updates to the test fail rates using per die pass/fail data for each test.

ATS implements these updates using a Bayesian formulation that requires simple

calculations which can be done in real-time on the tester.

Reordering tests according to test fail rates enables detection of failing die earlier

in the test flow. This reduces the overall test time and test cost [7]. Adaptive test

reordering has the following benefits:

• Reduces time to screen defects by yield learning and so reduces test cost

• Controls process and equipment variations at die, wafer, lot level.

4



• Provides opportunity to eliminate or sample test by sorting tests that are

most likely to detect a fail and tests that are least likely to find a failing die.

• Reduces test time for a given product quality.

• Increases production capacity by testing more units for a given time.

• Accelerates production ramp-up by learning and adapting to product test

data.

The Adaptive Test Scheme (ATS) described in this thesis demonstrates all the

advantages listed above. ln addition to all this ATS provides incorporates a sim-

ple natural monitor to control the impact of excursions, for example, unexpected

incidence of a unique fail mechanism for an eliminated test.

Some part of this research has been presented at IEEE International Test Confer-

ence (ITC), in Sept. 2011, and published in the conference proceedings [8].

1.3 Organization of Thesis

This thesis has been laid out in five chapters with different subsections. The next

chapter describes previous work in the field of adaptive test. Further, it pro-

poses a new classification scheme for the different adaptive test implementations

and presents them in ITRS format. The third chapter of this thesis describes in

detail the Adaptive Test Scheme (ATS), which enables real-time test reordering

and elimination. The fourth chapter of this thesis a detailed evaluates ATS using

synthesized data (Monte Carlo) and shows results of application of ATS to pro-

duction data for two products from our industry partners. This thesis concludes

by summarizing the benefits and requirements of the ATS developed in this work
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and by making recommendations for researchers and product engineers working

on adaptive test methods.
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Chapter 2

Background: Previous work, New Classification and Motivation

Traditionally test flows are static, which means different tests and test patterns are

applied in a predefined order. Most test application programs are written with the

test application stopping at the first failing test referred to as stop-on-fail (SOF). A

SOF test configuration gives lower test times for failing parts. Some parts are also

subjected to continue-on-fail (COF) analysis where testing continues even after

detecting a fail. COF testing is done by overriding SOF behavior and collecting

pass/fail data for the full test set. The COF test data can be analyzed to make

changes to the test program. Due to the large test data samples and long test times

required by individual test effectiveness analysis, COF can be very costly [9]. So,

COF based test effectiveness analysis is often not a practical way to adapt test

programs as defect mechanisms do change through time.

Today, most manufacturers perform COF or SOF based volume test data (mil-

lions of units) fail analysis for a product and then provide recommendations to

make changes to the test program. Examples of changes to the test program

are: rearranging the test application order; modifications to the test content by

eliminating or sampling test(selectively testing for few sample die); adjusting test

limits, guardbands and setpoints. Test changes are then subjected to review by

a change control board to check if there are any associated quality risks. Apart

from being cumbersome and time-consuming, this process has the disadvantage of

being unresponsive to short term temporal variation or spatial variation. Desire to

control defects and variation has led to a lot of work in the field of test reordering,

7



test optimization, test pattern reduction, adaptive limit setting and adaptive test.

2.1 Previous work on adaptive test

The idea of adaptive test can be found as early as 1981 when a model for adaptive

system diagnosis, but not test was described [10]. In 1991, test reordering using fail

rates was first discussed by Huss and Gyurcik, where tests are reordered based on

the pre-production estimates of faults and test fail rates, derived from a directed

flow graph of all modeled faults in the circuit to be tested. This static reorder

method works for small circuits with a few hundred transistors but becomes in-

creasingly difficult to apply with increased circuit complexity [11]. Some papers

on adaptive test present work on the problem of optimal test pattern ordering by

using complete pass/fail information for all patterns based on a few sample die.

An efficient heuristic to determine the pattern order to reduce the average test

time for defective devices is proposed in [6]. The effect of the ordering of test types

on test cost is analyzed in [7] using SEMATECH data. A method that models test

escape rate as a function of multiple test coverages has been described in [12].

Adaptive test methods are primarily applied in the parametric test domain for

recommending test elimination candidates and setting adaptive test limits [4–6].

The parametric tests like IDDQ, noise margin tests, specification tests, return a

measurement and not just a pass or fail decision as in digital tests. The adaptive

methods can perform correlation analysis based on parametric measurements from

a sample units for each lot and adaptively select optimal parametric tests on a per

lot basis. Part Average Testing (PAT) techniques involving calculation of process

capability coefficients, Cp and Cpk, for the different parametric measurements to
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decide test elimination candidates are now being adopted in the semiconductor

industry [5].

The above methods require costly pass/fail information collection for the full test

set and, most importantly, they are not adaptive in test order. Each method pre-

sumes that the initial test order remains effective throughout the wafer. Reordering

tests in descending order of test fail rates detects the failing die earlier in the test

flow and hence reduces the test time and test cost . Ideally, test order should adapt

to variation in test fail rates caused by process variation and defects. A method

using defect diagnosis to understand the changes in defect types throughout the

production life-cycle, based on failure mechanisms is used to adaptively change

test content in [13]. But a study involving defect diagnosis is time consuming and

limits the frequency of adaptation to a few lots.

The 2009 International Technology Roadmap for Semiconductors (ITRS) predicted

that by 2015 test pattern volumes will increase by 25x causing 11x more test

times [3]. Ferhani in [14] suggests that 70% of the applied production patterns

have very low unique fallout for digital circuits. Elimination of such patterns will

have a little effect on DPPM but a relatively large impact on test time and test

cost. Eliminating tests or test patterns with low fallout and testing few die with

a reduced test content reduces the test time for good die. Any test elimination

approach needs an accurate prediction of these low fallout tests and a careful study

of DPPM impact.

The Adaptive Test Scheme (ATS) described in this thesis provides a method to

adapt test order and test content to the test fail rate variation on a wafer and
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builds on the concept of having an optimum test set (OTS) and order, for each

unit tested as described in [6].

2.2 New classification of Adaptive Test techniques

Various adaptive test methods such as changing test limits to product data, per-

forming outlier analysis to adapt test at the next test insertion etc. are being em-

ployed in the semiconductor industry. Some of these methods have been deployed

on a large scale while others exist on an interim basis or smaller scale [5, 15, 16].

The key idea for all these adaptive methods is to manage process variation and

achieve lower test cost at a better quality and higher yield. Broad definition and

usage of the term adaptive test suggests a need for a general classification of these

techniques to provide a clear roadmap for researchers and product/test engineers.

Two classifications of adaptive test have been discussed in [3]. The first is based

on when data analysis is performed.

• Real-time. In parallel with testing and on tester, per die.

• Near-time. At the end of sample testing, end of wafer or a lot or many lots.

• Off-line. Off-tester statistical calculations set test limits and control the test

flow.

The second classification is based on whether adaptive test data is collected from

a single or from multiple test insertions (wafer sort, burn-in, package test).

• Single Insertion. Data from single test insertion is used to adapt tests to

local variation.
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• Multi-insertion. Data from any test insertion is available to any other test

insertion like wafer sort, package test, burn-in or final test as data feed-back

and data feed-forward systems.

Combinations of when the data is collected and when it is analyzed are used at

various insertions to set limits, change test flows and content, and modify setpoints.

This thesis presents an additional new third classifier for adaptive test based on

different Stages of Adaptive Test. This classification is depicted in Figure 2.1.

The figure is a modified version of table proposed in [17]. The color code used

in this figure is the standard ITRS color code shown in Figure 2.2. Adaptive

test classification is based on three stages of adaptation; simple, complex and

continuous adaptation. A stage is defined by the attributes in each test method

row. The remaining part of this section defines these terms and their attributes.

The adaptive test scheme described in this thesis is an example of a real-time,

Continuous Adaptation for Reordering and Eliminating tests (marked in the Figure

2.2). The thesis demonstrates the use of this method at a single insertion using

wafer sort test response data and takes a step towards continuous adaptation

implementation.

Manufacturing test methods fall into three different categories and are defined as

follows:

• Resetting Limits. Selecting the criteria for making pass/fail decision in case

of parametric measurements.
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Figure 2.1: Classifying adaptive test in ITRS format. Adaptive test scheme de-
scribed in this thesis is an example of a Continuous Adaptation for Reordering and
Eliminating Tests encircled in the figure.

Manufacturable solutions are known!
! Interim solutions are known!

Manufacturable solutions are not known!

Figure 2.2: ITRS standard color code.
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• Re-ordering and Eliminating Tests. Process of changing the test flow and

the test contents by reordering the tests to detect the failing die at the

earliest test and eliminate certain tests or patterns that have lowest impact

on DPPM.

• Changing Setpoints. The process of altering setpoints for test such as tem-

perature, voltage and frequency based on data from previous die or other

insertions.

The stages of adaptation fall in three different categories:

• Simple Adaptation. Test limits, test contents and test flow are statically set

and periodically updated based on offline analysis, done by analyzing data

acquired over long -intervals of time and volume such as after many wafer

lots or mid production cycle.

• Complex Adaptation. Test limits, test contents and test flow are set by a

characterization or sample set of die and are periodically modified based on

near time analysis such as after looking at sample die on a wafer, a wafer

or wafer-lot. The feed-back or feed-forward test data of these sample die

from different test insertions may also be used to make changes to the test

program. Most of the existing adaptive test techniques fall in this category.

Examples are: Part Average Testing (PAT) uses data from previous sample

die on a wafer to set the test limits for parametrics on-the-fly [5]; Reference

Die Analysis scheme tests a sample set of die on the wafer with entire test

suite and applies reduced testing to other die on the wafer by analyzing the

test response data of reference die across multiple insertions [15]; Location

Averaging technique screens statistical outliers using principal component

13



analysis to detect fails at downstream test insertions such as burn in and

final test [16] . These techniques use few sample die to do statistical analyses

near time or offline.

• Continuous Adaptation. Test limits, test contents, test flow and setpoints

are adjusted continuously at single insertions as well as by using the data

from different insertions, dynamically on a per die basis, real-time. Based

on this classifier our adaptive test scheme supports continuous adaptation

through reordering and elimination of tests. Our adaptive test scheme is

demonstrated in a single-insertion mode but could take advantage of multi-

insertions subject to availability of production feed-back and feed-forward

data systems.

2.3 Motivation

Reordering by itself has no effect on quality as no test is removed from the test

suite. The main objective of test reorder is to reduce the test time to fail. Wasted

tester time and the tester depreciation cost associated with it is not the only

economic impact of an inefficient tester program. ATE time that is needlessly

spent testing a device could be better spent testing another device, which means

that throughput is diminished when an inefficient tester program is used.

Test reordering using test fail rates needs a model to learn and update test fail

rates and a rule which relates the test order update intervals and test fail rates.

For example, if the fail rates are fixed and uniform then no test order updates are

needed and tests can be in any order. If the observed fail rates are modeled to

be slowly varying, then it suffices to use periodic quarterly or annual test order

14



updates based on fail rates obtained from large data samples. For rapidly varying

test fail rates, frequent test order updates based on per-die, per-wafer or per-lot

data may be needed.

ATS updates test fail rates with die pass/fail result employing Bayesian statistics

to modify fail distributions and adopts a per-die test order update. Such a test

reordering scheme leads to a significant reduction in variance of test time to fail

for a DUT and hence the total test time. The reduction of test time and test time

variance was a motivation for this research.

Figure 2.3 provides a preview of results to emphasize the variance reduction in

test time to fail for a die on a wafer. The figure shows application of three test

reorder and update models: Random Fixed Order, Characterization Test Order,

and Adaptive Test Orders (from ATS). These results are for production test re-

sponse data from 610 wafers and 16 tests of Product 1 described later in chapter

4. Figure 2.3 compares three stop-on-fail wafer test time distributions. The three

distributions for test-time-to-fail are plotted for all failing die on 610 wafers of the

product. The plot shows the potential for wafer total test time reduction using

different test ordering schemes. The inner box-plot shows reduction in test time

to fail variance for die for fails on a typical wafer from that data.

The adaptive test scheme (blue) is the die-level reordering scheme developed in

this research. The adaptive test scheme has the lowest median wafer test time and

the narrowest inter-quartile range of the three. The fixed test order (red) is any

test order picked at random, called Random Test Order. As expected, the fixed

order has a broadest inter-quartile range (IQR, used as a measure for variance

15



as it is immune to outliers) of the three and has the largest median wafer total

test time. The Characterization Test Order (green) is the test order derived by

sorting, in descending order, the test fail rates obtained from COF product data for

a sample of 305 wafers. This order is then applied in a stop-on-fail (SOF) test flow

to compute the green test time distribution shown in figure. This characteization

order shows some improvement over the random fixed order. For example, the

median and the IQR of the test time are smaller than the random test order. If

test fail rates change rapidly with process variation and defect incidence, then only

per-die test reordering using ATS can provide the benefits shown in this figure.

Figure 2.3: Test Time Variance Reduction for test-time-to-fail for three test orders.
Each distribution represents test times for failing die on 610 wafers. The inner box-
plot shows reduction in test time to fail IQR and outliers for failing die on a typical
wafer from that data.
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Chapter 3

New Method- Adaptive Test Scheme

3.1 Using Bayesian Statistics

In Bayesian statistics, an educated guess about the probability distribution of the

parameter(s) to be estimated is called a prior distribution. Next, the experiments

designed to depend on the parameter(s) of interest are conducted and sample re-

sults or evidence are observed. Based on these observations, the initial guess about

the distribution of the parameter(s) on interests is adjusted to reflect the current

best estimate. This modified prior distribution called a posterior distribution.

The premise of Bayesian statistics is to incorporate prior knowledge, along with

a given set of current observations, in order to make statistical inferences. The

prior information could come from operational or observational data, from previous

comparable experiments or from engineering knowledge. This type of analysis can

be particularly useful when there is limited test data for a given design or failure

mode but there is a strong prior understanding of the failure rate behavior for

that design or mode. A posterior distribution summarizes the current state of

knowledge about all the uncertain quantities (including unobservable parameters

and also missing, latent, and unobserved potential data) in a Bayesian analysis.

Posterior distribution(s) are obtained by incorporating prior information about

the parameter(s) and inferences on the model parameters and their functions can

be made [18]. Analytically, the posterior distribution is the product of the prior

distribution and the likelihood.
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The Bayesian update method used here is called the Two-Stage Bayesian Method

described in [19]. A more specific discussion and application of this method where

Bayesian statistics is used to predict equipment failure rate in reliability experi-

ments can be found in [20]. To summarize the Bayesian approach consists of three

main tasks:

1. Define a prior distribution for the variable to be estimated.

2. Collect evidence represented as a likelihood function.

3. Construct posterior distribution using Bayes’ theorem.

Application of Bayes theorem for constructing a posterior distribution can be pre-

sented as a functional relation given in Equation (3.1)

fposterior(λ) ∝ P (X = x|λ) · fprior(λ) (3.1)

where, λ= random variable to be estimated or modeled, fprior(λ)= prior distri-

bution of the random variable, fposterior(λ)= posterior distribution of the random

variable P (X = x|λ) = likelihood function as a function of λ.

3.2 Adaptive Test Scheme

3.2.1 Applying Bayesian Statistics for Learning Test Fail Rates

ATS uses Bayesian statistics to model and update test fail rate distributions for

each test in the test flow. The Poisson probability model for test yield has been

widely used in IC test for modeling random defects on a wafer and is an intu-

itive model for fail counts [21]. Assume a Poisson probability model for each test

18



in the test flow. The test fail rate λ is updated by observing fails on a wafer

distributed with a Poisson likelihood. The choice of a Poisson distribution as

likelihood function simplifies the calculations required to update distributions in

Bayesian statistics and makes real-time computation possible. Assuming that each

test has a separate fail rate λ the probability of a test having x failures is given

by:

Pr(X = x|λ) =
e−λλx

x!
(3.2)

The test’s yield would be given by Pr(X = 0|λ). In presence of the variation

and defects each test’s fail rate λ is not a constant. The test fail rate λ varies

across wafers and lots as discussed earlier in Section 2.2. In Bayesian statistics the

conjugate prior of a Poisson likelihood function is a Gamma distribution Γ. ATS

models the probability distribution of test fail rate λ of each test as a Gamma

distribution [20]. These test fail rate distributions are the prior distributions and

they represent best estimates of ATS about fail rates of those tests before testing

a particular die on the wafer.

The Gamma distribution is described with two parameters; the first is a scale

factor α and the second a shape factor β. The Gamma prior distribution of a test

is given by:

Γprior(λ|α, β) =
βα

(α− 1)!
λα−1e−λβ (3.3)

Application of Two-Stage Bayesian method to these prior distributions on oc-

curence of a pass or a fail gives the posterior test fail rate distribution for each

test. The beauty of the (Poisson, Gamma) Bayesian formulation is that the pos-

terior distribution for Gamma prior is a Gamma distribution Γ(λ|α′, β′) where α′
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and β′ are updated based on the samples observed. In this model, updates to α

and β occur based on die test results given by,

α′ = α + number of fails (3.4)

β′ = β + number of die tested (3.5)

There is an (α, β) pair for each test that gets updated as die are tested. The

number of failing die screened by a test is represented by α. The number of die

for which that test was executed gives the sample size for that test represented by

β. For each test executed on a die the fail rate distribution is updated by a unit

increment to β and for each test failing a die fail rate distribution is updated by

unit increment to α.

This process of updating the test fail rates using Two-Stage Bayesian method can

be depicted schematically as shown in Figure 3.1.
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Figure 3.1: Flow diagram for Two-Stage Bayesian method in context of ATS.
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Adaptive test flows and content are realized by comparing the statistics, such

as means and variances of test fail rates, computed for each estimated posterior

Gamma distributions to make per die decisions. The connection between Gamma

distribution parameters Γ(λ|α, β) and observed test fail rate statistics for each test

can be established as follows

Average, E(λ) =
α

β
(3.6)

V ariance, σ2
λ =

α

β2
. (3.7)

Figure 3.2 shows a detailed flowchart describing the update strategy for ATS. The

adaptive test scheme is composed of three loops denoted by loop 1, 2 and 3 in the

figure. Loop 3 is a loop over wafers and it defines the sample population or the

number of wafers being tested. Loop 2 is over individual die on the wafer, i.e. a

step-by-step processing of the sample. Loop 1 is over the individual tests giving

the current best estimate of the test fail rate as described in Figure 3.1. When in

the Loop 1, a test pass updates only the sample size β. If the die fails current test

in the Loop 1, both α and β are incremented and recorded.

On a failing die the test fail rate statistics are recomputed based on the new

estimates of test fail rate given by updated posterior distributions. Based on the

new statistics the test application order and content are modified. The new test

order and content is then used for the next die to be tested in Loop 2. The posterior

test fail rate distributions computed at the failing die are used as prior test fail

rate distributions and are updated with the test results in Loop 1. For dies passing
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Figure 3.2: Flow diagram explaining Adaptive Test Scheme updates
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all the tests, α and β are not updated on any test. For dies failing a test, α and β

are not updated for tests following the failing test.

The initial test order can be any order, for example, an order obtained from fault

simulation or characterization. For subsequent wafers the test order from the

previous wafer is used but the sample size β is reset to diminish the bias of previous

wafers test order. The previous wafers effect on the adaptation is limited by

adjusting α and β to preserve the average fail rate and increase the variance. This

makes it easier for the scheme to respond to needed changes in test order on the

new wafer [22].

Monte Carlo experiments described in Section 4.1 show that test order can adapt

in response to local variation on wafer if the variances are increased at the start

of each wafer. Hence per-wafer boundary for reset was chosen. Resetting sample

size after a wafer provides a natural monitor in the adaptive test scheme. For an

excursion forcing the scheme to choose a wrong test order the maximum latency

for the scheme to react is a single wafer. After a wafer is tested completely, the

sample sizes β are reset and the test orders are ready to adapt to local variations

on next wafer. Monte Carlo experiments described in the next chapter will explain

the effects of choosing different seed values, variances and the response of ATS on

the impact of a shock. A shock is a sudden increase or decrease in fail rate of one

or more tests.

Note that ATS is designed to update the test fail rates and test orders in a stop-on-

fail (SOF) configuration, which inherently has censored data (no results for tests

that were not applied). The ability of ATS to learn in the SOF configuration and
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make correct decisions, shows it’s importance to the success of adaptive test. If die

are being tested in continue-on-fail (COF) then ATS flow can be easily modified to

keep testing and updating test fail rates even after a die fails. The additional data

available will make ATS estimate test fail rate distributions even more accurately.

The evaluation of ATS provided in this thesis is for testing die in SOF configuration

for two main reasons: 1) Test ordering with censored data is the harder problem

to solve; 2) Most digital products like microprocessors, DSPs and microcontroller

are tested in a SOF configuration [3].

Reordering has to be consistent with test order rules related to stress conditions,

voltage and temperature set points, continuity tests etc.. For example while re-

ordering pre- and post- stress tests cannot be mixed. While reordering tests, ATS

has to treat different setpoints such as different voltages (Vmax and Vmin) or

temperatures as a group of tests and reorder tests for the same setpoint. This

fail rate update strategy can be applied to any tests generating a pass/fail result

regardless of the type of measurement performed. The method can also be applied

to other test insertions for example final test and burn in.
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Figure 3.3 shows a simple example of the changes in the test fail rate distributions

while testing die on a wafer. ATS estimates of the test fail rate distributions

are updated at each failing die. For the first die on the wafer ATS assumes a

prior distribution and updates the prior on each failing die. The x-axis plots the

fail rate λ and the y-axis plots the probability of having that fail rate, given by

a Gamma distribution. Each column gives the snapshot of estimated posterior

Gamma distributions of the fail rates for tests 1, 2 and 3 at 5th, 10th and 15th die

on the wafer. The statistics of these posterior fail rate distributions are used to

reorder the tests. The Gamma distributions of failure rate of each test are updated

along a row in the figure, depending on die failing that test. The five die interval

is selected to display visible difference in the distributions, but parameter updates

take place on each failing die. Test reordering is done by computing and sorting

the statistics of the fail rate of each test, for example, the mean fail rate. After

each die is tested, tests are reordered in descending mean-fail-rate order.

3.2.2 Test and Test Pattern Elimination

ATS reorders the tests in descending order of their fail rates by estimating test

fail rate distribution for each die. Tests or patterns appearing later in the test

application order are less likely to fail a die on the wafer than tests or patterns

which are ordered to be earlier in the test application order. Test reordering by test

fail rates reduces test time to fail for failing die. In chapter 4 it is shown that only

way to reduce test time for good (passing) die is to test them with reduced number

of tests or patterns i.e. eliminate tests or patterns from the test flow. ATS reorders

the test in a way to reduce the test-time-to-fail variance and so the majority of

fails appear at the start of test flow. The tests at the end of the test application
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order are the most likely candidates for elimination after assessing the associated

risk. A Monte Carlo method for understanding the risk of test elimination has

been developed and is described in Chapter 4.

Any scheme of test elimnation needs to have a monitor that limits the impact of an

excursion in the process. An example is an unexpected incidence of a unique fail

mechanism for an eliminated test. Examples of monitors include sensors on the

silicon (e.g. ring oscillator structures, E-test structures) or sample testing some

die in a continue-on-fail (COF) fashion. These monitors are expensive and they

affect the test time reduction benefit achieved through such elimination schemes.

ATS provides a natural monitor for reducing the impact of excursions without any

additional costs. At each new wafer, ATS starts all over again with all the tests in

the test program regardless of tests eliminated on previous wafer. While doing so,

ATS preserves and starts testing the next wafer with the test order obtained from

the previous wafer and resets sample sizes of test fail rate distributions. Thus,

ATS monitors excursions by detecting unexpected changes in test order as shown

in next section. The worst case latency for recovering from an excursion in this

case is the test time to test one wafer.

3.3 Adaptive Test Scheme - Monte Carlo Experiments

Monte Carlo is a popular computational technique used for evaluating risk in

quantitative analysis and decision making under uncertainity. Most Monte Carlo

experiments are set up in the following four steps:

1. Define a domain of possible inputs.

2. Generate inputs randomly from a probability distribution over the domain .
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3. Perform a deterministic computation on the inputs.

4. Observe and aggregate the results by repeating the process multiple times.

Monte Carlo experiments, when set up as described above, provide useful infor-

mation about uncertainity of the inputs, sensitivity of a computation technique

to different seed values and risk associated with decisions made. Monte Carlo ex-

periments simulate a variety of outcomes for different inputs and help to assess

the impact of choices made as well as allow us to understand the technique better.

Hence, these experiments are of great value while designing adaptive test methods.

ATS makes decisions to dynamically reorder tests on a per die basis. Monte Carlo

experiments can be used to check if these reorder decisions are correct by generating

synthetic test data with known test fail rates and feeding the data to ATS. Bayesian

inferences depend on the choice of a prior distribution. The seed parameters of

these distributions influence Bayesian learning schemes and ATS is no exception.

So, Monte Carlo analysis is useful for studying the effect of these seed parameters

and making good seed choices. Chapter 4 shows an analysis of the effect of choice

of seed parameters on ATS predictions for test flow changes and underlying test

fail rates.

To reduce test time for good dies, ATS identifies tests which can be eliminated

from the test flow . Test elimination involves many decisions such as choosing

appropriate candidates for elimination, triggering elimination at some point on

the wafer and number of tests to be truncated. Monte Carlo simulations provide

a tool to analyze these different scenarios and assess the impact of choices made.

Chapter 4 shows a Monte Carlo simulation example to determine the effect of
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choice of a truncation trigger.

The different steps describing the flow for the Monte Carlo simulator are listed as

follows:

1. Input the number of die on a wafer and the number of tests for which pass/fail

data is to be generated.

2. Input test fail rate Gamma distributions for each test to generate test pass/fail

data for entire wafer by selecting β and average fail rate λ for each test.

3. Pick random samples of the test fail rate λ from test fail rate distributions

and derive die pass/fail results by substituting λ in equation 3.2 to calculate

Poisson probability for x = 0.

4. Apply ATS to this synthetic wafer and record the different ATS test orders.

5. Repeat generation of synthetic wafer test data and application of ATS to

this wafer multiple times.

Results of the Monte Carlo experiments are described in Chapter 4. These results

show that ATS learns the average order of test fail rates of different tests on a

wafer.
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Chapter 4

ATS Performance Evaluation: Monte Carlo and Production data

4.1 Monte Carlo Evaluation of ATS

4.1.1 ATS Test reordering for synthetic test data

The Monte Carlo simulator can be used to study the response of ATS to a shock

increase in fail rate of one or more tests. Synthetic data generated using known

underlying test fail rate distributions, provide the ability to verify the working of

ATS to order the tests correctly by learning these fail rate distributions on the wafer

and adapting to shocks. One example application of ATS to die on a synthetic

wafer is shown in Figure 4.2. Test fail rate distributions used for generating data

for the synthetic wafer are shown in Figure 4.1. The data for die on the wafer

before die 270 is generated using test fail rate distributions T1, T2, T3 (before

shock), T4 and T5 and data for die on wafer after that is generated using test fail

rate distribution from T1, T2, T3 (after shock), T4 and T5.

Figure 4.1: Test fail rate distributions (λ) for five tests used to generate synthetic
wafer test data after shock for test fail rate of Test T3.
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Figure 4.2 shows the adaptive test orders at different die locations on the synthetic

wafer with a 50% yield in form of a color map. The darkest color is assigned to

the test with highest fail rate on the wafer and lightest color is assigned to the

test with lowest fail rate, after the shock. Note that the ATS is applied in a SOF

configuration as described earlier. This figure is divided into 5 regions A, B, C, D

and E and the test order updates in each region can be explained as follows:

• Region A. ATS starts testing the wafer with the test order T1-T2-T3-T4-

T5 on the first die. Test order updates in this region show ATS working to

learn test fail rates of the test and updating the estimates of test fail rate at

the failing die. Observe how quickly the lowest average fail rate test (before

shock), T3 is pushed to the end of the test flow.

• Region B and C. Region B and C, show ATS settling down on the correct

average test order for the tests T1-T5-T2-T4-T3 before shock.

• Shock insertion and Shock detection. The test fail rate for test T3 is sub-

jected to a shock increase, bumping it up from 0.05 to 0.3 at die 270. ATS

detects this shock after 63 die at die number 333 by changing the test order

to move test T3 up in the test flow. Note the busy portion of the wafer after

shock detection adapting the test orders to the shock increase in fail rate.

• Region D and E. In region D on the wafer, after a series of updates to the

test fail rates and the test orders ATS moves test T3 to the top of the test

flow and settles on a new order. In region E, observe that ATS settles on

a test order which us the average test order of the test fail rates used for

generating synthetic test data.
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4.1.2 Effect of choice of seed variance on ATS

Bayesian modeling requires a few seed parameters. The initial seed parameters

are initial guesses to start the algorithm at the first die of the wafer to be tested.

Different seed values have a considerable influence on the Bayesian learning. The

adaptive test scheme (ATS) is no exception. Monte Carlo simulations are used

to characterize seed value performance and thereby select good seed values. For

example, a key ATS parameter (seed) is the initial guess for the variance of each

test fail rate.

This section gives results of the application of ATS with narrow and wide variance

seeds to synthetic test data generated using a Monte Carlo simulator. The variance

of a Gamma distribution Γ(α, β) given in Equation 3.7, varies inversely with the

square of shape parameter β. Note that this seed variance value is used only for

the first die of the wafer to be tested. Every new wafer is seeded by test order

and average fail rates learned from the previous wafer, but variances are reset at

the new wafer to the seed value. Resetting variance allows ATS to adapt to local

variation and defects on the new wafer.

Each Monte Carlo experiment starts with generation of synthetic wafer test data

from known test fail rate distributions. The Monte Carlo simulator can be config-

ured to generate test response data for a any number of tests and die on a wafer.

All the Monte Carlo experiments described in this thesis generate a synthetic wafer

with 5 tests and test response data for 700 die. Keeping the number of tests low

makes it easier to follow the interaction of test fail rates and ATS reordering, while

presenting the results effectively.
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Figure 4.3: Five synthetic test fail rate distributions used in Monte Carlo testing
of the adaptive test scheme. Each fail rate is modeled as a Gamma distribution
with its own mean and variance. Test fail rate means are shown in the legend.

The effect of choice of seed variance on ATS is explained by using an example Monte

Carlo run. Note that apart from this example, different test fail rate distributions

using different average fail rates and shapes like bell, right tailed, left tailed etc.

were considered and the performance of ATS was assessed. The following example

conveys results and knowledge gained from all these experiments. For this example,

the five synthetic test fail rate distributions used to generate test data using Monte

Carlo simulator are plotted in Figure 4.3. These five distributions have different

means and variances.

ATS is applied to synthetic Monte Carlo wafer test response data and estimates

for the test fail rates and the distributions are obtained. This synthetic generation

of test data and application of ATS was repeated twenty times. Figures 4.4 and

Figure 4.5 summarize the results of these experiments by presenting a typical result

for use of a narrow variance seed and a wide variance seed. Seed distributions used
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for this analysis had equal mean fail rates.

Figure 4.4: Computed fail rate distributions after application of adaptive test
scheme (ATS) for a narrow variance seed. ATS finds the original order of average
test fail rates on the wafer

Figure 4.4 shows the distribution of test fail rates estimated by ATS at the last

failing die on the wafer using a narrow variance seed for the initial guess at the first

die. Starting with the narrow variance seed, the adaptive test scheme underesti-

mated the means of every test. However, ATS ordered the tests correctly. Figure

4.5 shows the results starting with a wide variance seed. With the wide variance

ATS estimates the five test fail rate means to be nearly equal. As a result, ATS

test ordering did not reflect the underlying structure of the fail rates in Figure

4.3 and wafer test times were much larger and similar to the random test order.

The difference in ATS test order and total wafer test time as a function of narrow

and wide variance was confirmed with 200 synthetic wafers, with 10 different test

fail rate configurations (repeated 20 times each). This analysis shows that ATS

guesses the correct order of average fail rates of the underlying distributions when
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Figure 4.5: Computed fail rate distributions after application of ATS for a wide
variance seed. ATS ordered the five tests at random with test times similar to the
random test order.

initialized with a narrow variance distribution. The narrow variance seeds were

used in all further applications of ATS.

4.1.3 Effect of choice of test elimination trigger on ATS

Two choices need to made while eliminating tests: 1) when to start or trigger test

truncation and 2) how much testing to truncate. Both these choices are directly

related to the quality level of the product and carry a risk of an excursion such

asthe sudden shock increase in fail rate of a test that is selected to be eliminated.

The second choice of how much to truncate or how many tests to eliminate from

the test content depends on the test time reduction (TTR) and quality (in terms

of DPPM) targets for the respective products. Analysis of this tradeoff is shown in

Section 4.2.3. The first choice of when to trigger truncation on wafer needs some

deliberation and is discussed in this section.
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Test elimination using ATS makes use of ATS’s ability to estimate the average

test fail rate for a wafer and settle down on a test order derived from that test

fail rate. Furthermore, a high correlation can be observed between consecutive

test orders for the tests ordered to be at the end of the test flow . This high

correlation event will be shown in (see Figure 4.11) using real production data and

will be explained in Section 4.2. ATS makes the choice of selecting the tests at the

end of the test order with lowest estimated test fail rates as likely candidates for

elimination. ATS updates the test fail rate distributions on failing die and makes

a reordering decision based on these fail rate distributions. The choice of when

to truncate depends on the number of fails required by ATS to learn the average

test fail rate on a wafer, and settle down to a test order which has high correlation

between consecutive test orders for tests at the end of the test order.

This settling down of ATS test order can happen after a few fails at the start of

the wafer or after testing quarter or half of the wafer depending on the yield of

the product, the number of die on a wafer and the number of tests or test patterns

under consideration. There is no one magic number of fails after which truncation

can be triggered on a wafer for all the products. However, for individual products

information about the yield, number of die on a wafer, number of tests can be

used to assess the impact of shock increase in fail rate of eliminated test. Specific

information can be used by the Monte Carlo simulator and impact of events such

as shock before or after truncation trigger can be analyzed. The objective of this

section is to give an example to show how Monte Carlo simulator can be used for

such an analysis.
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For this example, five tests with different fail rate distributions were used. The

average fail rates of the five tests are given by Table 4.1. These test fail rates

generate a typical wafer with 700 die and 350-400 fails and about 50% yield. As

an example the test truncation trigger is selected at 160th fail on the wafer and

only one test is to be truncated or eliminated. A test fail rate shock is modeled by

generating test data from a distribution with higher test fail rate for all die on the

wafer after the insertion of the shock. In this example shocks are inserted at fails

ranging from 50, 80, 100, 120, 140, 160, 180 and 200. The shock is inserted for

test T3 whose average fail rate is increased from 0.01 to 0.3 as shown in the Table

4.1. In normal operation of ATS, with no shock in test data, ATS will eliminate

test T3 because T3 has the lowest fail rate.

Table 4.1: Example test fail rates for demonstrating use of Monte Carlo simulation
tool for studying effect of shock on choice for truncation trigger.

Test T1 T2 T3 T4 T5
Average test fail rate Before Shock 0.2 0.1 0.01 0.15 0.18
Average test fail rate After Shock 0.2 0.1 0.3 0.15 0.18

This process of generating synthetic wafers with shock inserted at different fails on

the wafer described above and applying ATS to these wafers was repeated thirty

times. Figure 4.6 shows a box plot for the test escapes per wafer after application

of ATS to these wafers. The x-axis represents shock insertion at different failing

die. The truncation trigger is fixed at 160th fail on the wafer. Observe that the

test escapes reach a peak when shock is inserted at 160th fail which is the same

point when the truncation is triggered, giving ATS no time to learn and react to

the shock. Similarly, if the shock is inserted at fail number 180 or 200, ATS would
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have already truncated test T3 at the 160th fail and hence would not detect the

shock. Even if the shock is inserted at 140th fail ATS is not able to increase fail

rate estimate for test T3 to be at the start of the test order and ends up eliminating

it.

Figure 4.6: Effect of shock inserted at different failing die number on test escapes
when truncation trigger is set at the 160th failing die.

Table 4.2 shows number of wafers for which ATS test eliminated tests T2, T4 or

T3 for the different shock insertions. Note that in this experiment one test has

to be eliminated for every wafer and this table captures which one got eliminated.

Observe that for shock inserted at fail number 50, ATS detected the shock increase

in fail rate before it tested the truncation trigger die. The test, the lowest average

fail rate test after the shock, was eliminated on all 30 wafers. When shock was

inserted at fail 100 and 120, ATS detected the test T3 shock insertion and did not

eliminate it. However, for shock insertion at fail 140 and 160 ATS could not detect

39



the shock and ended up eliminating test T3 on all the 30 wafers.

This simplified example is intended to show how ATS works, and should not be

considered as a specific recommendation for the number of fails or as a measure

of the sensitivity of ATS to test shocks. This is just an example which shows

truncation in a scenario of only 5 tests, all having high fail rates and a low yielding

wafer to make it easier to comprehend. The example demonstrates how Monte

Carlo can be used to analyze the characteristics of ATS.

Table 4.2: Number of trials having different tests eliminated for shocks inserted at
different points on synthetic wafer

Shock inserted at fail number T2 T4 T3
50 30 0 0
80 30 0 0
100 28 2 0
120 20 3 7
140 0 0 30
160 0 0 30
180 0 0 30

4.2 Application to Production data

4.2.1 Description of Production Data

Wafer sort test response data was obtained from a leading semiconductor chip

manufacturer for two integrated circuit products. The production data was used

to demonstrate the test time benefits of ATS test reorder and elimination. The test

data for both the devices was collected in a continue-on-fail (COF) configuration

(see Chapter 2) with test times for each test. Since test results for all the tests

and all die were available, the test flow could be emulated in stop-on-fail (SOF)
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configuration using different test orders. SOF emulation of a COF dataset also

allows computation of quality loss in terms of defect level (DPPM) after eliminating

tests and patterns using ATS.

Product 1 is a 90nm integrated circuit chip comprised of a DSP core, memory

and other logic. COF test data for 419k units of this product was analyzed. This

dataset contains 610 wafers divided in 26 lots with 688 die on each wafer. The test

data used contains test results for 16 digital tests like transition fault tests and

patterns, stuck-at tests and patterns, Built-in-Self-Test (BIST) results for different

parts of the chip. All these tests were assumed to have same unit test time. Test

results for executing the same tests before and after stress (pre- and post- stress),

at different voltages (Vmax/Vmin) and using different capture mechanisms (launch

on shift/launch on capture) for this device were processed through the ATS flow.

Test reordering was done consistent to test order rules as described in Chapter 3.

Product 2 is a 65nm mixed-signal wireless integrated circuit chip. COF test re-

sponse data for 1.2 million units of this product was analyzed. ATS application

to this product was limited to test pattern reordering as test times for these test

patterns were available. This dataset contains 176 wafers divided in 13 lots with

approximately 6600 die per wafer. Test responses and test times for different tran-

sition fault patterns of this product were considered for the experiment. These

transition fault patterns are graded according to fault coverage and divided into

twenty almost equal parts referred to as test data loads (TDLs). ATS was applied

to reorder and eliminate some of the 20 patterns. The initial test application or-

der for these TDLs was obtained by ordering fault coverages and test times for

individual patterns.
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4.2.2 Reordering Tests and Patterns

ATS was applied to data from Product 1 and Product 2 in a SOF configuration.

Test reorder does not affect test time to pass for a good die as a passing die has to go

through the entire test suite. But, re-ordering reduces test-time-to-fail for a failing

die and hence reduction in test-time-to-fail is used as a metric to measure success.

Figures 4.7 and 4.8 show the histogram of percent test-time-to-fail reduction for all

wafers in the both the products. In each figure the x-axis represents the percentage

test-time-to-fail reduction per wafer. The y-axis represents the number of wafers

which had x% test time to fail reduction. The percentage test time to fail reduction

per wafer is calculated with respect to the original default test order for these units.

Figure 4.7 shows that for Product 1 average ATS test time to fail reduction per

wafer was 56%. For any given wafer in the dataset the test time of failing die was

reduced by half. The test-time-to-fail reduction for some wafers is above 90% while

for some it is below 10%. This phenomenon can be observed because test-time-

to-fail reduction per wafer is dependent on number of fails on that wafer because

the ATS uses the many fails to learn and update test fail rates. For high yielding

wafers, the benefit of test-time-to-fail reduction is limited because failing units for

which test time reduction (TTR) can take place i.e. fails are fewer in number.

Figure 4.8 shows ATS test-time-to-fail reduction for transition-fault-patterns in

Product 2. Observe that average test time to fail reduction per wafer is an impres-

sive 33%. This reduction in test time to fail is again dependent on yield of wafer

for this product. Since only transition-fault-patterns were considered, ATS has

fewer opportunites to update the estimates for test fail rates compared to Product

1. For both examples in this section, ATS is achieving TTR by reordering only.
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Figure 4.7: Test-time-to-fail reduction (failing die only), per wafer for Product 1
after application of ATS with reorder only.

Figure 4.8: Test-time-to-fail reduction (failing die only), per wafer for Product 2
after application of ATS with reorder only.
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Figure 4.9: Correlation between ATS test orders and characterization order for
test data from Product 1.

Figure 4.9 shows the histogram of correlation coefficient between different updated

ATS test orders and the fixed characterization test order for all wafers of Product

1. The characterization order is the test order derived from analysis of COF test

data for 305 wafers using obtained test fail rates. The characterization test order

is used as default test order in test program. Note that only 10% of ATS orders

correlate perfectly (i.e. = 1) with characterization order. The remaining 90%

orders enable ATS to achieve reduced test times and adapt test orders to the test

fail rates on a per die basis. In Figure 4.7 the three peaks apart from the peak for

perfect correlation with characterization order, represent six different test orders.

These six orders are the six orders for which ATS settled the most for all the wafers

of Product 1. This shows that the characterization order i.e. test order used by

the test engineers in the test program was not the optimum order.
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ATS without test elimination, provides significant amount of reduction in test-

time-to-fail per wafer, but this overall test time reduction (TTR) is diluted by the

yield of the wafer. Reordering can achieve more TTR benefits for lower yielding

products than products having very high yields. In general, products with smaller

die size and very high yields will have lower TTR benefits by ATS reorder only, than

products with larger die size and lower yields. Passing die (or good die), continue

having long test times as they are tested by all tests in the test suite. The only

way to reduce test time for these good die is by reducing the test content. ATS

reduces test time of these passing die by eliminating tests ordered to be at the end

of test flow by reordering, as described in the next section.

Effect of yield on TTR obtained by reordering test using ATS can be studied by

simulating fails in production test data of Product 1 for different hypothetical

yields shown in Figure 4.10. Observe the dilution of total TTR per wafer by yield.

Product with higher yield (assumed 95%) has lowest average TTR of 6% , while

the one with lowest yield (assumed 20%) is able to achieve highest average TTR

of about 47% on application of ATS. Note that these TTR benefits are obtained

by only reordering the tests.

The effect of yield on test time reduction can be explained with the help of following

equation:

TTtotal = Y · TTG+ (1− Y ) · TTF (4.1)

where TTtotal= Total test time for a wafer, TTG= Total test time for good (passing)

die, TTF = Total test time for failing die, Y = Yield of the wafer.
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Figure 4.10: Results of application of ATS (reorder only) to three products with
hypothetical yields, for the fails in Product 1.

Substituting values in the equation for a product with wafer yield 90%, reduction

in TTF by 50%, reduces total test time by 5%. These estimates suggest that

significant reduction in total test time can be achieved only when test time to pass

is reduced. Eliminating patterns and tests from the tests suite is the only way to

reduce test time for passing die. The results for eliminating tests with ATS are

discussed in the next section.

4.2.3 Eliminating Tests and Patterns

The ATS reorders the tests in descending order of their estimated average fail

rates across the wafer. Tests reordered to be at the end are most likely candidates

for elimination. After a certain number of fails, the tests which ATS ordered to

be at the end of the test order did not change their position much or remained

stable. Test reordering mainly took place only between tests at the start of the

test application order and the rest of the order remained stable suggesting that
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ATS settled down on a test order for the tail of the test flow.

This can be shown by plotting a histogram of correlation coefficient between con-

secutive test orders for die on the wafer shown in Figure 4.11. A high correlation

can be observed between the two orders as most samples tend to populate the

tail end of this chart. This arises from the fact that even if changes take place in

the test order after a short settling time, these changes are only characterized by

shuffling of the high fail rate tests at the start of the test order. The tests late in

the test order can be removed without having much impact on the DPPM. Note

that there exist orders which have negative correlation coefficient which suggests

that some tests had a significant change in their position in the test flow. This

phenomenon is observed at the start of the wafer where the order changes and

adapts very quickly to learn the fail rates. As the adaptive scheme learns the fail

rate distributions these order reversals do not take place and a more stable order

is established.

Figure 4.11: Correlation between consecutive test orders on a wafer after applica-
tion of ATS.
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Eliminating tests or patterns reduces the test times for the passing and failing die

both, but increases the risk of test escapes. Quality of a product is measured in

terms of DPPM and is directly affected if truncated tests or patterns have unique

fails. There is always a trade-off between desired quality level and expected TTR

which determines the number of patterns or tests which should be considered for

elimination. There are two choices to be made when eliminating tests using ATS

as described earlier. The choice of when to start elimination can be made after

performing a impact of shock analysis for the product data parameters, simulated

in the Monte Carlo simulator as described in Section 4.1.3. The choice of number

of tests to be eliminated or truncated depends on the DPPM and final TTR goals

for the product. This tradeoff between TTR and defect level for Product 1 and

Product 2 is presented in Figure 4.12 and 4.13.

Figures 4.12 and 4.13 show the relation between Relative Defect Level and Test

Time Reduction obtained for various numbers of tests and patterns eliminated

using truncation ratios ranging from 0 to 1. Relative defect level is chosen to

represent product DPPM and is obtained by normalizing the actual DPPM by the

maximum number of fails possible for all wafers of that product. For a truncation

ratio of 1, i.e. no testing at all, test time reduction is 100% and relative defect level

is maximum, i.e. 1. Similarly for truncation ratio of 0 there are no test escapes

since the entire test suite is used for testing and TTR is same as that obtained by

reordering the tests. As the truncation ratio goes from 0 to 1 test time decreases

and the relative defect level increases.
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Figure 4.12: Results of application of ATS for Product 1: Tradeoff between TTR
and Defect Level.
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Figure 4.13: Results of application of ATS for Product 2: Tradeoff between TTR
and Defect Level.
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Figure 4.12 shows the results of application ATS with reordering and elimination

for Product 1. A truncation ratio of 0.2 for tests considered for Product 1 gives

a test time reduction of about 20% and relative defect level less than 0.001 which

corresponds to a DPPM value conforming to the industry requirements for that

product. Figure 4.13 shows the results of application ATS with reordering and

elimination for Product 2. A truncation ratio of 0.5 for transition fault patterns

appearing late in the test application order results in 40% reduction in total test

time with a relative defect level less than 0.01 for transition fault patterns con-

forming with the industry requirements for that product. These TTR values and

the relative defect levels are shown by red arrows. A similar example is shown

using blue arrows. Both the examples demonstrate the simple linear dependence

which could be modeled by Monte Carlo methods outlined earlier.
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Chapter 5

Conclusions

5.1 Contributions of this work

This thesis presents for the first time an on-tester, adaptive test scheme with

dynamic, real-time control of the test flow and test content. This thesis also

suggests a new classification for adaptive test methods and takes a step towards

continuous adaptation by dynamically reordering and eliminating tests on a per

die basis. The adaptive test scheme presented in this thesis is based on the key

idea of learning and updating each tests fail rate on a per die basis. The ATS

uses Bayesian statistics to model the per test fail rates and responds at test to

process variation. The dynamic learning process allows ATS to adapt to screen

defects and variation by reordering the tests on the fly. The Bayesian formulation

employs simple calculations to update the fail rates which can be done in parallel

with the testing process.

The potential benefits of ATS were demonstrated using synthetic data generated

by Monte Carlo and real production wafer sort data for products manufactured

in semiconductor industry. Reordering tests show an average 56% reduction in

test-time-to-fail for Product 1 test data and an average 33% reduction in test-

time-to-fail for Product 2. ATS tracks and responds to die level changes of each

tests fail rate. The close tracking reduces the test-time-fail variance and allows

per-wafer elimination of tests or patterns. Reduction in test-time-to-fail variance

reduces the uncertainity in the number of tests required to detect the same failing
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die allowing test elimination. Per-wafer elimination of patterns decreases both

test-time-to-fail and test-time-to-pass. Product data results show a 20% reduction

in total test-time for Product 1 and 40% reduction in test time for Product 2 .

Test elimination provides the maximum TTR at the risk of increased DPPM. ATS

makes use of an inherent, natural, quality monitor by resetting the test content

at the start of wafer and employing per-wafer test elimination. The risks can be

contained by the use of the natural monitor.

5.2 ATS Production Requirements

The success of adaptive test depends on the details of the ATE platform’s support

of test pattern loading and test pattern execution, and on the design of the test

program itself. For any ASIC test program pattern load is time-consuming and the

number of pattern loads must be limited. For reordering different tests/test groups,

modifications to ATE architectures are required to avoid test reorder overhead.

Test operations like data logging and binning also need to change to incorporate

adaptive test flows. For the transition fault patterns considered in the paper,

pattern load was a one-time event.

ATS made run-time decisions about the changing the test order using only the

already-loaded and standalone pattern groups and hence reordering should not

have any overhead. Today, most ATE platforms directly support the STIL pro-

gramming language in the IEEE 1450 standard [23, 24]. STIL modularity allows

patterns to be grouped without conflict as described by Taylor and Matson in

1996 [23]. The benefits described in this thesis for die-level adaptive reordering

highlight the value of modular STIL programming.
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5.3 Recommendations and Implications

ATS shows the value of learning from test data on a die-level to the field of adaptive

test and shows the importance of data-driven analysis. In light of increasing process

variation and defects, ATS shows the benefit of increased frequency of updates to

the test order. ATS shows that having one fixed test order to characterize test

data and load the test program will result in extra test time and test cost because

the test data is actually characterized by multiple test orders for multiple wafers.

This work provides a way to determine the frequency of test order updates for

future products.

Use of Bayesian statistics enables adaptive data-driven analysis and update of

test flow instead of a static analysis afforded by traditional frequentist statistical

modeling. Extenstion of the Bayesian techniques to different prior-posterior pairs,

multivariate Bayesian statistics etc. can also prove useful for research in this field.

The Monte Carlo simulator developed for evaluating the performance of ATS and

understanding the impact of choice of different seed values represents a robust

method that can be used to verify selection of initial parameters in any adaptive

scheme. ATS performance was first verified by performing Monte Carlo analysis

of synthetic data generated from known distributions which provided valuable

insights on the consequences of ATS application in different scenarios. ATS was

applied to production test data with unknown natural fail rate distributions. As in

Monte Carlo the product data results demonstrated the significant TTR benefit.

This is a general procedure which can be applied to any new adaptive test method

to understand behavior of the method in different scenarios.
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ATS also provides an inexpensive natural monitor for excursions by using wafer-

level resets for variances of test fail rate and test contents. ATS can also support

test sampling by executing tests on a few sample die instead of eliminating them

from the test suite. The natural monitor is an example of how adaptive test

schemes can simultaneously reduce test time and preserve quality levels.

Finally, ATS and other dynamic adaptive test methods need support from standard

ATE software for wide and successful adoption in industry. The IEEE STIL 1450

extensions for test flow descriptions must anticipate the emergence of adaptive test

and be sufficiently flexible to support methods such as die-level changes in the test

flow demonstrated in this thesis.
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