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Approximate thermodynamic state relations for multicomponent atomic and molecular gas

mixtures are often constructed by artificially partitioning the mixture into its constituent materials

and requiring the separated materials to be in temperature and pressure equilibrium. Iterative

numerical algorithms have been employed to enforce this equilibration and compute the resulting

approximate state relations in single-temperature mixtures. In partially ionized gas mixtures, there

is both theoretical and empirical evidence that equilibrating the chemical potentials, number

densities, or partial pressures of the free electrons is likely to produce more accurate results than

equilibrating the total pressures. Moreover, in many situations of practical interest the free

electrons and heavy particles have different temperatures. In this paper, we present a generalized

algorithm for equilibrating the heavy-particle and electron temperatures and a third user-specified

independent thermodynamic variable in a two-temperature plasma mixture. Test calculations based

on the equilibration of total pressure vs. electron pressure are presented for three different

mixtures. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4866149]

I. INTRODUCTION

Multicomponent hydrodynamics calculations require

accurate thermodynamic state relations for material mix-

tures. Unfortunately, constructing such relations for atomic

or molecular mixtures of interacting materials is so difficult

and laborious that it is rarely feasible to employ them in

practical calculations. In practice, the state relations of the

mixture must perforce be approximated in terms of those of

the pure materials of which it is composed. An obvious and

straightforward way of constructing such approximations is

to regard the mixture as being artificially partitioned or sepa-

rated into its constituent components or materials, so that

each species or material k occupies its own compartment or

subvolume and possesses some initially undetermined por-

tions of the specific volume and internal energies of the mix-

ture. Different methods of apportioning or distributing the

mixture volume and energy among its constituents lead to

different approximations. The most common procedure (e.g.,

Refs. 1 and 2) has been to apportion the mixture volume and

energy in such a way that the individual materials are in tem-

perature and pressure equilibrium with one another, and to

interpret the resulting equilibrated values thereof as the tem-

perature and pressure of the mixture. This procedure is tanta-

mount to approximating the thermodynamics of real gas

mixtures by means of Amagat’s Law. Newtonian iteration

schemes for equilibrating the pressures and temperatures and

computing the resulting approximate state relations of the

mixture have been described by Cranfill3,4 and Cook.1

Alternative approaches or “mixing rules” have some-

times been contemplated but have generally been found less

satisfactory. In particular, the use of Dalton’s Law rather

than Amagat’s Law to approximate the thermodynamic state

relations of the mixture is simpler because it requires no

pressure equilibration, but quantum molecular dynamics

simulations have shown that it is generally less accurate as

well, except at low densities and/or high temperatures.5–7

This is not surprising, since Dalton’s Law greatly underesti-

mates interparticle interaction energies in dense systems,

which is the essential reason why it is generally less accurate

than Amagat’s Law for real gases.

The partitioning and apportioning procedure based on

pressure and temperature equilibration provides a tractable

and intuitively appealing approximation to the true state rela-

tions of the mixture. Unfortunately, that approximation is

uncontrolled; i.e., its accuracy cannot readily be quantified

or systematically improved. However, its appeal and credi-

bility are considerably enhanced by the fact that it correctly

reproduces the exact state relations in mixtures of neutral

(non-ionized) ideal gases.8 This highly desirable property is

unfortunately lost in partially ionized gases, but it can be

restored by equilibrating the chemical potentials, partial

pressures, or number densities of the free electrons instead of

the total pressures.8 The fact that the latter equilibration is

exact for ideal gases suggests that it is likely to be more

accurate in dense systems as well, and this has been con-

firmed by orbital-free molecular dynamics (OFMD) simula-

tions9 and theoretical calculations based on a free-energy

minimization model.10

Whatever quantities are equilibrated, the resulting equa-

tions are highly nonlinear and must in general be solved by

iterative methods. For this purpose, the algorithm described in

Ref. 1 can be applied as it stands to enforce pressure and tem-

perature equilibration in single-temperature plasma mixtures,

but it requires generalization to equilibrate quantities other

than the pressure, and to accommodate two-temperature plas-

mas in which the free electrons and heavy particles have dif-

ferent temperatures. The purpose of this paper is to present a

generalized algorithm which provides both of those additional

features. The present formulation is accordingly developed in
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a general form that provides the option to equilibrate an arbi-

trary independent thermodynamic variable q instead of the

total pressure p. A conventional pressure equilibration is

regained simply by setting q¼ p, so that it becomes a simple

matter to compare the resulting state relations with those

obtained by alternative choices for q. The other choices of

greatest interest are likely to be the free electron number den-

sity ne, pressure pe, and chemical potential le,
8 all of which are

equivalent for ideal gases, but not in general. If the average

degree of ionization Z�k of material k is known, its free electron

number density is simply nek ¼ Z�k nk; where nk is the number

density of the heavy particles (atoms and ions) of material k.

We remark parenthetically that although the present dis-

cussion is focused on homogeneous mixtures in which the

constituents are intimately mixed on the molecular level, the

numerical algorithm is equally applicable to heterogeneous or

multiphase mixtures in which the different components

actually do physically occupy distinct macroscopic spatial

regions. In that case, pressure and temperature are ordinarily

the appropriate physical quantities to equilibrate. Of course,

those equilibrations are not really instantaneous but rather

occur via physical processes with finite relaxation times.11,12

However, they can nevertheless be regarded as effectively in-

stantaneous when their associated relaxation times are much

shorter than the other characteristic physical time scales in the

problem, and in that case the present method can profitably be

employed. Conversely, nearly or effectively instantaneous

pressure equilibration has sometimes been modeled as an arti-
ficial relaxation process that occurs over several time steps

(see Ref. 12, and references cited therein), which is much eas-

ier to implement numerically but may introduce an unphysical

dependence on the time step into the results.

Two-temperature plasmas correspondingly possess two

internal energies as well, namely the specific internal energies

Ei and Ee of the heavy particles and electrons, respectively,

both of which we define as energies per unit total mass of the

mixture, not per unit mass of the heavy particles or electrons.

It should be noted that these energies are not purely thermal

but also include “cold energy” (i.e., chemical/ionization

energies or heats of formation), and hence do not in general

vanish at zero temperature. In many hydrodynamic calcula-

tions, the internal energies are determined by energy

transport equations, so Ei and Ee constitute independent ther-

modynamic variables which may be regarded as known

quantities for present purposes. The algorithm presented in

this paper is specifically designed for, and is restricted to,

calculations of this type. In practice, however, one normally

solves a transport equation for the total specific internal

energy E � Ei þ Ee rather than Ei, because E satisfies a sim-

pler equation than Ei does (e.g., Ref. 13). One then simply

obtains Ei as Ei¼E � Ee.

The other independent thermodynamic variables

obtained by solving transport equations, which may therefore

also be regarded as known quantities, are the mass density q
of the mixture, or equivalently its specific volume n ¼ 1=q,

and the mass fractions Yk of its constituent species or compo-

nents, which of course must satisfy the constraint
P

kYk ¼ 1.

The artificial partitioning procedure described above then

requires that the quantities n; Ei, and Ee be apportioned

among the different materials k in such a way as to accom-

plish the desired equilibration. In the present context, of

course, the heavy particles and electrons possess different

temperatures Ti and Te, which must be separately and inde-

pendently equilibrated among the different materials. We

emphasize that this equilibration is a purely numerical pro-

cess which bears no relation to, and should not be confused

with, the physical tendency of Ti and Te to equilibrate with

each other on a time scale determined by the rate of energy

exchange between heavy particles and electrons.13–19

Accurate theoretical expressions for that exchange rate, and

the associated relaxation time it implies, are essential ingre-

dients in the evolution equations for Ei and Ee, but are irrele-

vant for present purposes.

The equations that must be solved to implement the pro-

cedure described above are of two types: constraint conditions

to ensure that the specific volumes and internal energies of the

materials are consistent with the known specific volume and

energies of the mixture, and equilibration conditions that

express and ensure the equilibration of q, Ti, and Te among the

different materials in the mixture. These conditions are sum-

marized in Secs. II and III, respectively. Together they consti-

tute a closed nonlinear algebraic equation system, which must

in general be solved by iterative methods. The Newtonian iter-

ation scheme we use for this purpose is a natural generaliza-

tion of that described in Ref. 1 and is presented in Sec. IV.

Thermodynamic relations needed to evaluate various partial

derivatives for the individual materials and the mixture as a

whole in terms of known quantities are given in Secs. V and

VI, respectively. The sound speed in the mixture requires spe-

cial consideration and is derived in Sec. VII. Test calculations

that illustrate iteration convergence rates as well as the differ-

ent results obtained by equilibrating total pressure vs. free

electron pressure are presented in Sec. VIII. A brief summary

is given in Sec. IX.

II. CONSTRAINT CONDITIONS

For the most part, we shall use the same notation as Ref.

1, the main exception being that specific internal energies

are denoted by the symbol E rather than e so that e is avail-

able for use as a subscript to refer to the electrons. The spe-

cific volume of material k in the artificially partitioned

mixture is denoted by nk, and is defined as the volume occu-

pied by material k per unit mass of material k. Thus, qk �
1=nk is the mass density of material k within its subvolume.

The mass of material k per unit total volume is Ykq ¼ Yk=n,

so the volume fraction of material k in the artificially parti-

tioned mixture is vk ¼ nkYk=n. These volume fractions must

of course sum to unity, so that the quantities nk must satisfy

the constraint

XN

k¼1

Yknk ¼ n; (1)

where N is the number of materials in the mixture.

The specific internal energies of the heavy particles and

electrons of material k within its subvolume are denoted by

Eik and Eek, respectively, both of which are defined per unit
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total mass of material k. The corresponding internal energies

of the heavy particles and electrons of material k per unit

mass of the mixture are then simply YkEik and YkEek, respec-

tively. These quantities must clearly sum to Ei and Ee,

respectively, so that Eik and Eek must satisfy the constraints

XN

k¼1

YkEik ¼ Ei; (2)

XN

k¼1

YkEek ¼ Ee: (3)

III. EQUILIBRATION CONDITIONS

Equations of state for each pure material k are required as

input to determine approximate state relations for the mixture,

and are presumed to be available. Many if not most of the ma-

terial state routines or packages in common use express the var-

ious thermodynamic variables of material k as functions of the

independent variables ðqk; Tik; TekÞ. Normally, Eikðqk; Tik; TekÞ
is independent of Tek and Eekðqk; Tik; TekÞ is independent of

Tik, but we shall retain those dependencies for generality. The

functional relations Eikðqk; Tik; TekÞ and Eekðqk; Tik; TekÞ can in

principle be inverted to obtain Tikðqk;Eik;EekÞ and

Tekðqk;Eik;EekÞ. It is generally assumed that the total pressure

pk of material k is given by the sum of the partial pressures pik

and pek of its heavy particles and free electrons, respectively, so

that pk ¼ pikðqk; Tik; TekÞ þ pekðqk; Tik; TekÞ. The latter func-

tional relations for pik and pek can be combined with those for

Tik and Tek to obtain pikðqk;Eik;EekÞ and pekðqk;Eik;EekÞ.
Normally, pik is independent of Tek or Eek and pek is independ-

ent of Tik or Eik, but we shall again retain those dependencies

for generality.

It is essential to note that state routines or packages

developed for practical applications often consider the exci-

tation energy of bound electrons in excited states to be

included in Eek rather than Eik. The physical basis for that

convention is that it simplifies the state relations when the

excited state populations are primarily determined by Te

rather than Ti, as is often assumed to be the case.20,21 That

convention is not presumed in the present development,

which is generally valid regardless of the physical interpreta-

tions of Eik and Eek, provided they are the same for all mate-

rials k. However, consistency obviously requires the mixture

energies Ei and Ee to adhere to the same convention as Eik

and Eek, which in turn requires that the transport equation for

Ee be formulated in a manner corresponding to the definition

of Eek on which the state relations are based. In other words,

if the excitation energy of bound electrons in excited states

is included in the quantities Eek, that energy must likewise be

included in Ee and the transport equation that determines it.

In accordance with the discussion of Sec. I, the equili-

bration conditions that we impose to implicitly determine the

quantities nkð¼1=qkÞ; Eik, and Eek are as follows:

qkðqk; Ti; TeÞ ¼ q; (4)

Tikðqk;Eik;EekÞ ¼ Ti; (5)

Tekðqk;Eik;EekÞ ¼ Te: (6)

Equations (1)–(6) constitute a system of 3Nþ 3 equations in

the 3Nþ 3 unknown quantities nk; Eik; Eek, q, Ti, and Te.

This system is highly nonlinear and must in general be

solved by iterative methods. A suitable iteration scheme for

this purpose is described in the next section.

IV. NEWTONIAN ITERATION SCHEME

Let g be the iteration index, which will be displayed as a

superscript. Thus, the approximate value of any quantity Q
after iteration g but before iteration gþ 1 is denoted by Qg:
The iteration scheme defines how the quantities nk; Eik; Eek,

q, Ti, and Te are advanced from iteration g to iteration gþ 1.

This will be done by means of linearized approximations to

Eqs. (1)–(6). The constraint Eqs. (1)–(3) are already linear,

so they become

XN

k¼1

Ykn
gþ1
k ¼ n; (7)

XN

k¼1

YkEgþ1
ik ¼ Ei; (8)

XN

k¼1

YkEgþ1
ek ¼ Ee: (9)

The remainder of the scheme is defined by writing linearized

approximations for the changes in nk; Eik, and Eek from itera-

tion g to iteration gþ 1 required to produce values of

qgþ1
k ; Tgþ1

ik , and Tgþ1
ek that satisfy Eqs. (4)–(6):

ngþ1
k � ng

k ¼
@nk

@qk

� �
qgþ1 � qg

k

� �
þ @nk

@Tik

� �
Tgþ1

i � Tg
ik

� �

þ @nk

@Tek

� �
Tgþ1

e � Tg
ek

� �
; (10)

Egþ1
ik � Eg

ik ¼
@Eik

@qk

� �
qgþ1 � qg

k

� �
þ @Eik

@Tik

� �
Tgþ1

i � Tg
ik

� �

þ @Eik

@Tek

� �
Tgþ1

e � Tg
ek

� �
; (11)

Egþ1
ek � Eg

ek ¼
@Eek

@qk

� �
qgþ1 � qg

k

� �
þ @Eek

@Tik

� �
Tgþ1

i � Tg
ik

� �

þ @Eek

@Tek

� �
Tgþ1

e � Tg
ek

� �
; (12)

where it is understood that partial derivatives with respect to

any of the variables (qk, Tik, Tek) are taken with the other two

held constant and are evaluated at iteration g. Since all quan-

tities are presumed known at the previous iteration g, Eqs.

(7)–(12) constitute a determinate system of 3Nþ 3 equations

in the 3Nþ 3 unknown quantities ngþ1
k ; Egþ1

ik ; Egþ1
ek ;

qgþ1; Tgþ1
i , and Tgþ1

e : It is apparent by inspection that if

the iteration converges as g!1, it produces a solution of

Eqs. (1)–(6).

Substituting Eqs. (10)–(12) into Eqs. (7)–(9), we obtain
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Aqqqgþ1 þ AqiT
gþ1
i þ AqeTgþ1

e ¼ Bq; (13)

Aiqqgþ1 þ AiiT
gþ1
i þ AieTgþ1

e ¼ Bi; (14)

Aeqqgþ1 þ AeiT
gþ1
i þ AeeTgþ1

e ¼ Be; (15)

where

Aqq ¼
X

k

Yk
@nk

@qk

� �
; Aqi ¼

X
k

Yk
@nk

@Tik

� �
;

Aqe ¼
X

k

Yk
@nk

@Tek

� �
; (16)

Aiq ¼
X

k

Yk
@Eik

@qk

� �
; Aii ¼

X
k

Yk
@Eik

@Tik

� �
;

Aie ¼
X

k

Yk
@Eik

@Tek

� �
; (17)

Aeq ¼
X

k

Yk
@Eek

@qk

� �
; Aei ¼

X
k

Yk
@Eek

@Tik

� �
;

Aee ¼
X

k

Yk
@Eek

@Tek

� �
; (18)

Bq¼ n�
X

k

Ykn
g
k

þ
X

k

Yk qg
k

@nk

@qk

� �
þTg

ik

@nk

@Tik

� �
þTg

ek

@nk

@Tek

� �" #
; (19)

Bi¼Ei�
X

k

YkEg
ik

þ
X

k

Yk qg
k

@Eik

@qk

� �
þTg

ik

@Eik

@Tik

� �
þTg

ek

@Eik

@Tek

� �" #
; (20)

Be¼Ee�
X

k

YkEg
ek

þ
X

k

Yk qg
k

@Eek

@qk

� �
þTg

ik

@Eek

@Tik

� �
þTg

ek

@Eek

@Tek

� �" #
: (21)

The thermodynamic identities needed to evaluate the partial

derivatives in Eqs. (16)–(21) in terms of derivatives with

respect to ðqk; Tik; TekÞ are summarized in Sec. V.

Equations (13)–(15) are a system of three linear equa-

tions in the three unknown quantities qgþ1; Tgþ1
i ; and Tgþ1

e ;
the solution to which is readily obtained from Cramer’s rule.

To minimize multiplications, it is convenient to compute the

minors of the matrix A at the outset and save them for

repeated use. These quantities are given by

Mqq ¼ AiiAee � AeiAie; (22)

Miq ¼ AqiAee � AeiAqe; (23)

Meq ¼ AqiAie � AiiAqe; (24)

Mqi ¼ AiqAee � AeqAie; (25)

Mii ¼ AqqAee � AeqAqe; (26)

Mei ¼ AqqAie � AiqAqe; (27)

Mqe ¼ AiqAei � AeqAii; (28)

Mie ¼ AqqAei � AeqAqi; (29)

Mee ¼ AqqAii � AiqAqi: (30)

According to Cramer’s rule, the solution of Eqs. (13)–(15) is

then given by

qgþ1 ¼ RðBqMqq � BiMiq þ BeMeqÞ; (31)

Tgþ1
i ¼ Rð�BqMqi þ BiMii � BeMeiÞ; (32)

Tgþ1
e ¼ RðBqMqe � BiMie þ BeMeeÞ; (33)

where

R ¼ 1=ðAqqMqq � AqiMqi þ AqeMqeÞ: (34)

Equations (31)–(33) combine with Eqs. (10)–(12) to provide

explicit expressions for ngþ1
k ; Egþ1

ik , and Egþ1
ek , which in turn

determine qgþ1
k ; Tgþ1

ik , and Tgþ1
ek via the individual material state

relations.

Newtonian iteration schemes are notoriously vulnerable

to overshoots, so limiters are sometimes necessary to ensure

convergence. Experience in applying the above iteration

scheme on a variety of problems has shown that divergence

is usually avoided if ngþ1
k is not allowed to differ from ng

k by

more than a factor of two. Limiters could also be applied to

Egþ1
ik and Egþ1

ek , but this has not been found necessary except

when the initial guesses are very far off.

The iteration procedure is normally initialized by setting

n0
k ; E0

ik, and E0
ek equal to their values from the previous time

step. Note that there is no need to initialize q, Ti, or Te since Eqs.

(10)–(12) do not involve qg; Tg
i , or Tg

e . The iteration is continued

until maxð�gqk; �
g
ik; �

g
ekÞ < � for all k, where � � 10�4 and

�gqk � jYkð1� qg
k=qgÞj; (35)

�gik � jYkð1� Tg
ik=Tg

i Þj; (36)

�gek � jYkð1� Tg
ek=Tg

e Þj: (37)

Once the above convergence criteria have been satisfied, the

final converged values of q, Ti, and Te define the values of

those thermodynamic quantities for the mixture. When

q 6¼ p, the final converged material pressures pkðqk; Ti; TeÞ
remain unequal, and the total pressure of the mixture is then

given by their volume-weighted average;8 i.e.,

p ¼
X

k

vk pk ¼ q
X

k

nkYk pk: (38)

V. THERMODYNAMIC DERIVATIVES FOR THE
INDIVIDUAL MATERIALS

The following thermodynamic identities can be derived

by the usual straightforward but tedious manipulations.22

They express the partial derivatives of any thermodynamic
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variable Fk of material k (in particular, Fk ¼ nk; Eik, and Eek)

with respect to (qk, Tik, Tek) in terms of derivatives with

respect to the variables ðqk; Tik; TekÞ, which are the conven-

tional independent thermodynamic variables normally used

to construct tabulated state relations. The relations below

may then be used to evaluate the derivatives in Eqs.

(10)–(12) and (16)–(21).

@Fk

@qk

� �
T

¼ @Fk

@qk

� �
T

@qk

@qk

� ��1

T

; (39)

@Fk

@Tik

� �
q

¼ @Fk

@Tik

� �
q
� @Fk

@qk

� �
T

@qk

@Tik

� �
q

@qk

@qk

� ��1

T

; (40)

@Fk

@Tek

� �
q

¼ @Fk

@Tek

� �
q
� @Fk

@qk

� �
T

@qk

@Tek

� �
q

@qk

@qk

� ��1

T

; (41)

where a subscript q indicates that qk is held constant, a sub-

script T indicates that both Tik and Tek are held constant, and

it is understood that partial derivatives with respect to either

Tik or Tek are always taken with the other held constant, even

though this is not explicitly indicated by a subscript.

VI. THERMODYNAMIC DERIVATIVES FOR THE
MIXTURE

The iteration scheme determines the mixture state rela-

tions for the dependent thermodynamic variables (q, Ti, Te)

as functions of the independent thermodynamic variables

ðq;Ei;EeÞ: To obtain the mixture specific heats, and for vari-

ous other purposes, it is necessary to evaluate partial deriva-

tives of the mixture state relations. This may be done by

taking the differentials of the constraint conditions of Eqs.

(1)–(3) and the equilibration conditions of Eqs. (4)–(6) with

respect to (q, Ti, Te) and combining the results to obtain

dn ¼ Aqqdqþ AqidTi þ AqedTe; (42)

dEi ¼ Aiqdqþ AiidTi þ AiedTe; (43)

dEe ¼ Aeqdqþ AeidTi þ AeedTe; (44)

where the quantities Aab (a,b¼ q, i, e) are the final converged

values of the matrix elements defined in Eqs. (16)–(18).

Equations (42)–(44) are a linear system of the same form as

Eqs. (13)–(15), with (Bq, Bi, Be) replaced by ðdn; dEi; dEeÞ
and ðq; Ti; TeÞgþ1

replaced by (dq, dTi, dTe). It then follows

from Eqs. (31) to (33) that

dq ¼ RðMqqdn�MiqdEi þMeqdEe; (45)

dTi ¼ Rð�MqidnþMiidEi �MeidEeÞ; (46)

dTe ¼ RðMqedn�MiedEi þMeedEeÞ: (47)

The partial derivatives of (Ei, Ee) with respect to ðq; Ti; TeÞ
can be determined by regarding Eqs. (46) and (47) as a sys-

tem of two equations for dEi and dEe, the solution of which

is readily found to be

dEi ¼ J½RðMeeMqi �MeiMqeÞdnþMeedTi þMeidTe�; (48)

dEe ¼ J½RðMieMqi �MiiMqeÞdnþMiedTi þMiidTe�; (49)

where 1=J ¼ RðMiiMee �MieMeiÞ. Since n ¼ 1=q, it follows

at once that

@Ei

@q

� �
T

¼ ðRJ=q2ÞðMeiMqe �MeeMqiÞ; (50)

@Ei

@Ti

� �
q
¼ JMee ;

@Ei

@Te

� �
q
¼ JMei; (51)

@Ee

@q

� �
T

¼ ðRJ=q2ÞðMiiMqe �MieMqiÞ; (52)

@Ee

@Ti

� �
q
¼ JMie ;

@Ee

@Te

� �
q
¼ JMii; (53)

where as before a subscript T indicates that both Ti and Te

are held constant, and it is understood that partial derivatives

with respect to Ti or Te are always taken with the other held

constant, even though this is not explicitly indicated by a

subscript.

The partial derivatives of the mixture pressure must be

evaluated from Eq. (38), which implies

dp ¼ q
X

k

Yk½nkdpk þ ðpk � pÞdnk�: (54)

It follows that

@p

@q

� �
T

¼ q
X

k

Yk nk
@pk

@qk

� �
þ ðpk � pÞ @nk

@qk

� �� 	
; (55)

@p

@Ti

� �
q

¼ q
X

k

Yk nk
@pk

@Tik

� �
þ ðpk � pÞ @nk

@Tik

� �� 	
; (56)

@p

@Te

� �
q

¼ q
X

k

Yk nk
@pk

@Tek

� �
þ ðpk � pÞ @nk

@Tek

� �� 	
; (57)

where it is again understood that partial derivatives with

respect to any of the independent variables (qk, Tik, Tek) are

taken with the other two held constant. The partial derivatives

of pk and nk with respect to (qk, Tik, Tek) can be expressed in

terms of more conventional derivatives with respect to

ðqk; Tik; TekÞ by setting Fk¼ pk and Fk ¼ nk in Eqs. (39)–(41).

Once this has been done and the derivatives of p with respect

to (q, Ti, Te) have been evaluated by means of Eqs. (55)–(57),

they can be converted into derivatives with respect to the

more conventional independent variables ðq; Ti; TeÞ by means

of the following further thermodynamic identities:

@p

@q

� �
T

¼ @p

@q

� �
T

@q

@q

� �
T

; (58)

@p

@Ti

� �
q
¼ @p

@Ti

� �
q

þ @p

@q

� �
T

@q

@Ti

� �
q
; (59)

@p

@Te

� �
q
¼ @p

@Te

� �
q

þ @p

@q

� �
T

@q

@Te

� �
q

(60)
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in which the derivatives of q with respect to ðq; Ti; TeÞ follow

immediately from Eq. (42) and are given by

@q

@q

� �
T

¼ � 1

q2Aqq
; (61)

@q

@Ti

� �
q
¼ � Aqi

Aqq
; (62)

@q

@Te

� �
q
¼ � Aqe

Aqq
: (63)

VII. THE SOUND SPEED

In this section, we derive the sound speed of the mixture

in the limit of slow energy exchange between heavy particles

and electrons. The usual thermodynamic expressions for sound

speed are not directly applicable in two-temperature plasmas,

where there are three rather than two independent thermody-

namic variables. In this situation, the simplest way to proceed

is to go back to basics and directly determine the sound speed

by linearizing the two-temperature hydrodynamic equations

about a uniform steady state. We shall restrict attention to the

case in which the rate of energy exchange between heavy par-

ticles and electrons is very slow compared to the other physical

time scales in the problem, in particular those associated with

the propagation of sound waves. Under these conditions, the

relation between acoustic variations in pressure and density can

be inferred from the adiabatic thermodynamic relations

dp ¼ Kqdqþ KidEi þ KedEe; (64)

dEi ¼
pi

q2
dq; (65)

dEe ¼
pe

q2
dq; (66)

where pe ¼
P

kvkpek is the partial pressure of the free elec-

trons, pi¼ p � pe, and

Kq ¼
@p

@q

� �
E

; (67)

Ki ¼
@p

@Ei

� �
q
; (68)

Ke ¼
@p

@Ee

� �
q
; (69)

where a subscript E indicates that both Ei and Ee are held con-

stant, and it is understood that partial derivatives with respect

to either Ei or Ee are always taken with the other held con-

stant, even though this is not explicitly indicated by a sub-

script. The electron pressures pek are determined as functions

of ðqk; Ti; TeÞ by the thermodynamic state relations of the

individual materials k. Combining Eqs. (64)–(66), we obtain

dp ¼ c2dq; (70)

where

q2c2 ¼ q2Kq þ piKi þ peKe: (71)

The linearized hydrodynamic equations in one spatial

dimension x reduce to

@q
@t
¼ �q

@u

@x
; (72)

q
@u

@t
¼ � @p

@x
; (73)

where u is the fluid velocity. Combining Eqs. (70), (72), and

(73), we obtain

@2q
@t2
¼ c2 @

2q
@x2

; (74)

which is just the familiar wave equation in one dimension,

thereby confirming that c as determined by Eq. (71) is indeed

the sound speed.

The derivatives Kq; Ki, and Ke can be evaluated by

means of still further thermodynamic identities

Kq ¼
@p

@q

� �
E

¼ @p

@q

� �
T

þ @p

@Ti

� �
q

@Ti

@q

� �
E

þ @p

@Te

� �
q

@Te

@q

� �
E

; (75)

Ki ¼
@p

@Ei

� �
q
¼ @p

@Ti

� �
q

@Ti

@Ei

� �
q
þ @p

@Te

� �
q

@Te

@Ei

� �
q
; (76)

Ke ¼
@p

@Ee

� �
q
¼ @p

@Ti

� �
q

@Ti

@Ee

� �
q
þ @p

@Te

� �
q

@Te

@Ee

� �
q

(77)

in which the partial derivatives of p with respect to

ðq; Ti; TeÞ were determined in Eqs. (58)–(60), while those of

(Ti, Te) with respect to ðq;Ei;EeÞ follow immediately from

Eqs. (46) and (47) and are given by

@Ti

@q

� �
E

¼ RMqi

q2
;

@Ti

@Ei

� �
q
¼ RMii;

@Ti

@Ee

� �
q
¼ �RMei;

(78)

@Te

@q

� �
E

¼ � RMqe

q2
;

@Te

@Ei

� �
q
¼ �RMie;

@Te

@Ee

� �
q
¼ RMee:

(79)

VIII. TEST CALCULATIONS

In this section, we report the results of test calculations

that illustrate the convergence behavior of the iteration algo-

rithm and the differences that result from equilibrating elec-

tron pressure rather than total pressure. State relations for the

pure individual materials in these calculations were obtained

from the widely used LEOS package,23 which is based on

the QEOS24 and HQEOS25 models and Thomas-Fermi

theory. In general, the electron pressure consists of a thermal

part, which vanishes by definition at Te¼ 0, and a “cold”

part, which vanishes in classical ideal gases but can be

022706-6 J. D. Ramshaw and A. W. Cook Phys. Plasmas 21, 022706 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.239.122.246 On: Thu, 07 Jan 2016 20:08:04



significant in dense and/or degenerate systems. LEOS com-

putes both parts internally and includes them in the total

pressure, but unfortunately provides only the thermal part of

pe to the user. For best results in practical applications, the

“cold” part of pe should be computed and added to the ther-

mal part prior to equilibrating pe. This was not done in the

present test calculations, which are merely intended to be

illustrative, so the present results for pe equilibration were

obtained by equilibrating the thermal contributions only.

We performed test calculations for three different mix-

tures. The first is a mixture of materials commonly used in

inertial confinement fusion capsules, namely hydrogen (H),

carbon (C), oxygen (O), silicon (Si), and germanium (Ge).

The mass fractions of these five elements are equal, so that

FIG. 1. Convergence of species den-

sities, total pressures, ion temperatures,

and electron temperatures during the

course of Newton-Raphson iteration.

FIG. 2. Convergence of species den-

sities, electron pressures, ion tempera-

tures, and electron temperatures during

the course of Newton-Raphson

iteration.
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Yk¼ 0.2 for k ¼ 1; � � � ; 5. The density, total energy, and elec-

tron energy of the mixture are q ¼ 100 g/cc, E¼ 1015 erg/g,

and Ee¼ 1012 erg/g. These conditions correspond to a very

wide separation between the ion and electron temperatures,

with the ions much hotter than the electrons. The iteration is

initialized by setting the starting guesses for the species den-

sities and energies to the mixture values; i.e., qk ¼ q; Eik ¼
E� Ee and Eek¼Ee. The convergence of the iteration proce-

dure is shown in Fig. 1 for total pressure equilibration, and in

Fig. 2 for electron pressure equilibration. In both cases, con-

vergence requires only three iterations, in spite of the large

changes in species densities and ion temperatures. The final

converged values are seen to be significantly different in the

two cases, especially the species densities, which are much

closer together when pe is equilibrated instead of p.

However, it is noteworthy that the sound speed nevertheless

differs by less than 1% between the two cases, as shown in

Table I.

The second mixture considered was polystyrene (i.e., an

equimolar mixture of carbon and hydrogen), under conditions

where the electron temperature exceeds the ion temperature.

As before, we set the starting guesses for the species densities

and energies to the mixture values: qC ¼ qH ¼ q ¼ 2:0 g=cc,

EC¼EH¼E¼ 0.0926 jrk/g and EeC¼EeH¼Ee¼ 0.08 jrk/g.

Table II summarizes the results obtained by equilibrating both

p and pe. The resulting total pressures differ by less than

0.1%, which reflects the fact that pe constitutes about 85% of

p, so that there is little difference between the two equilibra-

tions under these conditions. Also shown are the correspond-

ing LEOS results for the CH mixture, which predict a slightly

higher p, possibly because they include the “cold” part of pe

omitted in our calculations.

The third mixture considered was an equimolar mixture of

He and Fe previously simulated by Lambert et al.9 using

OFMD. We performed calculations corresponding to a mixture

density and temperature of q ¼ 1 g=cc and

T¼Ti¼Te¼ 500 eV, for which their OFMD results for pres-

sure are given in the second row of their Table II. Since our

algorithm uses energies rather than temperatures as independ-

ent mixture variables, we specified mixture energies of E¼YHe

EHeþYFe EFe¼ 0.04958115139 jrk/g and Ee¼YHe EeHeþYFe

EeFe¼ 0.04708882090 jrk/g to obtain temperatures that closely

approximate 500 eV. The starting guesses for the densities and

energies of the individual materials are again the mixture val-

ues: qHe ¼ qFe ¼ q; EHe ¼ EFe ¼ E and EeHe ¼ EeFe ¼ Ee.

Table III shows our results for total pressure equilibration and

electron pressure equilibration, together with the total pressure

predicted by the OFMD simulations of Lambert et al. There is

no significant difference between the total pressures we obtain

by equilibrating p vs. pe, both of which are about 2% higher

than the OFMD value.

None of these calculations and comparisons provides

direct evidence that equilibrating pe produces physically

more accurate results than equilibrating p, which would

require including the “cold” part of pe. It further requires

accurate simulations of the state relations for both the true

mixture and the individual pure materials by the same

method, as was done by Lambert et al.9 Those authors com-

pared their mixture simulations with the results of equilibrat-

ing p vs. the excess pressure Pex defined in their Eq. (4), and

found that the latter produced more accurate results. Note

that pe becomes identical to Pex when the heavy particles are

treated as a classical ideal gas, so that Pex may be regarded

as an approximation to pe.

Other tests show that the method typically converges

rapidly at high temperatures, where thermodynamic deriva-

tives are smooth, but can run into trouble at low tempera-

tures where @pk=@qk can pass through zero (e.g., phase

changes), and pe or Ee and their derivatives go to zero

and/or become unreliable due to deficiencies in the elec-

tronic state relations when ionization is negligible (e.g.,

neutral gases). A workaround for these situations is to put

floors p0, pe0, and Ee0 under pk, pek, and Eek and their par-

tial derivatives, such that @pk=@qk � p0=qk; @pek=@qk �
pe0=qk and @Eek=@Tek � Ee0=Tek. This reduces the accuracy

of the method at low temperatures, but has been found suf-

ficient for problems with strong heating in which energies

quickly increase by several orders of magnitude, thereby

producing almost immediate ionization.

IX. SUMMARY

We have presented an iterative algorithm for determin-

ing pressures and temperatures in a two-temperature plasma

mixture as functions of density, total energy, electron energy,

and the constituent mass fractions. Various partial deriva-

tives of the mixture state relations, including the sound speed

and specific heats, have also been derived and expressed in

terms of known quantities. The algorithm is based on an

equilibration procedure in which the temperatures and one

additional thermodynamic variable, normally either the total

pressure or the partial pressure of the free electrons, are

TABLE I. Differences between equilibrating p and pe in H-C-O-Si-Ge

mixture.

p (Mbar) pe (Mbar) Ti (eV) Te (eV) c (cm/ls) Iterations

p equil. 67306.42 64.67 2840.53 19.44 33.53 3

pe equil. 66669.25 64.42 3134.39 17.95 33.26 3

TABLE II. Differences between equilibrating p and pe in C-H mixture.

p (Mbar) pe (Mbar) Ti (eV) Te (eV) c (cm/ls) iterations

p equil. 1143.08 978.45 528.22 966.54 30.82 3

pe equil. 1142.12 977.97 527.37 965.82 30.79 3

LEOS CH table 1151.63 977.97 527.85 965.73 30.89 NA

TABLE III. Differences between equilibrating p and pe in He-Fe mixture.

p (Mbar) pe (Mbar) Ti (eV) Te (eV) c (cm/ls) iterations

p equil. 203.835 186.367 503.737 502.389 17.632 4

pe equil. 203.482 185.938 501.557 500.762 17.584 3

OFMD9 200.06 … 500 500 … NA
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equilibrated among the pure constituents. The algorithm has

been applied to a variety of inertial confinement fusion prob-

lems and found to converge rapidly, provided the electron

temperature is sufficiently high for significant ionization.
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