
Portland State University Portland State University 

PDXScholar PDXScholar 

Physics Faculty Publications and Presentations Physics 

12-2014 

Extended Necessary Condition for Local Operations Extended Necessary Condition for Local Operations 

and Classical Communication: Tight Bound for All and Classical Communication: Tight Bound for All 

Measurements Measurements 

Scott M. Cohen 
Portland State University, scott.cohen@pdx.edu 

Follow this and additional works at: https://pdxscholar.library.pdx.edu/phy_fac 

 Part of the Physics Commons 

Let us know how access to this document benefits you. 

Citation Details Citation Details 
Cohen, Scott M., "Extended Necessary Condition for Local Operations and Classical Communication: 
Tight Bound for All Measurements" (2014). Physics Faculty Publications and Presentations. 245. 
https://pdxscholar.library.pdx.edu/phy_fac/245 

This Post-Print is brought to you for free and open access. It has been accepted for inclusion in Physics Faculty 
Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make 
this document more accessible: pdxscholar@pdx.edu. 

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/phy_fac
https://pdxscholar.library.pdx.edu/phy
https://pdxscholar.library.pdx.edu/phy_fac?utm_source=pdxscholar.library.pdx.edu%2Fphy_fac%2F245&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/193?utm_source=pdxscholar.library.pdx.edu%2Fphy_fac%2F245&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/phy_fac/245
https://pdxscholar.library.pdx.edu/phy_fac/245?utm_source=pdxscholar.library.pdx.edu%2Fphy_fac%2F245&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:pdxscholar@pdx.edu


Extended necessary condition for local operations and classical communication:

Tight bound for all measurements

Scott M. Cohen∗

Department of Physics, Portland State University, Portland OR 97201

(Dated: December 3, 2014)

We give a necessary condition that a separable measurement can be implemented by local quantum
operations and classical communication (LOCC) in any finite number of rounds of communication,
generalizing and strengthening a result obtained previously. That earlier result involved a bound
that is tight when the number of measurement operators defining the measurement is relatively
small. The present results generalize that bound to one that is tight for any finite number of
measurement operators, and we also provide an extension which holds when that number is infinite.
We apply these results to the famous example on a 3× 3 system known as “domino states”, which
were the first demonstration of nonlocality without entanglement. Our new necessary condition
provides an additional way of showing that these states cannot be perfectly distinguished by (finite-
round) LOCC. It directly shows that this conclusion also holds for their cousins, the rotated domino
states. This illustrates the usefulness of the present results, since our earlier necessary condition,
which these results generalize, is not strong enough to reach a conclusion about the domino states.

PACS numbers: 03.65.Ta, 03.67.Ac

I. INTRODUCTION

In a recent publication [1], we proved a necessary condition such that a quantum measurement can be
implemented by local operations on subsystems and classical communication between parties (LOCC) in any
finite number of rounds of communication.1 We also demonstrated that there exist examples of separable
measurements for which the condition is extensively violated, this violation growing without limit as the
number of parties increases. A class of the examples given in [1] was later shown [2] to be applicable to the
optimal unambiguous discrimination of certain sets of quantum states, and includes an infinite number of
cases for each number of parties where each case is such that separable measurements are strictly better than
finite-round LOCC. We also discussed in [1] why we believe that these results apply to all LOCC, including
those using an infinite number of rounds, but to date a proof remains elusive.
Each quantum measurement involves a set of operatorsKj where, for the jth outcome of the measurement,

the state of the measured system changes as ρ → KjρK
†
j /pj, with pj = Tr(ρKj), where the associated ‘POVM

element’ is defined as Kj := K†
jKj . A measurement on P parties is separable [3] if and only if each Kj

is a product operator, in which case the POVM elements are also product, Kj = K
(1)
j ⊗ . . . ⊗ K

(P )
j . It is

well-known that every LOCC measurement is separable, but there exist separable measurements that are not
LOCC [4–7]. In an effort to better understand the difference between separable measurements and LOCC
[8–15], we have undertaken a series of works [1, 2, 16, 17] aimed at finding conditions on the sets of POVM
elements that could serve to distinguish between these two important classes of quantum measurements.
In [16], we showed how to construct an LOCC protocol for a given bipartite separable measurement

whenever such a protocol exists in a finite number of rounds. This result was generalized to any number of
parties in [17]. The approach in these papers involves looking for intersections of convex cones generated by

subsets of the local operators K
(α)
j associated with the measurement under consideration, and the starting

point is to consider subsets that each consist of a single operator. Each operator K
(α)
j generates a ray

{λK
(α)
j |λ ≥ 0}, any collection of these rays generates a convex cone, and the extreme rays of these cones are

those associated with operators in that collection which cannot be written as a positive linear combination

∗Electronic address: cohensm52@gmail.com
1 We define each round of communication as consisting of one party broadcasting the result of her measurement to all the other
parties.
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of the others in the same collection. Clearly, if for each party α, every K
(α)
j is extreme in the cone of the full

set of these operators for a given measurement and no two K
(α)
j are proportional, then the starting point

mentioned above will fail, as no two cones involving just a single operator will intersect. More generally, it
appeared that (loosely speaking) too many extreme rays would make it difficult to find enough intersections
to build a full LOCC protocol for the measurement. Motivated by this idea, we proved the following theorem
in [1].

Theorem 1. [1] For any finite-round LOCC protocol of P parties implementing a separable measurement

corresponding to the N distinct POVM elements {Kj = K
(1)
j ⊗ . . .⊗K

(P )
j }Nj=1, it must be that

P
∑

α=1

eα ≤ 2(N − 1), (1)

where eα is the number of distinct extreme rays in the convex cone generated by operators {K
(α)
j }Nj=1, and

the sum includes only those parties for which at least one of these local operators is not proportional to the
identity. The upper bound in (1) can be achieved with equality when N ≤ 2P .

The last line in this theorem, that the upper bound in (1) is tight for N ≤ 2P , is rather restrictive.
In general, N will be larger, in many cases significantly so. For example, any measurement aimed at
discriminating a full basis of states will consist of N = d1d2 . . . dP operators (dα is the dimension of the
Hilbert spaceHα for subsystem α), which exceeds 2P unless all subsystems are qubits, the smallest nontrivial
system. Therefore, it would be of interest to have an upper bound that is tight for N > 2P , as well. At the
time of writing of [1], we had been able to prove that for bipartite systems,

∑

α eα ≤ 3N/2, which is a tight
bound whenever N ≥ 2P = 4. We had suspected that an upper bound of 2N(1− 2−P ) might be valid for all
P , but our method of proof for bipartite systems could not be generalized to more than two parties and at
the time, we saw no way of approaching it differently. Recently, we realized that the techniques of [1] could
be used to prove this conjectured upper bound, which is tight for N ≥ 2P and any P . We present the results
of this approach in Theorems 2, 3, and 4, below. The latter two theorems apply to the case of infinite N .
We start by representing any LOCC measurement by a canonical LOCC tree, as defined in [1], a represen-

tation which is possible for any measurement implemented by LOCC. Each node is labeled by the POVM
element corresponding to the cumulative action, to that point in the protocol, of the party for whom that
node represents one outcome of a measurement by that party. If that party who measured is α, we refer to
that node as an α-node. A canonical LOCC tree is then one where every nonleaf node has exactly two child
nodes, and for any given node, the pair of POVM elements labeling its two child nodes are not proportional
to each other. Given this structure, these are full binary trees, so if they have N leaf nodes, they will also
have a total of 2N − 1 nodes in all [18].
In the following section, we state and prove the finite-N result, Theorem 2. Its infinite-N counterparts,

Theorems 3 and 4, are also stated in this section, and their proof is given in the appendix. In Section III,
we present physically motivated tasks for which Theorem 2 demonstrates directly that these tasks cannot be
accomplished by finite-round LOCC. Finally, in Section IV, we offer our conclusions. As with Theorem 1,
we also conjecture that these theorems need not be restricted to finite-round LOCC, but rather apply to
infinite-round LOCC, as well.

II. MAIN RESULTS

In [1], we showed how any canonical LOCC tree can be pruned down to a full binary tree that has one and
only one leaf for each distinct Kj in the corresponding separable measurement, but nonetheless still has at

least one appearance of each of the K
(α)
j that is an extreme ray, for every party α. In addition, the method

of pruning the tree is such that descendants of a given node in the final tree were also descendants of that
node in the original tree. For our present result, consider an arbitrary canonical LOCC protocol represented
as a canonical LOCC tree. We want to count the number of extreme rays in this tree. The first step will
be to prune the tree as described in [1], after which we rearrange the remaining nodes as follows: If a node
is an extreme ray and at least one of its children is not extreme, swap positions of these two nodes, which
moves the extreme node closer to the leafs of the tree. If both children are non-extreme, just choose either
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one to swap with its parent. Continue this process until no extreme node has a child that is not extreme,
which means that any descendant of an extreme node must itself be extreme.
The resulting tree remains full binary and every extreme node lies in a subtree within which every node is

extreme. Using integer index s, denote each maximal such subtree as Ts. If for given s, Ts has ls leaf nodes,
then as it is still full binary, it also has 2ls − 1 nodes in total, each of which is extreme. Suppose there are S
of these subtrees. Then the total number of extreme nodes in this tree is equal to the total number of nodes
in the collection of these subtrees, which is

S
∑

s=1

(2ls − 1) = 2
S
∑

s=1

ls − S ≤ 2N − S, (2)

where we have used the fact that the total number N of leaf nodes is at least
∑

s ls (this sum can be strictly
less than N if there is one or more subtrees that have no extreme rays in them at all, since in this case the
leafs in these subtrees are not counted in the sum). Even though no two leafs are the same Kj , it is still
possible that some extreme rays are repeated at different nodes in this tree.2 However, since every extreme
ray appears at least once in the tree, the number of extreme rays is no greater than the number of extreme
nodes, which is itself no greater than the quantity 2N −S on the right-hand side of (2). Therefore, we have
that

P
∑

α=1

eα ≤ 2N − S. (3)

If we can find the smallest possible value of S, this will give a good upper bound on the total number of
distinct extreme rays. Recall from [1] that the root node of the original tree is always present in the pruned
tree and is not extreme. It should be clear that this node is still the root of the entire pruned and rearranged,
final tree, implying S ≥ 2. In fact S = 2 is possible, occurring when the root is the only non-extreme node
in the pruned tree, and then no re-arrangement is necessary. In this case,

∑

α eα ≤ 2(N − 1), and we recover
Theorem 1.
It turns out, however, that S = 2 is not always possible, depending on how many parties there are involved

in the protocol. We will presently show that the number of leaf nodes in any one of these subtrees cannot
exceed 2P−1. Now, S is minimized when each subtree has this maximum number of leaf nodes, which occurs
for these full binary subtrees when every branch has the same maximum height (height is the number of
edges between the root and the leaf). The height of these subtrees is limited by the fact that every node
in each of them is extreme, along with the fact that extreme α-nodes have no α-node descendants. The
latter point is true of the original tree, by Lemma 5 of [1], and as is pointed out there, this remains true
for the pruned tree. It also applies to the final, rearranged tree, since our rearrangement, like the pruning,
does not create new descendants of any extreme node, but rather only turns some of its descendants into
non-descendants. Therefore, no branch in these subtrees can have more than one α-node, for each of the P
parties α, which directly implies there are no more than P nodes along any branch within any one of these
subtrees, whose height h must therefore satisfy h ≤ P − 1. It is well-known for a binary tree with l leaves
and height h that l ≤ 2h [19], so we can conclude that the number of leaves in any one of these subtrees
cannot exceed 2P−1. Since there are a total of N leaves in the full collection of these subtrees, there must
be at least N/2P−1 subtrees in this collection. Hence,

S ≥

⌈

N

2P−1

⌉

, (4)

where ⌈x⌉ is the smallest integer not less than x, and from (3) we have

P
∑

α=1

eα ≤ 2N −

⌈

N

2P−1

⌉

, (5)

2 For example, it may be that K
(1)
1 = K

(1)
2 is a (single) extreme ray, and these operators appear as two different leafs, one

being the unique K1 leaf, the other being the unique K2 leaf. In this case, both these leaf nodes represent the same extreme
ray in the first party’s set of rays, and the number of extreme nodes in the tree is strictly greater than the number of extreme
rays.
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Combining this with Theorem 1, we have

Theorem 2. For any finite-round LOCC protocol of P parties implementing a separable measurement

corresponding to the N distinct POVM elements {Kj = K
(1)
j ⊗ . . .⊗K

(P )
j }Nj=1, it must be that

P
∑

α=1

eα ≤ 2N − ⌈2Nδ⌉ , (6)

where δ = max
(

N−1, 2−P
)

, eα is the number of distinct extreme rays in the convex cone generated by

operators {K
(α)
j }Nj=1, and the sum includes only those parties for which at least one of these local operators

is not proportional to the identity. The upper bound in (6) can be achieved with equality for any finite N
and P .

We showed in [1] how the upper bound can be achieved when N ≤ 2P . The discussion above indicates how
it can be done for all finite N . First consider the special case that N = 2P−1n with integer n ≥ 3. One party
measures first with n distinct outcomes. For each of her outcomes, each of the other P − 1 parties measures
once with a two-outcome measurement along every branch, conditioning their measurements on the previous
parties’ outcomes. As a result, descended from each of the n outcomes of that initial measurement, there is
a full binary subtree having 2P−1 leaf nodes and 2P − 1 nodes. This gives a total of N = 2P−1n leafs in the
entire tree, which also has a total of

(

2P − 1
)

n = 2N(1− δ) nodes, not counting the root of the tree. The
parties can choose their measurements so that all of their local outcomes are distinct from each other, and
so that each such outcome is extreme in the cone of its collection of local outcomes. Then every node in the
tree is extreme apart from the root of the tree, and the bound is achieved with equality.
If the last measurement along a single branch of the preceding protocol is omitted, this removes two leaf

nodes, but the node that was the parent of those two removed leafs becomes a new leaf, so N is decreased
by one to N = 2P−1n− 1. At the same time, the total number of nodes is decreased by two, as is the total
number of extreme rays. Now, ⌈2Nδ⌉ =

⌈

2N/2P
⌉

doesn’t change when N decreases by one, so the upper
bound in (6) also decreases by two, and is again achieved with equality. This process can be continued
sequentially, at each step omitting a single measurement in the same chosen subtree. The quantity ⌈2Nδ⌉
remains unchanged as N decreases by one and the number of extreme rays decreases by two, with the upper
bound always being achieved with equality, until there is only one node left in that subtree. When that
subtree’s last node is removed, N has decreased by 2P−1 in all, which is the point at which ⌈2Nδ⌉ decreases
by one. This last removal decreases N by one, the number of extreme rays also by one, and the upper
bound by one, so the upper bound is again achieved with equality. At this point we are effectively back
where we started but with one less outcome in the first party’s initial measurement, so start again omitting
measurements in another subtree. By continuing this process even into the last remaining subtree, we see
that the bound is tight for any finite N .
Let us now turn to the case of a separable measurement having an infinite number of distinct POVM

elements. Begin by choosing an ordering of these POVM elements. Let eαN be the number of distinct
extreme rays for party α in the first N of those POVM elements. Define the density of extreme rays as

De = lim
N→∞

1

N

P
∑

α=1

eαN , (7)

and we only include in the sum on the right, those parties for which at least one of its local operators is not
proportional to the identity. This quantity, De, depends on the ordering chosen. Then we have the following
theorem.

Theorem 3. For any finite-round LOCC protocol of P parties implementing a separable measurement

corresponding to an infinite number of distinct POVM elements {Kj = K
(1)
j ⊗ . . . ⊗ K

(P )
j }, there exists an

ordering of those POVM elements such that

De ≤ 2(1− 2−P ). (8)

There exist separable measurements with an infinite number of distinct POVM elements for which the upper
bound in (8) can be achieved with equality.
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The proof is given in the appendix. The idea is that the LOCC protocol that implements the measurement
induces an ordering for which De satisfies the bound. One first prunes and rearranges the tree in a way similar
to what was done for finite N , and then the leaves of the resulting tree can be enumerated. This enumeration
provides the desired ordering. Actually, there is a great deal of freedom in choosing this enumeration, so our
proof actually demonstrates that there are an infinite number of orderings for which (8) is satisfied, and we
can strengthen Theorem 3 to some degree as follows.

Theorem 4. Consider any finite-round LOCC protocol of P parties implementing a separable measurement

corresponding to an infinite number of distinct POVM elements {Kj = K
(1)
j ⊗ . . . ⊗ K

(P )
j }. Then, for any

finite integer M , and for any choice and ordering of the first M of these POVM elements, there exists an
ordering of the remaining POVM elements such that De ≤ 2(1− 2−P ).

The proof of this result is included in the appendix.
One can show that the bound in (8) is tight by the following discussion, which closely mirrors that given

above on how to achieve the upper bound with equality in the case of finite N . The first party makes an
initial measurement with an infinite number of outcomes, each of which is followed by a sequence of P−1 (one
for each of the other parties) two-outcome measurements along every branch. This means each outcome of
that initial measurement has descended from it 2P−1 leaf nodes and a total of 2P −1 nodes in its descendant
subtree. Choose these measurements such that all nodes are extreme rays and distinct from each other—this
is not difficult to do—and then order the POVM elements in the overall separable measurement by following
a right-to-left enumeration of the leaves of this LOCC tree. Considering the subtrees descendant from the
rightmost S outcomes of the initial measurement, one has N = 2P−1S leaf nodes and (2P −1)S extreme rays
for all P parties. As S → ∞, also N → ∞, and we see that De of (7) is equal to (2P −1)/2P−1 = 2(1−2−P )
for this P -round LOCC protocol, saturating the upper bound in (8).

III. APPLICATION TO RANK-1 MEASUREMENTS

For finite-N measurements in which every operator is rank-1, it is a simple process to apply Theorem 2
to determine if these measurements are candidates for LOCC. Each rank-1 product operator is a product
of rank-1 local operators, and rank-1 operators, being extreme rays in the full set of positive semidefinite
operators, are necessarily extreme in any subset of that full set. Therefore, one need only count the number of
distinct local operators in these measurements, and then violation of the bound in Theorem 2 automatically
rules out any possibility of implementation by finite-round LOCC.
Rank-1 measurements arise in the context of quantum state discrimination of a full basis of any multipartite

Hilbert space. When the basis is mutually orthogonal, the only3 measurement that can perfectly discriminate
the set of states consists of rank-1 projectors onto the states of that basis. Clearly, these must be product
states for there to be any hope of accomplishing this task by LOCC, and if they are product, Theorem 2
further restricts what may be possible. A well-known example of perfect discrimination of a full product
basis where our results can be profitably applied is that of Bennett, et. al., which was the first demonstration
of the existence of separable measurements that are not LOCC [4]. This set of nine states on a 3× 3 system,
often referred to as domino states, is (omitting normalization factors)

|Ψ1〉 = |1〉|1〉 |Ψ2〉 = |0〉(|0〉+ |1〉) |Ψ3〉 = |0〉(|0〉 − |1〉)

|Ψ4〉 = |2〉(|1〉+ |2〉) |Ψ5〉 = |2〉(|1〉 − |2〉) |Ψ6〉 = (|1〉+ |2〉)|0〉

|Ψ7〉 = (|1〉 − |2〉)|0〉 |Ψ8〉 = (|0〉+ |1〉)|2〉 |Ψ9〉 = (|0〉 − |1〉)|2〉. (9)

There are seven distinct local states for each of the P = 2 parties, so the N = 9 separable measurement that
perfectly discriminates these states involves seven distinct rank-1 local projectors on each side. This means
that whereas e1 = 7 = e2 and e1+e2 = 14, the upper bound on this sum in Theorem 2 is 2N−

⌈

N/2P−1
⌉

= 13.

3 We restrict to measurements acting only on the original Hilbert space. While enlarging the Hilbert space creates the possibility
of using other measurements, these other measurements are effectively identical to the “only” measurement discussed here; see
Lemma 5 of [2]. Therefore, enlarging the Hilbert space does not allow accomplishment by LOCC of a task that is impossible
by LOCC acting only on the original Hilbert space.
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Hence, this measurement violates Theorem 2, implying directly (the well-known result) that this set of states
cannot be perfectly discriminated by finite-round LOCC. The same conclusion immediately follows for any
set of “rotated domino states” [8], for which an arbitrary rotation is applied to each pair of superposition
states (such as |0〉+ |1〉 → cos(θ)|0〉+sin(θ)|1〉, |0〉− |1〉 → sin(θ)|0〉− cos(θ)|1〉). Note that for the result we
had obtained previously in [1], in which δ = N−1 instead of the value δ = 2−P > N−1 used here, we have
a bound of 2(N − 1) = 16, which does not allow a conclusion to be drawn for these states (rotated or not).
Therefore, these examples demonstrate the usefulness of the extension obtained in the present paper.

IV. CONCLUSIONS

In summary, we have proved a necessary condition for any finite-round LOCC protocol, which provides
an upper bound on the number of extreme rays appearing in the collection of POVM elements associated
with a separable measurement, see Theorem 2 and the accompanying discussion. We have shown that the
upper bound in Theorem 2 is tight for all measurements having a finite number of distinct POVM elements
by providing examples of measurements for which the upper bound is achieved with equality. This has been
further extended in Theorems 3 and 4 to cover cases of measurements with an infinite number of distinct
POVM elements, and the bound in this case can also be achieved with equality. These results extend a
previous result obtained in [1], restated here as Theorem 1, but the corresponding upper bound in that
theorem is tight only when there are relatively few distinct POVM elements.
In Section II, we have shown that the well-known separable measurement of [4] violates the necessary

condition of Theorem 2, providing one more way of showing that this measurement cannot be implemented by
finite-round LOCC. We have also noted that this measurement does not violate the condition of Theorem 1,
demonstrating the importance of the extension obtained in Theorem 2.
We have conjectured elsewhere that Theorem 1 also applies to infinite-round LOCC protocols, and we

continue to believe this conjecture holds. Similarly, we also believe that Theorem 2 holds for infinite-round
protocols, but we have yet to find a proof. We feel less confident this will also be the case for Theorems 3 and
4, though it is certainly a possibility. If these conjectures turn out to be true, we will have found yet another
way of proving that there is a finite gap between what can be achieved by the separable measurement which
successfully distinguishes the nine states of [4], as opposed to what can be achieved by LOCC.
Acknowledgments — We would like to thank Li Yu and Dan Stahlke for very helpful discussions. This work
has been supported in part by the National Science Foundation through Grant No. 1205931.

Appendix: Proof of Theorems 3 and 4

Our proof of Theorems 3 and 4 will be very similar to that of Theorem 2, except that we will not start
with a canonical LOCC tree, since such a tree, being full binary, would require the infinite-leaf tree to have
infinite height, whereas we wish to work with trees of finite height. According to Lemmas 2 and 4 of [17],
we may nonetheless assume that our LOCC tree is such that every nonleaf node has at least two children
and that, of the POVM elements labeling its children, no two are proportional to each other.
Although the following lemma applies only to trees with a finite number of leaf nodes, it will play an

important role in our arguments.

Lemma 5. For any tree of height h in which every nonleaf node has at least two children, the ratio of the
total number of nodes n to the number of leaf nodes l in the tree satisfies

n

l
≤ 2

(

1− 2−(h+1)
)

, (A.1)

as long as l, and hence n, is finite.

Proof. The proof is by induction on the height h. For h = 1, the tree has a root node and l ≥ 2 leaf nodes,
for a total of n = l+1 nodes in all. Then, n/l = 1+1/l ≤ 3/2 = 2

(

1− 2−(h+1)
)

. Now assume (A.1) holds for
h = H − 1, and let us show that it then holds for h = H . Let TH be a tree of height H obtained from TH−1

by adding children to some of the leaf nodes of TH−1. Those leaf nodes to which we do not add children are
terminal at H − 1, let there be tH−1 of these terminal leafs. If we add the number of leaf nodes from TH to
the total number of nodes in TH−1, we overcount the total number of nodes in TH because those terminal



7

leafs have been counted twice. Therefore, the total number of nodes in TH is nH = nH−1 + lH − tH−1.
In addition, since we consider only trees for which each nonleaf node has at least two children, we have
lH ≥ 2 (lH−1 − tH−1) + tH−1 = 2lH−1 − tH−1. Hence, defining x = tH−1/lH−1, we have

nH

lH
= 1 +

nH−1 − tH−1

lH
≤ 1 +

nH−1 − tH−1

2lH−1 − tH−1
= 1 +

nH−1/lH−1 − x

2− x

≤ 1 +
2
(

1− 2−H
)

− x

2− x
= 2−

2−(H−1)

2− x
≤ 2− 2−H = 2

(

1− 2−(H+1)
)

, (A.2)

where the first inequality on the second line is by the induction assumption, and this completes the proof.�
Proof of Theorem 3. Consider any finite-round LOCC tree implementing a separable measurement defined
by the infinite set of POVM elements {Kj}. This tree has an infinite number of leaf nodes, at least one for
each Kj . We prune this tree following the technique of [1], except that if at any stage of this process we
are removing a subtree whose root has more than one sibling, then we simply remove that subtree without
removing an additional nonleaf node (since in [1] the tree was full binary, the subtrees considered there
always had one and only one sibling; it was then necessary to remove an extra nonleaf node in order to keep
the tree full binary; see [1] for details). If that subtree has only one sibling, then remove it according to the
rules used in [1]. The pruning is complete when there is one and only one leaf for each of the Kj . According
to this procedure, every nonleaf node in the resulting tree still has at least two children.
The next step is to rearrange the resulting tree in the same way we did for the finite-N case, exchanging

an extreme node with one of its non-extreme children, if there is one, and continuing this process until no
extreme node has a non-extreme descendant. The tree that remains has all its extreme nodes in subtrees
within which every node is extreme, and just as in the finite-N case, these subtrees can have height no
greater than P − 1.
Choose any one of these subtrees and set S = 1. If this is a finite subtree we can include it in its entirety

from the outset, so add another subtree to the collection and increment S. If instead it is an infinite subtree,
we will need to count its nodes using some kind of a limiting procedure. Hence for each infinite subtree,
instead of starting with the entire subtree, add it in as a “skeleton” of itself, one which is a full binary
tree. Any such skeleton will do, as long as every branch in it is also a branch in the original subtree. These
skeletons may be obtained from their corresponding subtree by removing all but two children from every
node that has more than two, while also removing the complete branches descended from those removed
children. At each subsequent step, include another subtree in the collection and increment S. At the same
time, for each skeleton of an infinite subtree Ts, add a full binary branch to that skeleton, by which we mean
a branch for which every nonleaf node has two children, where the added branch is either one that was in
the original Ts, or a skeleton of one that was. Add these skeletal branches in the order indicated by index
s, starting at the infinite subtree with smallest s and proceeding to the one with next smallest s, and so on.
Continue this process of adding subtrees and branches indefinitely. In the limit of an infinite number of steps
of this procedure, each Ts will be fully reconstructed and every subtree will be included in the collection. If
all subtrees are finite, there will be an infinite number of subtrees to include, one at each step. Otherwise,
there may be a finite or infinite number of subtrees to include, but reconstruction of the infinite subtrees will
always require an infinite number of steps. In any case, at each step of this infinitely long process, we have
a finite number S of subtrees, each having ls leaf nodes and ns nodes in total, with both ls and ns finite.
We need to identify a precise ordering of the Kj . Such an ordering may be obtained directly from the

procedure described above of including more and more subtrees, while at the same time reconstructing
each infinite subtree in a step-by-step fashion. In fact, this procedure generates an infinite number of such
orderings. The index s, which can be assigned arbitrarily, provides a kind of coarse-grained order for the
Kj , indicating when each finite subtree is added, when each infinite one is begun as a skeleton, and also the
order in which each additional skeletal branch is added to those infinite subtrees previously begun. There
still remains the task of ordering the set of Kj within each of these “coarse-grained” objects. Note that each
of the Kj appears in one and only one of the subtrees (recall that the pruned tree has one and only one
appearance of each Kj), so this fine-grained ordering will be unambiguous. For each skeletal branch then,
choose any ordering that has the Kj that appear within it ordered one right after another, which then ensures
that there is no more than one branch at a time in the entire collection of (partially reconstructed) subtrees
that is not full binary. This means that at each step of this procedure, every nonleaf node in the entire
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collection has at least two children, except those nodes in the branch that is presently being constructed.4

At any given point, let s∗ denote the one subtree that has a branch that is not yet partially completed
to full binary. Let δn be the number of nodes on the skeletal branch in this subtree that is presently being
constructed and is not yet part of a full binary skeleton, and let δl be the corresponding number of leafs.
Given that these branches have height no greater than P − 1, then the number of leaf nodes in the skeletal
branch that is not yet full binary must satisfy δl ≤ 2P−1. Define nC = ns∗ −δn and lC = ls∗ −δl. Then since
nC , lC count the nodes and leafs that lie in branches for which every nonleaf node has at least two children,
we have from Lemma 5 that nC/lC ≤ 2

(

1− 2P−1
)

. Now, each time one adds a leaf, one adds no more than
P nodes, strictly fewer than this if that leaf is attaching to a subtree already begun. Therefore, δn/δl ≤ P .
Define N =

∑

s ls, which is the number of distinct Kj appearing in the collection of subtrees at this stage
of the process. The total number of extreme rays appearing in this collection is no greater than the total
number of nodes,

∑

α eαN ≤
∑

s ns. Then, for any ordering as described above, we have

1

N

∑

α

eαN ≤
S
∑

s=1

ns

/ S
∑

s=1

ls

=

S
∑

s6=s∗

ls

(

ns

ls

)/ S
∑

s=1

ls + lC

(

nC

lC

)/ S
∑

s=1

ls + δl

(

δn

δl

)/ S
∑

s=1

ls

≤ 2
(

1− 2−P
)





S
∑

s6=s∗

ls + lC





/ S
∑

s=1

ls + Pδl

/ S
∑

s=1

ls

= 2
(

1− 2−P
)

+
(

P − 2 + 2−(P−1)
)

δl

/ S
∑

s=1

ls

≤ 2
(

1− 2−P
)

+
(

P − 2 + 2−(P−1)
)

2P−1

/ S
∑

s=1

ls. (A.3)

where the third line follows from Lemma 5, which tells us that ns/ls ≤ 2
(

1− 2−P
)

for all s 6= s∗ and that

nC/lC ≤ 2
(

1− 2−P
)

, along with the fact that δn/δl ≤ P , as argued above. The last line follows from

δl ≤ 2P−1, which was also argued above. Now as S → ∞, N =
∑S

s=1 ls → ∞. Hence in this limit, we see

that the second term in the last line approaches zero, and we recover De ≤ 2
(

1− 2−P
)

. This completes the
proof of Theorem 3. �

Proof of Theorem 4. Theorem 4 follows almost immediately from the proof of Theorem 3. For any ordering of
the first M of the Kj , fill in the subtrees constructed from those M leafs until they are full binary. Then, for
the remaining leafs, continue precisely as described in the proof of Theorem 3. The result follows directly. �
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