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Enhancement of the Command-Line Environment for use in the Introductory
Statistics Course and Beyond

David W. Gerbing

The School of Business, Portland State University, Portland, OR

ABSTRACT
R and Python are commonly used software languages for data analytics. Using these languages as the
course software for the introductory course gives students practical skills for applying statistical concepts
to data analysis. However, the reliance upon the command line is perceived by the typical nontechnical
introductory student as sufficiently esoteric that its use detracts from the teaching of statistical concepts and
data analysis. An R package was developed based on the successive feedback of hundreds of introductory
statistics students over multiple years to provide a set of functions that apply basic statistical principles
with command-line R. The package offers gentler error checking and many visualizations and analytics,
successfully serving as the course software for teaching and homework. This software includes pedagogical
functions, data analytic functions for a variety of analyses, and the foundation for access to the entire R
ecosystem and, by extension, any command-line environment.

KEYWORDS
Data analysis; Data
visualization; Education

Consistent with the renaming of this journal from Journal of
Statistics Education to Journal of Statistics and Data Science Edu-
cation, the contemporary introductory statistics course imparts
two general complementary skills (Nolan and Lang 2010):

1. Statistical concepts.
2. Data analysis skills that implement those concepts.

This presentation seeks to introduce a framework that simul-
taneously satisfies two seemingly contradictory goals: Teach
practical data science skills of sufficient complexity to apply
beyond the introductory course but sufficiently straightforward
to enhance the teaching of statistical concepts throughout the
course, “teaching students to think both statistically and com-
putationally.” (Horton and Hardin 2021, p. S2).

Many students enter the introductory class with worksheet
experience, such as with MS Excel. From the perspective of
storing data in small- to medium-sized files, Excel or a similar
worksheet app is a frequently adopted instructional choice. Stu-
dents use Excel to enter their data into a computer file, name the
variables, and then organize and view their data. Viewing and
interacting with the data are always encouraged and a worksheet
is an excellent choice for this pursuit.

Why not continue with Excel for the analysis of that data?
The answer follows from a related question: Why did data scien-
tists instead develop command-line environments such as R as
developed by the R Core Team (2021) and Python pandas devel-
opment team (2021) as the computational foundation of data
science rather than using a worksheet such as Excel? From the
perspective of data science, Excel worksheets exhibit a funda-

CONTACT David W. Gerbing gerbing@pdx.edu The School of Business, Portland State University, 615 SW Harrison St, Portland, OR 97207-0751.

mental flaw, the confounding of the data with the instructions
to process that data. Both data and data processing instructions
are entered into adjacent cells stored within the same worksheet.
On the contrary, R and Python separately store data and data
processing instructions into different files.

Data science requirements, however, do not necessarily
imply ease of use. Can analyzing data in an environment
optimized for data science and ease of use be simultaneously
satisfied? Can the advantages of the R data science computa-
tional environment be realized in even the introductory course?

Students could presumably transition into the R data
science command-line environment at the beginning of their
statistical education with access to a more straightforward, more
accessible, and smaller set of function calls than needed when
using Base R functions. Once a few concepts of the command-
line environment are understood, the goal is for analysis to
become more accessible, less burdensome, and appreciably
more statistically comprehensive than can be accomplished with
the repeated and non-reproducible mouse-clicking intrinsic to
Excel analysis. The data analysis software should be sufficiently
straightforward as the computational tool for homework with
only minimal distraction from learning the statistical concepts,
and yet be sufficiently comprehensive and powerful to continue
through more advanced classes and into real-world applications.

Of course, many tools other than the command-line R
proposed here exist to provide the computations needed for
data analysis for the classroom and for student use. Burck-
hardt, Nugent, and Genovese (2021) developed the Integrated
Statistics Learning Environment (ISLE), a web-based, e-learning
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platform that provides for data analysis, simulation, integrated
chat, audio, and video, and lesson creation. Simulations based
on specialized simulation packages can also serve as useful
tools for teaching statistical concepts (Sigal and Chalmers 2016;
Ross and Sun 2019). Specialized Python packages also offer
data manipulation and statistical computations and have been
successfully integrated into teaching data science and statistics
(Donoghue, Voytek, and Ellis 2021), including in the cloud
(Kim and Henke 2021). An established command-line R tool
for teaching statistics is the mosaic package (Pruim, Kaplan,
and Horton 2017) with its updated interface provided by the
ggformula package provided by Kaplan and Pruim (2021),
both of which are discussed in more detail later and in relation
to the currently proposed package.

1. Required Skills for Command-Line Environments

Undertaking data analysis in the command-line context, how-
ever, does require understanding a core set of concepts, which
may be unfamiliar to nontechnical students, such as those from
the behavioral sciences and business who incentivized the moti-
vation for developing the system described here. As Pruim,
Kaplan, and Horton (2017, p. 77) wrote, students often perceive
the R environment as “off-putting and inaccessible.”

For students with only Excel data analysis experience, the
concept of separating the data from the instructions to process
that data likely is not apparent. As with a fish in water, the
idea of an alternative environment does not exist. Experience
has demonstrated that the following concepts—data, functions,
and the command-line—should be explained without assuming
their prior knowledge. Understanding these fundamental prin-
ciples, so familiar and comfortable to those with data science
experience, can become a hurdle for many students who have
never encountered such an environment. For the implementa-
tion of the command-line to be understood, the student must
understand all three interrelated concepts. The pedagogy pro-
posed here begins with the explanation of data, then the concept
of a function, and then the command-line itself, emphasizing
the interrelation of these ideas as they are explained.

1. Data and its Organization
Excel does display the data by default. Viewing data within

a worksheet is less abstract than storing structured data in a
computer file to be separately read into the data analytic system
for processing. Fortunately, viewing data within the command-
line environment is also straightforward, but students need to
know how to work with and display data in that environment,
which requires understanding the following concepts.

a. Tidy data: Organize data into a tidy data table (Wickham
2014), variables in columns and cases in rows, usually with
variable names in the first row, and consistency of data within
each column. Other data formats do exist, but the under-
standing of those formats is well beyond the introductory
course.

b. File format and location on a computer system: Store data
indefinitely in different file formats, not just as an Excel file,
but many other formats including comma-separated values
text files, csv. These files are stored on one’s computer or

a network, perhaps the web for data files accessible to all
students in the class.

c. Read data: From a data file read data into the R structured
data container, the named data frame, which exists only as
long as the app is running.

d. Display data: Once the data are read, display all or some of the
data, including the variable names, such as with the Base R
function head().

One way to demonstrate the nature of data and its organiza-
tion is with a small Excel data table containing both continuous
and categorical variables. Show the data as an Excel file on a
computer’s file system independent of R or related data analysis
application. Open the data file in Excel to explore the organiza-
tion of a structured data table, then read that data into R and
display the same data from within R. Then do the same with the
data in an alternative format such as csv.

2. Functions
Although Excel processes data with function calls as does any
data processing environment, students familiar with a work-
sheet application such as Excel are not necessarily familiar with
the concept of a data processing function. Some students have
used Excel functions but may conceptualize them more con-
cretely as “Excel commands.” Other students have Excel expe-
rience limited to data entry and possibly operations such as fill-
down. Concepts that may need to be made explicit include the
following.

a. Data input: A data analysis function processes data passed to
the function, data values coded as variables typically found
within a data table. Understand the references to the data
table and the input variables in the function call.

b. Parameters. Presumably in the introductory course most
analyses can rely upon default parameter values, but it is
beneficial to know how to override a default parameter value
in a function call with a paired parameter name and value.

c. Function output. Output may include text as numbers, often
in tabular format, data visualizations, typically in a standard
format such pdf or png, and modified data such as data
transformations.

Likely, the most effective way to illustrate these concepts is with
demonstrative examples.

3. Command line and command prompt
That function calls entered at the command prompt can process
data and then store the results into an object with no apparent
output displayed on the computer screen is at first a perplexing
experience. Students should learn early in their command-line
experience that R output by default is directed to the console.
Assigning the output to an R object then requires entering the
name of the object to view its entirety or use of the head()
function to view only the beginning content of the object.

2. The mosaic and ggformula Packages

As previously indicated, the current presentation of R com-
mand line data analysis is not the first instance of such use
in teaching statistics. To “reduce the cognitive load” of R, to
help the student “think with data,” Pruim, Kaplan, and Horton
(2017) developed the R package mosaic. Originally relying
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upon the lattice visualization functions (Sarkar 2008), Kaplan
and Pruim (2021) updated the function calls to those provided
by the ggformula package. These functions offer a standard,
simplified formula interface to the standard R visualization
package ggplot2 (Wickham 2016). The streamlining extends
to both mosaic data analytic functions as well as to pedagog-
ical functions that illustrate statistical concepts via simulation
and probability distributions.

The formula interface implements the relation:

response variable ˜ explanatory variable(s)

The mosaic package maintains this formula specification
across its data analysis functions, which presents a consistent,
standardized interface to students. If there is only a single
variable, such as for a histogram, then retain the tilde, ∼, in the
formula, but do not specify a response variable. For example, the
following straightforward call togf_histogram() generates
a histogram for the variable Salary in the d data frame with the
specified binwidth.

gf_histogram(˜Salary, binwidth=10000,
data=d)

To extend to the multivariate case in which the relation is
analyzed at different levels of a categorical variable, delimit with
a vertical bar, |.
gf_histogram(˜Salary | Gender, data=d)

For functions that plot two variables, specify a variable in front
of the tilde, such as the function gf_point() to plot a scat-
terplot.

gf_point(Salary ˜ Years, data=d)

The available mosaic functions for data analysis include
statistical functions such as mean(), median(), sd(),
and IQR(). A wide variety of data visualization functions
in addition to the two referenced above provide direct access
to many ggplot2 capabilities. As the authors demonstrate,
the standardization of function calls removes some of the
complexity of data analysis with R, which results in more
time available to focus on learning the underlying statistical
concepts.

To facilitate the explanation of these concepts, mosaic also
provides randomization and resampling functions. An exam-
ple is rflip() to simulate coin flipping. The output of the
function is then analyzed to process and display the number
of heads and tails. Other functions provide for resampling and
bootstrapping.

Loy, Kuiper, and Chihara (2019) illustrated the use of
ggformula with supplied datasets and case studies. The
utility of the analyses for these case studies extends beyond
the choice of tool used for the data analysis. As part of doing
the data analysis for these datasets, the authors also show how
to connect R to relational data bases, merge data bases, and
wrangle data with the Wickham et al. (2021) tidyverse dplyr
package.

The data analysis tool introduced here provides the same
utility as does ggformula, with an emphasis on bar charts,

histograms, and various forms of violin, box, and scatter plots.
However, the functions proposed here extend beyond the visu-
alizations per se to also include statistical analyses. In addi-
tion, the syntaxes of the functions introduced here are some-
what simpler. For example, aggregate data with a single call
to the introduced pivot() function. The alternative requires
three separate functions –group_by(),summarize(), and
sum() – to do the aggregation, perhaps in conjunction with the
pipe operator %>% (Loy, Kuiper, and Chihara 2019).

3. The lessR Package

Users of mosaic/ggformula or the package introduced
here, lessR Gerbing (2021), obtain basic proficiency to work
within the R data analytic environment, how to use the R
command-line, how to prepare and analyze data, and how to use
functions to process the data. The lessR package attempts an
even simpler R experience with fewer function calls than from
mosaic. To reduce the cognitive overhead required for data
analysis, as few functions as possible are provided to support
the teaching of statistical concepts. Pedagogical functions for
probabilities, simulations, and interactive visualizations are
also included in lessR to facilitate understanding of the
core statistical concepts. See the appendix for installation
instructions.

Analyses with lessR functions generally result from inter-
nal function calls from Base R or from contributed R packages
including lattice Sarkar (2008) for multi-panel visualizations.
For example, lessR relies upon Base R t.test() to analyze
a mean difference, and Base R barplot() for the visualiza-
tion of a bar chart. A comprehensive least-squares regression
analysis requires the integration of 21 Base R functions such
as lm(), summary(), fitted(), cooks.distance(),
and pairs() as well as the leaps() function from the
leaps package from Lumley (2020) for the subset analysis.

3.1. Read and Write Data

One principle that students should learn early in their data ana-
lytics studies is that data flows easily into and out of R. Working
with R does not imply a commitment to R. Data, including
the results of data wrangling and data transformations, easily
transfers between R, Python, and Excel. As with all analyses,
lessR attempts to simplify this transfer of information, with
one function for input, Read(), and one function for output,
Write().

The same function call to Read() reads Excel files (relying
upon Schauberger and Walker’s (2021) openxlsx package),
comma or tab-delimited text files, native R data files, and SPSS
and SAS data files. When reading a data file from the web or
with a pathname, insert the file reference between the quotation
marks in the call toRead(). To avoid the complexity of needing
to precisely enter the full path name of a data file when first
referencing a file, Read()with no file reference allows the user
to browse for and select the data file for analysis. Once selected,
the function displays the full pathname at the console so that it
may be copied and inserted into future Read() calls. Examples
follow.



254 D. W. GERBING

d <- Read("")
d <- Read("https://raw.githubusercontent

.com/dgerbing/data/master/
employee.csv")

These function calls read the data table into the standard R data
container, a data frame, here named d, chosen for its simplicity
and because it is the default data frame name for thelessR data
analytic functions. Other names for the data frame require the
use of the data parameter in the lessR analysis functions.
The instructor can teach either using the default data frame
name or follow the more traditional R practice and include the
data parameter for all analyses.

Read with the same Read() function one of the lessR
built-in data files by specifying just the name of the dataset. Or,
use the traditional R function data() but reference the full
name of the data file by prefixing the names listed below with
data, such as dataEmployee.

d <- Read("Employee")

Variables in this data table for 37 fictitious employees include
Salary, Gender, and Years employed, referred to in the following
examples. Other built-in datasets include "BodyMeas" for
body measurements,"Mach4" for Likert-scale responses to the
20-item Machiavellianism Mach IV attitude items for survey
data analysis, and "StockPrice" for stock prices of three
technology companies across time for time series visualizations.

To write the contents of an R data frame, Write() defaults
to a .csv file. The function also uses the format parameter to
specify either the "Excel" format or the native "R" format,
useful for very large files. Or, use the abbreviations wrt_x()
and wrt_r() to indicate the format and drop the format
parameter. The first parameter value specifies the name of the
output file, and, if needed, the data parameter to specify the
name of the R data frame for which to output the contents.

3.2. Statistical Output and Visualizations

A primary theme of this presentation is that analyses in the
era of modern computer usage should routinely provide both
text and visualizations, ideally both from the same function
call because both forms of output are typically helpful and
easy for modern computers to generate. The lessR data analy-
sis functions generally include both forms of output. The fol-
lowing discussion introduces a single function for computing
univariate descriptive statistics, potentially aggregated, followed
by the analysis of categorical and continuous variables and
their relations, analyzing group differences, regression analysis,
visualizing multivariate relations, and data wrangling.

3.2.1. Univariate Descriptive Statistics
The analysis of descriptive statistics occupies a substantial
component of the introductory course and data analysis
in general. MS Excel refers to the resulting table of statis-
tics from aggregation over groups as a pivot table. The
word “pivot” generalizes beyond Excel. For example, given
multiple data values in each cell of the aggregation, the
tidyverse function pivot_wider() Wickham (2021)

names the statistic to compute over aggregated data with the
parameter values_fn, defines the groups with parameter
names_from, and names the variable for which to compute
the statistics with values_from.

The lessR function pivot() provides a single interface
for the computation of any univariate descriptive statistic
defined by an R function that converts a vector of data values
into a single number, a statistic. Apply one or more of these
functions across all the data for a variable, or aggregate by
levels of one or more categorical variables, for the analysis of
continuous or categorical data. Compatible R functions include
the many available Base R descriptive statistics functions plus
lessR defined skew and kurtosis functions, as well as any
instructor-defined functions made available in a customized
package or available for direct download to students. Function
pivot() also processes the multiple statistics computed
by the R functions table() for frequency tables and
quantile() for the specified number of quantiles of a
distribution.

As shown in Figure 1, call pivot() with parameter values
specified according to the illustrated descriptive English sen-
tence. If entered in this stated order, then the function call does
not require the corresponding parameter names.

To specify more than one statistic to compute, or more than
one variable for which to compute statistics, or more than one
variable for which to aggregate, specify the relevant values as a
vector in the function call. As illustrated for the by parameter
shown in Figure 1 that defines aggregation with two categorical
variables, define the vector with the R combine function, c().
The default output data structure of this call to pivot() is the
data frame, amenable to input into other data analytic functions.
Customize the output names of the computed variables with the
out_names parameter.

The following example calculates two statistics, the mean and
median of the variable Years employed from the internallessR
Employee dataset, for each combination of levels for Dept and
Gender. The description of this function call is considerably
more concise than the pages of illustrated text with multiple
screen pics required to demonstrate the proper sequence of
mouse clicks and dialogue boxes to achieve a similar result with
MS Excel. If the parameter values are entered in this order, then
the parameter names are not needed in the following function
call, included here for clarity.

> pivot(data=d, compute=c(mean, median),
variable=Years, by=c(Dept, Gender))

Dept Gender Years_n Years_na Years_mean Years_md
1 ACCT W 3 0 4.667 3.0
2 ADMN W 4 0 7.500 5.0
3 FINC W 1 0 7.000 7.0
4 MKTG W 5 0 8.200 8.0
5 SALE W 5 0 6.600 8.0
6 ACCT M 2 0 7.000 7.0
7 ADMN M 2 0 15.500 15.5
8 FINC M 3 0 11.333 10.0
9 MKTG M 1 0 18.000 18.0
10 SALE M 9 1 12.333 13.0

A critical mistake when aggregating data is to interpret a statistic
computed on a small number of data values, implicitly assigning
the same importance to its value as for a statistic computed
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Figure 1. The pivot() function call to generate a data frame of aggregated data.

over a much larger sample size. The sample size and number of
missing data values for each cell should always be known, which
pivot() shows by default for each summarized variable. Turn
off the sample size information in the call to pivot() by
setting the show_n parameter to FALSE.

To compute the descriptive statistics for one or more vari-
ables for all the data values, omit the by parameter. In this
example, for the distribution of Years employed, compute
versions of the first three moments, the interquartile range, and
the quartiles.

> pivot(d, c(mean, sd, skew, IQR, quantile), Years)

Years_n Years_na Years_mean Years_sd Years_sk Years_IQR p0 p25 p50 p75 p100
36 1 9.389 5.724 0.67 8 1 5 9 13 24

Specify any set of quantiles by changing the default value of 4 for
the parameter q_num.

For a categorical variable the relevant statistics are fre-
quencies or proportions. To calculate the corresponding fre-
quencies, specify table as the statistic to compute, again
either computed across the full dataset or aggregated. This
example calculates the cross-tabulation table of joint frequencies
for the variable Dept aggregated across the two levels of Gender,
though many more by variables could be specified.
> pivot(d, table, Dept, Gender)

Gender Dept_n Dept_na ACCT ADMN FINC MKTG SALE
1 W 18 1 3 4 1 5 5
2 M 18 0 2 2 3 1 10

Set the value of parameter table_prop to "all", "row",
or "col", respectively, to report cell proportions based on the
entire sample, or row or column sample sizes.

A fifth parameter, by_cols, specifies one or two categor-
ical variables to aggregate with values shifted to appear in the
columns instead of the rows. This example contains a single by
parameter and a single by_cols parameter, the later of which
is explicitly named for clarity, though not necessary as it is the
fifth parameter value listed.

> pivot(d, mean, Salary, Dept, by_cols=Gender)

Table: mean of Salary

Gender W M
Dept
------- --------- ---------
ACCT 63237.16 59626.20
ADMN 81434.00 80963.34
FINC 57139.90 72967.60
MKTG 64496.02 99062.66
SALE 64188.25 86150.97

The result is perhaps more amenable to viewing than for input
into another function.

3.2.2. Categorical Variables
Obtain a bar chart with lessR function BarChart(). For
one categorical variable specify parameterx, the first parameter.
BarChart() displays the bar chart and the distribution of
counts and proportions with the chi-squared test for the equal-
ity of proportions. The two variable bar chart compares the
frequencies of a categorical variable, x, distributed across the
values of a second categorical variable, by. For two categorical
variables BarChart() displays the cross-tabulation table and
corresponding chi-squared test of independence. The number
for each cell in the cross-tabulation table of frequencies or pro-
portions, or corresponding region in the bar chart, represents
the cell frequency or proportion across the entire sample. For the
default bar chart in Figure 2, a total of 28% of all employees are
men in the sales department, compared to the women in sales,
14% of all employees.

To display the proportion of men and women within each
department, adjust for the different numbers of employees in
each department. As shown in Figure 2, the 100% stacked bar
chart addresses the differential frequency issue by displaying the
proportion of each level of the second variable within each level
of the first variable. The result is that all bars are of the same
height of 100%. One-third of the sales employees are women,
versus two-third men. Set parameter stack100 to TRUE to
instruct BarChart() to generate the 100% stacked bar chart
and to display the corresponding cross-tabulation table with
each column sum of proportions at 1.00.

Cooper (2018) delineated another two different types of bar
charts. The first type, as in Figure 2, displays the numerical value,
here the frequency or proportion, computed from the original
data. For the second type, the value bar chart, the height of each
bar corresponds to the magnitude of a corresponding single
entered data value. For the value bar chart, BarChart() pro-
cesses the table of categories, each with an associated numeric
value, pairing values of categorical variable x with the cor-
responding numerical variable indicated by parameter y, the
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Figure 2. Default (left) and 100% stacked (right) bar charts.

Figure 3. Default histogram (left) and with a superimposed density plot (right).

second parameter in the function definition. Extend this visu-
alization to a second categorical variable with the by parameter.
Another possibility invokes a statistical transformation of the
original data beyond counts with the stats parameter from
whichBarChart() computes the data value for each category
as it does with the default value of "count" that yields the
distribution plot.

Continuous Variables
One variable. For the analysis of the distribution of a con-
tinuous variable, the lessR function Histogram() creates
a presentation-ready histogram, with an option for a super-
imposed density plot, shown in Figure 3, setting parameter
density to TRUE.

An exploration of a distribution of a continuous variable
includes an analysis of outliers, which can substantially impact
the analysis. The general advice is to understand how one
or more outliers impact the analysis, and to understand, to
the extent possible, the reason for the existence of an outlier
(Kasprowicz and Musumeci 2015). Is it an error in data entry or
processing? Is it a quirk of random sampling? Or does the outlier
result from inadvertent sampling from another population
apart from the population from where most data values were
sampled? Because an outlier analysis is a necessary component
of data analysis, included in the output is the standard Tukey

outlier analysis Tukey (1977) that identifies values larger than
1.5 IQR’s and 3 IQR’s from the approximate 1st and 3rd quartiles.
When obtaining a histogram, information regarding outliers is
always available.

Two variables. The scatterplot and correlation coefficient
are standard expressions for the relation of two continuous
variables, both obtained with the lessR function Plot().
By setting the parameter fit to "lm", the first scatterplot
in Figure 4 shows the least-squares line of best fit and the
associated 95% confidence intervals across the values of the
variable on the horizontal axis. In addition, the second scatter-
plot labels potential multivariate outliers, and a dashed least-
squares line computed without the outliers. The 95% confidence
ellipse assumes multivariate normality, computed by function
ellipse() from the package of the same name (Murdoch and
Chow 2020). To obtain this additional information beyond the
basic scatterplot, set the enhance parameter to TRUE.

Using Base R graphics or the ggplot2 Wickham (2016)
visualization system to obtain the information in Figure 4
requires many lines of specialized code. The result is that in the
classroom, the instructor can discuss the differential impact of
outliers on the computed estimates from an abstract perspective,
provide examples, and then assign homework problems in
which the student can pursue similar analyses on different data.
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Figure 4. Scatterplots of two continuous variables, with the least-squares line and 95% confidence intervals (left) and a more enhanced version (right).

Figure 5. Trellis boxplots (left) and superimposed Trellis violin, box, and scatterplots (right).

3.3. Continuous and Categorical Variables

Specify the continuous variable in the call to Plot() with
the x parameter, which, if listed first, can be unnamed. One
possibility specifies the categorical variable as the y parameter
value, which, if listed second, can be unnamed. This config-
uration generates a scatterplot with a default level of jitter to
minimize over-plotting given the limited number of levels of the
categorical variable, and also plots the mean of the continuous
variable at each level, shown ahead in Figure 8 in the context of
ANOVA.

Another possibility, from internal calls to Deepayan Sarkar’s
(Sarkar 2008) lattice package, specifies the categorical vari-
able with the by1 parameter. Shown in Figure 5, the result is
a Trellis (facet) plot from Chambers et al. (1983), such as the
boxplots or the enhanced boxplots each with a superimposed
violin plot and scatterplot.

The lessR boxplot by default identifies outliers in two
shades of red: a darker red for points more 1.5 IQR’s from the
lower and upper quartiles but less than 3 IQR’s, and a brighter
red for points more than 3 IQR’s from those quartiles. Or, if

plotting in grayscale, outliers are plotted with a deeper shade of
gray and a diamond for the plotting symbol.

For each level of the categorical variable, Plot() displays
the sample size and summary statistics for the distribution of
the continuous variable. Many different parameters permit cus-
tomization beyond the default visualizations shown in Figure 5.
To specify two categorical variables, specify the second categor-
ical variable with the by2 parameter to view a Trellis plot of all
possible combinations of levels of the two categorical variables.

3.4. Differences Across Groups

3.4.1. Mean Difference for Two Groups
For the analysis of the difference in the mean of a response vari-
able between two groups, the corresponding visualization and
some of the text output from the lessR function ttest()
appears in Figure 6.
The visualization summarizes the descriptive and inferential
analyses, a visualization that portrays the mean difference rel-
ative to the overlap of the two distributions. The visualization
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Figure 6. Data visualization and text output for t-test of the mean difference.

Figure 7. Data visualizations for t-test of paired differences, dependent groups.

also shows the original sample mean difference expressed in
the measured units of the response variable and this difference
standardized by the pooled standard deviation to estimate effect
size as defined by Cohen (1988).

3.4.2. Two Dependent Groups Comparison
Figure 7 shows the two visualizations from the lessR paired
t-test, again from function ttest(), with parameter paired
set to TRUE: The single density curve of the differences visu-
alizes the distribution and the two-variable Cleveland dot-plot
illustrates the difference for each block in the analysis.

A brief version, tt_brief(), displays a subset of those
analyses for either the independent-groups or the dependent-
groups analysis. The simpler output allows the student to focus
on the meaning of the inferential analysis for the potential

distinction between the groups. The full analysis presents the
contextual technical details needed for a more complete inter-
pretation and a full evaluation of the validity of the test.

3.4.3. ANOVA
The lessR function ANOVA() analyzes possible differences of
means across groups for a one-way ANOVA, a two-way factorial
ANOVA, and a one-way randomized blocks ANOVA. Specify
the model according to the standard R formula, with an asterisk,
*, separating the two factors for a two-way ANOVA, and a plus,
+, separating the factors for a randomized blocks ANOVA with
the blocking factor listed second. Included default visualizations
are shown in Figure 8 for response variable “breaks” and the
categorical variable, or factor, “tension,” for a one-way analysis,
and then with the additional categorical variable “wool” for
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Figure 8. A scatterplot of factor and response variable from the one-way ANOVA (left) and interaction plot of two factors from the two-way ANOVA (right).

Figure 9. Default scatterplot matrix (left) and density plots of the distribution of residuals (right) from a regression analysis.

a two-way factorial design. The analysis is of variables from
the Base R data table warbreaks, so the function calls that
generate those plots invoke the data parameter to refer to that
data frame instead of the default d data frame.

Text output includes descriptive statistics for each group,
summary table, effect size, Tukey’s multiple comparison of
means, and residuals from the linear model. In addition to
the scatterplot in Figure 8, the one-way analysis also includes
the plot of the 95% confidence interval for each group. The
function for either of the two-factor analyses provides the
same statistics as for the one-way ANOVA plus the cell and
marginal means. The brief form of the function,av_brief(),
generates considerably less output for introducing ANOVA
without overwhelming students.

3.4.4. Proportions
For the analysis of one or more proportions, either from data or
frequencies previously calculated from the data, the lessR
function Prop_test(), abbreviated prop(), includes a
variety of tests from a small number of parameters. If the
analysis is of the data directly, then the first parameter value

is x, the categorical variable of interest. If testing a proportion
of successes for a value of interest, then specify that value of
x with the success parameter. If testing a proportion of
successes across groups, then add the name of the grouping
variable with the by parameter. If testing uniform goodness of
fit, then include only the name of the x variable in the function
call. If testing independence of two categorical variables, then
specify the name of the second variable with the by parameter.

Obtain corresponding analyses only from entered frequen-
cies with the parameters n_succ and n_tot. These values are
either scalars, for testing a single proportion against a specific
hypothesize population value, or vectors to test the proportion
across groups. If testing independence from an entered cross-
tabulation table, use the n_table parameter to locate the table
according to its the file name.

3.4.5. Regression Analysis
The mosaic package (Pruim, Kaplan, and Horton 2017)
simplifies the regression analysis experience compared to Base
R, but still requires more functions than does lessR, such as
extractor functions to extract confidence intervals. The lessR
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Figure 10. Fit the same data with residuals about the least-squares line (left) and the null-model line (right) in the respective scatterplots.

function Regression(), abbreviated reg(), implements a
comprehensive analysis with a single function call. In addition to
the table of estimates, t-test of each estimate, and associated 95%
confidence interval, Regression() provides a residual and
outlier analysis (Kasprowicz and Musumeci 2015) with the cases
sorted by Cook’s distance to identify outliers, the prediction,
and confidence intervals, prediction from specified data values
not necessarily in the data, and a multicollinearity analysis for
multiple regression models. To obtain k-fold cross-validation
of the model, specify the number of folds with parameter
kfold.

The default visual output for a single predictor model is
a scatterplot of predictor and response variables with regres-
sion line and confidence and prediction intervals. Multiple
regression analysis includes a scatterplot matrix with regression
lines and confidence intervals, and correlation coefficients. Also
included are normal and general density plots of the residuals
with a histogram and a plot of residuals versus fitted values.
Figure 9 displays the scatterplot matrix and residual distribution
visualizations.

The first column or row, which displays the correlation
of each predictor variable with the response variable, should
exhibit high correlations for good model fit. The remaining
correlations, those between predictor variables, should be low
to avoid collinearity of predictors. Various statistical indices are
reported for model fit and collinearity. Still, the congruence
of these indices with the visualization helps students build
intuition regarding these indices, the adequacy of the model,
and model selection.

A brief version, reg_brief(), presents a subset of those
analyses. This output matches an Excel regression analysis plus
the plot of either a single predictor variable with the response
variable or the scatterplot matrix of all variables in the model
for multiple regression. When teaching least-squares regression
analysis, students do homework only with reg_brief() the
first week, with the full version of Regression() in later
weeks.

To complement the visualizations from theRegression()
function, thelessR scatterplot function,Plot(), offers more
flexibility for creating scatterplots. Figure 10 shows the same
scatterplot data, with the least-squares line and then with the
null model line. Comparing these two plots encourages the
student to develop intuition regarding the size of R2. Plot()
also provides a descriptive and inferential correlational analysis
for further assessment of the relationship of two variables.

Specify the type of line through the plot with the fit
parameter, in Figure 10 either for the best-fitting linear
model according to least-squares, "lm," or the null model
line "null." Other possibilities include the general loess
nonlinear fit, exponential, square root, and reciprocal curves,
respectively, obtained with fit values of "loess," "exp,"
"sqrt," and "reciprocal." Visualize the residuals with
the plot_errors parameter set to TRUE, also illustrated in
Figure 10.

3.4.6. Visualize Multivariate Relations
Following the recommendations of the revised GAISE report
(Carver et al. 2016) from the American Statistical Association,
Adams et al. (2021) noted, “Multivariable thinking is greatly
assisted by the ability to visualize three or more variables at one
time” (p. S124). One type of multivariate visualization consists of
a plot of two variables stratified by a third, categorical variable.
The lessR package illustrates this stratification with the by,
by1, and by2 parameters for the Plot() function. The by
parameter plots different groups on the same panel, with the
groups differentiated by color or symbol. Alternatively, specify
a value for the by1 parameter to create a Trellis (facet) chart
Chambers et al. (1983). The Trellis plots follow from internal
calls to functions in Sakar’s (2008) lattice package, so noted
on the output when these functions are accessed.

Find examples of same panel and different panel multivariable
plots in Figure 11. Add the fit parameter to plot the
corresponding least-squares fit lines. By default, to improve
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Figure 11. Scatterplots of two continuous variables at two levels of a third, categorical variable, on the same panel (left) and a Trellis plot (right).

readability, when multiple fit lines are displayed on the same
panel the confidence intervals of the fit line display are turned
off. Explicitly, turn on or turn off the confidence intervals with
the fit_se parameter by specifying one confidence level or
a vector of confidence levels to plot multiple superimposed
intervals, or set to 0 to turn off the display.

The by2 parameter indicates a second conditioned variable
to display a Trellis plot of a continuous variable with all com-
binations of levels for the two categorical variables. To visualize
the relation between a continuous variable and three categorical
variables, simultaneously invoke the by, by1, and by2 param-
eters, combining the same panel and multiple panels into the
same visualization.

3.4.7. Data Wrangling
Base R andlessR straightforwardly provide two common data
wrangling tasks: data transformations and data filtering. Data
transformations are most easily accomplished in R by simply
entering the transformation formula at the command line, no
specialized transformation functions needed. Identify a variable
with the name of its data frame, a $, and then the variable name.
A small data frame name, such as d, facilitates this approach.
In this example, create the variable named Xsq in the d data
frame as the square of X. Students need to be aware of using
the asterisk, *, for multiplication, and the caret, ˆ, for raising a
value to a power, in either R or Excel.

d$Xsq <- d$Xˆ2

Base R and other packages provide specific transformation func-
tions, but entering only the formula requires fewer functions to
be learned and no additional packages referenced.

A common data manipulation subsets the data frame by rows
to satisfy a logical criterion, and both Base R and other pack-
ages include subsetting functions. To minimize the cognitive
overhead of introducing additional functions into the course,
the lessR data analysis functions subset by referencing the
parameter rows. Specify a standard R logical condition. The
following example adds the parameter to the Histogram()
function call to restrict the analysis to rows of data in the default
d data frame to men.

Histogram(Salary, rows=(Gender=="M"))

The optional parentheses about the logical expression render
the expression more readable, helping to distinguish the double
equal sign of logical equality from the single equal sign that
indicates the parameter value.

3.5. Other R Enhancements

3.5.1. Error Trapping
When early versions of lessR were first made available to stu-
dents, it became apparent that R error messages are typically too
cryptic for meaningful guidance. Such messages often frustrate
beginning students who have never experienced the command-
line. Tens of more verbose explanatory error messages were
written into lessR to trap many errors before the R system
detects the error. Each enhanced message was developed in
response to errors encountered by students, often undergoing
multiple revisions across successive classes until sufficient expla-
nation was provided, indicated by a lack of further questions
from students in subsequent classes as they pursued their home-
work assignments.

For example, consider thelessR error message to one of the
more common errors, misspelling a variable name in a function
call, here copied directly from the R console.

> Histogram(Salry)

Error:
------
You are attempting to analyze the variable
Salry in the data table called d, which is
the default data table name

Unfortunately, variable Salry does not
exist in d

The following variables are currently in
the d data table, available for analysis:

Years Gender Dept Salary JobSat Plan
Pre Post
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There are versions of this message for situations where there are
no data frames, that is, no data has been read, when there are
multiple data frames, or the name of the data frame has been
misspelled. Many other versions exist for a variety of error types.

3.5.2. Suggestions
Suggestions are presented as part of the output of each function,
tailored to the details of the function call. The suggestions that
appear from a bar chart of the variable Dept are shown in the
following example.

> BarChart(Dept)

>>> Suggestions
BarChart(Dept, horiz=TRUE) # horizontal bar chart
BarChart(Dept, fill="reds") # red bars of varying

lightness
PieChart(Dept) # doughnut chart
Plot(Dept) # bubble plot
Plot(Dept, topic="count") # lollipop plot

Each suggestion can be copied and pasted into the R console
to generate the suggested analysis. Students can extend their
knowledge of data analysis by exploring different analyses and
presentations of the same data.

3.5.3. Shiny Interactive Visualizations
The Shiny R environment for interactive visualizations offers a
“much more fluid and dynamic presentation” of visualizations
as noted by Doi, Potter, Wong, Alcaraz, and Chi’s Doi et al.
(2016) review of Shiny apps for teaching statistics. Fawcett
(2018) also discusses the advantages of students working
directly with Shiny apps. To facilitate teaching with lessR,
Version 4.0.6 of the package contains five Shiny interactive
visualizations: "BarChart1" and "BarChart2" for one-
and two-variable bar charts, "Histogram" for a histogram,
"ScatterPlot" for a scatterplot of two continuous vari-
ables, and "Trellis" for a Trellis plot of the relationship
between a continuous and categorical variable.

Each interactive visualization analyzes one or more vari-
ables in the built-in Employee dataset. To access an interac-
tive visualization, run the lessR function interact() with
one of the five specified names as its one and only parameter
value, illustrated in Figure 12. If no parameter value is passed
to interact(), then the available names are displayed for
reference.

Running the provided Shiny files for each function demon-
strates the output that results from changing various parame-
ter values from their default values, such as bin_width for
constructing a histogram. Using the controls for the interactive
histogram in Figure 12, increase the size of the bin width to
13,350, start the first bin at 30,000, change the bin color to
darkred with a black border, and increase trans to 0.6 where
0 indicates no transparency and a 1 complete transparency. The
student can re-create the resulting visualization as a static image
by entering the given parameter names and values from the
interactive display into a call to the Histogram() function.

Similar to the Rossman/Chance histogram bin width simula-
tion (and others) available online Rossman and Chance (2021),
the change in the histogram’s shape given changes in bin width
or bin starting point are readily demonstrated. For example,

Table 1. lessR simulation functions to facilitate teaching statistical concepts.

Function Call Output

simFlips() Simulate coin flips sampled from a binomial distribution
and plot the running mean across trials

simMeans() Simulate sample means over repeated sampling from a
normal distribution and plot the sorted means

simCLT() Simulate the central limit theorem with repeated sam-
ples from normal, lognormal, uniform, and inverted nor-
mal distributions

simCImean() Simulate repeated sampling from the same normal dis-
tribution and plot the confidence intervals

compare the default histogram in Figure 12 with the histogram
with a different bin width and starting value in Figure 3.

3.6. Simulations and Probabilities

3.6.1. Pedagogical Simulations
Simulation has been shown to facilitate student learning,
particularly inferential concepts that rely upon understanding
probability Lane (2015); Hancock and Rummerfield (2020).
Table 1 summarizes four different lessR simulation functions
that facilitate understanding some core concepts of inferential
statistics.

Two required parameters of these functions arens, the num-
ber of samples, and n, the number of values for each sam-
ple. Specify the population mean with mu and sigma for the
population standard deviation, with respective default values of
0 and 1.

Similar to the mosaic function CIsim() (Pruim, Kaplan,
and Horton 2017), Figure 13 shows a simulation with
simCImean() of the default 95% confidence interval of the
mean for 50 repeated samples, each of size 25, sampled from a
normal population with a mean of 100 and a standard deviation
of 15. In this simulation, three confidence intervals or 6%,
shown in red, failed to contain the population mean of 100,
consistent with the expectation that, on average, 5 out 100 or
95% of confidence intervals fail to include the corresponding
population mean.

In addition to the visualization, text output from
simCImean() to the R console includes the summary
statistics and confidence interval for each sample, a summary
of performance, and the mean and standard deviation of the
sample means. A parameter show_data, if set to TRUE,
first displays the data for each repetition, followed by the
corresponding confidence interval.

3.6.2. Probability Visualizations
The teaching of statistics necessarily involves the computation
of probabilities, including those based on the normal and t-
distributions. Traditionally, these probabilities were obtained
from probability tables, such as printed on the last pages of the
course textbook. R includes functions that mitigate the need for
probability tables, leveraged by functions such as xpnorm()
included with the mosaic package. lessR also includes some
probability functions, also with visualizations. Table 2 lists the
three lessR probability functions.

The example in Figure 14 is of prob_norm(), which pro-
vides the normal curve probability and corresponding illus-
tration for a single lower-tail cutoff with parameter lo, single
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Figure 12. Interactive Shiny histogram with Histogram() parameter values.

Figure 13. Fifty confidence intervals of the mean across repeated simulated samples.

Table 2. lessR probability functions that generate a customized, corresponding
visualization in lieu of standard probability tables.

Function Call Output

prob_norm() Plot normal curve probability over a specified interval
prob_tcut() Plot a t-distribution curve against the corresponding

normal curve with specified tail cut-offs
prob_znorm() Plot a normal curve with shaded intervals by

standard deviation

upper-tail cutoff with parameter hi, or the interval in-between
when both values are provided. Without specifying the popula-
tion mean, mu and the population standard deviation sigma,
the distribution defaults to the standard normal.

The prob_tcut() function lists the t-distribution for the
specified degrees of freedom superimposed on the standard nor-
mal distribution, with the default value of α = 0.05. From this
direct comparison, the student can easily visualize the penalty
imposed by estimating the population standard error, neces-
sitating the use of the t-distribution in place of the normal
distribution described by the actual standard error.

The prob_znorm() visualization displays a specified nor-
mal curve with values of the standard deviation illustrated. No

matter how large the standard deviation, the relationship of the
area under the curve for any given range of standard deviation
remains the same, which the student can directly visualize.

3.7. Aesthetics

The visualizations in thelessR system are produced consistent
with the current color theme, beginning with the default theme
"colors." By default, the visualizations are designed to cre-
ate an esthetically pleasing, vibrant presentation-ready visual-
ization, comparable to the quality standard set by ggplot2
Wickham (2016), but with less code and sometimes consider-
ably less code Gerbing (2020). Although switching color themes
is not necessarily part of teaching the introductory course, the
task is simple enough that students can explore different color
themes with the style() function.

To prepare visualizations for slide presentations, switch to
a black background. The examples in Figure 15 invoke the
"orange" theme with sub_theme set to "black" for a bar
chart and for a Trellis time series plot. Both data sets are included
with lessR.

Return to the default theme with an empty argument
in the function call to style(). See all available themes
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Figure 14. Normal curve probability for the standardized normal (left) and for a normal distribution with a mean of 50 and standard deviation of 10 (right).

Figure 15. For the "orange" color theme with a "black" sub_theme, the default bar chart (left) and a time series Trellis visualization (right).

and individual parameters subject to customization with
style(show=TRUE). The availability of these optional
visualization customizations, in conjunction with its data
analytic features, provides the student with enough resources
to continue to use lessR as an analytic system beyond the
introductory course.

3.8. Supplementary Material

3.8.1. Vignettes
When accessing the lessR package with library
("lessR"), as shown in the Appendix, the following message
announces the availability of vignettes that provide detailed
examples of various analyses.

Learn about reading, writing, and
manipulating data, graphics, testing means
and proportions, regression, factor
analysis, customization, and descriptive
statistics from pivot tables.

Enter: browseVignettes("lessR")

The student can access examples of the input and output
of many analyses relevant to most material covered in the
introductory course. Each vignette includes multiple examples
with explanation. Figure 16 shows the output of the Base R
browseVignettes() function.

Clicking on an HTML link generates a web page of the corre-
sponding vignette.

3.8.2. Online Introductory Chapter
Introductory content in the form of a book chapter, formatted as
interactive web pages composed with the Rbookdown package
(Xie 2016), introduces students with no previous R or program-
ming experience to the R/lessR system of data analysis. Under
development for some years, this content has been revised for
clarity over multiple classes each year. Find the web pages for
this introductory chapter at the following github location.

https://dgerbing.github.io/R_lessR_Intro/
index.html
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Figure 16. lessR vignettes.

The focus of the chapter is the R command line, the use of
RStudio, and the lessR functions Read(), BarChart(),
and Histogram() for reading data followed by the speci-
fied analyses for counting the values of a variable. Both forms
of bar charts, according to the distinction noted by Cooper
(2018) are discussed: bar charts from analysis of the measured
data values and bar charts directly from a summary table that
associates a number with each category. The chapter begins
with an overview that includes a comparison of R to MS Excel,
reproducible research, and an explanation of 13 examples for
which the R/lessR code and related output are displayed. The
chapter shows students how to open a text file for adding R
function calls within RStudio, save the file, and run their func-
tion calls one at a time or at once from the text file window
pane.

4. Summary

This work describes the use of the R package lessR, a set of
functions developed to enable accessibility of the command-
line R to the beginning statistics student with no previous pro-
gramming or command-line experience. The mosaic package
with the ggformula interface allows the student to engage
with the R command-line environment according to a sim-
plified and consistent formula interface. lessR provides an
even simpler experience with a smaller number of functions
than even mosaic to accomplish basic analyses. The tradeoff
compared to Base R is simplicity versus richness in the R expe-
rience. An instructor who intended a richer R experience would
likely choose mosaic. Both systems engage the student in the
traditional R command-line interface. This knowledge of the
command line, functions, and data organization also generalizes
to other command-line systems.

In addition to serving the needs of introductory students as
the core software for the course, the lessR system addresses
the increasing number of students interested in further devel-
oping their statistical and data analytic skills to move forward
into data science. As a re-expression of standard R functions,
the provided data analytic functions are capable of application
to many professional situations. Additionally, the vast array of
data analytic functions included in the initial installation of R,
Base R, and those available in the thousands of contributed
R packages, provide more advanced analyses available to the
student who grasps the command-line interface.

Appendix. Access R and lessR

A.1. Download and Install R

Download R from the network of worldwide R servers.
Windows: https://cran.r-project.org/bin/windows/base/

click the first link such as Download R 4.1.2 for Windows.
Mac: https://cran.r-project.org/bin/macosx/
several paragraphs down the page, left margin, click the link such as R-
4.1.2.pkg.

Run the installer, which offers both 32-bit and 64-bit versions. Unless
your computer is more than 10 years old, run 64-bit software as you would
any other app. Accept the given defaults for each step of the installation
process. When installed, run the R app as you would any other application,
such as double-clicking on the application’s icon in your file system display.

When you run the installer R may first attempt to write the R informa-
tion to a protected system directory. If so you may be asked the following
question:

Would you like to create a personal library to
install packages into? (yes/No/cancel)

Respond with a yes. Otherwise you will need administrative privileges,
understand the relevant security issues, and make the needed changes to
your system.

Download and Install RStudio. Navigate to the following website:

https://www.rstudio.com/products/rstudio/download/
Choose the free version of RStudio Desktop.

Download and Install lessR. To access the lessR functions, run the R
app, most commonly within RStudio (2021). To install the lessR package,
enter the following in response to the displayed >, the R command-line
prompt:

install.packages("lessR")

Installing lessR downloads many related R packages. However, when
a developer uploads the computer code (source) for a given package to the
R servers, the CRAN network, it may take as long as a week or more for
the R system to compile that computer code to a form (binary) that works
specifically on Windows or Mac systems. When downloading a package
for those days between the uploading of the source code by the developer
and when the desired binary form finally becomes available, R presents the
following dialogue, here illustrated for package mvtnorm.

There are binary versions available but the
source versions are later:
binary source needs_compilation
mvtnorm 1.1-2 1.1-3 TRUE

Do you want to install from sources the packages
which need compilation? (Yes/no/cancel)
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Having the absolute latest version of a dependent package is almost always
irrelevant. And only the rare introductory student would have the nec-
essary software tools to do local compilation, so answer no. Moreover,
later versions can be installed by waiting a few days and then running
update.packages() after they are compiled by the R system.

Once installed, begin each R session by loading and attaching the
lessR functions with the standard R library() function:

library("lessR")

The Cloud. Run R code on a personal computer or in the cloud with a
limited free account at rstudio.cloud, accessible to any device with a web
browser such as a Chromebook or an iPad. R and RStudio are already
installed, so just install lessR. Start a new project for each analysis by
clicking on the New Project button.

Running in the cloud, R will not read data files directly from your
computer. Instead, upload a data file to the cloud with the Upload button
under the Files tab on the bottom-right RStudio window pane. Once
uploaded, use the standard d <- Read("") function call to read the
data.

The free version of a cloud account provides limited available time each
month but is usually sufficient for a student in the introductory course.
However, in addition to CPU time, minutes of active time accrue with
the project open, so students are encouraged not to linger online once the
analysis is complete. The primary advantage of cloud use is that R data
analysis can proceed without cost to the student and without needing a
Windows or Mac computer.
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