Portland State University PDXScholar

PSU Transportation Seminars

Transportation Research and Education Center (TREC)

12-1-2023

Driving the Future: Intersection of Emerging Transportation Technologies and Energy Consumption

Tanmoy Bhowmik Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/trec_seminar

Part of the Transportation Commons, Urban Studies Commons, and the Urban Studies and Planning Commons

Let us know how access to this document benefits you.

Recommended Citation

Bhowmik, Tanmoy, "Driving the Future: Intersection of Emerging Transportation Technologies and Energy Consumption" (2023). *PSU Transportation Seminars*. 249. https://pdxscholar.library.pdx.edu/trec_seminar/249

This Book is brought to you for free and open access. It has been accepted for inclusion in PSU Transportation Seminars by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.

Driving the Future: Intersection of Emerging Transportation Technologies and Energy Consumption

Tanmoy Bhowmik Assistant Professor Maseeh College of Engineering and Computer Science Dept. of Civil and Environmental Engineering Portland State University December 1st, 2023

Influx of EVs and CAVs

- US market share of EVs projection: 2.7% to 28% from 2020 to 2030.
- EVs on the road projection (2021-2030): 2.13M to 48M

Influx of EVs and CAVs

- US market share of EVs projection: 2.7% to 28% from 2020 to 2030.
- EVs on the road
 projection (2021-2030):
 2.13M to 48M

- Charging station install
- 80% of EV charging occurs at home,
- convenience and low cost of residential charging

Influx of EVs and CAVs

- US market share of EVs projection: 2.7% to 28% from 2020 to 2030.
- EVs on the road
 projection (2021-2030):
 2.13M to 48M

Charging station install

E V

- 80% of EV charging occurs at home,
- convenience and low cost of residential charging

Increased consumption

trend of residential EV charging is expected to cause a substantial increase in residential electricity demand

- Impact on Grid
- significant factor to consider in designing future electric grids

Consumption

Data	Utility Companies		
Sources	Smart Meters		
Energy Consumption	Surveys Questionnaires	gather detailed information directly from households, allowing for specific insights	represent a subset of households within a specific service area, not representative

Data	Utility Companies		
Sources	Smart Meters		
Energy	Surveys Questionnaires		
Consumption	Public Data sources, EIA	Readily available, provides information on national, regional and state level	

2015 RECS Data, conducted by EIA

□ 5,686 households, representing 118.2 million US HH

 $\hfill\square$ total energy use of each building is provided for

electricity, natural gas, fuel oil and propane (BTU)

□ Provides information on other variables:

- housing characteristics
- > appliances location related variables; and
- climatic variables
 - 4,000 for estimation, 1,686 for validation

 A
 A
 A

 RECS
 A
 A

 A
 A
 A

 A
 A
 A

- □ Miss other important variables
 - > No. vehicles
 - Employment information
 - Vehicle types owned (EVs)

2015 RECS Data, conducted by EIA

□ 5,686 households, representing 118.2 million US HH

□ total energy use of each building is provided for

> electricity, natural gas, fuel oil and propane (BTU)

Provides information on other variables:

- housing characteristics
- > appliances location related variables; and
- climatic variables
 - 4,000 for estimation, 1,686 for validation

National Household Travel Survey (NHTS) 2017 ٠

Data

- Consumer's information
- 129,696 households, representing the properties of 118,208,251 households in the entire USA Information Present

□ Miss other important variables

- > No. vehicles
- Employment information
- Vehicle types owned (EVs)

- National Household Travel Survey (NHTS) 2017 Data
 - Consumer's information
 - 129,696 households, representing the properties of 118,208,251 households in the entire USA Information Present
- **A** Miss other important variables
 - > No. vehicles
 - Employment information
 - > Vehicle types owned (EVs)

Miss information on Energy

consumption

Have information on Energy consumption Have information on vehicle and employment status

Common variables

RECS HH size No. adults HH race Home Own status HH Location HH region HH division Which variable/variable

Which variable/variable group we select to match the two datasets

NHTS

Research Method (Fusion)

RECS HH size No. adults HH race Home Own status HH Location HH region HH division Which variable/variable

Which variable/variable group we select to match the two datasets

How many records do we match

- Increased Complexity
- Biased result
- Select an optimal solution

 \uparrow HH size No. adults *** HH race Home Own status RECS NHTS *** **HH Location** HH region **HH** division Which variable/variable optimal solution : 5 here (assume) group we select to match the We can select any 5 out of 15 two datasets

• Different selection might produce different results

How to check the stability of the randomness

Deterministic weight: 1/5

11/30/2023

Fusion Analysis

What variables to use for fusion???

- □ Base Model: model with RECS data only
- Best improvement:
 Fusing two dataset with
 common census
 division and location

Fusion Analysis

How many records will we fuse???

- □ Base Model: model with RECS data only
- Best improvement:
 Fusing two dataset with
 I5 matching records
- Optimal choice: 10
 records

Fusion Analysis

- **Stable or not**
- Perform a t-test
- No variable go over the critical limit
- □ Stable analysis

Model Fit

Model (Electricity)	No. Parameters	BIC
Model with RECS data only	16	6,126.73
Model with Fused data, deterministic/equal weight	21	5,859.04
Model with Fused data, probabilistic weight	23	5,806.38

Model (Natural gas)	No. Parameters	BIC
Model with RECS data only	9	9,882.92
Model with Fused data, deterministic/equal weight	12	9,685.34
Model with Fused data, probabilistic weight	14	9,635.35

Variables (RECS)	Electricity Consumption	Natural Gas Consumption
HH Characteristics		
Ln (Total square footage)		
Total number of rooms		
Housing type - Mobile home		
Housing type - Apartment		
Construction year 1981 - 2000		
Construction year 2001 - 2010		
Construction year after 2010		
High income HH (>120k)		

Variables (RECS)	Electricity Consumption	Natural Gas Consumption
Appliance Use		
AC Used		
Number of refrigerators used		
Number of desktop computers		
Space heating used		
Number of smart phones		
Humidifier used		
Climatic Variables		
Ln (Total cooled square footage)		
Ln (Total heating square footage)		

Variables (NHTS)	Electricity Consumption	Natural Gas Consumption
Population Density (Medium)		
Population Density (High)		
Number of females in HH		
Number of vehicles in HH		
Proportion of EV in HH		
Number of drivers in HH		
Mean age of HH members		
No. people work from home		
HH average annual miles		

Weight	Electricity	Natural Gas
HH member difference		
No. of adult differences		
HH race match		

Validation Analysis

Energy Sam Source size	Sample	Avg. LL co Estimat	nparison for Avg. LL comparison for on Sample Validation Sample		mparison for on Sample	
	Size	Improvement (EWLR~SLR)	Improvement (LVVLR~EVVLR)	Improvement (EWLR~SLR)	Improvement (LVVLR~EVVLR)	
	Est.* 1000 Val** 4686	97.80	18.22	337.00	92.73	SLR = Model with
city	Est. 2000 Val. 3686	143.61	40.21	282.16	71.49	RECS data only
ctric	Est. 3000 Val. 2686	254.29	54.62	189.31	65.22	EWLR = Model with
Ше	Est. 4000 Val. 1686	366.02	74.66	86.26	23.67	fused data, equal
	Est. 5000 Val. 686	392.19	103.76	59.86	18.61	weight
S	Est. 1000 Val. 4686	57.78	3.45	364.48	13.01	IVVI P - Model with
Ga	Est. 2000 Val. 3686	106.72	9.69	354.26	10.59	fused data. latent
ıral	Est. 3000 Val. 2686	224.78	13.53	196.95	6.19	weight
Vatu	Est. 4000 Val. 1686	339.01	18.98	178.48	4.14	_
	Est. 5000 Val. <u>686</u>	410.30	21.16	16.03	3.41	

Prediction Analysis

- 202RECS data is recently available
- Predict using our model

Policy Analysis

Policy Analysis

Policy Analysis

Summary

Generate an Energy Model

Propose a novel fusion algorithm, that can be applied in multiple

energy and transportation sectors

- □ Fusing RECS data with NHTS data
 - Improve the energy model
 - Incorporate additional information missing from RECS data
 - Incorporate the effect of emerging technology in residential energy consumption

The work is currently <u>Under Review</u> in Applied Energy

Limitation and Future Work

The current analysis focused on 2017 NHTS data, electric vehicle and working from home % are very few
 2022 NHTS data with 2020 RECS data
 Simulate the framework considering both residential and commercial energy demand
 Integrated framework
 Who will buy EV?
 Who will prefer charging at home?
 Impact on residential and commercial energy

Vision

A meaningful and positive impact through my research and inspire the next generation

https://www.tanmoybhowmik.com/

tbhowmik@pdx.edu

