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Abstract

In this work we tackle the challenge of designing quantum unitary operators

which represent solutions to optimization problems. We start with a novel

method which combines an evolutionary algorithm known as an Evolution Strat-

egy (ES) with a method to randomly generate unitary operators. With this new

method, a quantum operator is represented for the first time using real–valued

vectors and can be “evolved” or designed to meet certain target criteria. This

criteria could be the solution to an optimization problem. With the ability

to evolve quantum operators, we attempt to evolve various known single and

multi–qubit quantum gates as well as quantum oracles. We evolve quantum op-

erators which solve instance problems of a known NP–Hard problem and even

attempt to evolve a generalized solution operator. We evolve multiple operators

with varying size and investigate their properties through eigenanalysis meth-

ods as well as by synthesizing them into quantum logic gates using the quantum

compiler Qubiter. We also present a new quantum logic algebra which offers a

new way to represent quantum circuits and demonstrate its immediate uses in

quantum computing.
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Chapter 1

Introduction

The real challenge in solving optimization problems is to create algorithms and

techniques that can solve realistically sized problems within a reasonable amount

of computational time. Most of these algorithms formulate an optimization

problem as a search problem (i.e., the problem solutions reside in an abstract

solution space and two solutions are neighbors if they differ by a small pertur-

bation of a problem parameter). Any algorithm that “solves” an optimization

problem is therefore a search algorithm that explores the solution space land-

scape.

Unfortunately, many real-world optimization problems require such huge

computational resources that brute force search methods are useless; they simply

take too much time to find the optimal solution. This has led researchers to use

search heuristics that yield an acceptable compromise: a possibly lower quality

answer but with minimal search effort. Recently an entirely new approach has

surfaced with potentially enormous consequences. This new approach is called

quantum computing and it relies on the principles of quantum mechanics to

find problem solutions.

We are interested in solving optimization problems which have their solutions

encoded as binary strings. This covers a broad class of problems including
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many of which are NP-hard. In principle, a classical computer takes an initial

solution binary string and, using logic operations, transforms it into the final

solution binary string. The specific logical operations are dictated by the search

algorithm steps. Since any logical operation can be implemented with logic

gates, one could physically implement the search algorithm as a logic circuit

composed of interconnected elementary logic gates.

This classical system perspective has been adopted by many developers of

quantum computing search algorithms. Quantum mechanical systems evolve

according to Schrödinger’s equation (i.e., the initial system state is transformed

into a final state by a series of unitary operations). Since problem solutions are

encoded in quantum computers as a set of qubits, these unitary operators are

usually defined as elementary quantum “gates” (e.g., a controlled–NOT gate).

Although different optimization problems may use qubits to represent solutions,

each optimization problem instance requires an entirely new “quantum circuit”.

This is because the qubit states that represent the optimal solution to one type

of optimization problem will mostly not be the same for the optimal solution

to a different optimization problem. Consequently, a new quantum circuit is

required for each optimization problem, which makes it imperative that an

efficient quantum-gate synthesizer be available.

The construction of practical quantum computers depends on the availability

of quantum circuits because it is only through these circuits can experimenters

develop and demonstrate principles at the quantum level. Quantum circuit

synthesizers are therefore vital and their design continues to be a hot research

area [1, 2]. One of the key metrics used to evaluate these synthesizers is the

number of quantum gates they require to implement a unitary operation. Un-
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fortunately, few synthesizers are publicly available. These unitary operators will

directly manipulate state amplitudes. Specifically, each distinct state represents

a unique problem solution and our goal is therefore to amplify the amplitude

of the one state that encodes the globally optimum solution to an optimization

problem while attenuating the amplitudes of all other states.

1.1 Problem Statement

Can we develop a good method to generate quantum unitary opera-

tors?

The ability to generate the unitary matrix describing a quantum computer is a

large challenge. Typically, the matrix is given a priori and generated by hand or

constructed through specific applications of known elementary quantum gates

or smaller quantum circuits, or even from an equivalent classical logic circuit.

However, these methods have traditionally focused on very specific problems.

The ability to easily design the unitary operator of a quantum computer is a

significant weakness in quantum computing research.

Can we evolve quantum sub–circuits and new elementary quantum

gates?

Many quantum algorithms have similar structures and only a sub–circuit or

one or more elementary gates may need to be re–designed to implement the

solution. The design of a quantum sub–circuit suffers the same limitations as

general operators, that is, there is no good general design technique. Can a

generalized method be used to design the quantum sub–circuit or discover (or

even re–discover) elementary quantum gates?
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Can quantum operators evolved for particular solutions tell us more

about how to design better quantum operators?

The quantum computing research community is constantly searching for prob-

lems which can be solved with a quantum computer more efficiently than its

classical counterpart. Some instances have been found as we detail in this dis-

sertation. The formulation of a quantum algorithm is complicated and we’re

starting to gain a better understanding how to re–use those formulations to

potentially evolve newer quantum algorithms. If we had a method of evolving a

quantum operator which solved for various instance problems, could an analysis

of these operators give us clues on the general design of quantum operators?

In general, there are no clear rules for the design of the quantum unitary

operator. For specific problems, certain criteria can sometimes be deduced. But

what we’re really after is a generalized approach. Could an eigenanalysis of a

large selection of evolved quantum operators which solve instance problems give

us insight into the design of general quantum operators?

Can we evolve generalized quantum operators which can solve prob-

lems based on input criteria?

Most quantum algorithms are instance problems. They generally rely on a given

oracle (or some other determined circuit) which has the solution criteria pre–

programmed. The input to the quantum computer is typically static (that is,

it’s a known state). By having a generalized method, could we design a quantum

operator which would yield a desired target for various input states?
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Is there a quantum algebraic logic like boolean logic for classical logic?

Lastly, another severely weak aspect in quantum computing is a fundamental

algebraic representation of quantum circuits. For example, what is the classi-

cal counterpart of boolean logic in quantum computing? Typically, quantum

circuits are expressed using more mathematically intensive representations and

are almost invariably at the state–transition level. The culprit has traditionally

been controlled gates which no longer allow us to represent a slice of a quantum

circuit as simple Kronecker product of its gates and wires. A lack of a quantum

logic algebra has been a hindrance in many ways. It increases the complexity of

the mathematical description of a quantum circuit by representing the output

state of the circuit based on an initial state rather than the transfer function

(that is, the unitary operator itself). Such representations are complicated and

operating on them is typically a mathematical exercise and not well suited for

software implementations. Secondly, it prevents us from developing a truly di-

verse set of operations that would allow us to simplify quantum circuits, map

them from one structure to another, and derive characteristics using known

mathematical rules and laws. Is there a quantum logic algebra?

1.2 Research Overview

We used evolutionary algorithms—i.e., algorithms that conduct searches using

the principles of Darwinian evolution found in Nature—to design unitary op-

erators as used in quantum computing. Our first objective was to design the

evolutionary algorithm (EA) that would — given input and target state con-

ditions — evolve one or more candidate unitary operators which satisfy the

instance solutions within a certain error margin. The design of the EA is an
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integral and fundamental aspect of this research. One of the fundamental as-

pects of our research was to determine a method of randomly generating unitary

matrices based on a set of parameters. Rigorous exploration was made on the

various parameters of the EA to determine the best configuration for operating

on quantum operator problems of varying complexity.

We evolved many quantum operators which satisfactorily solved problem

instances. The problem had a known input which was, in fact, an equal su-

perposition of all states (some call this the superposition state) and a known

target. Figure 1.1 shows an example where we want to evolve U such that when

multiplied by the input state (a superposition vector), the result is the target

vector within a certain error margin.
u00 u01 u02 · · ·
u10 u11 u12 · · ·
u20 u22 u22 · · ·
...

...
...

. . .

 1√
N


1
1
1
...

 =


0
1
0
...


Figure 1.1: Evolving U to solve for a known output vector

The instance problems are general and could — for example — represent

a solution to an NP–hard problem. An eigenanalysis of the unitary operators

was conducted which primarily focused on eigenvalue placement. The resultant

unitary operators were synthesized into quantum gates using an open–source

quantum synthesizer (Qubiter[3]) and analyzed.

We applied the EA to various fundamental tests. For instance, we tested its

ability to evolve known quantum gates (both single and multiple qubit gates).

This was in an effort to show both the strengths and weakness of the EA.

Another application of the EA to design quantum sub–circuits was then

showcased by using it to design the quantum oracle for Deutsch’s Problem.
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We chose optimization test problems (and in particular, instances of the

Independent Set Problem (ISP)) small enough so that their optimal solutions

could be found via exhaustive (classical) search. We applied our EA to evolve

multiple quantum operators which represented solutions to ISP instance prob-

lems. By knowing the ISP solution, it was possible to specify what the relative

amplitudes of all states should be for the solution. This allowed us to easily

determine if the unitary operators were correctly constructed. A similar eigen-

analysis study and synthesis was conducted.

The EA was then used to evolve generalized solutions to ISP problems. The

size was kept small for convergence reasons and to have more sensible encodings

for the initial state (for larger ISP problems, the number of graph configurations

becomes much greater than the number of solutions).

A discovery was made during the course of our research which was not part

of the original proposal. While trying to develop a software method to read

in quantum netlists, we invented a method to represent quantum circuits (and

especially those with controlled–gates) using a simple quantum logic algebra.

This new quantum logic algebra and its applications are described in detail in

chapter 4.

1.3 Primary Contributions

There was a lot of data and analysis produced from our research and great care

was made to pick out the most important parts to be included in this disser-

tation. We would like to highlight the primary contributions which resulted in

publications:

1. An Evolution Algorithm (EA) which can generate quantum unitary oper-
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ators using real–valued vectors[4].

2. A method for representing and manipulating quantum circuits using our

invented Quantum Logic Algebra[5].

We now review the primary contributions of original work found in this

research.

The Evolutionary Algorithm

The EA was published in [4] and covered in chapter 5. Its significant contribu-

tion was not only that it presented a method to automatically evolve quantum

unitary operators, but also that it represented the quantum operators using

real–valued vectors. It was also the first to apply a class of evolutionary al-

gorithms known as an Evolution Strategy (ES) to quantum computing. This

was made possible through a novel application of applying a known method for

generating random unitary matrices[6] with our EA.

With this method, generalized unitary operators can be created at both the

top–circuit level as well as the sub–circuit and elementary gate levels. There

were two immediate highlights that came from this research using our EA.

When we applied the EA to evolve known quantum gates, we found that the

anti–symmetric limitation (described in section 5.3) of the method prevented it

from hitting the same complex behavior of some gates. This was also true of the

Hadamard gate. However, upon further inspection of the evolved operator for

the Hadamard, the operator found turned out to be the well–known pseudo–

Hadamard which was considered the superior gate for NMR based quantum

circuits.
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The second was when we applied this method to design the quantum oracle

for Deutsch’s problem. The oracle is typically generated by hand and in seconds

our EA was able to derive a valid oracle operator which was in fact different

from Deutsch’s but had the same functionality.

While the EA was limited to 5 or less qubit studies, it was surprisingly quick

to find valid solutions. This was especially true after the EA code matured and

a decent understanding of the bounds of the EA parameters were understood

which took numerous simulations. Valid solutions were found in only a handful

of generations. This makes the EA extremely viable in terms of run–time. In

fact, many aspects of the EA are desirable including its simplicity (that is, ease

of mapping it to a problem), highly parallelizable, and memory efficient.

The Quantum Logic Algebraic Method

The quantum logic algebraic method was published in [5] and described in chap-

ter 4. This significant work allows the algebraic representation of more complex

quantum circuits, and specifically those with controlled–gates. Until this work

was published, there was no known method for representing the unitary operator

of such circuits.

With this method also came the ability to apply mathematical rules and

transformations (namely, simple Kronecker and matrix identities) to quantum

circuit expressions. One of the first applications of this method was to eas-

ily prove known quantum circuit identities found in any quantum computing

textbook.

While the method, its canonical representation, and proofs are provided

in this dissertation, its true power will be in its ability to represent quantum
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circuits and operate on them. For example, a quantum circuit can now be

represented by an equation which can be simplified and manipulated. This

leads to a potentially rich source of “future work” in fields such as quantum

logic synthesis. We also show how simple it is to extend our quantum logic

algebraic method to multi–valued quantum logic.

Operator Eigenanalysis

Section 6 details our eigenanalysis methods which resulted in a couple primary

contributions. Overall, our attempts to derive patterns and information from

the eigenanalysis was unsuccessful. However, there were a couple of mathemat-

ical tools we developed that should be explored in more depth.

For example, the technique which shows the most promise is described in

section 6.4 which provides a method to adjust the eigenvalues of a quantum op-

erator without destroying its unitary property. This method provides a mech-

anism to not only test the impact of modifying individual eigenvalues, but also

gives us another method to optimize the operator through eigenvalue tuning.

In section 6.3, we derive a way to map the eigenvalues and eigenvectors

from the spectral decomposition format into the common outer–product format

using equation 6.3.12. This method provides a means to describe the function

of a quantum operator in terms of the more familiar standard computational

basis set. Unfortunately, this method was not applied in our eigenanalysis and

although convenient, it’s debateable as to its usefulness.
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1.4 Dissertation Organization

Chapter 2 provides background on what we felt were the pertinent areas. We

give a brief introduction to Quantum Mechanics but quickly dive into Quantum

Computing with a focus on basic notation, Hilbert spaces, Qubits, Quantum

Circuits, and a detailed overview of Quantum Algorithms. Lastly, we cover

basic concepts of Evolutionary Algorithms including Evolution Strategies (ES).

In Related Research (chapter 3), we review current topics that are directly

applicable to our research. We start with a survey of known applications of evo-

lutionary algorithms to quantum computing with a more detailed overview of a

method developed by Dr. Martin Lukac [7] which uses a genetic algorithm (GA)

to synthesize quantum operators. In this chapter we also describe the method

to generate random unitary matrices which is at the heart of our EA. Lastly,

we review quantum logic synthesis methods including the popular cosine–sine

decomposition (CSD) as used by Qubiter.

In chapter 4 we detail our Quantum Logic Algebraic method. Since we’re

inventing a method, we give due diligence to setting up a proper framework for

the method, examples, and proofs for its canonical representation.

Chapter 5 is our main section describing the development of our Evolution-

ary Algorithm utilizing the random unitary matrix method with an Evolution

Strategy (ES). This is also where all of our evolution results and analysis occurs.

We placed the results and analysis of quantum logic synthesis into chapter

7. In this chapter we give a bit more detail into how Qubiter was used which

was not relevant to the EA. The synthesis results of key studies from chapter 5

are found here.

We provide more detail by summarizing our work and major findings in
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chapter 8.

Lastly, we conclude our dissertation in chapter 9 with a review of the future

work applications of our research.
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Chapter 2

Background

2.1 Quantum Mechanics

While Quantum Mechanics has a broad range of topics, only those more specif-

ically directed toward Quantum Computation are covered.

2.1.1 A Quantum of History

Quantum mechanics is a description of the behavior of light and matter partic-

ularly at the atomic and sub–atomic level. Its development started around 1900

with the concept that energy is quantized (a quanta of energy) as a result of

Max Planck’s theory of blackbody radiation. A few years later in 1905, Albert

Einstein explains the photo-electric effect by assuming that light is composed

of light particles (later called photons) which move at the speed of light, c, and

have energy hν, also contributing to the concept of energy quanta. Louis de

Broglie took this concept (that is, the particle–like nature of light) and in an

interesting reversal, postulated that all matter has a wave–like nature determine

by the relation p = hλ.

At this point, there was strong evidence that a new type of physics much dif-

ferent from classical physics was needed to explain the atomic and sub–atomic
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behavior being seen. By 1925, Max Born and Pascual Jordan developed a math-

ematical foundation using infinite matrices and the use of non–commutative dy-

namical variables. At the same time, Paul Dirac introduced his abstract mathe-

matical system and postulated a general form for the commutator between two

quantum variables using Poisson brackets.

Everything came together in 1926 with a cascade of events. Erwin Schrödinger

proposed his famous Wave Equation. Werner Heisenberg developed a theory of

quantum mechanics using infinite matrices to represent observables. Dirac and

Shrödinger showed the wave equation, Dirac’s algebraic method, and Heisen-

berg’s infinite matrix methods were equivalent. Finally, that same year, Dirac

— and independently, Born, Heisenberg, and Jordan — obtained a complete for-

mulation of quantum mechanics that could be applied to any physical system,

and was first applied to the hydrogen atom.

Also in 1926, John von Neumann — after attending a lecture by Heisenberg

which involved discussions with David Hilbert who proposed Hilbert spaces —

introduced the concept of applying Hilbert spaces to quantum mechanics. He

did this by demonstrating that the geometry of vectors over the complex plane

has the same formal properties as the states of a quantum mechanical system.

The states of the quantum system (the wave functions) are represented as vec-

tors in Hilbert Space and operations associated with position and momentum

act like matrices operating on these vectors. This concept has served as the

basis for describing the computational properties of quantum systems.
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Notation Description

c∗ Complex conjugate of c
|ψ〉 The ket or column vector of state ψ.
〈ψ| The bra or dual of ψ. A row vector.
〈ψ|φ〉 The bra(c)ket, or inner–product.
|ψ〉 ⊗ |φ〉 The tensor product. Simplifies to |ψ〉 |φ〉.
|ψ〉 〈φ| The outer–product vector operation.
A∗ The complex conjugate of matrix A.
AT The transpose of matrix A.
A† The adjoint (conjugate–transpose) of matrix A.
A |ψ〉 A operating on vector |ψ〉.
〈φ|A |ψ〉 The inner–product of |φ〉 and A |ψ〉.

Table 2.1: Dirac’s Notation

2.1.2 Dirac’s Notation

The common notation and the notation we use to describe quantum states was

introduced by Dirac [8]. Here, Dirac introduces the so–called bra–ket vector

notation. A bra, denoted as 〈|, is a row vector. The ket, denoted as |〉 is a

column vector. We can denote a quantum state (ψ) as either a row vector

using bra, 〈ψ|, or a column vector using ket, |ψ〉. The relationship between

them is quiet simple. The bra is the conjugate–transpose (also known as the

hermitian–adjoint) of ket. That is,

〈ψ| = (|ψ〉∗)T = (|ψ〉)† (2.1.1)

For this reason, the bra is called the dual of the ket vector.

Table 2.1 gives an overview of the basic operation used with Dirac’s notation.
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2.1.3 Hilbert Space

Hilbert spaces play a vital role in quantum computing and so they deserves some

coverage as part of our background material. One can say the space quantum

mechanics (and thus quantum computing) operates in is a Hilbert space. In

other words, a Hilbert space is a mathematical framework that can be used to

describe quantum mechanics. With that in mind, we give the definition of a

Hilbert space:

Definition 1 A Hilbert Space, Hn, is an n–dimensional Euclidean vector space

over the field of complex numbers with a well defined inner–product defined by

〈x, y〉 =
n∑
i=1

xiy
∗
i (2.1.2)

and associated norm (length) given by

‖x‖ =
√
〈x, x〉 (2.1.3)

A Hilbert has a complete metric with respect to the inner–product. The

elements of Hn are n–dimensional complex vectors and any linear combination

of vectors within the Hilbert space will result in a vector which also exists in Hn.

We also note that Hn is isomorphic with Cn.

Hilbert spaces have the following inner–product rules:

1. The inner–product of two vectors |ψa〉 , |ψb〉 ∈ Hn is a complex number.

2. Inner–product with itself is a real number: 〈ψa|ψa〉 ∈ R.

3. Linearity: If |ψa〉 , |ψb〉 , |ψc〉 ∈ Hn and a, b, c ∈ C then
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• 〈ψa| (c |ψb〉) = c〈ψa|ψb〉.

• (a 〈ψa|+ b 〈ψb|) |ψc〉 = a〈ψa|ψc〉+ b〈ψb|ψc〉.

4. Skew Symmetry: 〈ψa|ψb〉 = 〈ψa|ψb〉∗.

5. Satisfies the Schwartz inequality:〈ψa|ψa〉〈ψb|ψb〉 ≥ |〈ψa|ψb〉|2.

An important aspect about Hilbert spaces is their orthonormal basis vectors

which we define as:

Definition 2 The collection of vectors {v1, v2, . . . , vn} ∈ Hn is called the or-

thonormal basis if the inner product of any two of them is zero , (vi, vj) =

0∀(i, j) ∈ {1, n}, and the inner product of any of them with itself is one,

(vi, vi) = 1∀i ∈ {1, n}. There can be many choices. However, all orthonor-

mal basis sets of a Hilbert space have the same cardinality.

An example of a Hilbert space isR3 formed by the orthonormal basis vectors

(1, 0, 0), (0, 1, 0), and (0, 0, 1) and the dot–product.

2.1.4 Tensor and Kronecker Products

The tensor product is defined by the symbol ⊗ and is used to combined two

vector spaces into a single larger vector space. We apply this directly to quantum

systems with the following definition:

Definition 3 If a quantum system S is composed of two quantum sub–systems,

S1 and S2, with corresponding Hilbert spaces, H1 and H2, then the space of S is

defined by the Hilbert space H which is the tensor product of H1 and H2. That

is,

H = H1 ⊗H2
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We make a simplification by noting that in quantum computing we are deal-

ing with finite linear operators and we can instead use the Kronecker product :

Definition 4 The Kronecker product is defined by the symbol ⊗ and is a special

case of tensor product when using finite linear operators. Given the m×n linear

operator, A, and an o × p linear operator, B, then the Kronecker product,

denoted A⊗B is the mo× np operator, C, where

C = A⊗B =


a11B · · · a1nB

...
. . .

...

am1B · · · amnB


The Kronecker Product is bilinear and associative and not commutative.

Below are some key identities of the Kronecker product:

1. A⊗ (B + C) = A⊗B + A⊗ C

2. (A+B)⊗ C = A⊗ C +B ⊗ C

3. (kA)⊗B = A⊗ (kB) = k(A⊗B)

4. (A⊗B)⊗ C = A⊗ (B ⊗ C)

5. (A⊗B)(C ⊗D) = AC ⊗BD

6. (A⊗B)−1 = A−1 ⊗B−1

Another interesting aspect is how the eigenvalues are combined when per-

forming the Kronecker product:

Definition 5 Given square matrix, A, of size n with eigenvalues {λi} and

square matrix, B, of size m with eigenvalues {µj}, then the eigenvalues of A⊗B

are given by {λiµj} where i = {1, . . . , n} and j = {1, . . . ,m}.
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Kronecker products are a fundamental operation in quantum computing.

They can be used explicitly with the ⊗ symbol and they can also be used

implicitly as with Dirac’s notation where |ψφ〉 is actually implied to be |ψ〉⊗|φ〉.

2.1.5 Quantum States

A quantum state is a complete description of a physical system and is represented

by an n–dimensional vector in a Hilbert space, Hn. For now, we’ll limit our

quantum state to have a unit length. This specialized Hilbert space is sometimes

called a unitary space. In this space, a general unit quantum state vector has

the form:

|ψ〉 = c0 |0〉+ c1 |1〉+ . . .+ cn−1 |n− 1〉 =
n−1∑
i=0

ci |i〉 (2.1.4)

Since the length or norm of a ket (or corresponding bra) vector must be

unity in our unitary space, the quantum state has the following condition:

n−1∑
i=0

|ci|2 = 1 (2.1.5)

Where ci are the complex amplitudes and it can also be shown that

ci = 〈i|ψ〉

We recall the braket relationship between unit vectors:

〈i|j〉 =

 0 if j 6= i

1 if j = i

We can visualize quantum states in this space as unit length rays so that
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only their direction is of importance. Given two states, |ψa〉 and |ψb〉, the

generalized angle between those states is given by the inner–product, 〈ψa|ψb〉

and can represent the overlap between those two states. Thus, ‖〈ψa|ψb〉‖ is a

measure of the relative orthogonality between those two states.

A quantum state can be in a superposition state, that is, |ψc〉 = a |ψa〉+b |ψb〉.

However, for this new state to exist in our unitary space, it must have a unity

norm. Therefore, the normalization constraint requires that |a|2 + |b|2 = 1.

An interesting aspect of quantum state is relative phase. For instance, the

state |ψ〉 and the state eiγ |ψ〉 (where |eiγ| = 1) describe the same physical state

but differ by a relative phase represented by γ.

All quantum states in our unitary space are composed of linear combi-

nations of of orthonormal basis vectors. For example, the set of unit vec-

tors {|0〉 , |1〉 , . . . , |n− 1〉} forms a normal unitary basis in the 4th–dimensional

Hilbert space, H4:

|00〉 =



1

0

0

0


|01〉 =



0

1

0

0


|10〉 =



0

0

1

0


|11〉 =



0

0

0

1


The state vector, |ψ〉 ∈ Hn can be expressed as a linear combination of the

basis state, |0〉 , |1〉 , . . . , |n− 1〉 as |ψ〉 =
∑n−1

i=0 αi |i〉 with αi representing the

complex amplitudes.

2.1.6 Quantum Operators

The role of unitary operators in quantum computing is absolutely fundamental

and will be explored in more detail in section 2.2 and throughout this dis-
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sertation. Here we present the basic concept of quantum operators and their

properties and then focus on the importance of Hermitian and Unitary opera-

tors.

First, we look at the definition of a linear operator operating in a Hilbert

space:

Definition 6 An n–dimensional linear operator, A, on a Hilbert space Hn is

a linear mapping A : H → H. And can have the following properties:

1. A = Hermitian if A = A†

2. A = Unitary if AA† = A†A = I

3. A = Normal if [A,A†] = AA† − A†A = 0

A Hermitian operator, H, maps states vectors to state vectors in Hn. That

is, |ψ′〉 = H |ψ〉 where H is described by the matrix, H, whose elements are

defined as Hij = 〈i|O |j〉 where |i〉 and |j〉 are unit vectors that satisfy the

Kronecker delta relation: 〈i|j〉 = δij.

Hermitian operators also have the following properties:

1. Real eigenvalues.

2. The determinant equals the product of its eigenvalues and thus is real.

3. The trace (sum of diagonal elements), Tr(U), equals the sum of its eigen-

values and is also real.

A Unitary operator also has the property that its determinant is 1.

By definition, a unitary–hermitian operator is normal. Unitary preserves

the inner product, preserving distance.

21



Through quantum operators, we evolve the quantum state to a new state.

That is, |ψ′〉 = U |ψ〉.

To understand why we are interested in unitary operators in quantum me-

chanics, we look at the time–independent Schrödinger equation:

ih̄
∂x(t)

∂t
= Hx(t) (2.1.6)

Where x is the quantum state and H is the Hamiltonian. The well known

solution being:

x(t) = e−iHt/h̄x(0)→ |x′〉 = U |x〉 (2.1.7)

Because H is Hermitian, U = e−iH/h̄ is a unitary operator. This sets the stage

for us to investigate specifically unitary operators.

2.1.7 Quantum Observables and Measurements

In quantum mechanics, in order to extract quantum information from a quan-

tum system, we need to observe or measure the system. An observable is a

property of a physical system that can be measured. For example, position,

velocity, and momentum.

An observable is associated with a Hermitian operator. The measured value

of a pure state of an observable is an eigenvalue of its operator. That is, given

a unitary operator U , the state |ψ〉 is considered a pure state if it is also an

eigenvector (or eigenket) of U . This is different from a mixed–state which is a

linear superposition of pure states.

Quantum projection measurements are tests with real–valued labels such as

velocity or position. For measurement we use the projection operator(or simply,
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projector). A projection operator is the outer product of any state vector with

itself:

Pψa = |ψa〉 〈ψa| (2.1.8)

With the property

(Pψa)
2 = Pψa

We intuitively understand why this property exists. When we take a measure-

ment we essential project the complex state function, |ψa〉, onto the real plane.

We sometimes refer to this as collapsing the quantum wave function. Successive

projections would have no effect since we’ve already removed the complex com-

ponents. In measuring a quantum state, this is analagous to the measurement

collasping the state, thus removing the complex (invisible) components of the

quantum wave, and projecting on to the real plane. Any further measurements

would always result in the same measurement since the complex componets

have already been removed.

A complete set of orthogonal projectors {P0, P1, . . . , Pn−1} for a given n–

dimensional Hilbert space, Hn, follows the condition:

i=n−1∑
i=0

Pi = 1

This tells us that the sum of probabilities after measuring all states is 1. Since

our projectors form a orthogonal basis set for our linear operator, they can be

used in a spectral representation (covered in more detail in section 2.1.8). More

formally, in an n–dimensional Hilbert space,Hn, every normal operator N has

n eigenvectors, {n0, n1, . . .} and n corresponding eigenvalues, {λ0, λ1, . . .}. If Pi

is the projector corresponding to these eigenvectors, that is, Pi = |ni〉 〈ni|, then
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the operator N has the spectral decomposition N =
∑

i λiPi. The probability

of measuring eigenvalue λi is given by

Prob(λi) = ||Pi |ψ〉 ||2 = 〈ψ|Pi |ψ〉

Immediately after measurement, the quantum state collapses to |ψ′〉, which

is an eigenstate of the operator. This new state is defined as:

|ψ′〉 =
Pi |ψ〉√
〈ψ|Pi |ψ〉

For completeness, the total probability for all outcomes must be unity:

n−1∑
i=0

Prob(λi) = 1

The Density Operator

The density matrix contains all the information regarding the results of mea-

surements of an ensemble of N independent versions of a quantum system and

gives the expected value of any observable of the system. The density matrix

does not uniquely determine the states of individual particles. The density ma-

trix is Hermitian and its eigenvalues are non–negative. Given all the possible

states of a system, we define the density operator, ρ, as:

ρ =
1

N

N−1∑
i=0

〈ψi|ψi〉 (2.1.9)

The density operator gives us an alternative method to measure the outcome

of an observable represented by an operator. For instance, let’s say we have an

24



operator, M, which has eigenstates denoted by the set {|em〉}. We define the

ensemble average of N quantum systems each in one of N possible states, |ψi〉

where 0 ≤ i < N as:

〈M〉 =
1

N

N−1∑
i=0

〈ψi|M |ψi〉

Then we can define 〈M〉 in terms of the density matrix as

〈M〉 =
∑
m

〈em| ρM |em〉 = Tr(ρM)

Our projector is defined as Pm = |em〉 〈em|. This allows us to calculate the

probability of measuring M in the pure state |em〉 as

Prob(|em〉) =
1

N

N−1∑
i=0

|〈ψi|em〉|2 = Tr(ρPm)

The density operator is Hermitian if {|em〉} form an orthonormal basis. It also

follows that the expectation — that is, the average value we would measure —

is unity. That is,

Tr(ρ) = 1

2.1.8 Spectral Decomposition

Spectral decomposition provides a way of representing a matrix as an expres-

sion based on its eigenvalues and eigenvectors. This method has many names:

spectral representation, spectral decomposition, eigenvalue decomposition, diago-

nal representation, orthonormal decomposition(for unitary matrices), and even

eigendecomposition. We give this particular subject focus because we use it in

two key places: In section 6.3 to map eigenvectors to the standard computa-
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tional basis, and also in section 6.4 to provide a method of adjusting eigenvalues

of a quantum operator while maintaining its unitary property.

Spectral decomposition falls under the general category of spectral theory

in linear algebra and is a special case of SVD (singular value decomposition).

It is well suited for self–adjoint matrices (e.g., Hermitian) and, more generally,

normal operators in the Hilbert space. This also includes unitary operators.

We’ll consider the cases of a Unitary operator in a Hilbert space since this

will apply to the types of operators we will deal with later in our review of

quantum computing.

Definition 7 Given the operator A which is self–adjoint (that is, A = A†). A

has a spectral decomposition defined as:

A =
N∑
i=1

λi |i〉 〈i| (2.1.10)

Where the |i〉 vectors form a set of orthonormal eigenvectors with λi being the

corresponding set of eigenvalues.

We derive this decomposition by solving the characteristic equation

A |ψ〉 = λI |ψ〉

Which is re–written as

(A− λI) |ψ〉 = 0

and will have a non–trivial solution iff

det(A− λI) = 0

26



Hermitian operators have eigenvalues that are real numbers and the eigen-

vectors corresponding to different eigenvalues will be mutually orthogonal.

We can also use the projector convention to form an alternative decompo-

sition form. We define Pi = |i〉 〈i|, where Pi is the projection operator into the

subspace of Hn spanned by the n eigenvectors corresponding to λi. Therefore,

A =
N∑
i=1

λiPi

2.2 Quantum Computing

Quantum computation has spread into many fields, initially starting with

computing[9] and information[10], and quickly spreading to a wide range of

fields such as cryptography[11], artificial intelligence[12], game theory[13],

economics[14, 15], and control systems[16, 17].

The computational properties of quantum mechanics were originally inves-

tigated by Benioff[18], while the concept that quantum mechanics could be

more computationally powerful than a classical Turing machine is attributed

to Feynman[19, 20]. Since then researchers have developed methods of describ-

ing quantum computers and developed quantum algorithms which can solve

problems more efficiently than on a classical Turing machine.

Deutsch defined the quantum Turing machine[21] and the concept of quan-

tum circuits (or gates)[22]. Along with Jozsa, they answered the long-standing

question that a quantum computer could solve a sample problem more efficiently

compared to a classical Turing machine[23]. More examples were found by

Berthiaume and Brassard[24], Simon[25], and Bernstein and Vazirani[26]. This

led to the discovery by Shor[27] of a polynomial-time quantum algorithm for two
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key problems (discrete log and factoring) for which no polynomial-time classical

algorithm is known. Another significant discovery is Grover’s algorithm[28] for

database searching.

2.2.1 Qubits

Classical computer systems represent a single bit of information deterministi-

cally: the value is either a logic 0 or a logic 1. Quantum computer systems

represent a single bit of information as a qubit, which is a unit vector in a

complex Hilbert space C2. The ideas are commonly expressed using bra/ket

notation introduced by Dirac[8] and was summarized in section 2.1.2.

Any practical quantum computer manipulates a register of n qubits. If each

qubit has an orthonormal basis {|0〉 , |1〉}, then an n qubit system has a basis

expressed by the tensor product : (C2)⊗n = C2 ⊗ C2 ⊗ · · · ⊗ C2. This gives

2n total basis vectors. In general, |a〉 denotes the tensor product
⊗n

i=0 |ai〉 =

|an〉 ⊗ |an−1〉 ⊗ · · · ⊗ |a1〉 ⊗ |a0〉 which means a quantum register has the value

a = 20a0 + 21a1 + . . .+ 2nan.

A qubit need not exist in only one basis state. Indeed, a qubit can exist as

a linear superposition of basis state c0 |0〉+ c1 |1〉, where c0 and c1 are complex

numbers satisfying |c0|2 + |c1|2 = 1. More generally, the n qubit register can be

prepared in a superposition of all possible classical states:

|x〉 =
2n−1∑
i=0

ci |i〉 (2.2.1)

where the normalization condition
∑

i |ci|2 = 1 must hold. The complex number

ci is called the amplitude associated with the state |i〉.

The most conventional representation of a base state |i〉 is as a column matrix
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with the ith entry 1 and all other entries 0. A state |ψ〉 is therefore represented

as a column matrix of the complex amplitudes. That is,

|ψ〉 =



c0

c1

c2

...


Quantum systems evolve from state to state according to Schrödinger’s equa-

tion [29]. Suppose we start in state |ψ〉 =
∑
ci |i〉. A linear operator U produces

a new state |φ〉 = U |ψ〉. Both states are linear combinations of the same base

states, so |φ〉 =
∑
c′i |i〉. This means evolution occurs by modification of the

state amplitudes. Note that the normalization condition required of states is

satisfied iff U is unitary—i.e., U †U = I.

It is important to emphasize the role superposition plays in quantum com-

puting. Consider a state |ψ〉 =
∑
ci |i〉. One can exploit the superposition

using the property of quantum interference. Interference allows the exponential

number of computations performed in parallel to either cancel or enhance each

other. Feynman [29] beautifully describes how light waves can constructively

or destructively interfere to produce this effect. The goal of any quantum al-

gorithm is to have a similar phenomena occur—i.e., interference increases the

amplitudes of computational results we desire and decreases the amplitudes of

the remaining results. It is a unitary operator that would alter these amplitudes.
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Bloch Sphere Representation

The Bloch Sphere allows us to visualize the state of a single qubit in a three–

dimensional space as shown in figure 2.1. A qubit can exist on any point on the

surface of the Bloch Sphere. To better understand this visual representation,

we first construct a general expression for the state of a qubit using φ, ψ, and

γ as our three angle parameters to form

|ψ〉 = eiγ
(

cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉
)

The global phase factor impact of γ represented by the eiγ term is generally

ignored in our calculations since it is not observable.

The state of a qubit is the unit radius vector extending outwards from the

origin of an x, y, z 3D space. The direction of the vector is defined by the two

angles, θ and φ. The angle θ is the rotation of the vector from the z axis and

the angle φ is the rotation from the x axis on the xy plane. The Bloch Sphere

is the three–dimensional shaped formed by varying θ and φ over all possible

values.

A qubit can be in a continuum of states as represented by the surface of

the Bloch Sphere. We arbitrarily assign two basis states – also known as the

computational basis states – to the qubit, |0〉 and |1〉. On the Bloch Sphere

representation, the |0〉 state is the top–most point on the z–axis and |1〉 is the

bottom–most point on the z–axis.

As an example, the point on the x–axis access where φ = 0o and θ = 90o
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Figure 2.1: Bloch Sphere representation of a Qubit

gives us a qubit in common superposition state

|ψ〉 =
1√
2

(|0〉+ |1〉)

Apart from showing how a qubit can be in a superposition state of |0〉 and

|1〉, the Bloch Sphere also allows us to visualize how single qubit operations will

affect the current state of the qubit. Later, we’ll discuss single qubit operators

such as the X, Y , and Z rotation gates. Fundamentally, all qubit operators

cause the current state of the vector on the Bloch Sphere to rotate to another
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point on the sphere.

Qubit Measurements

The state of a qubit register is determined by a measurement. In quantum

systems, this measurement process projects the system state onto one of the

basis states. Referring to Eq. 2.2.1, the measurement returns a value of |i〉

with probability |ci|2. Any subsequent measurement returns the state |i〉 with

probability 1, which means the measurement process irreversibly alters the state

of the system. Measurement also gives another perspective on entanglement:

two qubits are entangled if and only if the measurement of one affects the state

of the other.

2.2.2 Quantum Gates

Single Qubit Quantum Gates

Single qubit gates are defined by 2×2 square matrices and represent the simplest

quantum logical operations. The most obvious examples are the identity (I)

gate and the inverter gate (X) since these are analogous to their classic logic

counterparts, the buffer (or wire) and the inverter (or NOT) gate, respectively.

In general, a single qubit exists in a superposition of the logical basis states

as given in the equation below

|ψ〉 = α |0〉+ β |1〉

Where |α|2 + |β|2 = 1.

To understand single qubit operators in more depth, we’ll reference our Bloch
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Sphere discussion and then look at the types of rotation operations (which are

also single qubit operators) and then form a general qubit operator.

In the Bloch Sphere there are three axes (x,y, and z) and thus three rotation

operators. Without going into the details, we list those three rotations below

Rx(θ) ≡ e−iθX/2 = cos
θ

2
I − i sin

θ

2
X =

 cos θ
2
−i sin θ

2

−i sin θ
2

cos θ
2

 (2.2.2)

Ry(θ) ≡ e−iθY/2 = cos
θ

2
I − i sin

θ

2
Y =

 cos θ
2
− sin θ

2

sin θ
2

cos θ
2

 (2.2.3)

Rz(θ) ≡ e−iθZ/2 = cos
θ

2
I − i sin

θ

2
Z =

 e−iθ/2 0

0 e−iθ/2

 (2.2.4)

We define the general single qubit operator as the product of the rotation

operations by first rotating over x, then y, and lastly z. To achieve this, we do

the matrix multiplication in reverse. Lastly, we add the global phase term (eiγ)

to produce equation 2.2.5.

U = e−iγRz(θz)Ry(θy)Rx(θx) (2.2.5)

In fact, any unitary 2×2 matrix with unity determinant can also be expressed

as

U =

 eiθz/2 0

0 e−iθz/2


 cos θy/2 sin θy/2

− sin θy/2 cos θy/2


 eiθx/2 0

0 e−iθx/2

 (2.2.6)

Now we can review some of the common single qubit operators and we can

see how these are derived from the rotation operators in equation 2.2.4.
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The Identity Gate, I

This is sometimes called the Pauli I gate. The function of the gate is trivial as

the output state is the same as the input state. The matrix is the identity

I =

 1 0

0 1


And denoted by the following quantum circuit

I

The Inverter, X Gate

This is sometimes called the Pauli X gate. The function of the gate is to invert

the logical state of the qubit much like classical logic inverter. The difference is

that the quantum inverter can operate on superposition states. If the qubit is

in the |0〉 state, then the result will be |1〉. And vice–versa, if the qubit was in

the |1〉 state, then the result will be |0〉. It is defined by the matrix

X =

 0 1

1 0


And denoted by the following quantum circuit

X
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The Y Gate

The Pauli Y gate performs the following mapping on the logical states

Y |0〉 = i |1〉

Y |1〉 = −i |0〉

It is defined by the matrix

Y =

 0 −i

i 0


And denoted by the following quantum circuit

Y

The Z Gate

The Pauli Z gate changes the relative phase factor by −1, effectively negating

a qubit’s sign, for the |1〉 component of the state. It performs the following

mapping on the logical states

Z |0〉 = |0〉

Z |1〉 = − |1〉

It is defined by the matrix

Z =

 1 0

0 −1


And denoted by the following quantum circuit
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Z

The Phase Gate, S

The Phase (or S) gate performs the following mapping on the logical states

S |0〉 = |1〉

S |1〉 = i |0〉

It is defined by the matrix

S =

 1 0

0 i


And denoted by the following quantum circuit

S

The T Gate

This is sometimes called the π/8 for the reason that up to a certain global

phase, the T gate behaves exactly as another gate which has eiπ/8 appearing in

its diagonals. The T gate is defined by the matrix

T =

 1 0

0 eiπ/4


And denoted by the following quantum circuit

T
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The V Gate

This is sometimes called the
√

NOT because it is literally the square–root of the

X gate matrix. It showcases the multiplicative nature of quantum logic since

two V operators will produce the result of a logic X gate.

The V gate is defined by the matrix

V =
1

2

 1 + i 1− i

1− i 1 + i


And denoted by the following quantum circuit

V

The Hadamard and Pseudo–Hadamard Gates

The Hadamard gate is extremely useful because it maps the basis states |0〉 and

|1〉 into a superposition of the two states with equal weight. That is,

|0〉 → (|0〉+ |1〉)/
√

2

and

|1〉 → (|0〉 − |1〉)/
√

2

It is defined by the matrix

H =
1√
2

 1 1

1 −1


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And denoted by the following quantum circuit

H

We will commonly see typical quantum computing algorithms put their ini-

tial state into an equal superposition using Hadamard gates to extract the quan-

tum computing parallelism that superposition provides.

The Pseudo–Hadamard gate[30] is practically equivalent to the standard

Hadamard in that it can convert a basis state to an equal superposition state.

It performs the following operations,

|0〉 → (|1〉+ |0〉)/
√

2

and

|1〉 → (|1〉 − |0〉)/
√

2

The difference from the Hadamard is subtle and shown by the negation for

the operation on the |1〉 state. It is defined by the following matrix which is

also subtly different from the Hadamard,

H =
1√
2

 1 1

−1 1


Some implementations utilizing NMR technologies found benefit by using

the Pseudo–Hadamard gate over a regular Hadamard [31].
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Two Qubit Quantum Gates

Two qubit quantum gates have two inputs and can operate on one or both of

the qubits. The state of a two–qubit can be expressed as a linear combination

of all the computational basis states

|ψ〉 = c0 |00〉+ c1 |01〉+ c2 |10〉+ c3 |11〉

Where |c0|2 + |c1|2 + |c2|2 + |c3|2 = 1.

Two qubit operators exist in a four dimensional Hilbert space (denoted H4).

Therefore, their function can be described by a 4 × 4 square matrix and their

state vectors can be described by 4 element vectors.

The most popular two–qubit gate is the controlled–NOT gate or simply

written as CNOT. As you would suspect, it is an X gate operating on one qubit

but controlled (or activated) by the other. Figure 2.2 shows the quantum circuit

for a CNOT operating on qubit 0 and being controlled by qubit 1.

q1 •

q0 X

Figure 2.2: CNOT gate drawn using an X gate

However, it is more commonly drawn as shown in figure 2.3 using a XOR–like

symbol noting its similarity to the logical XOR gate.

q1 •

q0 ��������

Figure 2.3: Common drawing of a CNOT using XOR symbol
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The operations of the CNOT gate on the logic basis states are

|00〉 → |00〉

|01〉 → |01〉

|10〉 → |11〉

|11〉 → |10〉

The unitary matrix describing the CNOT gate is

CNOT =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


Another way of constructing this matrix is by through the outer–product

method of summing the outer–products of each input basis state with the desired

output state as shown below

CNOT = |00〉 〈00|+ |01〉 〈01|+ |10〉 〈11|+ |11〉 〈10|

We can generalize and form a two qubit gate by adding a control to any

single qubit gate. Also, it is possible the control qubit is on qubit 0 (shown in

figure 2.4).

Lastly, figure 2.5 shows the circuit for a general two qubit gate where either

or both qubits could be operated on.
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q1 U

q0 •

Figure 2.4: General gate operating on qubit 1 and controlled by qubit 0

q1
U

q0

Figure 2.5: General two qubit gate

Three Qubit Quantum Gates

Three qubit gates have three inputs and three outputs, are reversible, and are

described by 8 × 8 square unitary matrices. Common examples of three qubit

gates that we’ll cover in more detail are the Toffoli and Fredkin gates.

Three qubit gates exist in an 8 dimensional Hilbert space (H8) with states

that can be represented by an 8 element vector. The state can be written as

the linear superposition of its 8 computational basis states which we re-write in

Σ–form for brevity

|ψ〉 =
7∑
i=0

ci |i〉 (2.2.7)

Where
∑7

i=0 |ci|2 = 1.

The Toffoli Gate

The Toffoli gate is also known as the controlled-CNOT gate because it is literally

a CNOT gate with a secondary control input. The function is if both control

inputs are asserted, the target qubit is inverted. The function of the quantum

Toffoli gate is the same as its classical counterpart. Figure 2.6 shows a circuit

diagram of the quantum Toffoli gate with q0 being the target qubit and being
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controlled by qubits q2 and q1.

q2 •

q1 •

q0 ��������

Figure 2.6: Toffoli Gate

From a logical perspective the Toffoli gate performs the function

q′0 = q0 ⊕ (q2ANDq1)

and has the following truth table:

|000〉 → |000〉

|001〉 → |001〉

|010〉 → |010〉

|011〉 → |011〉

|100〉 → |100〉

|101〉 → |101〉

|110〉 → |111〉

|111〉 → |110〉

The Toffoli gate can be used to implement a NAND gate by forcing the

initial state of qubit 2 to |1〉. Or, it can implement a FANOUT function by

forcing the initial state of qubit 2 to |0〉.
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The unitary matrix of the Toffoli gate is give by the outer–product method

Toffoli = |000〉 〈000|+ |001〉 〈001|+ |010〉 〈010|+

|011〉 〈011|+ |100〉 〈100|+ |101〉 〈101|+

|110〉 〈111|+ |111〉 〈110|

Which results in the following 8× 8 unitary matrix

Toffoli =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0


We’ll learn later in Chapter 4 that we can also describe the unitary matrix

of the Toffoli gate as

Toffoli = D0 ⊗ I ⊗ I +D1 ⊗D0 ⊗ I +D1 ⊗D1 ⊗X

Where D0 =

 1 0

0 0

 and D1 =

 0 0

0 1

.
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The Fredkin Gate

Unlike the Toffoli gate, the Fredkin gate has one control input and two target

qubits (those which are operated on depending on the value of the control

qubit). The quantum Fredkin gate is reversible, meaning that you are able to

determine the inputs based on the outputs. The quantum circuit of a Fredkin

gate is shown in figure 2.7 where the control is q0 and the target qubits are are

q1 and q2. The Fredkin gate is essentially a controlled–SWAP gate. When the

control qubit is asserted, the target qubits are swapped. The boolean function

of the Fredkin is as follows

q′0 = q0

q′1 = q1q̄0 + q2q0

q′2 = q2q̄0 + q1q0

q2
SWAP

q1

q0 •

Figure 2.7: Fredkin Gate

The truth table of table of the Fredkin gate using computation basis states
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is as follows

|000〉 → |000〉

|001〉 → |001〉

|010〉 → |010〉

|011〉 → |101〉

|100〉 → |100〉

|101〉 → |011〉

|110〉 → |110〉

|111〉 → |111〉

Similar to Toffoli and many three–input quantum gates, the Fredkin gate

can be configured to behave as other operations. For example, if q2 is set to |0〉,

the result of q2 becomes an AND operation of q0 and q1 (and consequently, the

result of q1 becomes the AND operation of q1 and q̄0). If we set q1 to |0〉, the

result of q2 becomes a NOT gate, producing the inverted state of q0. Because

the Fredkin is able to produce the AND and a NOT functions, it is considered

a universal logic gate.

The unitary matrix of the Fredkin gate is give by the outer–product method

Fredkin = |000〉 〈000|+ |001〉 〈001|+ |010〉 〈010|+

|011〉 〈101|+ |100〉 〈100|+ |101〉 〈011|+

|110〉 〈110|+ |111〉 〈111|
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This results in the following 8× 8 unitary matrix

Fredkin =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


As we did for the Toffoli, the algebraic method described in chapter 4 de-

scribes the unitary matrix of the Fredkin gate as

Fredkin = I ⊗ I ⊗D0 + SWAP⊗D1

Universal Quantum Gates

In classical logic, we can construct a universal set of gates (e.g., the NAND

and NOR gates) in which all possible boolean functions can be decomposed

into just those gates. By this definition, the Toffoli and Fredkin gates are

universal gates in a classical sense. However, for quantum logic, a discrete set

cannot be used to implement any arbitrary unitary operator. The simplest

example is demonstrated by a single qubit who can exist in an infinite number

of states on the surface of the Bloch Sphere. The exception are the rotation

gates (Rx(θx), Ry(θy), and Rz(θz). For our argument, we omit gates which have

variables and can label as dynamic and instead focus on static gates.
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Instead, we define a set of quantum gates to be universal for quantum com-

putation if any unitary operation can be approximated to an arbitrarily selected

level of accuracy using only those gates. Gruska provides us a detailed definition

in [32]:

Definition 8 A set of quantum gates is universal if any unitary transforma-

tion U on any qubit register can be performed, with arbitrary precision ε > 0,

by a quantum circuit CU,ε, consisting solely of the gates from that set. (In other

words, the unitary matrix defined by CU,ε is ε–close to U .) A quantum gate is

universal if by itself it forms a universal set when supported by constant input

|0〉 and |1〉.

A formal proof is provided by [9] describing how the Hadamard, phase,

CNOT, and π/8 gates compose a universal quantum set. Thus, any unitary

operation can be approximated to an arbitrary accuracy by a quantum circuit

using only those gates. Barenco et al in [33] showed that a set gates consisting of

all one–bit quantum and CNOT gates are sufficient to be considered a universal

quantum set within an arbitrary accuracy.

No Cloning Theorem

The “No Cloning Theorem” is one of the first fundamental limitations that we

see when comparing quantum logic to classical logic and thus deserves attention.

In short, it states that we cannot make an identical copy of the quantum state

on one qubit to one or more other qubits. In classical logic, fanout is a very

standard concept. In quantum logic, it is not allowed. This is a particularly

important limitation of quantum operators. Because they are linear and unitary

operations, unknown quantum states (that is, quantum information that has not
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been measured) cannot be copied or cloned. This has been extensively analyzed

in [9], [34], and [35]. We’ll now cover a brief proof by first proposing a unitary

gate, C, which we claim can clone a quantum state. It has two inputs, one being

the state, |ψ〉, we wish to clone, and the other an ancillary qubit initially in state

|0〉 but will become the clone of |ψ〉 after the cloning operation. Therefore,

C |ψ〉 |0〉 = |ψ〉 |ψ〉 (2.2.8)

We now consider another state, |ξ〉, which is in the superposition state between

|ψ〉 and another state, |φ〉,

|ξ〉 =
1√
2

(|ψ〉+ |φ〉)

We construct such a superimposed state so that we can test the linearity prop-

erty of our cloning gate, C. Therefore, if the cloning operator functions correctly,

it should do the following

C |ξ〉 |0〉 = |ξ〉 |ξ〉

Expanding the |ξ〉 |ξ〉 term we get

|ξ〉 |ξ〉 =
1

2
(|ψ〉 |ψ〉+ |ψ〉 |φ〉+ |φ〉 |ψ〉+ |φ〉 |φ〉)

However, working out our first equation we get

C |ξ〉 |0〉 =
1√
2

[C |ψ〉 |0〉+ C |φ〉 |0〉]

=
1√
2

(|ψ〉 |ψ〉+ |φ〉 |φ〉)

48



Which contradicts our expected result. Therefore, we conclude that no uni-

tary linear operation can copy unknown quantum states. And to be specific,

[36] sums it this way: In summary, non–orthogonal pure quantum state {|ψi〉}

cannot be cloned. This means that no physical system able to carry out the

transformation |ψi〉 7→ |ψi〉 |ψi〉 may exist.

2.2.3 Quantum Circuits

Up to this point we have covered single and multi–qubit quantum gates and

have seen how they share similarities to their classical counterparts (where they

exist). Quantum circuits — similar to their classical Boolean counterparts —

are composed of quantum gates connected to form a quantum gate level netlist.

We call this quantum netlist a quantum circuit although the term quantum

array is also used and means the same thing.

Originally proposed by Deutsch [22], they offer a way of visualizing the

function of a quantum computer. We’ve already seen some simple examples of

quantum circuits but in this section will go into more detail about how they are

formed and read.

Ultimately, the quantum circuit performs and describes the unitary transfer

function (or operator) of the quantum computer. In most cases, we label this

transfer function as U . An example three qubit quantum circuit is shown in

figure 2.8.

Figure 2.8 contains 6 quantum gates: Three Hadamards, one CNOT, one

Pauli–Y, and one Pauli–Z. The quantum circuit is really best expressed as a

qubit time–line. The lines represent the state of the qubit over time as read

from left–to–right. We adopt the convention where the least–significant qubit
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q2 |0〉 H Y •

q1 |0〉 H •

q0 |0〉 H �������� Z

S1 S2 S3 S4

Figure 2.8: Example Three Qubit Quantum Circuit

is qubit–0 (typically written as q0) and placed as the bottom line of the circuit.

The most–significant qubit (in this example, qubit–2 or q2) is the top–most line.

Although not typically done, we’ve placed qubit states at the left–most po-

sitions of the time–line in figure 2.8 to denote their initial qubit state being |0〉.

Also, quantum circuits can be grouped into slices as noted by S1 through S4

labels. We go into more format definitions in chapter 4.

The initial state |ψ0〉 is the left–most position on the quantum circuit and

in our example is the state

|ψ0〉 = |q2〉 |q1〉 |q0〉 = |q2q1q0〉 = |000〉

As we move through the first slice (S1), each qubit state is operated on by

a Hadamard gate. At this point, we hit our first example of how to represent

the operation of parallel gates. As it turns out, the unitary operator of parallel

gates can be derived by taking the Kronecker product of those gates starting

from top to bottom. In this case

S1 = H ⊗H ⊗H = H⊗3

Therefore, we can call |ψ1〉 the state of the qubit register just after being
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operated on by S1. That is

|ψ1〉 = S1 |ψ0〉 = H⊗3 |000〉

Continuing right–wards with our current state being |ψ1〉, we hit slice S2

which performs no operation on q2. However, we have a CNOT gate operating

on q0 and controlled by q1. We can use our “parallel gates” method of deriving

the operator for slice S2 by noting that it is really two gates in parallel: the

identity gate and the CNOT gate. We denote the lack of operation on q2 by

using a 2× 2 identity gate. From now on, when we encounter a quantum wire,

we model it as the identity gate. The CNOT gate is, by definition, a two–qubit

operator. Therefore, in parallel they produce

S2 = I ⊗ CNOT

Thus, the state after S2 becomes

|ψ2〉 = S2 |ψ1〉 = S2S1 |ψ0〉

= (I ⊗ CNOT )× (H⊗3) |000〉

Next, we pass through slice S3 which is now easy for us to determine its

operator as being the Kronecker product of the Pauli–Y gate and two identity

gates

S3 = Y ⊗ I ⊗ I
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Which brings us to our new state |ψ3〉 after S3 to be

|ψ3〉 = S3 |ψ2〉

= S3S2S1 |ψ0〉

= (Y ⊗ I ⊗ I)(I ⊗ CNOT )(H⊗3) |000〉

Lastly, we come to slice S4 which presents a bit of an oddity. It cannot

be described by a simple Kronecker product because the parallelism is broken

by having the control from q2 extending over q1 to control the Pauli–Z gate

operating on q0. Chapter 4 is precisely needed to handle these situations with

ease. For now, we provide the quantum algebraic equation for S4 as

S4 = D0 ⊗ I ⊗ I +D1 ⊗ I ⊗ Z

And thus we arrive at our final state, |ψ4〉, which is represented as the right–most

(or end) position on the quantum circuit and is defined as

|ψ4〉 = |ψfinal〉 = S4 |ψ3〉

= S4S3S2S1 |ψ0〉

= (D0 ⊗ I ⊗ I +D1 ⊗ I ⊗ Z)(Y ⊗ I ⊗ I)

×(I ⊗ CNOT )(H⊗3) |000〉

= U |000〉

We also note that the unitary operator U of the quantum circuit is also
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called the transfer function. In our example,

U = S4S3S2S1

In general, to form the transfer function, the slices of the quantum circuit

are matrix multiplied in reverse order (i.e., starting from the final right–most

slice and continuing to the initial left–most slice).

Quantum Circuit Identities

Now that we’ve gone through the exercise of walking through the reading and

derivations associated with a quantum circuit, next we want to look at quantum

circuit identities.

Definition 9 A quantum circuit identity is defined as a set, Σ, of two or more

quantum circuits {C0, C1, . . .} who all share the same unitary transfer function,

U .

The simplest analogy to classical logic would be DeMorgan’s Theorem (AB ⇔

A+B) where one boolean circuit can be replaced with another while still keep-

ing the same functionality. However, just as more complex classical logic iden-

tities exist, so do quantum circuit identities. We cover a few of these identities

here.

There are more trivial single qubit identities some of which are quite obvious.

For example, XX is simply two quantum NOT gate in series and it makes sense

that — just like its classical counterpart — the product of the two inverter

matrices produces an identity gate. Figure 2.9 summarizes some common single

qubit identities.
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Left Circuit ⇔ Right Circuit

X X ⇔

H X H ⇔ Z

H Y H ⇔ −Y

H Z H ⇔ X

X Y X ⇔ −Y

Figure 2.9: Common Single Qubit Circuit Identities

The first complex identity is the Controlled–Z Identity as shown in figure

2.10. We’ll go through a method of showing how the two circuits are equivalent

and leave it as an exercise for the reader to prove the the remaining identities.

q1 • Z

q0 Z ⇔ •

Figure 2.10: Controlled–Z Identity

As you recall, the matrix for the Z gate is defined as

Z =

 1 0

0 −1


Which is formed from the outer–product method

Z = |0〉 〈0| − |1〉 〈1|
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The controlled version of the Z gate as shown on the left side of figure 2.10

can be constructed through the outer–product method:

CZ0 = |0〉 〈0| I + |1〉 〈1|Z

= |0〉 〈0| (|0〉 〈0|+ |1〉 〈1|) + |1〉 〈1| (|0〉 〈0| − |1〉 〈1|)

For the right–side circuit, we construct the outer–product form to be:

CZ1 = Z |1〉 〈1|+ I |0〉 〈0|

= (|0〉 〈0| − |1〉 〈1|) |1〉 〈1|+ (|0〉 〈0|+ |1〉 〈1|) |0〉 〈0|

We note that the two equations for CZ0 and CZ1 can be expanded and

collected by obeying the rules of Kronecker products.

Expanding CZ0,

CZ0 = |0〉 〈0| |0〉 〈0|+ |0〉 〈0| |1〉 〈1|+

|1〉 〈1| |0〉 〈0| − |1〉 〈1| |1〉 〈1|

And CZ1,

CZ1 = |0〉 〈0| |1〉 〈1| − |1〉 〈1| |1〉 〈1|+

|0〉 〈0| |0〉 〈0|+ |1〉 〈1| |0〉 〈0|

After expanding, we see both have the same terms and thus CZ0 = CZ1.
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Figure 2.11 summarizes some common two–qubit identities and is by no

means complete.

2.2.4 Quantum Algorithms

We briefly overview the primary quantum algorithms discovered which have

served as the foundation for continued research in this field of study. We start

with description of quantum parallelism and how this characteristic along with

entanglement and quantum superposition serve as the underlying basis that are

exploited to allow a quantum computer to be more computationally powerful

than a classical computer for some problems. We then do a survey of some

of the most important quantum algorithms discovered starting with Deutsch’s

algorithm and its generalization to the Deutsch–Jozsa algorithm, Shor’s fast

factoring algorithm, and then Grover’s search algorithm.

Quantum Parallelism

The most exploited property of quantum circuits is that of quantum parallelism.

To explain how quantum parallelism works we first examine a given function,

f , which has an input x which is an n–bit binary string. If we wanted know all

the potential values of f (and without knowing any properties of f for which to

exploit), then we would have two options:

1. Iterate through a single instance of f for all 2n input combinations thus

taking 2n time–steps.

2. Have 2n instances which can work on all possible inputs combinations in

a single time-step.
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Left Circuit ⇔ Right Circuit

H • H

H �������� H

⇔ ��������
•

��������

U

⇔ X • X

U

• X •

�������� ��������
⇔ X

X

• Y •

�������� ��������
⇔ Y

Y

• Z •

�������� ��������
⇔ Z

• •

�������� X ��������
⇔

X

• •

�������� Y ��������
⇔ Z

Y

Figure 2.11: Common Two–Qubit Circuit Identities
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This is the limitation that classical logic circuits impose. However, that is

not the case for quantum circuits. In fact, the input to a quantum circuit can

be a superposition of the logic state |0〉 and |1〉 and its result would also be a

superposition of the function states.

To illustrate, assume we have a quantum circuit described by the unitary

operator, Uf which is a reversible gate which performs the transformation

|xy〉 7→ |x〉 |y ⊕ f(x)〉 (2.2.9)

The quantum operator is shown below:

|x〉

Uf

|x〉

|y〉 |y ⊕ f(x)〉

Figure 2.12: Simple two–input reversible quantum operator, Uf

Now we let |y〉 = |0〉 so that the output is |x〉 |f(x)〉. The function f has

two possible outcomes, f(0) and f(1). Now, we want to put the input x into

a superposition state – something we can’t do with classical logic. We do this

by setting x to |0〉 and running it through a Hadamard gate. This will give the

following:

|x〉 = H |0〉 = (|0〉+ |1〉)/
√

2 (2.2.10)

The result of the operator will be

Uf (H |0〉) |0〉 (2.2.11)
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The function output component will then be

f(H |0〉) = f((|0〉+ |1〉)/
√

2) (2.2.12)

We can expand the above equation to get

(|f(0)〉+ |f(1)〉)/
√

2 (2.2.13)

Our output state for the function is now a superposition of the two possible

outputs, f(0) and f(1). And the result was done completely in parallel and with

a single time–step. This property of quantum parallelism is used in conjunction

with superposition (as we did above) and entanglement to implement quantum

algorithms. Later, we’ll see how quantum interference is used to select a desired

solution out of the superposition state.

Deutsch’s Algorithm

Deutsch’s algorithm (or Deutsch’s problem) was first proposed in 1985 in [21]

and had the very significant impact of showing how interference and quantum

parallelism can be exploited.

Referring back to figure 2.12, the problem proposed by David Deutsch was to

develop a quantum algorithm that would be able to distinguish if the function

f(0) = f(1) or if f(0) 6= f(1). In classical logic, we need two computations

for f(0) and f(1) so we either need two iterations through a single circuit

or two instantiations of f that calculate in parallel. However, Deutsch was

able to construct a quantum circuit that put placed the inputs into a known

superposition and would have an output state that represented the logic xor of
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the functions: f(0)⊕ f(1). If f(0) = f(1), then this state would be |0〉, always.

And conversely, it would be |1〉 if f(0) 6= f(1). The circuit Deutsch developed

is shown in figure 2.13.

|0〉 H

Uf

H |f(0)⊕ f(1)〉

|1〉 H

Figure 2.13: Quantum Circuit for Deutsch’s Algorithm

We refer to x as the control and y as the target. To feed these inputs, we

set x and y to a known superimposed state using Hadamards:

|x〉 = H |0〉 = (|0〉+ |1〉)/
√

2 (2.2.14)

|y〉 = H |1〉 = (|0〉 − |1〉)/
√

2 (2.2.15)

The input to Uf thus becomes (H |0〉) ⊗ (H |1〉) which is equal to the ket

vector we’ll call ψ1:

ψ1 =
1

2



1

−1

1

−1


(2.2.16)

The output after operator Uf we’ll call ψ2 and is equal to Uf |ψ1〉 which

expands into the following two possibilities:

|ψ2〉 =

 ±
(
|0〉+|1〉√

2

)(
|0〉−|1〉√

2

)
if f(0) = f(1)

±
(
|0〉−|1〉√

2

)(
|0〉−|1〉√

2

)
if f(0) 6= f(1)

(2.2.17)
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The final output of the circuit which we’ll call ψf takes advantage of the fact

that f(0) ⊕ f(1) equals 1 is they are not equal and 0 if they are equal. Thus,

the final expression for the output state is

|ψf〉 = ± |f(0)⊕ f(1)〉
(
|0〉 − |1〉√

2

)
(2.2.18)

Therefore, a single measurement of the top qubit will tell us whether the

function encoded in Uf has f(0) = f(1) or otherwise. All of this utilized only

one iteration of f (encoded in Uf ) using only one set of inputs which were put

into a superposition state.

The Deutsch–Jozsa Algorithm

Later, Deutsch’s problem was extended to a generalized n–bit solution in 1992

by Deutsch and Jozsa [23]. The extension is such that we want to determine if

the function f which now has input x which is a binary string of n bits, is either

balanced or constant. The term balanced refers to f being equal to 1 for half of

its inputs and 0 for the other half of its inputs. The term constant intuitively

refers to f being either 1 for all of its inputs or, alternatively, 0 for all its inputs.

To test this classically would require at worst case 2n/2 + 1 attempts. That is,

we may have a stream of 2n/2 constant values (that is, half of the inputs resulted

in the same constant function output) but until we test the next input, we won’t

know if it is balanced or constant.

The circuit for the generalized Deutsch–Jozsa problem is shown in figure

2.14. The input pattern is extended from Deutsch’s original algorithm such

61



|0〉⊗n H⊗n

Uf

H⊗n

|1〉 H

Figure 2.14: Quantum Circuit for the Deutsch-Jozsa Algorithm

that our input state, |ψ0〉, is now expressed as the superposition state

|ψ0〉 = |0〉⊗n |1〉 (2.2.19)

The value of the input to operator Uf thus becomes (H⊗(n+1)) |ψ0〉, which

we call |ψ1〉 and conveniently re–write in the following summation form

|ψ1〉 =
∑
x

|x〉√
2n

(
|0〉 − |1〉√

2

)
(2.2.20)

Where x = {0, 1}n.

We refer to the top n qubits as the query register and the bottom qubit as

the answer register (we are being general even though it is a single qubit in this

case).

Our input, x, which is stored in the query register is now an even superpo-

sition of all possible input values. The answer register (input to y) is an even

superposition state. After going through the operator Uf , the output state, |ψ2〉

takes the form

|ψ2〉 =
∑
x

(−1)f(x) |x〉√
2n

(
|0〉 − |1〉√

2

)
(2.2.21)

After the operation Uf , the result of the function is stored in the amplitude

of the qubits in query register. We now run these through a final Hadamard
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register to interfere the qubits in the query register. The result — which we’ll

call |ψf〉 — of the output state of the system is given by the following equation

|ψf〉 =
∑
z

∑
x

(−1)x·z+f(x) |z〉√
2n

(
|0〉 − |1〉√

2

)
(2.2.22)

Where z = {0, 1}n and x · z is the bitwise inner–product modulo 2.

In the case where f is constant, the amplitude for the last qubit will be

either +1 or −1, always. Because |ψf〉 is of unit length, this must mean that

the amplitudes on the query bits must be zero. That is, during a measurement,

if all the query bits are 0, then function f is constant. Conversely, if f was

balanced, then the query bits would have a mix of amplitudes such that their

summation was zero. Therefore, a measurement on any qubit in query register

would result in a positive or negative value. In this case, just sampling one qubit

and in their query register and getting a non–zero value means the function f

is balanced.

Quantum Fourier Transform

For completeness we review the discrete Quantum Fourier Transform (QFT)

as it serves as the basis for key quantum algorithms such as Shor’s factoring

algorithm as discussed in section 2.2.4. The implementation of the QFT is based

on the classical Fast Fourier Transform (FFT). The QFT is a linear operator

which performs the following transformation

|j〉 7→ 1√
N

N−1∑
k=0

ei2πjk/N |k〉 (2.2.23)

Where |j〉 and |k〉 are basis states.
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The QFT algorithm maps a quantum state |ψ〉 into another state |φ〉 with

the following mappings

|ψ〉 =
N−1∑
j=0

ψj |j〉 (2.2.24)

|φ〉 =
N−1∑
k=0

φk |k〉 (2.2.25)

Where the amplitudes φk are the Discrete Fourier Transforms of ψ. That is,

φk =
1√
N

N−1∑
j=0

ψje
i2πjk/N (2.2.26)

In the case for quantum circuits, N is of the form: N = 2n which allows us

to express the integers j and k using binary representation

j 7→ j02n−1 + j12n−2 + . . .+ jn−120 (2.2.27)

And

k 7→ k02n−1 + k12n−2 + . . .+ kn−120 (2.2.28)

And through further simplification, we can re–write equation 2.2.23 using

our binary representations of j and k as well as the property that ei2πjk = 1

when k = 0,

|j0j1 . . . jn−1〉 7→
1

2n/2

n−1⊗
m=0

(|0〉+ ei2πj2
−m |1〉) (2.2.29)

Which can be further simplified to our final equation for the QFT,

|j〉 7→ 1

2n/2

[
1

ei2π(j/20)

]
⊗
[

1

ei2π(j/21)

]
⊗ · · · ⊗

[
1

ei2π(j/2n−1)

]
(2.2.30)

To develop a quantum circuit for the QFT we start by introducing the R
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gate which has the transfer function

Rk =

 1 0

0 ei2π/2
k

 (2.2.31)

For our quantum circuit, the input state is |j〉 and the qubits represent the

co–factors for the binary expression of j from equation 2.2.27. For example, the

top–most qubit would represent j0 and the bottom–most qubit would represent

jn−1. With the use of the R gate and the Hadamard gate we illustrate a general

quantum circuit for the QFT in figure 2.15.

|j0〉 H R2 R3 · · · Rn · · · |kn−1〉

|j1〉 • H R2 · · · Rn−1 · · · |kn−2〉

|j2〉 • • · · · |kn−3〉
...

...
...

...
...

|jn−2〉 · · · H R2 |k1〉

|jn−1〉 • • · · · • H |k0〉

Figure 2.15: Quantum Fourier Transform Circuit

Although not obvious, we explicitly reverse the bits for the |k〉 vector to

complete the QFT transform.

Shor’s Fast Factoring Algorithm

What is quite possibly the best known application of a quantum computing

algorithm is Peter Shor’s Fast Factoring Algorithm. First published in 1994

[27] it describes a polynomial time quantum computing algorithm for the fac-

torization of n–bit integer numbers. There are two reasons for its popular-
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ity, the first being that is Shor’s algorithm could factor a number N with a

work factor of O((log(N)3)) compared to the best known classical algorithm

of O(ec(log(N))1/3(log(log(N)))2/3) using the field sieve approach. The second reason

being the its potential application to cracking the public–key encryption scheme

known as RSA which relies on the premise that factoring large integers is highly

infeasible. In 2001, a team at IBM [37] demonstrated Shor’s algorithm with a

7 qubit quantum computer based on NMR technology to factor 15 into 3 and 5

although there is some doubt as to whether their implementation of was truly

a quantum computer due to the inability to observe qubit entanglement. More

recent experiments using photonic qubits have implemented Shor’s algorithm

and shown entanglement.

The problem of factorization is to simply defined as: Given a number N , we

can write it as the product of prime numbers,

N = p× q1 × q2 × . . .× qn (2.2.32)

The integer p is called the proper factor and satisfies the conditions that it is

neither N nor p and evenly divides N .

Shor’s factoring algorithm is also significant because it utilizes two primary

concepts: phase estimation and QFT. We described QFT in section 2.2.4. In

quantum phase estimation, we approximate the eigenvalue associated with an

eigenvector of a unitary operator. Many quantum algorithms can be reduced to

using phase estimation which utilizes QFT. Shor’s integer factorization problem

can be shown to reduce to a period finding problem which uses QFT to calculate

the period of a function. However, in the construction of Shor’s algorithm, we

must first represent the problem using phase estimation before using the QFT
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algorithm.

Classically, the integer factoring algorithm is performed using the following

pseudocode:

(1) Pick Random integer, q, such that 1 < q < N-1

(2) Compute g = GCD(q,N)

(3) If g > 1, then return g (Done), Else (4)

(4) Determine order, r, of q MOD N {using period-finding routine}

(5) If r is not even, goto (1), else (6)

(6) Let r = 2m and determine order r of q MOD N

(7) If 1 < p=GCD(r-1, N) < N return p (Done) else (8)

(8) If 1 < p=GCD(r+1, N) < N return p (Done) else (9)

(9) Goto (3) {Failed to find proper factor}

Because we are dependent on the value of N , the quantum circuit imple-

menting the algorithm must take N into account when being constructed. A

qubit register is needed to encode the random variable we called q in the pseu-

docode above. This register needs to be sized large enough to hold all the

possible values. Given N , we allot n qubits such that N2 ≤ 2n < 2N2 which

allows for the qubits to hold superposition values from 0 to 2n − 1.

We construct two n–bit registers, one for input and one for output. When

we describe the state of our system, we use the notation: |ψi〉 = |a〉 |b〉 where a

is our input register and b is our output register, each n–bits.

We now go through the steps of Shor’s algorithm:

Step 1: Set the initial state of the system for both registers. We’ll call this
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initial state |ψ0〉 which is defined as

|ψ0〉 = |0〉 |0〉 (2.2.33)

Step 2: Randomize the input register.

|ψ0〉 → |ψ1〉
1√
2n

2n−1∑
x=0

|x〉 |0〉 (2.2.34)

Step 3: Construct unitary function, f(k) = qk mod N .

|ψ1〉 → |ψ2〉 =
1√
2n

2n−1∑
x=0

|x〉 |f(x)〉 (2.2.35)

This step uses quantum parallelism to compute f(k) and store the result in

output register.

Step 4: Apply the QFT to the input register. This has the effect of dis-

tributing the amplitude of any given |x〉 state equally among all 2n |y〉 states.

UQFT |x〉 =
1√
2n

2n−1∑
y=0

wxy |y〉 (2.2.36)

Where w = ei2π/2
n
. Thus we have the new state

|ψ2〉 → |ψ3〉 =
1

2n

2n−1∑
x=0

2n−1∑
y=0

wxy |y〉 |f(x)〉 (2.2.37)

The large speed–up of Shor’s algorithm comes from this step where the QFT

is used for amplitude amplification (and interference).

Let r be the period of f , x0 be the smallest value of x which give the same

f(x) and such that x0 < r, and let b = b(2n−x0− 1)/rc. Then we can re–write
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the coefficients of our final state as

∑
f(x)=f(x0)

wxy =
∑
b

w(x0+rb)y = wx0y
∑
b

wrby (2.2.38)

Through interference, amplitudes are constructive when unit vectors defined

by wryb point in the same direction and destructive when pointing in opposite

direction.

Step 5: Perform measurement. The measurement is performed by taking

the mod–squared of our final state. That is,

| |ψ3〉 |2 =
1

22n

∣∣∣∣∣∑
b

w(x0+rb)y

∣∣∣∣∣
2

(2.2.39)

As the unit vector wry approaches the positive real axis, the ratio yr/2n

approaches being an integer.

Step 6: Period Extraction. This is essentially the Continued Fraction Ex-

pansion to approximate y/2n and derive an approximate ratio c/r′ that satisfies

the conditions:

1. r′ < N

2. |y/2n − c/r′| < 1
2
2n

Each measurement of the final state |ψ3〉 produces one of the multiples for

c = y2n/r where each y is chosen with probability 1/r. After each measurement,

we know c using the relation

c

2n
=
y

r
(2.2.40)

Since y is chosen randomly, the measurement and computation to yield
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GCD(y, r) = 1 should only need to be repeated O(log(log(r))) times to be

efficiently determined.

Quantum Oracles

A Quantum Oracle is a device that is able recognize solutions to search problem.

In general, if we have an N size search problem with M possible solutions, we

require
√
N/M oracle consultations to find the solution. Given an input state

which encodes a potential solution, an oracle will signal if it recognizes the

solution by flipping an answer bit. We use the word “recognize” because the

oracle is not considered to be all–knowing. That is, it doesn’t know all the

answers but rather is able to recognize certain criteria of a solution. Although

it is possible to construct all–knowing oracles as was done for Deutsch’s problem

in section 2.2.4, this would impose a ridiculous requirement of knowing all the

solutions to the problem you were trying to solve. Nielsen and Chuang [9] give

an appropriate illustration using the prime factoring problem. In the illustration

we are given a large number, m, which is the product of two prime numbers,

p and q, which we want to determine. Classically, this is a search problem

where we would test every number from 2 to m1/2 until we found the first exact

dividing number which will be the smaller of the two primes. For the quantum

oracle, rather than constructing an oracle which encodes all the solutions, we

build an oracle which is able to tell us if the division of m by some input number,

x, is exact. By using this oracle in a quantum search algorithm, we can speed

up the trial division search. Instead of making up to m1/2 trials divisions, we

are able to get the solution with roughly
√

(m1/2) = m1/4 trials. Therefore,

even though the oracle did not know the prime factors of m, it was still useful
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in developing a quantum search algorithm which could find a solution.

The general structure of a quantum oracle is shown in figure 2.16.

|x〉 /n

Oracle

|x〉

|q〉 |q ⊕ f(x)〉

|w〉 /m |w〉

Figure 2.16: Structure of a Quantum Oracle

The oracle input is made up of three basic components:

• The Solution Register, |x〉.

• The Answer (or Oracle) Bit, |q〉.

• Ancilla (or Working) bits, |w〉.

The solution is encoded in the solution register, that is, |x〉, which could be

many qubits. This is where the encoded tour for a TSP or nodes for a vertex

covering problem would be encoded. Obviously we see how Hadamards could

be used to provided the initial solution as a superposition of all possible states.

The oracle can then be used iteratively — if necessary — to find solutions.

The answer bit is what the oracle will actually modify and output if the

criteria for being a valid solution is correct. The function performed by the

oracle to modify this qubit is defined as

|x〉 |q〉 |w〉 7→ |x〉 |q ⊕ f(x)〉 |w〉 (2.2.41)
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Where,

f(x) =

 1, if x is a solution

0, if x is not a solution
(2.2.42)

The operation q⊕ f(x) causes the oracle to effectively bit–flip the qubit if it

is a valid solution. To be more specific, the term bit–flip shouldn’t be confused

with an inversion. Rather, the bit–flip process “negates” the qubit by inverting

its “phase” and not its value. As an example, for the independent set problem

(ISP), the oracle would flip the answer qubit if there was an independent set of

greater than or equal to k nodes.

The ancilla or working bits are there to provide the qubit space for the

quantum algorithm to do its work. For example, the working bit register could

encode the valid solution criteria. As a very simple example, we could ask the

oracle to determine if |x〉 = |w〉. In a more sophisticated example, the working

bit register could encode the target tour length for a TSP problem or minimum

number of nodes for an ISP problem.

Being able to formulate a problem as a quantum oracle which can validate a

correct solution provides the potential to create quantum algorithms. Some of

these include graph coloring, satisfiability, set covering, Euler and Hamiltonian

path finding, and search problems.

Grover’s Algorithm

Grover’s algorithm [28] implements a exhaustive search algorithm for quantum

computers which has tremendous (as in “quadratic”) speed–up over its classical

counterparts. It is meant for “needle–in–a–haystack” like problems where we are

trying to find t needles amongst N strands of hay and can do so in approximately
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O(
√
N/t) iterations as compared to a classical algorithm which would take

an average O(N/(2t)) iterations. Grover’s algorithm uses a combination of

Hadamard gates, a quantum oracle (as reviewed in section 2.2.4, and other

gates in an iterative manner to search a large space for solutions.

Grover’s algorithm is an iterative process. We refer to the fundamental

operator being iterated as the Grover Iterate. We also note that the number

of iterations is dependent on both the problem size, N , and the number of

solutions, t. We will discuss this in more detail.

|x〉 /n

Oracle Hadamards ZPhase Hadamards|q〉

|w〉 /m

Figure 2.17: The Grover Iterate: HZHO

The typical components of a Grover Iterate are shown in figure 2.17. The

current state is applied to the oracle, then a set of Hadamards, a zero–state shift

operation, and another set of Hadamards. We sometimes refer to this operation

as “HZHO” which are the operations in matrix multiplication order.

As we stated before, the oracle will bit–flip solution(s):

|x〉 |q〉 7→ |x〉 |q ⊕ f(x)〉 (2.2.43)
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Which can be re–written as:

|x〉 |q〉 7→ (−1)f(x) |x〉 |q〉 (2.2.44)

NOTE: We’ve omitted |w〉 for simplicity.

All solutions which meet the criteria of the oracle will be flipped. This is

done with the Zero–State Phase Shift Circuit which we call Z in the Grover

Iterate. The function of this gate is to flip the oracle qubit (that is, the answer

qubit) when all qubits are zero. Figure 2.18 shows the general structure for this

gate as a Z gate operating on the answer bit, |q〉, flipping its phase when the

oracle solution qubits, |x〉, are |0〉.

|xn−1〉 ��������

|xn−2〉 ��������

...
...

...

|x0〉 ��������

|q〉 ��������

Figure 2.18: Zero State Phase Shift Circuit

Using our algebraic method described in chapter 4, we can describe the

functionality of the Zero–Phase shift circuit as:

Z = I⊗n ⊗ I −D⊗n0 ⊗ I +D⊗n0 ⊗X (2.2.45)
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Grover’s algorithm follows the following basic steps:

1. Initialize |x〉, |q〉, and |w〉.

2. Apply Grover Iterate for desired number of iterations.

3. Measure |x〉 to obtain the solution.

We want the solution, |x〉 to initially be an equal superposition of all states

and of course the standard method is to initially set |x〉 = |00 . . . 0〉 and then

operate on them with Hadamards. Thus, for x, we have the following state

before entering the first Grover iterate,

|x〉 7→ 1√
N

N−1∑
x=0

|x〉 (2.2.46)

The answer qubit (sometimes referred to as a reference qubit) is typically

set to the superposition state,

|q〉 7→ 1√
2

(|0〉 − |1〉) (2.2.47)

We call the Grover Iterate as shown in figure 2.17, G. In that case, the

general topology for Grover’s algorithm is shown in figure 2.19.

The total number of Grover Iterates is determined by knowing the total

number of states, N , and total number of valid solutions, t. Knowing that, the

number of Grover iterations is — as previously stated — O(
√
N/(2t)). More

approximately, if we had one solution (t = 1), then we need dπ
√
N/4e iterations.

In the event we have t valid solutions out of N candidates, then the number of

iterations is approximately dπ
√

(N/t)/4e.
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|0〉 /n H⊗n

G G

· · ·

G

NM





(|0〉 − |1〉)/
√

2 · · ·

|w〉 /m · · ·

Figure 2.19: Grover’s Algorithm

A great analysis of how Grover’s algorithm behaves from a geometrical per-

spective is given by Boyer et al in [38]. Effectively, we assume we start with

some initial solution |ψ0〉 on a 2D plane which has some complex amplitude

and distant from the desired target amplitude of 1.0 as shown in figure 2.20.

Initially, it has a slight angle, θ, which is determined by the fact it will be one of

N/t solutions that exists with an equal probability amongst all N states since

we randomized our input solution using Hadamards.

With each Grover iteration, we attenuate the non–solutions and effectively

rotate the desired solution closer to the |u〉 axis. In the case where there are t

solutions we can determine the rotation step size (and initial angle), θ, as given

by,

θ = 2 arcsin(
√
t/N) (2.2.48)

Thus, we want to determine the correct number of iterations, m, such that

we will land as close to the ideal solution as possible so that a measurement will

yield the correct state with high confidence. We do this by assuming t << N
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Figure 2.20: Grover Iterations rotate an initial solution to the desired solution

and through approximation we derive,

m ≈ π
√

(N/t)/4 (2.2.49)

We note that further Grover iterations do not continue to hone–in on the

target solution. Referring back to figure 2.20, more iterations would actually

continue to rotate the vector past the target solution and reduce the probability

of measuring the correct solution.

2.3 Evolutionary Algorithms

All evolutionary algorithms (EAs) share the same basic organization: iterations

of competitive selection and random variation. Although there are several va-

rieties of EAs, they are all biologically inspired and generally follow the format
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depicted in Figure 2.21.

initial
population

select
survivors

randomly
vary
individuals

evaluate
fitness

Figure 2.21: The canonical EA

EAs manipulate a population of individuals where each distinct individual

encodes a unique set of problem parameters needed to form a solution. The

initial population is randomly generated. During each generation (iteration),

the current population is evaluated and each individual is assigned a numerical

fitness value. High fitness means the associated individual represents a good

solution to the given problem. The selection process chooses the higher fit

individuals for reproduction. These survivors undergo stochastic reproduction

operations to create new individuals. The loop shown in Figure 2.21 continues

until either a fixed number of generations are processed or an acceptable solution

has been found.

The three common EA paradigms used for optimization are the genetic

algorithm (GA), the evolution strategy (ES), and evolutionary programming

(EP). Each paradigm was independently developed. Although they all follow

the evolving population model, there are some differences. For example, the

GA chooses parents with a probability proportional to its fitness with respect

to other individuals in the current population. This means the fitter parents are

more frequently chosen for reproduction. Conversely, ES and EP allow every

parent to reproduce regardless of its relative fitness. ES ranks all parents and

offspring according to fitness and deterministically chooses the best individu-

als to be parents in the next generation; EP conducts a tournament among all
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individuals and the tournament outcome determines who survives. Most impor-

tantly, GAs use components from two parents to produce offspring—a process

called recombination—as the primary reproduction operator, whereas EP only

uses mutation. The ES can use multi-parent recombination, but it relies heavily

on mutation for reproduction.

2.3.1 Elements of an Evolutionary Algorithm

A general Evolutionary Algorithm can be broken down into a common set of

stages as indicated in figure 2.21 which we discuss in detail. The primary

components of an EA are listed below. In section 2.3.2 we’ll see how these

components are defined more specifically for an Evolution Strategy.

• Individuals and Representation

• Fitness Function

• Population

• Parent Selection

• Recombination

• Mutation

• Survivor Selection

Individuals and Representation

The goal of an EA is to find the solution to a problem through large explo-

ration of the solution space. An individual represents a possible solution to the
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problem. How the individual can be converted to form the solution is called its

representation.

We use the term phenotype to refer to the solution as presented by the indi-

vidual. This could be, for example, a set of integer values. The representation

determines how that set of integers is mapped to an actual solution to the prob-

lem being solved. As an example, a weighted summation of the integer values

could form the representation of the individual.

An individual has a particular encoding for its phenotype. This could lit-

erally be anything from binary numbers, strings, floating point values, or more

complicated structures. The particular encoding of an individual is referred

to as its genotype. Continuing with our example, if the phenotype were sets

of integers, the genotype (or encoding) could be bit–strings which encode the

integer values.

It is noted that some problems lend themselves in such a way that the

phenotype and genotype could be equivalent. For example, the genotype could

be a set of integers and it just so happens that the phenotype is, as well. Thus,

the mapping is trivial. Furthermore, the phenotype itself could be used directly

in the representation.

Fitness Function

The fitness function (sometimes referred to as the evaluation function) is a

critical aspects of an EA. This is what determines the fitness of an individual

— in other words — how good of a solution is represented by an individual. In

an EA, individuals are compared against each other using the fitness function

and it is the fundamental method that drives the decision making process of any
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EA. Ultimately, the individual with the best fitness is the best solution found

by the EA.

Fitness functions typically derive a fitness value based on the encodings of

the individual. For example, an individual could encode the tour for a traveling

salesman problem. In that case, the fitness function could determine the length

of the tour using a distance map. The fitness would be calculated in such a

way that shorter tours have a higher fitness. For example, if the tour length is

calculated by a function L which operates on an arbitrary individual, I, then a

possible fitness function for this problem could be:

fitness(I) =
1

1 + L(I)
(2.3.1)

It is completely up to the designer to determine a suitable fitness function

for an EA. Sometimes it is sufficient that it accurately determines whether one

individual is better than another. However, other times the fitness function can

play a vital role to avoiding getting solutions stuck in a highly non–optimal

local minima. A fitness function need not be a simple function. In fact, it could

be statistically generated, a database look–up, or a sophisticated function with

many corner–cases.

It is also common in optimization problems to refer to an objective func-

tion. There is usually a simple mapping from a fitness function to an objective

function and are often used interchangeably.

Population and Generations

The population is the set of individuals which encode possible solutions to the

problem our EA is trying to solve. A population is also defined for a certain
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generation. A generation is a time measure and specifically refers to the unit

of time when the EA is considering a specific population of individuals. In

the first generation we have the initial population. In the second generation,

we will most likely have a different population made up of the children from

the previous population and possibly some of the parents from the previous

population that are carried over. Likewise for the third generation and so on

and so forth.

Parent Selection

At the end of a generation, parents are selected from the current population and

combined (or mated) to form the children for the next generation. The parent

selection process is also extremely important for an EA. Fundamentally, healthy

(that is, highly “fit”) parents are chose to mate with each other in hopes they

will produce highly fit children. However, care must be taken to make sure a

measure of diversity is maintained for the typical issue of avoiding poor local

minima. For this reason, lower–quality parents are chosen with some probability

for the mating process to encourage diversity.

Recombination

Once parents have been selected, they are combined together to form one or

more children. In mimicking biology, the genes of the children are chosen from

the parents. The process of how the genes from the parents are combined to

form the genes of the children is known as recombination or sometimes crossover.

The exact method of how this happens can vary. However, a set of recombi-

nation operators are applied on any number of parents to produce any number
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of offspring. Common examples are intermediate and discrete recombination

which are useful for integer representations. In discrete recombination, alleles

for specific genes are chosen randomly between the parents for each child. An

allele is essential a valid value for a particular gene. In intermediate recombi-

nation, the alleles for specific genes are weighted sums from the parents. After

recombination, there is usually some measure of “error checking” to make sure

legal children are being produced.

Mutation

Once children have been produced through recombination, the next step is mu-

tation. Just as in biology, mutation is the effect of randomly altering genes in

the hope that the perturbance will produce a superior individual. A set of muta-

tion operators are defined for a particular EA to work on a particular individual.

For example, if genes were represented as integers, then a mutation operator

could produce a random increment or decrement which could be applied to one

or more (but not necessarily all) of the genes. Just as with recombination, we

make sure the mutated offspring are still legal solutions. Sometimes this means

placing bounds (for example, the maximum and minimum value of the integer).

Although mutation is one of the primary methods of exploring the solution

space, it could be skipped and left solely to recombination. Likewise, recombi-

nation could be skipped and mutation is the sole method of deriving children

(in such cases, there is only a single parent of which the child is a clone of and

then mutated).
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Survivor Selection

Once the parents have been selected, mated, and the children have been formed,

we then come to the process of survivor selection. That is, determining which

individuals will be selected to form the population for the next generation. Sur-

vivor selection can be similar to parent selection and survivors are chosen in

large part by their fitness. However, some EA paradigms implement survivor

selection as replacement, where the old parents are replaced by the fittest off-

spring. Other EAs allow the older parents to participate in the selection process

and thus potentially live into the next generation. This method is especially

useful if one of the older generation parents represents a very good solution and

we want their genetics to influence future generations. However, this also can

lead to extensive influence through genetic drift and can drive the population

towards the local minima represented by the most fit parents — a property

that could be good or bad. Whereas, by not keeping the parents around, we

allow more diverse children which might have the effect of jumping out of local

minima and perhaps find better solutions. A method known as elitism allows

the most fit individual (or individuals) to be part of the selection process.

For most EAs, there is a set number of parents and a set number of children

and an overall set population size. It is quite common for a smaller set of

parents create a larger set of offspring and that the set of individuals to be

selected from be larger than the survivor population. The primary driving force

is to encourage diversity while still selecting highly fit individuals.
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Initialization

In an EA, the first population (also called the initial population) is typically

randomly generated although care should be taken to make sure that the popu-

lation is diverse and actually contains legal solutions whether they are good or

bad. We start the first generation with our initial population.

It can be potentially useful to ensure through other (possibly deterministic)

methods the initial population is actually composed of valid and maybe even

relatively fit solutions. However, this also may have the adverse effect of driving

your individuals towards poor local minima, potentially avoiding better solu-

tions. Sometimes the extra computation to produce a more fit initial population

costs more overall than to have started with a simple initial population.

Termination Condition

The termination condition of an EA is the criteria needed to be met to stop

the EA. The criteria are generally broken down to two cases: 1) an individual

was found that was reached or surpassed the desired fitness level (that is, we

found an acceptable solution), or 2) the EA did not find a solution after a

certain number of generations or run–time. In many optimization problems we

may not know how good a sufficient solution should be. For example, in the

travelling salesman problem, if we were looking for the shortest tour, how do we

know what a good solution is? Had we known a desired target tour distance, we

could use that knowledge in the termination condition. In case where we cannot

adequately derive a target fitness we simply let the EA run to a set number of

generations based on run–time or possibly terminate based on a convergence

characteristic (e.g., if a better solution hasn’t been found in x generations).
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2.3.2 Evolution Strategies

An Evolution Strategy (ES) is a type of evolutionary algorithm invented in the

1960s by Rachenberg and Schwefel [39]. The main contribution of an ES is that

of self–adaptation. That is, parameters are introduced to aid in the evolution

process which are considered part of the chromosomes of an individual and go

through their own evolution process.

The primary characteristics of an ES are:

1. Individuals are represented by real–valued vectors.

2. Mutation is the primary method of producing children.

3. Strategy parameters are implemented and adapted to aid in guiding mu-

tation.

Because of these characteristics, Evolution Strategies are typically used for

continuous parameter optimization problems.

An ES represents the size of its parent population using µ and the size of

its child population as λ.

The basic flow of an ES follows is the same as figure 2.21. We’ll now go

through the primary components of an ES in more detail.

Representation

An ES represents individuals using a vector of real–valued vectors. The geno-

type of an ES is composed of a two distinct sets: objective parameters and

strategy parameters :

〈~x, ~σ〉 = 〈x0, . . . , xn, σ0, . . . , σm〉
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We refer to ~x as the object parameters which represent the traditional repre-

sentation of an EA. These are real–valued vectors. Whereas, ~σ are the strategy

parameters which are special to an ES are used for self–adaptation.

The number of the strategy parameters is typically one of two cases. In a

single strategy ES, there is only one single strategy parameter (that is, ~σ = 〈σ0〉)

which is used to adapt all of the object parameters. In an N–Strategy or Multi–

Strategy ES, there are N strategy parameters which have a 1–to–1 mapping to

the N objective parameters. That is, σ0 is the strategy parameter for object

parameter x0, and σ1 for x1, and so on and so forth.

Mutation

Mutation is the primary method for the creation of offspring and is based on a

normal (Gaussian) distribution. This is perhaps the most complex aspect of an

ES. Each object parameter is mutated using:

x′i = xi +N(0, σ) (2.3.2)

Where σ in this case is the standard deviation and N(0, σ) refers to a random

number generated from a normal distribution with zero mean and standard

deviation σ. It just so happens that our strategy parameters represent the

standard deviations. In the single strategy schema, we have one strategy pa-

rameter which is the standard deviation used for all object parameters. In the

multi–strategy schema, we use the following equation:

x′i = xi +N(0, σi) (2.3.3)
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For mutations, we consider only the case of uncorrelated mutations such that

there is one or N strategy parameters which are independent of each other. In

the multi–strategy case, we have a standard deviation for each axis (that is, the

axis of each object parameter) but the strategy parameters (or even the object

parameters) do not influence each other directly.

The strategy parameter can be thought of as a step size used to increment

the object parameter. The strategy parameter is mutated along with the object

parameters. In particular, we first mutate the strategy parameters and then

mutate the object parameters based on the new strategy parameters.

In the single strategy case, the strategy parameter is mutated by multiply-

ing itself with a term eξ where ξ is a random variable drawn from a normal

distribution with zero mean and standard deviate τ .

σ′ = σeτN(0,1) (2.3.4)

x′i = xi + σ′Ni(0, 1) (2.3.5)

Note the use of the identity N(0, σ) = σN(0, 1) above. The Ni is used to

denote that we draw a new random number from the normal distribution for

each object parameter.

The standard deviation τ is also referred to as the proportionality constant

and is inversely proportional to the square root of n where n is the size of the

problem. Typically the size of the problem is the number of object parameters.

τ ∝ 1√
n

(2.3.6)

In the multi–strategy case, we have a σ for each x. This has a significant
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effect on how we mutate our strategy parameters. We still apply the same pro-

portionality constant, τ , but we introduce another standard deviation which

is applied per strategy parameter. Our multi–strategy mutation equations be-

come:

σ′i = σie
τN(0,1)+τ ′Ni(0,1) (2.3.7)

x′i = xi + σ′Ni(0, 1) (2.3.8)

Notice the extra standard deviation term for σ′ we denote τ ′ which is defined

as:

τ ′ ∝ 1√
2
√
n

(2.3.9)

The primary advantage of the multi–strategy schema over the single strategy

is that it provides a separate self–adapting step–size parameter to each object

parameter. This allows the range of object parameters to be more varied, that is,

if we had a variety of object parameters and some wanted large step–size while

others wanted small step–sizes (either because of their definitions or because a

particular object parameter is at a near optimal value), then separate strategy

parameters could adapt to fit those the step–size increments.

As mutation progresses and we see individuals becoming more fit, the strat-

egy parameters will begin to relax to a state close to zero. This smaller step–size

causes object parameters to change less and the individual to converge. It then

becomes important to bound our strategy parameters so that they do not pro-

duce too big a step–size or produce a new σ that is so close to zero that it would

take numerous multiplication of random values greater than unity to bring it to

a step–size that actually represents a sufficient delta for an object parameter.
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Obviously if σ = 0 then no mutation can occur. Therefore, we typically impose

a bound:

εo < σ′ < Σ (2.3.10)

Where ε0 represents the lower–bound value of σ′ and Σ represents the upper–

bound. If during mutation we break the boundary condition we typically set it

equal to the particular boundary point. For example, if σ′ < ε0 then set σ′ = ε0.

Individuals which have converged to their most fit state will have strategy

parameters at their minimum allowed boundary (that is, strategy parameters

near ε0).

As part of the initialization of an individual, initial σ values are chosen at

random. Obviously we want the σ’s to be within their bounds. However, care

is also taken to make sure the σ’s are not too small (which could result in

step–sizes so small that converge takes too long) or too large (such that object

parameters vary so large that we enter we never converge). Although we want

highly fit individuals to converge to a low σ, we also want to avoid premature

convergence. For this reason, when the minimum σ value (ε0) is reached, it may

be beneficial to reset the σ to a higher value rather than setting it to ε0. We will

sometimes refer to this as the reset σ. This takes cues from simulated annealing

where the temperature may be increased to encourage the state to jump out of

a potential local minima.

Recombination

Recombination in an ES uses two or more parents combined together to form

one child using either discrete or intermediate recombination. Another method

called global recombination allows using any random parent for each gene and
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thus a large number of parents could be used to create a child. Although we

gave broad coverage of the terms discrete and intermediate recombination, for

an ES they are more firmly defined as real–valued operators such that:

zi =

 (xi + yi)/2 if intermediate

Randomly choose xi or yi if discrete
(2.3.11)

Parent Selection

Parent selection is quite simple which is one of the attractions of an ES. Par-

ents are selected from the parent population (denoted sometimes by µ) using a

normal distribution. That is, the fitness of the parent does not bias the decision.

Survivor Selection

There are two primary methods for survivor selection in an ES. These are known

as (µ, λ) and (µ+ λ). The notation will become obvious. In the (µ, λ) method,

the selection is made from only the child population, λ. In the (µ+ λ) method,

the selection is made from both the parent and offspring population. In both

cases, the selection population is sorted by fitness and the top µ individuals are

chosen as the parents for the next generation.

The reasoning behind the two methods can be summarized this way. In (µ, λ)

selection, we omit the parents which granted might drop a very fit individuals

but hopefully their impact to the genetics of the offspring is somewhat carried

through and possible reduce the direct attraction of being pulled into a poor

local minima. Obviously the concern is losing extremely fit parents and possibly

never arriving at similarly fit solutions for a long time if ever. In (µ+λ) selection,

we maintain the healthiest parents but the obvious concern is that fit parents
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that represent local minima will stay around from generation to generation,

influencing children more and more to look more like the parents and also center

on their local minima. In such cases, the probability of a significant mutation

is reduced because of pre–mature convergence (that is, strategy parameters are

shrinking) and the low probability of a large enough mutation that finds an

individual in a deep enough local (or even global) minima to be considered in

the top µ most fit individuals (and stay there long enough to make an impact).
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Chapter 3

Related Research

3.1 Evolutionary Algorithms in

Quantum Computing

Designing or synthesizing quantum logic has traditionally been researched using

deterministic and analytic approaches. As an example, we describe the CSD

method as used by the popular Qubiter [3] in section 3.4.4. Much of the work

cited in 3.4 is largely mathematically formulated methods to solving quantum

logic problems. However, these methods tend to be focused on either a small

number of qubits or pigeon–holed to very particular problem criteria. These

have provided very powerful devices and understanding to deal with quantum

logic synthesis but general solutions are still lacking.

The application of Evolutionary Algorithms (EA’s) to quantum computing

is an emerging research area [40, 41, 4, 42, 43, 44, 45, 46]. The reasons for

using an EA for quantum logic design are quite obvious. The configuration

space for quantum logic design is huge and EA’s provide the ability to search

such large spaces. Although EA’s provide parameters to guide searching, it is

also the ability to have a minimal set of parameters to allow searching that

gives EA’s an advantage. An analytical method could be focused on a specific
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family of problems but the EA is free to explore as long as it doesn’t violate

certain criteria. As we reviewed in chapter 5, having a very rudimentary fitness

function common to EA’s is many times all that is needed to find highly optimal

solutions. Another advantage is that EA’s can lead to discoveries, for example,

families of gates more optimal than previous analytical methods discovered [40].

There are many types of Evolutionary Algorithms, but the bulk of the re-

search of applying EA’s to quantum logic design problems have largely been

focused on two types of EA’s: 1) Genetic Algorithms and 2) Genetic Program-

ming. Examples applications of Genetic Algorithms to quantum computing

can be found in [43, 44, 46, 47, 48, 49, 50, 51, 52, 53]. Examples of Genetic

Programming to quantum computing can be found in [42, 45, 54, 55, 56, 57].

A new application of using an Evolution Strategy (ES) to quantum comput-

ing was first proposed by Hutsell and Greenwood in [4] and is the source for the

material in chapter 5.

3.1.1 Application of a Genetic Algorithm for

Quantum Logic Synthesis

For this section we briefly review an example GA1 application for Quantum

Logic synthesis as published by our colleague, Dr. Martin Lukac, in [40]. A

general overview of EA’s can be found in section 2.3.

Individual Representation

In the GA, an individual represents a valid quantum circuit that encompasses

as many qubits as needed for the overall quantum array. In particular, an

1For a comprehensive background in Genetic Algorithms, consult [58] as well as [59]
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individual is partitioned into parallel blocks. This is largely in part to allow

the representation of the overall unitary operator of the individual using only

Kronecker products.

The encoding scheme (that is, the chromosomes) used for an individual is

an integer number which indicates the number of qubits encoded followed by a

string of characters which map to a quantum gate from a given quantum gate

library. The ‘r’ character is reserved as a special tag to indicate where a block

begins and ends to allow blocks that operate on a varying number of qubits. In

particular, the characters between a set of ‘r’ characters define a slice of logic

whose quantum unitary operator is simply the Kronecker product of those gates

in their order specified. An example encoding and how it relates to a partitioned

circuit is shown in figure 3.1.

Figure 3.1 shows the string encoding on the left describing a 5–qubit quan-

tum circuit (as indicated by the integer in the first position) with three slices:

S1, S2, and S3, as partitioned by the ‘r’ character tag. The “SW” gate refers to

a 2–qubit SWAP operation which is used in lieu of the representation of control

operations that span multiple qubit levels. The T gate refers to the Toffoli gate

which operates on three qubits.

The unitary operations can be easily written as

S1 = I ⊗ SW ⊗ I ⊗ I (3.1.1)

S2 = H ⊗ I ⊗ T (3.1.2)

S3 = I ⊗ SW ⊗ I ⊗ I (3.1.3)
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Figure 3.1: Example GA Encoding for 5 Qubit Individual
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Thus, the overall operation of this individual, U , is described as

U = S3S2S1 (3.1.4)

This circuit maps to the right–most circuit in figure 3.1 which we are able

to describe using our quantum algebraic notation from chapter 4 as,

U = H⊗D0⊗ I ⊗ I ⊗ I +H⊗D1⊗ I ⊗D0⊗ I +H⊗D1⊗ I ⊗D1⊗X (3.1.5)

Or using the alternative expression (equation 4.5.13),

U = H ⊗ I ⊗ I ⊗ I ⊗ I −H ⊗D1⊗ I ⊗D1⊗ I +H ⊗D1⊗ I ⊗D1⊗X (3.1.6)

Mutation and Crossover

For crossover, we restrict the candidate chromosomes to have the same number

of wires. That is, we wouldn’t swap a ‘T’ gate with an ‘H’ gate since they

operate on a different number of qubits. Although possible to implement, it

simplifies the crossover search operation.

Mutation is done through three basic operations: 1) Adding a gate, 2) Re-

moving a gate, and 3) Replacing a gate. In the process of adding a gate, we

replace one or more ‘I’ gates (quantum wires) with the desired (or rather, ran-

dom) gate. We need to make sure there is a sufficient number of qubits available

— or — we can add another parallel logic slice in the string by using ‘r’ tags. In

the removal of a gate, we simply replace the gate character with the appropriate

number of ‘I’ gates. The replacement operation requires more work largely due

to the case where we are replacing a gate with one of larger order (more qubits).
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This causes us to check if enough qubits are available to fit the new gate. If we

replace a gate with one of less qubits, we need to insert ‘I’ gates. Some repair

work is needed for the replacement operation.

Fitness Function

The fitness function is used to bias the selection operation (selecting parents)

and for determining when a valid solution has been found. Although many

fitness functions and their interpretations were tested, the most fundamental

fitness function had the form

F =
1

1 + Error
(3.1.7)

Where Error was entirely based on the correctness of the circuit, that is,

how closely did it match the desired operation:

Error =
∑
i

∑
j

|Oij − Sij| (3.1.8)

Where Oij is the target element of the desired operator matrix and Sij is

the actual element from the unitary matrix encoded by the individual.

However, this fitness function did not take into account the cost of the

quantum circuit. The cost of a quantum circuit depends on many factors and

is eventually heavily influenced by the physical implementation of the quantum

circuit (e.g., number of NMR pulses). For a simple implementation, the cost

could be the number of quantum gates excluding ‘I’ and swap gates.

Eventually, a compromise fitness equation is constructed which allows a
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parameterized balance between correctness and cost, namely

F = α

(
1− Error

Max Error

)
+ β

1

Cost
(3.1.9)

Where α and β are the balancing parameters.

GA Steps

The GA uses the following steps:

1. Initiates a random population of M individuals.

2. Pick N random individuals based on fitness.

3. For all N selected individuals, apply two genetic operators (below) to

create M new individuals.

• Crossover to recombine two individuals by exchanging respective

chromosomes.

• Mutation to inject noise into the chromosomes of the individual with

a very small probability.

4. Update the old generation of individuals with the newly created genera-

tion.

5. Evaluate the fitness of each individual in the new population.

6. Determine if any individual(s) meet the success criteria. If so, the GA

is done. Otherwise, we iterate for another generation until we’ve hit a

solution or the maximum number of generations allowed.
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GA Results

The GA was able to synthesize well–known gates in different manners. There

was a clear balance between run–time, correctness, and cost. Overall, the GA

was very successful in both finding near–optimal circuits and even families of

circuits, and as tool to explore alternative quantum circuits. Elegant solutions

were found for gates such as the Margolus and Miller gates and the Peres solution

seems to be optimal.

3.2 Random Unitary Matrices

The method chosen to generate random unitary matrices was developed by

Życzkowski and Kuś[6] which conform to the statistical properties of circular

unitary ensembles (CUE) originally investigated to describe the spectral prop-

erties of quantum objects[60].

We generate the N×N unitary operator, U , as a composition of elementary

unitary operators which perform transformations in two-dimensional subspaces.

This elementary matrix is denoted by E(i,j)(φ, ψ, χ) The non-zero elements are

given by the following rule:

E
(i,j)
kk = 1 k = 1, . . . , N k 6= i, j

E
(i,j)
ii = cos(φ)eiψ

E
(i,j)
ij = sin(φ)eiχ

E
(i,j)
ji = − sin(φ)e−iχ

E
(i,j)
jj = cos(φ)e−iψ

(3.2.1)
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The angles are taken over the intervals:

0 ≤ φ ≤ π
2

0 ≤ ψ < 2π 0 ≤ χ < 2π (3.2.2)

Using the above elementary operators, we construct the N − 1 composite

rotations:

E1 = E(1,2)(φ12, ψ12, χ12)

E2 = E(2,3)(φ23, ψ23, 0)E(1,3)(φ13, ψ13, χ13)

...

EN−1 =

E(N−1,N)(φN−1,N , ψN−1,N , 0)×

E(N−2,N)(φN−2,N , ψN−2,N , 0)×

. . .× E(1,N)(φ1N , ψ1N , χ1N)

(3.2.3)

The unitary operator is finally defined as:

U = E1E2E3...EN−1 (3.2.4)

3.3 Eigenanalysis Methods and Separability

A quantum computer is a register of qubits whose computation can be described

by a unitary operator which utilizes quantum mechanics to evolve the initial

state of the register to produce a final desired state. Given this matrix, we

can analyze its properties with the goal to discover clues that would help us

either improve an existing unitary matrix or help us design from–the–ground–up

better unitary matrices, and thus, better quantum computers.

An eigenanalysis can be performed where we take an in-depth look at the

eigenvalue distribution and the eigenvector placement. The eigenvalues are
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found by solving the characteristic polynomial of the unitary matrix that satis-

fies the equation U~v = λ~v, where ~v are the eigenvectors and λ are the eigenvalues

2.

Given an n qubit system, the unitary operator of the whole system is a

2n×2n matrix. Thus, we could have up to 2n eigenvalues and their corresponding

eigenvectors. Obviously, for sufficiently high n (say, n > 5), numerical methods

are needed to solve for the roots of the characteristic polynomial. Software

such as MATLAB and LAPACK will be used to calculate the eigenvalues and

eigenvectors.

Given a Uf , we know that its eigenvalues are of the form λk = eiθk and thus

complex. We can plot the eigenvalues on the unit circle where the horizontal

axis represents the real components, <{λk}, and the vertical axis represents the

imaginary components, ={λk}. It is of interest to see where the eigenvalues of a

particular unitary matrix that represents an algorithm land on the unit circle,

and how that placement changes for similar unitary matrices (i.e., different

operators evolved to solve the same instance problem with similar fitness) or

as we increase the complexity of the algorithm (e.g., increasing the number of

nodes in the “independent set problem”).

The degeneracy of a unitary matrix is also of interest and occurs when we

have two or more eigenstates |ξ1〉 and |ξ2〉 of ξ correspond to the same eigenvalue

3. A comparison across multiple unitary matrices of different characteristics

might reveal useful knowledge about the system. For example, we might find

that eigenvalues tend to clump in a particular region on the unit sphere or have

2The set of eigenvalues is sometimes called the spectra or the spectrum of the unitary
operator.

3Any linear combination of |ξ1〉 and |ξ2〉 is also a degenerate eigenstate corresponding to
the same eigenvalue.
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some consistent pattern. It is possible that this knowledge could be used to aid

in the design of quantum unitary operators although we admit it is not clear

how this can be done.

Eigenvector analysis is more complicated due to their multidimensional prop-

erties (i.e., an eigenvector of an n qubit system will have 2n components). How-

ever, the analysis can be performed and visualized as in [6] by analyzing the

localization properties and entropy of the eigenvectors. The localization prop-

erty is found by calculating the inverse participation ratio, µl, by

µl = N
N∑
k=1

y2
lk (3.3.1)

where ylk = |clk|2 and clk is the kth component of the lth eigenvector. We can

then approximate the number of relevant states, M , by M = N/〈µ〉.

A second similar method is to use the Shannon entropy, Hl, of an eigenvector

where

Hl = −
N∑
k=1

ylk ln(ylk) (3.3.2)

and comparing their mean entropies. Other methods will be investigated.

The separability is directly linked to the theory of quantum entanglement

and thus a key feature of quantum computational and quantum information

theory. Two systems (A and B) are separable if it meets the condition

ρAB =
∑
j

pj |ψj〉 〈ψj| ⊗ |φj〉 〈φj| (3.3.3)

Methods of identifying state separability have been investigated using eigen-

values [61] and eigenvectors [62]. How state separability relates to the function
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of a quantum operator is not well understood.

3.4 Quantum Logic Synthesis

A rapidly increasing area of research is Quantum Logic Synthesis and numerous

foundation papers [33, 63, 64, 1, 65] have been established. Similar to classic

logic synthesis, a quantum logic “synthesizer” attempts to decompose a given

unitary matrix into a series of fundamental quantum logic gates to form what

we could consider a quantum circuit netlist— that is, quantum gates connected

via quantum wires.

U

• • •
= • �������� • ��������

V V † V

Figure 3.2: Quantum Logic Synthesis of a 3 qubit system

In Figure 3.2 above, the original unitary matrix which describes a 3 qubit

system, U , is decomposed into smaller quantum gates.

3.4.1 Quantum Gate Universality

A quantum computer is implemented using a series of quantum gates that are

available which is dependent on its physical implementation. We refer to this

array of quantum gates as the gate library. These gates may operate on one

or many qubits. The gate library is considered a universal set if any n–qubit

operator can be approximated within a specific degree of accuracy using only

the gates from the gate library.

Deutsch et al showed in [66] that almost all 2–qubit gates are universal.

However, it also continues to explain — intuitively — that the set of single
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qubit gates and classical gates cannot form a universal set. The argument

being that single qubit gates cannot entangle two initially un-entangled qubits

into an entangled state. Also, classical gates (or quantum gates that behave like

their classical counterparts) cannot produce a universal set because they map

from one computational basis state to another and the superposition needed for

universality is not implemented.

3.4.2 Computation Bounding

In 1995, Barenco et al showed in [33] that the set of single qubit gates and

CNOT gates comprise a universal set. The method utilized QR factorization.

In fact, figure 3.2 is the circuit Barenco et al proposed that any three qubit

network could be broken down into given any 2 × 2 matrix U , where V 2 = U

and V † is the adjoint matrix of V such that V †V = I. This also sets the upper–

bound for the number of computations at O(n34n) for n qubits. That same year

Knill [67] showed an improved upper–bound of O(n4n) but it wasn’t until 2004

that Vartianen et al made a significant leap in [65] which showed a new lowest

upper–bound of O(4n). This was later followed by improvements by Möttönen

and Vartianen in [68] to a new upper–bound of O(23
48

4n) CNOT operations. This

is still higher than the predicted highest lower–bound [63] of d(4n− 3n− 1)/4e.

3.4.3 Uniformly Controlled Gate Decomposition

A technique for decomposing uniformly controlled gates was first proposed in

[65]. In short, it describes the method of decomposing a k–fold uniformly con-

trolled m–qubit gate into a sequence of 2k gates, each with a different sequence

of k controls nodes. This is illustrated in figure 3.3.
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1 /. -,() *+c1 �������� �������� · · · • •

2 /. -,() *+c2 �������� �������� · · · • •
...

...
...

...
...

...
...

k /. -,() *+ck �������� • · · · �������� •

k + 1

U U1 U2

· · ·

U2k−1 U2k
... = · · · ...

k +m = n · · ·

Figure 3.3: Uniformly Controlled Gate Decomposition

We refer to this type of gate by the operator F k
T (U(2m)). Where n is the

total number of qubits, k is the number of control nodes. The target qubits

are grouped into the set T of which there are k = n−m qubits. The left–side

general quantum gate is controlled by an arbitrary combination of the control

nodes. The right–side shows its decomposition into uniformly controlled gates,

each having a distinct combination of control nodes.

3.4.4 Cosine–Sine Decomposition

Cosine–Sine Decomposition (CSD) is a recursive algorithm [69] and utilizes the

General Singular Value Decomposition method (GSVD). CSD operates on even–

dimensional unitary matrices and thus perfectly suited for quantum operators.

CSD recursively decomposes the unitary matrix into smaller unitary matrices

of half dimensionality. We describe this algorithm as it applies to the decompo-

sition of quantum operators in more detail as it is the method used by Qubiter

[3] to produce the synthesis results used in chapter 7.

Given a unitary matrix, U , which is of even–dimensionality and described

by a 2n × 2n matrix where n is an integer and represents the number of qubits,
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CSD states that we can express U as:

U =

 L0 0

0 L1

D

 R0 0

0 R1

 (3.4.1)

As a matter of notation, we’ll refer to the left side matrix as L and the right

side matrix as R. We also note using our quantum logic algebra,

L = D0 ⊗ L0 +D1 ⊗ L1 (3.4.2)

R = D0 ⊗R0 +D1 ⊗R1 (3.4.3)

(Note: D0 and D1 are the projection matrices and not to be confused with the

CSD central matrix, D).

In this case, sub–matrices R0, R1, L0, and L1 are of the same dimensionality

which is half that of U . That is, they are 2n

2
× 2n

2
unitary matrices. From now

on, N is the dimension of the original matrix, U , where N = 2n.

The center D matrix is described as

D =

 C S

−S C

 (3.4.4)

Where C and S are diagonalized matrices of half–dimensionality (N/2) com-

pared to D and are formed using cosine and sine functions, respectively. That

is,

C = diag(cos θ1, cos θ2, . . . , cos θN/2) (3.4.5)

and,

S = diag(sin θ1, sin θ2, . . . , sin θN/2) (3.4.6)
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We note the unitary relationship of the angles,

sin2 θi + cos2 θi = 1 (3.4.7)

The diag function used above has an N–length vector argument and pro-

duces an N ×N matrix with the N–length main diagonal set to values specified

in the argument vector. That is,

diag(vN) = Mij =

 0 if i 6= j

vi if i = j
(3.4.8)

It can be shown that given any CSD of U , another CSD of U can be found

such that the angles {θ1, . . . , θN/2} are in non–decreasing order and are bounded

to the range [0, 90] degrees.

As it turns out, matrix D can be implemented as uniformly controlled y ro-

tation operation using F n−1
1 (Ry) with associated rotation angles {θ1, . . . , θN/2}.

The L and R correspond to the uniformly controlled (n− 1) qubit gates which

are of the type F 1
T (SU(2n−1)).

In the CSD algorithm, U is partitioned into four blocks: Uij where i, j ∈

{0, 1}. In which case,

Uij = LiDijRj (3.4.9)

and Dij is the singular value of Uij.

The recursive property is such that if we start with a unitary U of size

2n×2n then after n–levels of recursion, our decomposed matrices (L, D, and R)

are 2× 2 meaning our sub–matrices (L0,L1,R0,R1,C,and S) are single complex

elements with modulo unit value. The iteration stops when the blocks can
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no longer be broken down which are typically 2–input (4 × 4) or single–input

(2× 2) matrices. These are then mapped to their closest quantum gates which

are typically CNOT, rotation, or phase gate operations.

If we had a gate library which did not include variable gates (e.g., rotation

gates or arbitrary phase gates), then our synthesis mapping is significantly more

complicated. We would instead need to find a combination of gates whose

resultant operator is similar to the block matrix derived from CSD. In these

cases, there is an error on the angle parameters. To keep this error level low,

there is a direct impact to gate count as more gates from the library are needed.

There is a mapping that can be done of result of CSD to quantum multi-

plexors. In fact, the D matrix implementation of controlled Ry rotations is a

variation of the quantum multiplexor. The block diagonal matrices, L and R,

are in fact quantum multiplexors, selecting between either L0 and L1 (or be-

tween R0 and R1 for the R block matrix). Figure 3.4 illustrates such a quantum

circuit in two different forms. The figure on the left shows the quantum multi-

plexor drawn in a similar fashion as a classic mux. The qc qubit controls which

unitary operators output will be chosen. The right–hand figure is the equivalent

circuit but using quantum inverters to activate the desired unitary block and

deactivate the other, turning it into a quantum wire, logically behaving as an

identity gate.

3.4.5 Quantum Compilers

There is a handful of known quantum logic synthesizers4. A very well known ex-

ample is Qubiter [3]. Qubiter uses the very successful approach of using Cosine-

4Quantum Logic Synthesizers can also be called Quantum Logic Compilers
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Figure 3.4: Quantum Multiplexor selecting between block operators from CSD

Sine Decomposition which we just described in section 3.4.4 to recursively

decompose the initial unitary matrix to simpler matrices which can then be

mapped to a quantum gate library. This method was also used in [2]. The source

code for Qubiter is freely available at http://www.ar-tiste.com/qubiter.html. As

Qubiter was freely available, it was used for the synthesis results of this research

and the results are summarized in chapter 7.

Although other synthesizers exist [70], their code is not readily available—

or— is too severely limited (e.g., S. Bullock’s 3CNOT synthesizer can only

handle two qubit systems).

Lukac et al published a quantum logic synthesis approach [40] that used a

Genetic Algorithm to synthesis an initial given unitary matrix into a sequence

of elementary gates. An overview of their method was covered in section 3.1.
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Chapter 4

Quantum Logic Algebra

4.1 Introduction

Quantum Circuits (also called Quantum Arrays or Quantum Netlists) were orig-

inally developed by Deutsch [22] and are a convenient and widely accepted

method of visualizing how quantum gates operate on qubits over time to ul-

timately describe the unitary matrix of the quantum computer, U . This is

analogous to a classical boolean gate netlist implementing the logic described

by a truth table. However, unlike classical logic, deriving the algebraic expres-

sion for a quantum circuit has been—until now—difficult.

There are traditional methods for constructing the unitary matrix[9] and

we’ll briefly cover these so that we can later contrast them with our method.

A method known as diagonal representation or sometimes orthonormal de-

composition allows representing unitary operators under certain criteria using

the equation U =
∑

i λi |i〉 〈i|. The |i〉 vectors form an orthonormal set of eigen-

vectors with λi being the corresponding set of eigenvalues. Simple examples of

this method include the Controlled-NOT with CNOT = |00〉 〈00|+ |01〉 〈01|+

|10〉 〈11|+ |11〉 〈10| and the Z-gate with Z = |0〉 〈0| − |1〉 〈1|. The limitation of

the diagonal representation is that: 1) The operator must be diagonalizable, 2)
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it requires knowing all eigenvectors which in general requires 2n vectors for n

qubits meaning the expression gets very large for moderate number of qubits,

and lastly, 3) it also requires deriving the eigenvalues. For permutation opera-

tors — such as the NOT and Toffoli gates — the problem is simplified since the

eigenvalues are unity.

Perhaps the easiest method is to divide the quantum circuit into vertical

slices and identify parallel quantum gates (and quantum wires, denoted by I)

in each slice and use the Kronecker product as depicted in figure 4.1 to form

the equation for each slice. The slices can then be matrix multiplied together

to form the final U of the quantum computer using the property that U =

SN × SN−1 × · · · × S1.

q2 X
Y

q1

q0 Z

S1 S2

Figure 4.1: Parallel Logic Example: S1 = X ⊗ I ⊗ Z and S2 = Y ⊗ I, thus
U = S2 × S1

The limitation with this method is that it can only handle parallel operations

and although it is possible to identify known circuit transforms or reductions[33,

68], the difficulty increases quickly when we add multiple controls (including

negative control nodes), control nodes that span over many qubits, complex

gates, etc. Some of these difficult examples are shown in figure 4.2 and rely on

special math routines or error-prone hand calculations to solve.

We propose a new method that allows representing a slice of logic as a sum of
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q3 Y
U1

�������� •

q2 •
U2

q1 • H

q0 • Z • ��������
S1 S2 S3 S4

Figure 4.2: Example of Difficult Logic Slices: U = S4 × S3 × S2 × S1

Kronecker products(SOK). The slice equations can then be multiplied together

to form the final algebraic expression of the quantum computer, that is, U . In

essence, the quantum computer is described by a product of sum of Kronecker

products (POSOK). The method handles complex, multi-input quantum gates

and multiple positive and negative control nodes. Essentially, constructing the

equation for U based on the quantum circuit becomes trivial!

At the heart of our method is how the unitary matrix is constructed in the

presence of control nodes. Note the unitary matrix for a generalized controlled

gate, G, shown in figure 4.3. For the left–hand figure, we can construct the

q1 • q1 G

q0 G q0 •

Figure 4.3: Generalized control gate

unitary matrix and note its algebraic expression:

U =



1 0 0 0

0 1 0 0

0 0 g1 g2

0 0 g3 g4


=

 I 0

0 G

 =

 1 0

0 0

⊗ I +

 0 0

0 1

⊗G
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However, things become interesting if we flip the circuit as in the right–hand

figure where G is operating on qubit 1 and being controlled by qubit 0. Then

we have

U =



1 0 0 0

0 g1 0 g2

0 0 1 0

0 g3 0 g4


= I ⊗

 1 0

0 0

+G⊗

 0 0

0 1



In the above examples, we derive the general equation for a two qubit controlled

gate circuit in both orientations and we see common matrix terms which we later

call D0 and D1. Through multiple examples and analysis, we find a pattern and

eventually arrive at a general method. Section 2 details this method.

We now go on to demonstrate this method after listing some key definitions.

We follow this with a section on the canonical representation of a quantum logic

slice and how it is equivalent to our method. We also show how using certain

properties, we can manipulate our equations to show known circuit equivalences.

4.2 Key Definitions

Definition 10 Two matrices A and B are independent if A×B = B×A, that

is, they are commutative.

Note that any matrix, M , and the identity matrix, I, are naturally indepen-

dent since M × I = M = I ×M .

Let Q be a quantum circuit and let Q̂ be a sub–circuit of Q.

Definition 11 Q̂ is a quantum logic slice if all of the following properties hold
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1. All qubits used in Q are also used in Q̂.

2. No qubit is operated on by more than one quantum gate in Q̂.

3. Any qubit that is used as a control in Q̂ cannot be operated on by any gate

in Q̂.

Without loss of generality, we assume quantum gates operate on consecutive

qubits. For example, a two–input quantum gate could operate on, say, qubits

q0 and q1, but not on qubits q0 and q3.

A fundamental property of all quantum logic slices—which we exploited

to develop our method—is they can be recursively decomposed into smaller

independent slices.

Theorem 4.2.1 Any quantum logic slice, S, consisting of n gates (whether

controlled or not) can be decomposed into two independent logic slices, S1 and

S2 such that one contains n− 1 gates and the other contains 1 gate.

Proof: Pick any arbitrary quantum gate from S (say the k–th gate Gk). Let

Ak be the set of qubits operated on by Gk and, if Gk is a controlled gate, all

bits used for its control as well. Move Gk to S1 and leave the n − 1 remaining

gates in S2. Any qubit j ∈ Ak in S1 behaves like an identity I. Similarly, any

qubit j ∈ Ak in S2 behaves like an identity I. More specifically, any qubit that

is used for control or is operated on in S1 behaves like an identity in S2 and

any qubit that is an identity in S1 is either operated on or is used for control

in S2. This means S1 is a block–diagonal matrix with all but the k–th block an

identity matrix. S2 is a block–diagonal matrix of the same overall dimensions

(including the blocks) but with only the k–th block an identity matrix. Under

these circumstances S = S1×S2 = S2×S1. Hence, S1 and S2 are independent.
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4.3 The Hutsell Method

Unless otherwise stated, Kronecker products are depicted as matrix multiplica-

tions to simplify the notation. Matrix multiplies will be explicitly written (i.e.,

A×B).

A⊗B = AB

We introduce two matrices, D0 = |0〉 〈0| and D1 = |1〉 〈1|,

D0 =

 1 0

0 0

 , D1 =

 0 0

0 1


Notice D0 +D1 = I

The quantum circuit is first separated into quantum logic slices. A slice can

contain both non-controlled and controlled gates, however, we introduce the

following definition of what constitutes a legal slice for the method:

Definition 12 A method legal slice is a quantum logic slice where all the con-

trolled gates share the same control nodes.

If this is not the case, then we can split the slice using theorem 4.2.1 into multiple

slices until this condition is met. Figure 4.4 shows an example of creating legal

slices for our method.

After identifying our legal slices, the method is broken down to three key

steps that are applied to each slice. We’ll apply this method to a number of key

examples.

STEP 1. Identify Number of Terms: Given a slice with N control nodes,

the number of terms in the algebraic expression of the slice will be N + 1.
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q3 X X X

q2 • ⇒ • ⇔ •

q1 Y Y Y

q0 • • •

S1 S1a S1b S1b S1a

_ _ _�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�_ _ _

_ _ _�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

_ _ _

_ _ _�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

_ _ _

_ _ _�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�_ _ _

Figure 4.4: Splitting Slices: S1 = S1b × S1a. Alternatively, we could have done
S1 = S1a × S1b since S1a and S1b are independent

If Ti represents term i, then the equation for the slice will have the form

S =
∑N+1

i=1 Ti

STEP 2. Control and Parallel Logic Terms: The firstN terms represent

the necessary manipulation to the unitary matrix of the slice to appropri-

ately handle the controlled gates and non-controlled gates. The controlled

gates will not be present in the first N terms. We leave that to step 3.

For an m qubit circuit qm−1, qm−2, · · · , q0, each term, Ti, is represented

as a Kronecker product of matrices ordered from left to right. The left–

most position representing the most-significant qubit, qm−1, and the right–

most position representing the least significant qubit, q0. Each term is

constructed using the follow template,

T = Pm−1 ⊗ Pm−2 ⊗ · · · ⊗ P0︸ ︷︷ ︸ = Pm−1Pm−2 · · ·P0

qm, qm−1, · · · , q1

• RULE 1: If there is a k-qubit non-controlled gate, Gu, that operates

on qubits l to l + k − 1, then replace Pl+k−1 . . . Pl with Gu.
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• RULE 2: If there is a k-qubit controlled gate, Gc, that operates on

qubits l to l + k − 1 then replace Pl+k−1 . . . Pl with I⊗k (that is, k I

matrices tensored together).

• RULE 3: Assume C = {a, b, c, . . .} is the set of N control nodes

ordered from highest to lowest qubit order (that is a > b > c, etc).

We then use table 4.1 to replace {Pa, Pb, Pc, . . .} with the specified

operators. For example, in T1, we replace Pa with D0 and the rest

with I. In T2, we promote Pa from D0 to D1, Pb becomes D0, and

the rest stay I, and so on.

Exception: If the control node is a negative control, then we do the

opposite and set to D1 then promote to D0 in the next term.

STEP 3: Define your Controlled Logic Term: The last term is really a

logical continuation of STEP 2, except the controlled gates are now repre-

sented by themselves and all control nodes are represented by D1 (or D0

for the negative control nodes). RULE 1 still applies.

Term Substitution Order

1 D0, I, I, . . . , I
2 D1, D0, I, . . . , I
3 D1, D1, D0, I, . . . , I
4 D1, D1, D1, D0, I, . . . , I

N − 1 D1, D1, . . . , D1, I
N D1, D1, . . . , D1

Table 4.1: Substitution table for # symbols. Substitutions are made from left
to right in each term.
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q2

q1 •

q0 U

q2 •
q1

q0 U

q2 •
q1 •

q0 U

ID0I + ID1U D0II +D1IU D0II +D1D0I +D1D1U

q2 •
q1

U2
q0

q2 ��������
q1

q0 U

q2

q1 U

q0 •

D0II +D1U2 D1II +D0IU IID0 + IUD1

q2 •

q1 U

q0 ��������

q2

U2
q1

q0 ��������

q2 U2

q1 •

q0 U1

D0II +D1ID1 +D1UD0 IID1 + U2D0 ID0I + ID1I + U2D1U1

Figure 4.5: Method Examples

4.4 Slice Examples

We leave it as an exercise to the reader to use the method described to derive

the algebraic equations shown in figure 4.5

4.5 Canonical Construction

The method described above is really a simplification derived from the more

formal canonical description which we attempt to do here. We start by defining

some mathematical tools, the first being the definition of a diagonal function
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Definition 13 The diagonal function, Db is defined as

Db = DbN−1...b0 =
0⊗

i=N−1

Dbi (4.5.1)

Where b is an N-wide binary number ranging from 0 to 2N − 1 and bi ∈ {0, 1},

Db = DbN−1
⊗DbN−2

⊗ · · · ⊗Db0 (4.5.2)

It can be shown that N arbitrary Kronecker products of D0’s and D1’s result

in setting a particular diagonal element of a 2N × 2N zero matrix to unity. In

general, Db will set the b’th diagonal element to 1. As an example, consider

b = 101, then D101 creates a 23 × 23 matrix with the 6th (decimal value of b is

5) diagonal element to 1. This is done by the expression

D101 = D1 ⊗D0 ⊗D1

Each binary address corresponds to one of the 2N−1 diagonal elements. For

example, D00..0 sets the first top diagonal element, M0,0, to 1 and D11..1 sets the

last bottom diagonal element, MN−1,N−1, to 1. It follows that the sum of the

diagonal function over all possible addresses will set all diagonal elements to

unity thus creating the 2N–order identity matrix (i.e., I⊗N) which we’ll simply

write as I:

11..1∑
b=00..0

Db =
11..1∑
b=00..0

Db0 ⊗Db1 ⊗ · · · ⊗DbN−1
= I (4.5.3)

To simplify expressions where a particular qubit’s state can be either |0〉 or

|1〉, we can introduce “don’t cares” (denoted by X ). This allows us to write Dx =
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D0+D1 = D0+D1 = I. Therefore, whenever we see X in the diagonal function,

we can substitute that particular qubit with the identity matrix. Therefore,

Dxx...x = I ⊗ I ⊗ · · · ⊗ I

A useful property of the diagonal function is that, given an arbitrary state

vector, |ψ〉 = [x0, x1, · · · , x2N−1 ]T which can be re-written using binary sub-

scripts as [x0...00, x0...01, · · · , x1...11]T . We get

Db |ψ〉 = |ψb〉 = [0 . . . xb . . . 0]T (4.5.4)

Also, Db is linear and obeys superposition

(Db1 + Db2) |ψ〉 = Db1 |ψ〉+ Db2 |ψ〉 = |ψb1〉+ |ψb2〉 (4.5.5)

It also follows that

Dxx...x |ψ〉 = I |ψ〉 = |ψ〉 (4.5.6)

We next look at the properties of partial identity matrices.

Definition 14 A partial identity matrix is any matrix, M , that has any of its

diagonal elements set to unity and all other elements are zero. That is, M is of

the form:

M =
11..1∑
b=00..0

(Db, if b ∈ B) (4.5.7)

Where B is an arbitrary set of binary address {b1, b2, . . .} each addresses a

particular diagonal element in M .

Definition 15 The Rules of Partial Matrices are as follows; Given a partial
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identity matrix, M :

1. Basic Identity: M ×M = M

2. Conjugate Rule: M∗ = M

3. Transpose Rule: MT = M

4. Adjoint Rule: M † = M

5. Preservation Rule: Given an arbitrary matrix, A, (M × A)† = M × A†

(same for conjugate and transpose)

6. Non-Unitary Clause: Because of the Adjoint Rule, M is not unitary unless

M = I.

7. Compliment: The complement of M , is K = I −M .

8. Compliment Rules: Given M and its complement, K, M×K = K×M =

0, and M +K = I. M and K are independent.

Previously we had defined the concept of a legal logic slice for our method

and now we refine the definition for our canonical expression. Now we only

consider a quantum circuit slice composed of a single gate (controlled or not

controlled). Theorem 4.2.1 can be iteratively applied to decompose a matrix

into refined quantum logic slices. Figure 4.6 below demonstrates this further

refinement.

For anN qubit logic slice composed of a set of qubits, Q = {q0, q1, . . . , q2N−1},

which contains an n-input controlled gate, G, operating on the successive set of

qubits, Qg = {qi, qi+1, . . . , qi+n−1}, positively controlled by a set of qubits, Qp,

and negatively controlled by a set of qubits, Qn, such that Qp,Qn ⊆ Q and
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Figure 4.6: Refined Slices: S1 = S1c × S1b × S1a. S1a, S1b, and S1c are inde-
pendent. S1a = ID0II + XD1II, S1b = ID0II + ID1Y I, and S1c = IIIZ.
S1 = ID0IZ +XD1Y Z.

Qn ∩Qp = ∅, we can describe the general form of the logic slice, S, using the

canonical form:

S = P + (Pc × C) (4.5.8)

S becomes a 2N × 2N unitary matrix. P is the 2N × 2N matrix which

maintains the state of the pass-through and control qubits when our control

conditions are not all active. The Pc term is a 2N × 2N matrix which maintains

the state of qubits being used as control nodes when they are active. This is

multiplied by C which is the 2N ×2N matrix which performs the gate operation

on the appropriate target qubits to change their state.

Definition 16 The control condition is the set, Bc, of basis states, |b〉, that

assert all the qubits required to activate the controlled gate, G, of a logic slice.

For example, in a 3 qubit slice, if controlled gate, G, is controlled positively by

qubit q0 and negatively by qubit q2, then its control condition will be the set,

Bc = {|100〉 , |110〉}.
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Conceptually, when we’re not in a control condition, the equation for S

becomes S = P where P is a partial identity matrix, and for the state of the

qubits, S behaves like an identity matrix allowing the state to stay the same.

However, when the control conditions are all active, our Pc ×C term will come

into play and operate on the qubits appropriately while still maintaining state

of the pass–through and control qubits.

More formally, we can define our P , Pc, and C terms as:

P =
11..1∑
b=00..0

 0, if |b〉 ∈ Bc

Db = Db0 ⊗Db1 ⊗ · · · ⊗DbN−1
, otherwise

(4.5.9)

Caveat: P = 0 if S contains no control nodes.

Pc =
11..1∑
b=00..0

 Db, if |b〉 ∈ Bc

0, otherwise
(4.5.10)
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C =
0⊗

i=N−1



I, if qi is not operated on by G

G, if qi is operated on by G

NOTE: If G is an n multi-qubit gate, then a single instance

of G is needed for qubits i− n+ 1 to i

(4.5.11)

Definition 17 P and Pc are partial identity matrices and also complementary

such that P + Pc = I. Also, P × Pc = Pc × P = 0.

This is understood from the equation definitions for P and Pc and the rules

of partial identities. In equation 4.5.9, P is defined by as the sum of the diagonal

function for all qubit combinations except the control conditions. In contrast,

equation 4.5.10 shows Pc is defined by the sum of the diagonal function for only

the control condition. Since P and Pc use the exhaustive set of qubit combina-

tions, P + Pc becomes the sum of diagonal functions on all qubit combinations

and thus becomes like equation 4.5.3 and is equal to I.

Lemma 1 Pc and C are independent and therefore can be written as Pc×C =

C × Pc.

We’ll omit the proof but it can be easily shown through their construction that

they operate on different qubits and are thus independent.

Lemma 2 Pc can always be reduced to a single term of Kronecker products.

From the definition of Pc, we can simplify the controlled condition states into a

single expression using the “don’t care” property of the diagonal function since
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the same control qubits have the same state in all states in Bc. Pc can then be

expressed as:

Pc =
0⊗

i=N−1


D1, if qi is a positive control node of G

D0, if qi is a negative control node of G

I, otherwise.

(4.5.12)

Lemma 3 P can always be reduced to m terms where m is the number of control

nodes in the slice.

According to the definition of P , if we have m control qubits, then P will

be the sum of all diagonal functions except when all m qubits are in their

control configuration. That is, we can assume all other qubits are “don’t cares”.

However, for the m qubits, one of them must be in the non–active state, while

the others are in the active state. That is, if we label the m control qubits

as qc1, qc2, . . . , qcm, then we encode their state (assuming positive controls) as

shown in table 4.2. From the table we see that we’ll havem entries and therefore,

P can be simplified to m terms.

qc1 qc2 qc3 . . . qcm
0 X X . . . X
1 0 X . . . X
1 1 0 . . . X
...

...
...

. . .
...

1 1 1 . . . 0

Table 4.2: Encoding table to simplify P

Definition 18 Since P+Pc = I, we can replace P in equation 4.5.8 with I−Pc.

This gives us

S = (I − Pc) + Pc × C (4.5.13)
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This is generally a better representation of the canonical form since Pc always

simplifies to one term and P always simplifies to m terms where m is the number

of control nodes in the slice. This comes from the definition of P where at two

control nodes, P will have 2 terms and I −Pc is two terms. After–which, as we

increase the number of control nodes, the number of terms in P grows linearly.

Theorem 4.5.1 S = P +Pc×C = (I−Pc) +Pc×C can also represent a logic

slice with a non–controlled gate, G.

Proof: The equation for such a slice is the simple Kronecker product of identity

matrices and the gate, G, and is clearly equation 4.5.11 for C. Under these

circumstances, P = 0 (by our caveat and also by P = I−Pc), Pc = I. Therefore,

S = C.

Theorem 4.5.2 S = P + Pc × C = (I − Pc) + Pc × C can generalize a single

gate, U , operating on all qubits.

Proof: That is, S = U . Under this condition, there are no controls which makes

this a trivial problem. According to our definitions of P , Pc, and C we find that

P = 0 (from our caveat and also from P = I − Pc), Pc = I, and C = U . This

yields, S = 0 + I × U = U .

Theorem 4.5.3 S is unitary.

Proof: That is, S† × S = I where S† denotes the hermitian adjoint of S. Since

P and Pc are — by definition — partial identity matrices, P † = P and P †c = Pc.

C must be unitary since it is the result of Kronecker products of identities and

the unitary gate, G, and therefore, C† × C = I. We now do the math

S† × S = (P + Pc × C)† × (P + Pc × C).
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It can be shown that the adjoint is preserved over addition, that is, (A+B)† =

A† +B†. Therefore,

S† = P † + (Pc × C)†

Which leads us to the expansion

S† × S = (P † + (Pc × C)†)× (P + Pc × C)

= P † × P + P † × Pc × C + (Pc × C)† × P + (Pc × C)† × (Pc × C)

We use the rules of partial identities to simplify the above equation. For ex-

ample, P † = P , and P †c = Pc, therefore, P † × P = P × P = P and the same

for Pc. Also, since P is the complement of Pc, P × Pc = Pc × P = 0 which

directly cancels our second term. The third term must be manipulated by the

preservation rule to convert (Pc × C)† × P = Pc × C† × P . Since Pc and C

are independent, we can write it as C × Pc × P and we can clearly cancel the

term. The last term requires similar techniques. We use the preservation rule

to re-write it as Pc×C†×Pc×C and because of the independence of Pc and C

we can re-arrange it as Pc × Pc × C† × C which is simply Pc × I = Pc since C

is unitary. Finally, we are left with

S† × S = P + Pc

= I
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A similar method will also show that the form: S = I − Pc + Pc × C is also

unitary.

As an illustrative example, consider figure 4.7 where we start with a refined

legal slice and show how we break it into the P , Pc, and C components.

q3 • |1〉 |1〉

q2 A A

q1 ⇒ − + ×
q0 • |1〉 |1〉

S I Pc Pc C

Figure 4.7: Canonical Representation Example: S = P + Pc × C = (I − Pc) +
Pc × C (shown)

The control qubits are q3 and q0. Both are positive controls. The pass–

through term, P , according to equation 4.5.9 is the summation of all diagonal

functions with q3 and q0 set to non-active state combinations (i.e., q3 and q0

can’t both be |1〉):

P = D0000 + D0001 + D0010 + · · ·+ D1110 (4.5.14)

Using equation 4.5.10, Pc becomes the sum of diagonal functions when both

q0 and q2 are |1〉. That is,

Pc = D1001 + D1011 + · · ·+ D1111 (4.5.15)
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Continuing with our example, we can greatly simplify the equation for P

and Pc to

P = D0xx0 + D0xx1 + D1xx0 (4.5.16)

= D0 ⊗ I ⊗ I ⊗D0 +D0 ⊗ I ⊗ I ⊗D1 +D1 ⊗ I ⊗ I ⊗D0

= D0 ⊗ I ⊗ I ⊗ (D0 +D1) +D1 ⊗ I ⊗ I ⊗D0

= D0 ⊗ I ⊗ I ⊗ I +D1 ⊗ I ⊗ I ⊗D0 (4.5.17)

Pc = D1xx1 (4.5.18)

= D1 ⊗ I ⊗ I ⊗D1 (4.5.19)

Lastly, the C term is generated directly from equation 4.5.11 or quite easily

by hand as the Kronecker product

C = I ⊗ A⊗ I ⊗ I (4.5.20)

Rolling it all up using equation 4.5.8 and using our simplified Kronecker

product notation (namely, A⊗B = AB), we get:

S = D0III +D1IID0 + (D1IID1)× (IAII) (4.5.21)

= D0III +D1IID0 + (D1AID1) (4.5.22)

As a side-note, if we wanted to use equation 4.5.13 and went back and

calculated P as I − Pc, we would have had P = IIII − D1IID1. It’s not

directly obvious that this is equivalent to equation 4.5.14. However, because

130



I = D0 + D1, we can expand IIII into D0III + D1III and even further to

create D0III +D1IID0 +D1IID1. Then, we see the D1IID1 term is canceled

and we’re left with equation 4.5.14.

Using our method, we would arrive at the same solution above.

Theorem 4.5.4 The unitary matrix, U , describing the operation of a quantum

computer can be described as matrix products of canonical slice equations.

According to theorem 4.2.1, any unitary matrix can be divided into multiple

slices. After sufficient decompositions, we’ll be left single gate slices which can

be algebraically modeled by our canonical expression, that is, S = P + Pc × C

or S = I − Pc + Pc × C. We can then matrix multiply our slices to form U .

That is, if U was decomposed into L slices,

U =
1∏
i=L

Si = SL × SL−1 × · · · × S1 (4.5.23)

4.6 Creating the Method

To show that the method is general, we need to show that it is equivalent to

the canonical form we defined in the previous section. We’ll first show how the

definitions of a logic slice can be made equivalent, and then show how the terms

themselves derived from STEP 2 and STEP 3 implement equation 4.5.8.

We had stipulated that the method works on what we call a method legal

slice. In our canonical representation, we had more stringent criteria for a

slice. The only difference is that in the canonical slice, we only allowed a single

gate. Whereas, a method legal slice can have more than one gate as long as

they all shared the same control nodes. The extension is perfectly legal in

the canonical case since the true requirement is that – according to our rules
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for partial identity matrices – Pc and P are complements and Pc and C are

independent. If we introduce another control gate which shares the same qubits

for control, we can essentially treat it as a single multi–input gate, even if it

doesn’t operate on qubits that are next to each other. Visually this doesn’t look

appealing, but mathematically it works.

We’ll illustrate this with an example as shown in figure 4.8. The slice S is

q2 G1 G1

q1 • = • × •

q0 G2 G2

S S1 S2

Figure 4.8: Method legal slice versus canonical slice: S = S2 × S1 = S1 × S2

a method legal slice where using our method we’ll quickly find the algebraic

equation to be S = I ⊗D0 ⊗ I +G1 ⊗ I ⊗G2. We use theorem 4.2.1 to create

S1 and S2 which are legal for our canonical representation. We’ll note that P

for both S1 and S2 is the same with P = I ⊗ D0 ⊗ I. Also, Pc is the same

for S1 and S2 with Pc = I ⊗D1 ⊗ I. Lastly, C for S1 equals C1 = G1 ⊗ I ⊗ I

and C for S2 equals C2 = I ⊗ I ⊗ G2. It can be easily shown that S2 × S1 =

(P+Pc×C2)×(P+Pc×C1) = S. Therefore, because C1 and C2 are independent

and share the same control nodes — meaning, Pc and P are the same — we can

extend the canonical representation to include slices with multiple gates.

In STEP 1 we identify the number of terms in as N + 1 if N is the number

of control nodes. The first N terms come directly from lemma 3 which states

that P has the same number of terms as control nodes. The last N + 1 term

comes from lemma 2 which shows that Pc can be reduced to a single term. In

which case, the product Pc × C then becomes a single term. This is how we
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derived STEP 1.

In STEP 2 we begin defining our first N terms. After working out a few

examples it becomes quite evident that we are solving for P as defined in equa-

tion 4.5.9 and using the optimized form as proposed in lemma 3. The method

asks us to reference table 4.1 which is essentially the same as table 4.2 used

for lemma 3. That said, if we knew Pc, we could replace STEP 2 with I − Pc

according to equation 4.5.13. This would be advantageous if we have more than

two control nodes in a slice.

In STEP 3, we are defining the last term which we will realize is equivalent

to Pc × C. According to the definition of Pc in equation 4.5.10, we have an

identity term wherever there is a gate or a wire. Because of lemma 1, wherever

Pc has an identity term, there is a corresponding identity term or gate term in

C. This is implemented in STEP 3, rule 2. The D1 terms (or D0 for negative

controls) in the Pc are implemented in STEP 3 by rule 3.

Remaining is the handling of non–controlled gates. Our canonical represen-

tation explicitly places such gates in a slice of their own. However, our method

conveniently incorporates them into STEP 2 and STEP 3. The extension to

the canonical method is also quite easy. If we had a slice, S, that is legal

for our canonical method and we add a non–controlled gate which is indepen-

dent with the slice (that is, Gu doesn’t operate on qubits used for controls or

controlled gates), then we can express it as S ′ = S × (I ⊗ · · ·Gu · · · ⊗ I) =

(P +Pc×C)× (I ⊗ · · ·Gu · · · ⊗ I). This also means Gu is independent with P ,

Pc, and C. We take advantage of this property in the method where replacing

qubit terms with non–controlled gate matrices in both STEP 2 and STEP 3 is

the same as the result of multiplying the slice without the non–controlled gate
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with a slice with only the non–controlled gate.

4.7 Examples

q4 •

q3 X

q2 •
q1 •

U1

q0 H

_ _ _�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

_ _ _

Figure 4.9: The quantum circuit for Example 1.

Example 1: Consider the single slice quantum circuit shown in Figure 4.9

which has 3 control nodes on qubits 4, 2, and 1, and therefore its expression

will have 4 terms. We also note that this slice meets our requirement that all

control nodes are connected to the same controlled-gates. In this case, all 3

control nodes connect to X on qubit 3.

We can easily apply rules 1 and 2 from STEP 2 by substituting X for I in

qubit 3’s position, and H for itself (since it is un-controlled) in qubit 0’s position

for the first 3 terms. This gives us our first glimpse of our algebraic expression

below.

S = # I # # H︸ ︷︷ ︸ + # I # # H︸ ︷︷ ︸ + # I # # H︸ ︷︷ ︸ + # # # # #︸ ︷︷ ︸
T1 T2 T3 T4

Applying STEP 2 is more methodical and the process becomes quite easy

after a few examples. We begin with the first term and we can use table 1 to

substitute the #’s or we can work it out by hand. The process for this example
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is as follows:

• TERM 1: The highest order control node is q4 so we replace the # in

qubit 4’s position with D0. The rest of the control nodes will be repre-

sented by I.

• TERM 2: We promote qubit 4 from D0 to D1. The next highest control

node is on q2 so we set it to D0. The remaining control node on q1 remains

I.

• TERM 3: Nothing is done to q4 since it remains D1. The control node

on q2 is promoted from D0 to D1, and finally we can promote q1 to D0.

After the above steps, our new equation becomes:

S = D0 I I I H + D1 ID0 I H + D1 ID1D0 H + # # # # #

Lastly, applying STEP 3 is the final and easiest step. In the last term, all

gates are represented by themselves and all control nodes are fully promoted to

D1. Thus leaving us the final equation for our slice, S, and since this is a single

slice circuit, U = S. Therefore,

U = D0 I I I H + D1 ID0 I H + D1 ID1D0 H + D1 XD1D1 H

The 32 × 32 unitary matrix, U , is constructed by performing the indicated

Kronecker products followed by the matrix summations. It is also of interest

to show that this equation can be simplified to a parallel combination of the

controlled logic depicted as U1 in figure 4.9 and the Hadamard gate:
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U = (D0 I I I + D1 ID0 I + D1 ID1D0 + D1 XD1D1) H

= U1H

q2 ��������
q1 •

q0 H

Figure 4.10: The quantum circuit for Example 2. The open circle is the negative
control.

Example 2: Figure 4.10 shows a quantum circuit with a negative and a pos-

itive control node. The procedure described above is only slightly changed to

handle negative control nodes. Referring to Table 1, the # symbols are initially

replaced by D0, but in subsequent terms the D0 is promoted to D1. This order

is reversed for negative controls. That is, the replacement starts with D1 but in

subsequent terms D1 is promoted to D0. The replacements for positive controls

are the same as before.

U = D1 I I + D0 D0 I + D0 D1 H

q1 • Z

q0 Z ⇒ •

Figure 4.11: The quantum circuit for Example 3.

Example 3: This example applies our method to a well-known equivalent

circuit pair. The LHS expression is
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D0I + D1Z

while the RHS expression is

ID0 + ZD1

Using the properties I = D0 +D1 and Z = D0−D1, the RHS can be expanded

to

(D0 +D1)D0 + (D0 −D1)D1

Further expanding yields

D0D0 +D1D0 +D0D1 −D1D1

Collecting terms 1 and 3 together and terms 2 and 4 together, we get

D0(D0 +D1) +D1(D0 −D1)

Which simplifies to the RHS

D0I +D1Z

Example 4: This last example shows how to handle multi-input quantum

gates. Our rules (specifically #2) are general enough to cover this situation.

Since there is only 1 control node the equation has only two terms. The con-

trolled gate B is a 2 qubit gate and will thus be replaced by II in the first term

and by itself in the second term. The algebraic expression for the quantum
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q4

B
q3

q2 •
q1

q0 H

Figure 4.12: Quantum circuit for Example 4.

circuit of Figure 4.12 is

U = I ID0 I H + BD1 I H

You’ll note that the final equation is indeed a 5 qubit unitary gate.

4.8 Extension to Multi–valued Logic

In multi–valued quantum logic [71], qubits are replaced by more general qudits.

A single n–logic qudit gate is represented by an n× n matrix. Without diving

into too much detail, our method can be naturally extended to handle multi–

value logic by introducing more D–terms. Whereas for binary quantum logic we

had only two 2× 2 D–terms (D0 and D1), in n–value logic we have n D–terms

(D0, D1, . . . , Dn−1) of dimension n × n. For example, if we have tertiary logic

(using so–called qutrits), then we have three 3× 3 D–terms:

D0 =


1 0 0

0 0 0

0 0 0

 , D1 =


0 0 0

0 1 0

0 0 0

 , D2 =


0 0 0

0 0 0

0 0 1


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Our method and canonical representations still apply. As an example, we can

derive the expression for the generalized n–logic two–qudit controlled gate shown

in figure 4.13. In this example, the gate, G, is activated when qudit q1 is asserted

q1
?> =<89 :;|m〉

q0 G

Figure 4.13: Generalized two–qudit controlled gate example

to the state |m〉, where m is one of the n logic states: 0, 1, . . . , or n − 1.

The equation for this circuit is best represented using our alternative canonical

representation from equation 4.5.13:

U = I ⊗ I −Dm ⊗ I +Dm ⊗G (4.8.1)
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Chapter 5

Evolving Unitary Operators

Recent work has shown that evolutionary algorithms can be effectively used to

help design quantum computers. For example, genetic algorithms have been

used for gate-level synthesis of a quantum computer[43]. However, we take a

different approach by using an Evolution Strategy — or ES — as described in

section 2.3.2 to directly evolve unitary operators which represent solutions to

problem instances.

An ES represents individuals as a vector of real values. In particular, the

genotype has the structure: < x1, x2, . . . , xn, σ1, σ2, . . . , σn >, where the first

set, {x}, are the object parameters and the second set, {σ}, are the strategy

parameters. The object parameters are the basic parameters needed to define

the individual. In our case, the φ, ψ, and χ angles used in our random unitary

matrix method described in section

The initial state of the quantum system is represented by an N -element
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column vector, which has an initial state

|ψ0〉 =
1√
N



1

1

...

1


(5.0.1)

This particular initialization indicates the initial state of the quantum system

is a linear superposition of all possible states with equal probability. Once the

unitary operator (U) is constructed, the operation

U |ψ0〉 = |ψ〉 (5.0.2)

produces |ψ〉, which is the result of the quantum computation which the evolved

U described. Each individual in the ES represents a unique operator U .

The fitness of an individual can be calculated depending on whether our tar-

get vector is a pre-measurement or post-measurement state. Pre-measurement

uses the complex state vector (|ψ〉) produced by equation (5.0.2) whereas post-

measurement refers to the final (or classical) real-valued state the quantum

system collapses to after an observation is taken. The output state is inter-

preted as probability distribution. The probability distribution vector is the

modulus-squared of the state vector (|ψ|2) which can be compared to a target

probability distribution vector.

Given an individual with unitary operator U , an initial state vector |ψ0〉 and
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a target final state vector |ψ′〉, fitness is calculated with the function

fitness(U) =
N−1∑

0

1

(|ci|2 − |c′i|2)2 + ε
(5.0.3)

Where ci is the ith complex component in the resultant state vector as described

in equation (5.0.2) and c′i is the ith complex element in the target state vec-

tor. The fitness equation above is an example of using probability distribution

method since it involves the modulus-squared of complex elements. When de-

signing quantum gates or other sub-circuits, the complex behavior is important

so using a pre-measurement type fitness function would be more appropriate.

5.1 Constructing the ES

The construction of the ES is a signification portion of our research and provided

much of the data and learnings. In this section we’ll go into the details about

the actual ES.

There are a number of parameters to consider when designing an ES to

obtain near–optimal results. For example,

1. (µ+ λ) or (µ, λ)?

2. The size µ and λ.

3. Initial and reset values of strategy parameters ({σ}).

4. Balance between probability of Mutation and Recombination.

5. Convergence Behavior.

6. Best Convergence.
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We will also cover enhancement decisions in the ES — examples being the

choice of fitness function, probabilistic versus complex targets, handling multiple

input/output pairs, hybrid–algorithms, and tweaks to the algorithm such as

rounding angles — all in the hope to get better convergence behavior. Of course,

as much as we would like a one–size–fits–all solution, it is understandable that

certain problem families benefited from certain ES configurations and not for

others. For example, single and two qubit problems converged very quickly and

had a weak dependence to many parameters. Whereas, large qubit problems

(which for us, is on the order of 4 or 5 qubits) would not converge without

significant tweaking of the parameters.

The high–level flow diagram is shown in figure 5.1. We will often refer to

the “Best” individual as the current most fit individual for a given run and the

“Very Best” individual as the most fit individual over all runs. We now take

a closer glance at the mutation/recombination and fitness calculation steps as

these are special to our ES implementation.

5.1.1 Representation of an Individual

We refer back to section 3.2 which describes how to generate random unitary

matrices and specifically equation 3.2.4 which we restate here:

U = E1E2E3...EN−1 (5.1.1)

Using this method to generate an N = 2 (that is, single qubit) matrix results
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Figure 5.1: ES Flow Chart
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in the following symbolic matrix:

 cos(φ1,2)eiψ1,2 sin(φ1,2)eiχ1,2

− sin(φ1,2)e−iχ1,2 cos(φ1,2)e−iψ1,2

 (5.1.2)

After–which, larger qubit matrices start to dramatically increase in com-

plexity. For example, we’ll show the two–qubit symbolic matrix here but we

need to define each of its 4 × 4 elements in a vertical list as writing out the

matrix in standard form is too difficult due to the large terms for each element.

Therefore, we define the unitary matrix using U [row][col] notation:
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U [0][0] =

(((((cos(φ1,2)eiψ1,2 ) cos(φ1,3)eiψ1,3 + ((sin(φ1,2)eiχ1,2 sin(φ2,3)−

sin(φ1,3)e−iχ1,3 ))) cos(φ1,4)eiψ1,4+

(((((sin(φ1,2)eiχ1,2 cos(φ2,3)eiψ2,3 ))) sin(φ2,4)+

((((cos(φ1,2)eiψ1,2 ) sin(φ1,3)eiχ1,3+

((sin(φ1,2)eiχ1,2 sin(φ2,3)) cos(φ1,3)e−iψ1,3 ) sin(φ3,4)) cos(φ2,4)e−iψ2,4−

sin(φ1,4)e−iχ1,4 )

U [0][1] =

(((((sin(φ1,2)eiχ1,2 cos(φ2,3)eiψ2,3 ))) cos(φ2,4)eiψ2,4+

((((cos(φ1,2)eiψ1,2 ) sin(φ1,3)eiχ1,3+

((sin(φ1,2)eiχ1,2 sin(φ2,3)) cos(φ1,3)e−iψ1,3 ) sin(φ3,4)− sin(φ2,4)))

U [0][2] =
(((((cos(φ1,2)eiψ1,2 ) sin(φ1,3)eiχ1,3+

((sin(φ1,2)eiχ1,2 sin(φ2,3)) cos(φ1,3)e−iψ1,3 ) cos(φ3,4)eiψ3,4 )))

U [0][3] =

(((((cos(φ1,2)eiψ1,2 ) cos(φ1,3)eiψ1,3 + ((sin(φ1,2)eiχ1,2 sin(φ2,3)−

sin(φ1,3)e−iχ1,3 ))) sin(φ1,4)eiχ1,4+

(((((sin(φ1,2)eiχ1,2 cos(φ2,3)eiψ2,3 ))) sin(φ2,4)+

((((cos(φ1,2)eiψ1,2 ) sin(φ1,3)eiχ1,3+

((sin(φ1,2)eiχ1,2 sin(φ2,3)) cos(φ1,3)e−iψ1,3 ) sin(φ3,4))

cos(φ2,4)e−iψ2,4 ) cos(φ1,4)e−iψ1,4 )

U [1][0] =

(((((− sin(φ1,2)e−iχ1,2 ) cos(φ1,3)eiψ1,3+

((cos(φ1,2)e−iψ1,2 sin(φ2,3)−

sin(φ1,3)e−iχ1,3 ))) cos(φ1,4)eiψ1,4+

(((((cos(φ1,2)e−iψ1,2 cos(φ2,3)eiψ2,3 ))) sin(φ2,4)+

((((− sin(φ1,2)e−iχ1,2 ) sin(φ1,3)eiχ1,3+

((cos(φ1,2)e−iψ1,2 sin(φ2,3)) cos(φ1,3)e−iψ1,3 ) sin(φ3,4)) cos(φ2,4)e−iψ2,4−

sin(φ1,4)e−iχ1,4 )

U [1][1] =

(((((cos(φ1,2)e−iψ1,2 cos(φ2,3)eiψ2,3 ))) cos(φ2,4)eiψ2,4+

((((− sin(φ1,2)e−iχ1,2 ) sin(φ1,3)eiχ1,3+

((cos(φ1,2)e−iψ1,2 sin(φ2,3)) cos(φ1,3)e−iψ1,3 ) sin(φ3,4)− sin(φ2,4)))

U [1][2] =
(((((− sin(φ1,2)e−iχ1,2 ) sin(φ1,3)eiχ1,3+

((cos(φ1,2)e−iψ1,2 sin(φ2,3)) cos(φ1,3)e−iψ1,3 ) cos(φ3,4)eiψ3,4 )))

U [1][3] =

(((((− sin(φ1,2)e−iχ1,2 ) cos(φ1,3)eiψ1,3 + ((cos(φ1,2)e−iψ1,2 sin(φ2,3)−

sin(φ1,3)e−iχ1,3 ))) sin(φ1,4)eiχ1,4+

(((((cos(φ1,2)e−iψ1,2 cos(φ2,3)eiψ2,3 ))) sin(φ2,4)+

((((− sin(φ1,2)e−iχ1,2 ) sin(φ1,3)eiχ1,3+

((cos(φ1,2)e−iψ1,2 sin(φ2,3)) cos(φ1,3)e−iψ1,3 )

sin(φ3,4)) cos(φ2,4)e−iψ2,4 ) cos(φ1,4)e−iψ1,4 )
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U [2][0] =

(((((cos(φ2,3)e−iψ2,3−

sin(φ1,3)e−iχ1,3 ))) cos(φ1,4)eiψ1,4+

(((((− sin(φ2,3)))) sin(φ2,4)+

((((cos(φ2,3)e−iψ2,3 ) cos(φ1,3)e−iψ1,3 ) sin(φ3,4)) cos(φ2,4)e−iψ2,4−

sin(φ1,4)e−iχ1,4 )

U [2][1] =

(((((− sin(φ2,3)))) cos(φ2,4)eiψ2,4+

((((cos(φ2,3)e−iψ2,3 ) cos(φ1,3)e−iψ1,3 ) sin(φ3,4)−

sin(φ2,4)))

U [2][2] = (((((cos(φ2,3)e−iψ2,3 ) cos(φ1,3)e−iψ1,3 ) cos(φ3,4)eiψ3,4 )))

U [2][3] =

(((((cos(φ2,3)e−iψ2,3−

sin(φ1,3)e−iχ1,3 ))) sin(φ1,4)eiχ1,4+

(((((− sin(φ2,3)))) sin(φ2,4)+

((((cos(φ2,3)e−iψ2,3 ) cos(φ1,3)e−iψ1,3 ) sin(φ3,4))

cos(φ2,4)e−iψ2,4 ) cos(φ1,4)e−iψ1,4 )

U [3][0] =
(((cos(φ3,4)e−iψ3,4 ) cos(φ2,4)e−iψ2,4−

sin(φ1,4)e−iχ1,4 )

U [3][1] =
(((cos(φ3,4)e−iψ3,4−

sin(φ2,4)))

U [3][2] = (((− sin(φ3,4))))

U [3][3] = (((cos(φ3,4)e−iψ3,4 ) cos(φ2,4)e−iψ2,4 ) cos(φ1,4)e−iψ1,4 )
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Although many terms zero–out during the matrix multiplication process,

we see that the symbolic equations become quite cumbersome even for a mod-

erately sized matrix. It becomes quite obvious that the calculation must be

done iteratively and that pre–simplification (that is, having a pre–determined

symbolic representation of the matrix) is out of the question.

Now we refer back to section 2.3.2 which describes Evolution Strategies

which is the method we’ve used to evolve quantum operators. In particular,

we’re using the multi–strategy parameter method where we have a strategy

parameter for each object parameter. Recall the generic representation for the

multi–strategy parameter case is as defined in equation 5.1.3:

〈~x, ~σ〉 = 〈x0, . . . , xn, σ0, . . . , σn〉 (5.1.3)

Our angles used in the random unitary matrix method will be our object

parameters for our ES representation. For an N × N matrix, we’ll need (N −

1)N/2 φ angles, (N − 1)N/2 ψ angles, and N − 1 χ angles giving us a total

of N2 − 1 angles. Therefore, we will have N2 − 1 object parameters and N2 −

1 strategy parameters. This means the representation for our individual has

2N2−2 parameters total where N = 2qubits. This is definitely a lot and higher

qubits will create a very large configuration space for our ES to search.

To demonstrate this, we look at the general angle requirements for an N×N

matrix:

{ψ} = {ψ1,2, . . . , ψ1,N , ψ2,3, ψ3,4, . . . , ψN−1,N} = (N − 1)N/2 angles

{φ} = {φ1,2, . . . , φ1,N , ψ2,3, φ3,4, . . . , φN−1,N} = (N − 1)N/2 angles

{χ} = {χ1,2, χ1,3, χ1,4, . . . , χ1,N} = N − 1 angles

As an example, let’s investigate the single qubit representation. The list of
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angles is fairly small since N = 2 for one qubit. Therefore, we need one of each

angle as shown in equation 5.1.2 and are listed below:

ψ = ψ1,2

φ = φ1,2

χ = χ1,2

To verify, when N = 2, we indeed have a total of three (N2−1 = (2)2−1 = 3)

angles.

Therefore, the final representation of a single qubit individual is done using

the following structure:

〈~x, ~σ〉 = 〈ψ1,2, φ1,2, χ1,2, σψ1,2, σφ1,2, σχ1,2〉 (5.1.4)

As another example, the 2 qubit case would have 24 − 1 = 15 angle param-

eters along with an additional 15 strategy parameters. The list of angles would

be:

ψ = ψ1,2, ψ1,3, ψ1,4, ψ2,3, ψ2,4, ψ3,4

φ = φ1,2, φ1,3, φ1,4, φ2,3, φ2,4, φ3,4

χ = χ1,2, χ1,3, χ1,4

As can be seen for larger quantum operators, the number of angles scale

with the size of the matrix. For example, an 8 qubit quantum operator would

be specified with a 256 × 256 matrix and have 65535 angle parameters along

with another 65535 strategy parameters yielding a representation vector with

over 131 thousand floating–point elements.
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5.2 Optimizing the ES Parameters

We now go through the exercise of adjusting the parameters of our ES so that we

can have the best possible convergence behavior across many different problem

sizes. We break this down into a few different sections. The study break is

listed below:

• STUDY 1: µ and λ for (µ+ λ) and (µ, λ) schemes.

• STUDY 2: Mutation and Recombination.

• STUDY 3: Probabilistic versus Complex Targets.

• STUDY 4: Initial and Reset σ.

• STUDY 5: Fitness Calculation Methods.

For these studies, the ES was configured to evolve a unitary operator whose

input vector, |ψ0〉 is the equal superposition state as shown in equation 5.0.1.

The target output state is “state–0”, or |00 . . . 0〉. Another way of showing this

is that we are evolving U to meet the following equation:



u00 u01 u02 · · ·

u10 u11 u12 · · ·

u20 u22 u22 · · ·
...

...
...

. . .


1√
N



1

1

1

...


=



1

0

0

...


(5.2.1)

We determine a target which can either be a fitness value as determined

by a fitness function such as 5.0.3, or, we look at how closely the target state

|00 . . . 0〉 is met by looking at the probability distribution. For example, if we

set the target at 70%, then we say the ES has achieved a solution if in the
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probability distribution, the first element, c0, has a mod–squared value (that

is,|c0|2) of ≥ 70%.

5.2.1 Parent and Offspring Size Selection

In this study we look at how the size of the parent and child population impacts

the performance of the ES. The number of parents is defined by µ and the

number of offspring is defined by λ. We also look at the two primary ES

schemes of using (µ + λ) where survivor selection includes individuals from

both the offspring and parent pools, as well as (µ, λ) where only the offspring

are used for survivor selection.

In general, we want the population to be as small as possible. This is because

there is a computation overhead for each individual which translates into run–

time. On the other hand, we want fast convergence in terms of number of

generations required to hit the target fitness.

For this study we only concentrate on the larger qubit studies which encom-

pass the 4 and 5 qubit simulations. This is primarily because these are indicative

of the more complex convergence problems and the lower qubit problems are

somewhat insensitive to these parameters.

The previous graphs in figures 5.2, 5.3, and 5.4, show how µ and λ selection

impacts specific configurations. In the case, these configurations used (µ + λ)

mode and a probabilistic target vector.

Our inclination is to favor the cases where µ = 10. In both the 4 and 5 qubit

cases, it achieves the best convergence. Logically, as we increase the number of

children, the number of generations to target is reduced. However, this comes

at a computation time cost. The µ = 10 curves appear to taper off around
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Figure 5.2: µ vs. λ, 4 Qubits, (µ+ λ), Probabilistic, 70% Target

Figure 5.3: µ vs. λ, 4 Qubits, (µ+ λ), Probabilistic, 99% Target

Figure 5.4: µ vs. λ, 5 Qubits, (µ+ λ), Probabilistic, 70% Target
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Figure 5.5: µ vs. λ, 4 Qubits, Average over all runs

Figure 5.6: µ vs. λ, 5 Qubits, Average over all runs

λ = 500.

To further verify this assumption, we look at another couple of graphs in

figures 5.5 and 5.6. These graphs look at the cases we simulated whether it is

(µ + λ) or (µ, λ), or probabilistic vs. complex targets, or 70% vs. 99% fitness

targets, etc. In fact, this is averaged for all cases of λ. This was done on both

the 4 and 5 qubit cases to see if we can generalize our statement that a µ = 10

and λ = 500 configuration seems like a good configuration across the board.

Both graphs show that the average number of generations (that is, number

of generations until the target fitness was reached) seems most optimal at the

µ = 10 point.

We now examine if we should use (µ+ λ) or (µ, λ). As described in section
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Figure 5.7: Comparison of (µ, λ) to (µ+ λ) for 3, 4, and 5 qubits

2.3.2, there are advantages and disadvantages to each. The graph in figure 5.7

shows the average over all runs for 3, 4, and 5 qubits when either using (µ+ λ)

or (µ, λ). There is a clear advantage of using (µ+ λ).

At the end of this study we now have our optimum configuration going

forward of using a (10 + 500) ES. The next study will focus on the comparison

between using a complex versus a probabilistic target vector.

5.2.2 Mutation and Recombination

Although Evolution Strategies are typically driven primarily by mutation, re-

combination is also a fundamental feature that can be used. In this study we

examine the pros and cons of using recombination.

We selected a (15+100) ES with a probabilistic target vector of |00 . . . 0〉 for

this study and implemented recombination in the ES. Recombination has two

modes: Intermediate and Discrete. As described in section 2.3.2, intermediate

recombination is when the allele is the resultant average of multiple parents.

In discrete recombination, the allele value is chosen as a copy from only one of

many potential parents.

Two different fitness targets are attempted: 70% and 90%. We only look at
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two to five qubits. We are interested if there is a good mixture of mutation and

recombination and so we varied the probability of mutation from 25% to 100%.

The probability of recombination — that is, the probability that an allele will be

recombined — was varied from 1% to 50%. Typically, mutation and recombina-

tion are mutually exclusive. An allele is either mutated or recombined but not

both. Therefore, when the probability of mutation is 100%, no recombination

occurs. Also for this study, we set the number of parents to two individuals.

Preliminary data indicated that recombination did not improve the results,

and in fact, appeared to cause diverge behavior. It wasn’t until a detailed

investigation actually revealed pockets of highly optimal configurations where

adding recombination actually resulted in more fit solutions. In this section we

present a few of the many graphs showing our journey.

At this point we reference figure 5.8 which shows the sweep over all simu-

lations and highlights the number of generations, the probability of mutation,

and overlaps the recombination mode. A recombination mode of 0 is the dis-

crete mode and a value of 1 is an intermediate mode. We note the circled areas

around 50% and 75% mutation where we show better convergence than at 100%

converge (which is at the far right of the graph). These are sweet–spots and

deserve more investigation. There are a couple at the 50% mark, one in the

discrete mode and the other in the intermediate mode. The 70% sweet–spot

is in the discrete mode. The best solution used 50% mutation in the discrete

mode.

We carried this similar examination to 4 qubits in figure 5.9. Although there

are many configurations as good or better than 100% mutation, it appears to

be insignificant with no outstanding result. However, in figure 5.10 we set the

155



Figure 5.8: 5 Qubit Mutation/Recombination Sweep at 70% Target

Figure 5.9: 4 Qubit Mutation/Recombination Sweep at 70% Target

target to 90% to push the ES further. Here we see many distinct pockets of

highly optimal configurations such as at 25% and 75% mutation with discrete

mode.

To dig deeper, we look at specific mutation/recombination configurations

which we label in a “% Mutation / % Recombination” format and look at 3,

4, and 5 qubit results shown in figures 5.11 through 5.13. The final bar to the

right is the 100% mutation case.

The clear configuration is in the 5 qubit case in figure 5.11 where we have

a 50/50 (that is, 50% mutation and 50% recombination configuration. Here,

we converge in 18 generations! Compared to the 73 generations with 100%

mutation, this is phenomenal.
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Figure 5.10: 4 Qubit Mutation/Recombination Sweep at 90% Target

Figure 5.11: 5 qubit recombination versus 100% mutation

Figure 5.12: 4 qubit recombination versus 100% mutation

Figure 5.13: 3 qubit recombination versus 100% mutation
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Figure 5.14: Best case 50% Mutation for 70% Target

As a final analysis of the benefits of recombination, we examine the best case

results. That is, we look at what was the best simulation where 50% mutation

was used and any amount of recombination. We compare that to the best 100%

mutation case.

Figures 5.14 and 5.15 summarize the results for the 70% and 90% target

cases, respectively. We also break–down the difference between discrete and

recombination mode. These figures also indicate that intermediate mode had

better convergence behavior for 90% targets. However, in the 70% case, discrete

and intermediate yield about the same performance except for the 5 qubit case

where discrete had a substantial advantage. Unfortunately, we were unable to

converge within 1000 generations on the 5 qubit simulations with a 90% target.

The conclusion of this study is that 100% mutation is a good all–around

158



Figure 5.15: Best case 50% Mutation for 90% Target

configuration, yielding very good convergence. However, more optimal behavior

can be found by adding recombination although it doesn’t have as good of a

“one–size–fits–all” nature as 100% mutation. The incredible advantage of the

50/50 case over the 100% case for 5 qubits should definitely prompt one to

investigate the benefits of recombination.

5.2.3 Using a Complex versus Probabilistic Target Vector

The choice of whether to use a probabilistic (post–measurement) versus a com-

plex (pre–measurement) target vector may depend on the particular type of

quantum operator desired. For example, in many cases you want the complex

behavior and in other cases it doesn’t matter because the type of gate we want

is actually implementing a measurement. Therefore, this study does not intend
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Figure 5.16: Probability vs. Complex Target for 3/4/5 Qubit (10+500) ES

to demonstrate which is better, but how their convergence properties compare.

Our intuition tells us that there should be a clear advantage of using a

probabilistic target vector. By taking the mod–squared of the complex target,

we essentially create more solutions for the same size state space. For example,

if the complex result is a −1 and the target is 1, then we match. Obviously,

this is not the case for pre–measurement.

Surprisingly, the graph in figure 5.16 shows us that for our (10, 500) ES, the

advantage of using a post–measurement target is not that significant. Although

it is a clear win for 4 qubit runs, 3 qubit and even 5 qubit runs didn’t find a

huge advantage. The average final target fitness was also mildly better in the 4

and 5 qubit cases when in the probability mode.

5.2.4 Initial and Reset σ Value

As described in section 2.3.2, the σ parameters represent the step–sizes for

adjusting the object parameters. When the strategy parameters become too

small, the object parameters will not change significantly enough to traverse

the solution space and the strategy parameters will not adapt. Thus, the ES

will no longer search that object parameter and we risk getting stuck in a highly
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Figure 5.17: Initial/Reset σ Sensitivity for a 2-5 Qubit (10+500) ES

non–optimal state.

When we initialize an individual, we give them an initial σ value. That is,

the initial value for the strategy parameters. We don’t want that value too

large or else we’ll never converge and we don’t want it too small or else we

will pre–maturely converge. A similar event occurs when we hit the boundary

condition.

In our ES, if we hit the boundary, we reset to the initial σ value. Thus, our

reset and initial σ is the same value. Therefore, in this study, we present a series

of results of simulations where the value of the reset/init σ has been varied and

compare convergence behavior.

Simulations were run on 2, 3, 4, and 5 qubit systems with an initial/reset σ

varying from 0.1 to 1.5. The graph in figure 5.17 shows that lower values of σ

are desirable in all cases. The 4 qubit oddity with convergence time increasing

until σ = 1.2 then going down again is definitely interesting. However, the 5

qubit case shows a clear desire to keep the low initial/reset σ value around 0.1

as even slightly higher and the 5 qubit runs never end up converging (this is

shown in the graph as hitting the 1000 generations mark which was the ES
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limit). Based on this study, we recommend using a small initial/reset σ of 0.1.

5.2.5 Fitness Calculation Methods

The fitness function is important in any stochastic solution space searching

paradigm. We gave an overview of the fitness function used in our ES at the

beginning of this chapter. We recall the fitness equation used:

fitness(U) =
N−1∑

0

1

(|ci|2 − |c′i|2)2 + ε
(5.2.2)

Equation 5.0.3 repeated above is used in the mode where the target of inter-

est is a probability distribution. Had we been interested in matching a desired

complex behavior (that is, the target state is a pre–measurement state using

complex values), then we would use equation 5.2.3 below:

fitness(U) =
N−1∑

0

1

(ci − c′i)2 + ε
(5.2.3)

We’ve already done a thorough comparison of the impact between the above

fitness equations in our Probabilistic versus Complex target study. However,

in this study we propose an alternative fitness function to 5.0.3 which uses the

fitness as the 1 over the sum of the errors rather than the sum of 1 over the

errors. This is noted in equation 5.2.4:

fitness(U) =
1

(
∑N−1

0 (|ci|2 − |c′i|2)2) + ε
(5.2.4)

The advantage of this equation is that a perfectly fit individual will always

have fitness = 1/ε. In our ES implementation, we use ε = 1. Therefore, in

equation 5.0.3, a perfectly fit individual has fitness = N and in equation 5.2.4
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it would be 1. The other driving force of this simplification is for the case of

multiple input and output vectors. In which case, further scaling of the fitness

to get it to be in a [0, 1] boundary is required.

It is not obvious which equation is better and so we use this as part of this

study. To get us started, we plot the fitness landscape for both equations 5.0.3

and 5.2.4 in figures 5.18 and 5.19, respectively. The x and y axes represent the

error for the c0 and c1 components (assumed real in this case) for the single

qubit state. The z axis represents the fitness value itself. The ideal solution is

at the center of the xy–place (0, 0). In our case, the original equation 5.0.3 is

not scaled so has a peak of z = 2. For the alternative fitness 5.2.4, the ideal

point has z = 1.

It is interesting to note that equation 5.0.3 has highly fit solutions extending

away from the origin (which is considered the perfect solution). Whereas, figure

5.19 shows the periphery is much more attenuated and focuses solutions into

the center. With our original fitness equation, the heightened fitness along the

x and y axes might encourage more individuals towards those points and then

slowly towards the center. However, if the slope of the fitness landscape along

those axes is not significant enough, it might make convergence time too long

to reach the center. In the case of equation 5.2.4, the attenuated peripheral

fitness slopes might inhibit outer individuals from finding the center solution,

but those near the solution (center) might find it easier to migrate to the exact

solution. So, both options have intuitive pros and cons.

We now look at some performance comparisons between the two functions.

For the purposes if our graphs, we’re calling our original function (5.0.3) “F0”

and our alternative fitness function (5.2.4) “F1”. The graphs in figures 5.20
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Figure 5.18: 1 Qubit Fitness Landscape plot for Fitness Equation 5.0.3

164



Figure 5.19: 1 Qubit Fitness Landscape plot for Fitness Equation 5.2.4
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Figure 5.20: Fitness comparison for 4 Qubit, Probabilistic, 70% Target ES

through 5.22 show how the fitness function performed while varying µ given a

constant number offspring (in this case, λ = 500).

Luckily, the results continue to emphasize that µ = 10 is the optimal number

of parents for our ES. However, it is a bit of a mixed–bag when it comes to

deciding which fitness function is better than the other. An average over all

the runs for a µ = 10 ES using both F0 and F1 fitness functions is shown in

figure 5.23. The data indicates there is a slight advantage using our original

function, F0 (that is, equation 5.0.3) which had slightly lower generations to

target fitness.

This concludes our study of an alternative fitness function and the results

indicate that while we understand the fitness function can have a large impact,

the benefit of EA’s in general is that even a fitness function with broad detail

can be sufficient to find good solutions.
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Figure 5.21: Fitness comparison for 4 Qubit, Probabilistic, 99% Target ES

Figure 5.22: Fitness comparison for 5 Qubit, Probabilistic, 70% Target ES
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Figure 5.23: Fitness comparison for 5 Qubit, Probabilistic, 70% Target ES

5.2.6 Training Behavior

In this study we take a sample from what we deem a very good configuration

and examine its training behavior — that is — when the operator is evolving,

how does its fitness vary over each generation? This will give us a feel if we

converge slowly and steadily or very rapidly in the beginning and taper off in

later generations.

For this study we take a (15 + 500) ES and examine its training behavior

using our standard input and target setup — that is — the input vector is the

superposition state and the output target is state–0 (|00 . . . 0〉). We’ve selected

our original fitness function in equation 5.0.3 and use probabilistic target. We

examine the behavior for 2 to 5 qubits under a relaxed 70% target as well as the

more stringent 99% target. We run the ES for 5 independent runs and graph

their behavior. We clarify that what is being tracked for the target is not the

result of the fitness function, but rather the percent probability that we are

hitting our target state. This is done by getting the probability distribution

from the evolving operator using the superposition input and then examining

the first state, |c0|2, which is targeting to be 100% if our target vector is |00 . . . 0〉.

We’ll start with our less constrained study where we use a 70% target prob-
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Figure 5.24: Best Individual per Generation, 5 Qubits, 70% Target

ability and reference the graphs in figures 5.24 to 5.27. What further loosens

the constraints is that we are using a probabilistic target vector. The first figure

is showing the 5 qubit behavior and we see that we have steady convergence

and within 30 generations we hit a solution with > 70% target probability. Re-

markably, the 2, 3, and 4 qubit graphs also have steady convergence behavior,

albeit short.

We now contrast the 70% target figures to the 99% target graphs shown in

figures 5.28 to 5.31. The 5 qubit runs clearly are not able to converge after 1000

generations (which was our maximum). There is tremendous initial convergence

within the first 50 generations to within the 85% to 90% range. However, we

quickly flatten out and never peak above 92%. The 4 qubit case is very similar by

having two of the runs achieve their target convergence within 50 generations.
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Figure 5.25: Best Individual per Generation, 4 Qubits, 70% Target

However, the two runs that don’t quite make the 99% continue to stay flat

through the 1000 generations.

The comparison is quite evident that considerable computational power is

needed to achieve the extra resolution. Even the considerably relatively easier

lower–qubit runs have 3 to 4 times the convergence time in terms of generations.

However, in quantum computing, it could very well be that 70% or some number

significantly lower than 100% is sufficient, and we see that we may become

quickly reliant on pushing on the target probability as low as acceptably possible

in order to achieve faster convergence on problems that will require many more

qubits to be useful.
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Figure 5.26: Best Individual per Generation, 3 Qubits, 70% Target

5.2.7 Best Convergence Results

In this section we’ll highlight the best convergence data discovered through the

ten–of–thousands of simulations we conducted and rolled up into the best of the

best results graph shown in figure 5.32.

The exponential behavior of the problem is evident. No solution was found

for 5 qubits at a 99% target fitness. However, the fact that we were able to

evolve 5 qubit solutions at 70% within 12 generations is simply staggering!

To scale beyond 5 qubits, however, is difficult without severe optimizations or

simplification to our random unitary matrix technique to both limit the number

of matrix multiplications and the number of angle parameters.
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Figure 5.27: Best Individual per Generation, 2 Qubits, 70% Target

5.2.8 Simulation Run–Time

The majority of the simulations were launched using Linux netbatch to a pool

of Dual and Quad–Core Xeon DP Servers with CPU frequencies ranging from

2.67GHz to 3.6GHz. The system memory ranged from 4GB to 16GB. Hyper-

threading was enabled on all processors. A summary of the simulation run–times

is presented in table 5.1 for only simulations with µ = 10 and λ = 500.

The memory requirements are quite small and statically allocated memory

for unitary matrices is used to increase matrix operations. In our ES, an indi-

vidual used 385KB of memory and so a population of 510 individuals consumed

191MB.

The run–time for higher qubits is obviously concerning. In the five qubit

case, the worst run–time is 128, 961 seconds which lasted for 1000 generations.
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Figure 5.28: Best Individual per Generation, 5 Qubits, 99% Target

This means each generation took around 129 seconds. The total population is

510 (10 parents and 500 offspring). Therefore, to process a single individual

took around a quarter of a second. That seems like a lot and the bulk of the

time is consumed in matrix multiplications. At 5 qubits the unitary operator

of an individual is a 32 × 32 matrix, which is 1K entries, each represented by

a double–precision tuple for the real and imaginary components. The method

of creating a random unitary matrix as described in section 3.2 requires O(22n)

angle parameters and O(2n(2n+1)
2

) matrix multiplications to produce the final

unitary matrix. At 5–qubits, that’s 528 32×32 complex double–precision matrix

calculations and 1024 angle parameters (plus another 1024 strategy parameters)

for the ES to mutate and/or recombine.

Figure 5.33 plots the average, minimum, and maximum run–times for various
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Figure 5.29: Best Individual per Generation, 4 Qubits, 99% Target

qubit, target fitness, and target mode configurations. The characteristic we pull

from these graphs is that — understandably — the average cases are closer to

the maximum curves indicating that our best cases — the minimum curves —

are indeed harder to find over a collection of runs. Also of interest is the obvious

difference in convergence behavior between 70% and 99% target fitness which

intuitively makes sense as valid solutions are much more difficult to find at this

target. This characteristic collapses at 4 and 5 qubits where simulations started

to hit the 1000 generation limit. The fact that the end point plot on the 99%

for the 5 qubit has the same min, max, and average value is because 5 qubit

plots failed to converge at 99% target fitness.
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Figure 5.30: Best Individual per Generation, 3 Qubits, 99% Target

5.3 Evolving Known Quantum Gates

We put our ES to the test by first attempting to evolve well known single qubit

operators such as the inverter (X gate), then two–input gates like CNOT, then

attempt three–input gates like the Toffoli and Fredkin.

We quickly run into a limitation of our chosen random unitary matrix scheme

described in section 3.2. Let’s revisit the symbolic equation for a 2 input oper-

ator:

U =

 cos(φ1,2)eiψ1,2 sin(φ1,2)eiχ1,2

− sin(φ1,2)e−iχ1,2 cos(φ1,2)e−iψ1,2

 (5.3.1)

If we disregard the ei... terms, then we have an anti–symmetric matrix (that

is, A = −AT ). This limits what types of gates we can evolve. With the
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Figure 5.31: Best Individual per Generation, 2 Qubits, 99% Target

Figure 5.32: Best Fitness Convergence for 70% and 99% Targets
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Figure 5.33: Average, Min, and Max Run–Times
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99% Target, Probability Mode
Qubits Avg Min Max

2 4.77265 3.166 6.6222
3 407.2967 22.1838 898.1082
4 5156.569 2820.702 8029.626
5 118722.187 105576.956 128961.87

99% Target, Complex Mode
2 8.9774 6.5688 13.7118
3 295.958 22.792 564.8346
4 5552.3015 3447.532 6839.278
5 109389.199 94558.166 126879.862

70% Target, Probability Mode
Qubits Avg Min Max

2 1.52195 1.0402 2.054
3 4.127 2.947 6.6964
4 48.2972 38.7018 72.3034
5 42497.74275 1928.152 100072.068

70% Target, Complex Mode
2 1.36265 0.7848 1.7294
3 4.4207 2.6048 7.8712
4 54.19695 49.488 62.6838
5 31170.49975 3257.319 60331.878

Table 5.1: Average, Min, and Max Run–Times (in seconds) for µ = 10, λ = 500
ES Simulations

complex terms and higher order matrices we are able to circumvent some of

these limitations. Usually, we’ll evolve equivalent matrices in terms of having

the same probability (or post–measurement) results.

Unless otherwise specified, we used a (100 + 100) ES using 100% mutation

and pre–measurement (complex) target vectors.
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5.3.1 Evolving the Hadamard Gate

The goal here is to see if an ES can evolve the well known and extremely useful

Hadamard quantum gate whose unitary matrix is shown below:

H =
1√
2

 1 1

1 −1

 (5.3.2)

This gate is extremely useful because it maps the basis states |0〉 and |1〉 into a

superposition of the two states with equal weight. That is,

|0〉 → (|0〉+ |1〉)/
√

2

and

|1〉 → (|0〉 − |1〉)/
√

2

To set this up for an ES, we need to use two initial states (input states) that

map to two final states (output states). The fitness is then averaged over both

inputs. Pre-measurement based targets are used since the primary interest is in

obtaining complex behavior. The ES produced the following input and target

vectors for the single qubit gate problem:

INPUT[0]=[[1.0+0.0i],[0.0+0.0i]]

TARGET[0]=[[0.707+0.0i],[0.707+0.0i]]

INPUT[1]=[[0.0+0.0i],[1.0+0.0i]]

TARGET[1]=[[0.707+0.0i],[-0.707+0.0i]]
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After 100 generations, the most fit individual has the unitary operator:

U =

 0.707 0.707

−0.707 0.707

 ≈ 1√
2

 1 1

−1 1

 (5.3.3)

This result differs from the unitary matrix of the Hadamard gate described in

equation (5.3.2). However, the probability distribution of this gate given each

input state vector behaves exactly the same as the Hadamard gate. That is,

|U |0〉 |2 = |H |0〉 |2 =

 50%

50%


and

|U |1〉 |2 = |H |1〉 |2 =

 50%

50%


Our random unitary matrix method is incapable of producing the standard

Hadamard gate. Nevertheless, the gate we evolved is still valid and turns out to

be a known gate called the “pseudo-Hadamard” which actually is preferred when

implementing quantum algorithms on Nuclear Magnetic Resonance quantum

computers[72]. This results shows an ES can evolve alternate gates that might

prove useful.

5.3.2 Evolving Known Single Qubit Gates

Single qubit gates use two input/output pairs when evolving individuals. Our

input vectors are the basis states |0〉 and |1〉. The two target output vectors are

found in the ES by applying the target operator onto each input vector. During

fitness evaluation, both input vectors are applied and the both output state
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vectors are compared to the target states (pre–measurement). The single–qubit

case is where we see more severe limitation from our random unitary matrix

method.

The Identity Gate, I

The matrix is the identity

I =

 1 0

0 1


The input/output mappings are defined as

INPUT[0]=[[1.0+0.0i],[0.0+0.0i]]

TARGET[0]=[[1.0+0.0i],[0.0+0.0i]]

INPUT[1]=[[0.0+0.0i],[1.0+0.0i]]

TARGET[1]=[[0.0+0.0i],[1.0+0.0i]]

It is trivial to evolve this gate.

The Inverter, X Gate

The X gate is defined by the matrix

X =

 0 1

1 0


The input/output mappings are defined as

INPUT[0]=[[1.0+0.0i],[0.0+0.0i]]

TARGET[0]=[[0.0+0.0i],[1.0+0.0i]]

INPUT[1]=[[0.0+0.0i],[1.0+0.0i]]
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TARGET[1]=[[1.0+0.0i],[0.0+0.0i]]

Within 3 generations the ES converged on the following solution which had

an 83% fitness

U =

 0 1

−1 0


It is noted that this is not the same as the X matrix, but does have the

same post–measurement effect of swapping the input and output state.

The Y Gate

The Y gate is defined by the matrix

I =

 0 −i

i 0


The input/output mappings are defined as

INPUT[0]=[[1.0+0.0i],[0.0+0.0i]]

TARGET[0]=[[0.0+0.0i],[0.0+1.0i]]

INPUT[1]=[[0.0+0.0i],[1.0+0.0i]]

TARGET[1]=[[0.0-1.0i],[0.0+0.0i]]

After 20 generations the fitness function peaked at 83% with the following

best solution

U =

 0 −i

−i 0


This is not the same as Y but the probability distribution is the same.
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The Z Gate

The Z gate is defined by the matrix

Z =

 1 0

0 −1


The input/output mappings are defined as

INPUT[0]=[[1.0+0.0i],[0.0+0.0i]]

TARGET[0]=[[1.0+0.0i],[0.0+0.0i]]

INPUT[1]=[[0.0+0.0i],[1.0+0.0i]]

TARGET[1]=[[0.0+0.0i],[-1.0+0.0i]]

After 2 generations the fitness function peaked at 83% with the following

best solution

U =

 1 0

0 1


This is actually the I gate and not the Z gate. Due to the limitations of

the random unitary matrix, the ES converged on this result which has the same

probabilistic behavior but not the same pre–measurement behavior.

The Phase Gate, S

The S gate is defined by the matrix

S =

 1 0

0 i


The input/output mappings are defined as
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INPUT[0]=[[1.0+0.0i],[0.0+0.0i]]

TARGET[0]=[[1.0+0.0i],[0.0+0.0i]]

INPUT[1]=[[0.0+0.0i],[1.0+0.0i]]

TARGET[1]=[[0.0+0.0i],[0.0+1.0i]]

After 2 generations the fitness function peaked at 85% with the following

best solution

U =

 1 0

0 1


Like the Z gate, the ES converged on the I gate instead.

5.3.3 2-qubit Oracle for Deutsch’s Problem

Deutsch presented a problem[23] for a quantum computer to determine whether

a given function, f(x), was balanced (meaning f(x) is 1 for half of the inputs

and 0 for the other half) or constant (meaning f(x) is always 0 or always 1).

This example is important since for n bits, a conventional computer requires on

average 2n/2 + 1 queries, whereas on a quantum computer Deutsch’s algorithm

exploits quantum parallelism and interference to produce the answer in one

query.

The role of a quantum oracle is to make a decision based on its input state

in one step. If the inputs of the quantum oracle are in superposition state, then

the oracle can make all possible decisions in one step. Figure 5.34 shows how

the quantum circuit is implemented. The input state, |ψ0〉, is set to |01〉. This

is then passed through Hadamard gates to put them into a superposition state

which is then processed by U , the oracle we want to design. The output of

the oracle will be a superposition of decisions which we can resolve by passing
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them again through Hadamard gates. This has become a common structure of

quantum algorithms. The objective here is to construct an oracle which will

determine if f(x) = NOT(x) is balanced or constant.

|0〉 H
U

H

|1〉 H H

Figure 5.34: General quantum circuit for Deutsch’s problem (2 qubits). The
blocks labeled with an H are Hadamard gates while the block labeled with U
is the unitary operator representing the oracle to be evolved.

Obviously f(x) is a balanced function and the desired pre-measurement out-

put state is known to be |ψ〉 = [0, 0, 0,−1]. The ES is modified such that it

evolves the quantum oracle, U , until it satisfies the equation below. Note that

the two Hadamards in parallel can be represented by the tensor product H⊗H,

also written as H⊗2.

T = H⊗2 × U ×H⊗2 × (|0〉 ⊗ |1〉) (5.3.4)

Using the (100 + 100) ES, a perfect solution was found after only 26 gener-

ations (∼ 5 seconds runtime). To speed up the convergence, we modified the

mutation scheme to increment the rotation angles (φ, ψ, χ) in steps of size π/12.

The resultant oracle was:

U =



0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0


(5.3.5)

This is actually different from the oracle discovered by Deutsch and could
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possibly have desirable properties over the original.

5.4 Single Problem Instances

With a single problem instance we are given a single known final target solution

state we’ll call |ψt〉. The input state does not encode any parameters so we leave

it in the superposition state ((H⊗n)(|0〉⊗n)). We want to evolve the quantum

operator U such that it evolves the initial superposition state into the final

target state within some acceptable error. That is,

U(H⊗n)(|0〉⊗n) = |ψt〉 (5.4.1)

While this is the same input condition we had previously been using, we

move away from the given target vector of |00 . . . 0〉 and instead look at real

instances of the Independent Set Problem(ISP). This is a good choice for our

investigation because it is an optimization problem that is known to be NP-hard

[73].

The Independent Set Problem is defined as follows:

Problem instance: A graph G = (V,E) where V = {1, 2, . . . , n} is the set

of vertices and E ⊆ V × V the set of edges. An edge between vertices i, j is

denoted by the pair (i, j) ∈ E.

Feasible solution: A set V ′ of nodes such that ∀i, j ∈ V ′ : (i, j) /∈ E. V ′ is

called an independent set.

Optimal Solution: Maximal |V ′|—i.e., the max cardinality of the independent

set.

Given an l–node graph, the easiest way to encode the solution of the ISP is

let each qubit represent one of the l nodes. Therefore, our l-node ISP solution
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6 7 8 9 10 

1 2 3 4 5 

Figure 5.35: An Independent Set Problem instance. Both V ′1 = {2, 4, 7, 9} and
V ′2 = {1, 6, 9} are independent sets, but neither one is globally optimum.

can be encoded with l qubits. Thus, a quantum computer state |ψ〉 would be

a linear superposition of all 2l base states, and |ψ〉 would be represented as a

column matrix of complex amplitudes.

Given the final state, |ψf〉, we examine the probability distribution (| |ψf〉 |2).

The i’th element of the probability distribution indicates the probability of that

particular quantum state representing the solution to that instance of the ISP.

Figure 5.36: An ISP instance of three nodes.

Let’s assume we have the graph shown in figure 5.36. The solution to the ISP

is set of nodes V = {0, 2}. The output state vector of our quantum computer

would have the form: |q2q1q0〉. Where qi represents whether the i’th vertex is

part of the solution set. Since we know the optimal solution, we denote our
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target vectors as:

|ψt〉 =



q2q1q0 |ci|2

000 0

001 0

010 0

011 0

100 0

101 1

110 0

111 0



(5.4.2)

Where ci is the complex amplitude of the i’th element in the final target state,

ketψt. Our target solution is where q0 = 1 and q2 = 1 representing the set of

vertices {0, 2} and therefore produces the target state |101〉. If we treat the

state index as a binary number then the complex amplitude associated with

this state is c101b (note the binary subscript) which is c5 and the mod–squared

value is unity.

Things become a little more interesting when we look at cases where we

have more than one optimal solution. This happens when we have two vertex

sets, V1 and V2, that both have the same maximum cardinality. In these cases

we have a few choice of how we want to evolve our quantum operator, U . The

one we immediately disregard is the ability to have enough qubits to all single

and multiple combinations. The reason we disregard this condition is because

in quantum computing qubits are expensive. Rather, we examine two potential

solutions — the first being that we only have Single Solution states. If we
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had a graph with more than one solution set, we choose one of them for our

target state. This results in a target state vector with a single element set to

unity. Alternatively, we can have Multiple Solution states. That is, if we have

k solutions, then k of the states in the final target state are set to 1/
√
k such

that – ideally – we have an equal chance of our quantum computer measuring

one of our k solutions.

We will now examine two particular instances of the ISP. The first is a

3–node graph and the second is a 4–node graph. Both graphs have multiple

optimal solutions and we’ll look at what happens if we evolve Single Solution

target states versus Multiple Solution target states.

5.4.1 3–Node ISP Instance

The 3–node ISP instance we’ll examine is shown in figure 5.37 which has two

optimal solutions: V1 = {0, 1} and V2 = {0, 2}.

Figure 5.37: 3–Node ISP with multiple solutions.

There are three combinations of solutions. We can evolve a U such that:

1. the target state has one solution, V1.

2. the target state has one solution, V2.
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3. the target state has equal probability of either V1 or V2.

We use our learnings from section 5.2 to derive the ES configuration we use

for this experiment:

• Qubits = 3

• µ = 15

• λ = 500

• (µ+ λ)

• Initial/Reset σ = 0.1

• Probability Mode

We first look at the first combination where we evolve U to solve for the

single solution V1 which includes vertices 0 and 1. We’ll call this target state

|ψV1〉 = |011〉.
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The target state vector has probability distribution:

| |ψV1〉 |2 =



q2q1q0 |ci|2

000 0

001 0

010 0

011 1

100 0

101 0

110 0

111 0



(5.4.3)

After only 38 generations a near–perfect solution was found. The final prob-

ability distribution from the ES software was:

[4.9245738636457224e-07+0.0000000000000000e+00i]

[8.6433567854445739e-07+0.0000000000000000e+00i]

[1.0587107887294338e-07+0.0000000000000000e+00i]

[9.9999556456800931e-01+0.0000000000000000e+00i]

[4.7075657987933189e-07+0.0000000000000000e+00i]

[3.2862208420697364e-07+0.0000000000000000e+00i]

[9.1080953033475597e-08+0.0000000000000000e+00i]

[2.0823082297455682e-06+0.0000000000000000e+00i]

Which had > 99.999% probability of measuring the correct state, |011〉.

We now examine the second solution state which encodes the other solution,

V2, as the only single solution which we’ll call |psiV2〉 = |101〉 and has the target
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probability distribution:

| |ψV2〉 |2 =



q2q1q0 |ci|2

000 0

001 0

010 0

011 0

100 0

101 1

110 0

111 0



(5.4.4)

The near–perfect solution was found in only 23 generations with the final

probability solution:

[2.9988900142786454e-08+0.0000000000000000e+00i]

[1.4283612477751486e-07+0.0000000000000000e+00i]

[9.2164150627821011e-08+0.0000000000000000e+00i]

[4.0677032198546089e-08+0.0000000000000000e+00i]

[4.4980079544324004e-08+0.0000000000000000e+00i]

[9.9999954844533079e-01+0.0000000000000000e+00i]

[3.8315555592278912e-08+0.0000000000000000e+00i]

[6.2592826005085335e-08+0.0000000000000000e+00i]

Which measures the ideal solution with probability > 99.9999%.

Now we examine our third method which encodes both solution V1 and V2

(we’ll refer to this later as the V1 + V2 solution) by having an equal probability
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of measuring both. The target solution state is |ψV1,V2〉 = 1/
√

2(|ψV1〉 + |ψV2〉)

and will have the following probability distribution:

| |ψV1,V2〉 |2 =



q2q1q0 |ci|2

000 0

001 0

010 0

011 0.5

100 0

101 0.5

110 0

111 0



(5.4.5)

The near–perfect solution was found in only 28 generations and had the

following probability distribution:

[4.9192593319585385e-06+0.0000000000000000e+00i]

[1.7989070108534328e-05+0.0000000000000000e+00i]

[1.9999769563384656e-05+0.0000000000000000e+00i]

[4.9997865578452011e-01+0.0000000000000000e+00i]

[1.7357865943957853e-05+0.0000000000000000e+00i]

[4.9993061808914407e-01+0.0000000000000000e+00i]

[9.2067390232041892e-06+0.0000000000000000e+00i]

[2.1253422365012175e-05+0.0000000000000000e+00i]

Which measures V1 with > 49.99% accuracy and V2 with also > 49.99% accu-

racy.
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Best Individual Top 10 Individuals

Figure 5.38: Eigenvalue placement for 3–Node ISP with single solution V1.

Best Individual Top 10 Individuals

Figure 5.39: Eigenvalue placement for 3–Node ISP with single solution V2.

3–Node ISP Eigenvalue Placement

We have two solutions to our ISP and we’ve evolved quantum operators to solve

for either solution and for both with equal probability. Now we are curious how

the eigenvalue placement of these operators compare as well as the eigenvalue

placement comparison between the top ten candidates.

Since 3–node ISP instances are represented with only 3 qubits, we only have

23 = 8 eigenvalues to plot. As we’ve done previously, we’ll show how the best

solution placement compared against the top ten individuals combined.

We also compare how the eigenvalue placements for the V1 and V2 compare

when super–imposed and placed next to the V1+V2 solution placement as shown
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Best Individual Top 10 Individuals

Figure 5.40: Eigenvalue placement for 3–Node ISP with both solutions V1 and
V2.

V1 and V2 V1 + V2

Figure 5.41: Comparison of 3–Node ISP V1 (X’s) superimposed with V2 (O’s)
against V1 + V2 eigenvalue plots.

in figure 5.41.

While it is interesting that the V1 top individuals showed more clumping

than the V2 candidates, it really doesn’t tell us much. As we saw in our earlier

studies, the eigenvalue placement is well distributed on the unit circle with no

clear tendency toward degeneracy. Again, this is likely an artifact of our random

unitary matrix generation method. When comparing the super–imposed V1 and

V2 eigenvalue plots with the multi–solution V1 + V2 plot, there’s not a clear

conclusion that can be made. One might be inclined to think that an average

of the V1 and V2 eigenvalues might be similar to the V1 +V2. This is true in the
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upper–right quadrant of the plot, but the other quadrants seem to be similar

to the V2 eigenvalues rather than V1.

5.4.2 4–Node ISP Instance

The 4–node ISP instance we’ll examine is shown in figure 5.42 which has three

optimal solutions: V1 = {0, 3}, V2 = {1, 2}, and V3 = {1, 3}.

Figure 5.42: 4–Node ISP with multiple solutions.

There are seven combinations of solutions. We can evolve a U such that:

1. the target state has one solution, V1.

2. the target state has one solution, V2.

3. the target state has one solution, V3.

4. the target state has equal probability of either V1 or V2.

5. the target state has equal probability of either V1 or V3.

6. the target state has equal probability of either V2 or V3.

7. the target state has equal probability of either V1 or V2 or V3.
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We’ll use the same ES parameters as in the 3–node ISP case except with 4

qubits.

Because we have 4 qubits, our probability distribution vector has 16 ele-

ments. For now, we’ll simplify by using ket–notation instead. Also, rather than

showing the final distribution for all 16 elements from the ES, we’ll only show

those we are interested in (the solution states!).

V1: In the case we want to evolve a U which solves for only solution V1,

our target state is |1001〉. The ES was able to find a best individual with

> 99.9999% fitness within 328 generations. The probability of measuring the

target state (|1001〉) was > 99.64%.

V2: In the case we want to evolve a U which solves for only solution V2,

our target state is |0110〉. The ES was able to find a best individual with

> 99.9999% fitness within 759 generations. The probability of measuring the

target state (|1001〉) was > 99.57%.

V3: In the case we want to evolve a U which solves for only solution V3,

our target state is |1010〉. The ES was able to find a best individual with

> 99.9999% fitness within 864 generations. The probability of measuring the

target state (|1001〉) was > 99.63%.

V1 +V2: In the case we want to evolve a U which solves for only solutions V1

and V2, our target state is 1/
√

2(|1001〉+|0110〉). The ES was able to find a best

individual with > 99.9999% fitness within 278 generations. The probability of

measuring the V1 solution was > 49.72%. The probability of measuring the V2

solution was > 49.79%.

V1 +V3: In the case we want to evolve a U which solves for only solutions V1

and V3, our target state is 1/
√

2(|1001〉+|1010〉). The ES was able to find a best
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Solutions Generations > P (V1) > P (V2) > P (V3)

V1 328 99.64%
V2 759 99.57%
V3 864 99.63%
V1 + V2 278 49.72% 49.79%
V1 + V3 676 49.73% 49.70%
V2 + V3 170 49.75% 49.79%
V1 + V2 + V3 1000 32.72% 33.19% 32.49%

Table 5.2: Summary Table of 4–Node ISP Single Instance Training Results.

individual with > 99.9999% fitness within 676 generations. The probability of

measuring the V1 solution was > 49.73%. The probability of measuring the V3

solution was > 49.70%.

V2 +V3: In the case we want to evolve a U which solves for only solutions V2

and V3, our target state is 1/
√

2(|0110〉+|1010〉). The ES was able to find a best

individual with > 99.9999% fitness within 170 generations. The probability of

measuring the V2 solution was > 49.75%. The probability of measuring the V3

solution was > 49.79%.

V1 +V2 +V3: In the case we want to evolve a U which solves for all solutions

V1, V2, and V3, our target state is 1/
√

3(|1001〉+ |0110〉+ |1010〉). The ES was

only able to find a best individual with > 99.999% fitness within the limit of

1000 generations. The probability of measuring the V1 solution was > 32.72%.

The probability of measuring the V2 solution was > 33.19%. The probability of

measuring the V3 solution was > 32.49%.

We summarize the above data in table 5.2.
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Solution Best Individual

V1

V2

V3

Figure 5.43: 4–Node ISP Single–Solution Instance Eigenvalue placements.

4–Node ISP Eigenvalue Placement

Our 4–node ISP instances use 4 qubits and thus have 24 = 16 eigenvalues. For

brevity, we show in figures 5.43 and 5.44 the eigenvalue placement for only the

best individual.

It’s also interesting to look at how the eigenvalue plots for the individual

solutions (V1, V2, and V3) when super–imposed on to one plot compare the

multi–solution placement plot (V1 + V2 + V3). This is shown in figure 5.45.

As with the 3–node ISP instance problem, it is difficult to make any clear
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Solution Best Individual

V1 + V2

V1 + V3

V2 + V3

V1 + V2 + V3

Figure 5.44: 4–Node ISP Multi–Solution Instance Eigenvalue placements.

200



Super-Impose V1,V2, and V3 V1 + V2 + V3

Figure 5.45: 4–Node ISP instance eigenvalue placement comparison. V1 (X’s),
V2 (O’s), V3 (Squares)

conclusions from the eigenvalue placement. Eigenvalues are again well dis-

tributed with no cases of degeneracy. However, we definitely have cases where

eigenvalues are close enough to be equal. For example, the V3 solution plot

has three eigenvalue closely bunched to real axis near −1.0. Another example

is in the V1 + V2 multi–solution plot, there are two eigenvalues very close in

value near the real axis at 1.0. In the single solution plots, we notice that there

is generally an even distribution about the four quadrants with each quadrant

having 4 eigenvalue points. However, in the multi–solution plots, we see this is

not true. In fact, the V1 + V3 has only two eigenvalue points in the upper–right

quadrant. In the comparison plot shown in figure 5.45, it is again not a simple

conclusion although an average of the eigenvalues (not shown) wouldn’t be a far

estimation of the multi–solution plot. However, when we start have more eigen-

values as we increase the size of the problem, it becomes harder to discriminate

the eigenvalues as being close or apart.
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5.4.3 Single Instance Conclusions

Overall, our ES did an excellent job of evolving operators which were able to

solve our 3–node and 4–node ISP instances with very high accuracy. Even in

our most difficult 4–node case where we wanted to solve for any of the three

solutions with equal probability, we achieved a probability within 1% of the

ideal 1/3. This gives us very high confidence that we can use our ES to design

quantum operators for such problem instances for both single and multiple solu-

tion scenarios. Although the eigenvalue plots showed some interesting behavior

and no degeneracy, it is unfortunately inconclusive. Because these are proba-

bility based targets, it could be that our ES has too much freedom finding valid

candidates. Complex targets would be much more restrictive although for the

types of problems, it’s the desired measuring point. Rather, it would perhaps

be more beneficial to restrict the ES to forming a unitary matrix with far less

angle parameters.

5.5 General Problem Solving

In General Problem Solving we make a very subtle yet substantial change in how

we evolve our quantum operators. Instead of a single initial state (we sometimes

call this the input state) that is the equal superposition state, we allow the input

state to encode the problem to be solved and allow multiple inputs and outputs.

This impacts how we evolve our quantum operators and greatly increases the

difficulty since we now have a number of input–output pairs to test rather than

a single input–output pair. As with the single instance solutions we covered in

section 5.4, we’ll be focusing on the Independent Set Problem (ISP).

We first describe how we encode the input state to describe a graph for our

202



ISP. This will introduce us to some of the immediate constraints when forming

our quantum circuit. The most fundamental problem being that the number

of qubits required to encode all possible graphs increases at a much faster rate

than the number of qubits required to encode the solution.

Next we’ll describe the methodology used to generate the graphs and their

ISP solutions. Just like we saw in single instance problems, there are cases where

we have multiple best solutions so we examine how to deal with single–solution

and multi–solution target states.

Since encoding general problem instances requires multiple input states

which have an impact on the ES performance, we spend some time to look

at what ES parameters are best for multiple input–output training.

The goal of this section is to use our ES to evolve a quantum operator which

can find the general solution to the ISP for any graph. The input state would

somehow encode our graph connections and the resultant state would represent

the best ISP solution(s).

5.5.1 Encoding General Graphs and ISP Solutions

We’ve already explained in section 5.4 how we encode the output of the ISP. To

re–iterate, for n nodes, we need n qubits assuming we encode multiple “best”

solutions by splitting the probability amongst the two or more best solution

states (we called this multi–solution encoding) or simply choosing to encode

only one of the best solutions (we called this single solution encoding). Our

first question now is how do we encode the graph and how many qubits are

required?

The number of number of connections for given graph of n is given by the
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simple equation:

C(n) =
n(n− 1)

2
(5.5.1)

Now, let’s say we needed a certain number of qubits to encode all possible

connections. The equation is simple to derive as we simply need a qubit which

determines where a given connection is active or not. Since we have C(n)

connections which can be in either one of 2 state, then it’s a simple equation

given by:

G(n) = 2C(n) (5.5.2)

We name the function G(n) to denote that it is encoding the number of possible

“graphs”.

So, the two parameters we want to encode are our input which describes

the graph and therefore needs to encode up to G(n) possibilities. Also, output

which we already know must be at least n qubits. To determine the number of

qubits necessary to encode the graph, we use the following equation:

log2(G(n)) = log2(2C(n)) = C(n) (5.5.3)

Therefore, we say the number of qubits needed is the maximum between the

qubits needed to encode the solution and the qubits needed to encode the graph.

Table 5.3 shows how the number of qubits required quickly becomes dominated

by the number connections (which determines the number of graphs) rather

than output solutions. To encode a 4–node general solution would require 6

qubits even though only 4 are needed for the solution.

For this section we limit our studies to 3 node graphs. This is the size we

used in our single instance problems and is the smallest graph size of interest
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Node Solutions Connections Graphs Qubits
n 2n n(n− 1)/2 2(n(n−1)/2) MAX(n, n(n− 1)/2)

1 2 0 1 1
2 4 1 2 2
3 8 3 8 3
4 16 6 64 6
5 32 10 1024 10
6 64 15 32768 15
7 128 21 2097152 21
8 256 28 268435456 28
9 512 36 · · · 36
10 1024 45 · · · 45

Table 5.3: Number of qubits required to encode an n node graph for general
ISP solutions.

for the ISP. It also turns out the 3 node graphs have a very special property

— that is, it requires the same number of qubits to encode all possible graph

combinations as to encode the possible ISP solutions... 3 qubits. As a note,

4–node graph were attempted, however, these required 6 qubits and run–time

became an issue.

The method we use to encode the graph connections into the input state is

relatively straightforward and uses the following algorithm for N qubits:

cnt = 0

for i=1:N-1

for j=i+1:N

q[cnt++] = 1 if node[i] connects to node[j]

end

end

We visually show how this works for a 6 qubit graph encoding all possible

4–node graphs in figure 5.46.
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Figure 5.46: Encoding a 4–node graph for a general ISP.

Input State Connections
|000〉 No connections
|001〉 node1→node2
|010〉 node1→node3
|011〉 node1→node2, node1→node3
|100〉 node2→node3
|101〉 node1→node2, node2→node3
|110〉 node1→node3, node2→node3
|111〉 node1→node2, node1→node3, node2→node3

Table 5.4: Input state encoding for 3–node ISP graphs.

The 3–node case which uses 3 qubits can be written out explicitly in terms

of the input state and what connections it represents:

5.5.2 ES Input Methodology

Certain steps are taken to generate the input for the ES. We essentially need a

list of input states and their associated target output states. To do this, we do

the following:

1. Generate all possible graphs.

2. Solve the ISP for each graph, noting single and multi–solution versions.

3. Form the input–output training pairs for the ES.
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We developed a greedy algorithm which solves the ISP for all graphs fed to

it. One of the parameters is whether we should support single or multiple best

solutions. In the single solution case, only one solution is chosen. In the multiple

best solution case, we specify that there is an equal probability of selecting any

of the best solutions.

As an example, let’s look again at the 3–node case. According to table 5.3, it

has 8 possible graphs and thus requires 3 qubits. We now show the input state

and target state for the single and multi–solution generated from our greedy

algorithm below:

Target State Target State
Input State Single Solution Multi–solution
|000〉 |111〉 |111〉
|001〉 |101〉 1/

√
2(|101〉+ |110〉)

|010〉 |011〉 1/
√

2(|011〉+ |110〉)
|011〉 |110〉 |110〉
|100〉 |011〉 1/

√
2(|101〉+ |110〉)

|101〉 |101〉 |101〉
|110〉 |011〉 |011〉
|111〉 |000〉 |000〉

Table 5.5: 3–Node ISP graph encoding with single and multiple solution state
encodings.

5.5.3 Tuning the ES Parameters for

General Problems

We suspect that some of our best ES parameters for single instance problems

need to be adjusted for multiple input–output training. In particular, we suspect

the training step size, σ needs to be larger. However, we vary many of the basic

parameters (such as µ and λ to again convince ourselves we are specifying a
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Figure 5.47: 3–Node General ISP Fitness given µ.

near optimal set of parameters for our ES.

For our regressions we vary the following parameters on both 3–node single

and multi–solution ISP configurations:

• µ is varied between 1, 10, 15, 30, 60, and 100.

• λ is varied between 100, 200, 500, and 1000.

• We look at both (µ+ λ) and (µ, λ).

• Initial/Reset σ is varied from 0.1, 0.2, 0.5, and 0.7.

• We look at Probabilistic versus Complex targets.

We recall from our single instance ES runs that a (10 + 1000) or (15 + 1000)

ES with Initial/Reset σ around 0.1, and probabilistic mode targets. We’ll do a

similar analysis by picking out key graphs to expose the best parameters.

Number of Parents, µ

To get an idea of the better number of parents (that is, the value of µ), we plot

the average fitness of all simulations for each µ. This is shown in figure 5.47.
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Figure 5.48: 3–Node General ISP Fitness given λ.

Figure 5.47 hints that – like our single instance cases – a smaller µ like 10

or 15 is more desirable as, on average, the fitness was higher in these cases.

Number of Children, λ

We do a similar analysis for the number of children by plotting the average

fitness for each λ. The result is shown in figure 5.48. The result of which is

exactly the same behavior as we saw before — the more children the better. So,

larger values of λ, like 500 or 1000, are more desirable.

Initial/Reset σ

Now that we have a good idea of what values of µ and λ, we can average the

fitness of those simulations and categorize by the initial/reset σ value. This

graph is shown in figure 5.49.

Interestingly, this is different from the single instance cases which trained

better with lower σ’s. Rather, for our general solutions, a higher reset/initial σ

like 0.5 is desirable.
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Figure 5.49: 3–Node General ISP Fitness given a reset/initial σ.

Figure 5.50: 3–Node General ISP Fitness for Probability/Complex and (µ+ λ)
vs. (µ, λ) mode.

Probability/Complex Mode and (µ+ λ) vs. (µ, λ)

We continue to hone–in on our best parameters and look at how having a

probabilistic versus a complex target as well as having a (µ + λ) ES versus a

(µ, λ) ES influence our overall training fitness. The results are shown in figure

5.50. Not surprisingly, having a probabilistic target results in a less restrictive

matrix and allows the ES to find better candidates. The impact of a (µ + λ)

versus a (µ, λ) ES was very small and in the noise. There is a slight favor the

(µ+ λ).

210



Input Graph Target Solution Probability of
Measuring Solution Error

|000〉 |111〉 88.91% 11.09
|001〉 |101〉 49.60% 50.40
|010〉 |011〉 24.47% 75.53
|011〉 |110〉 90.39% 9.61
|100〉 |011〉 00.50% 99.5
|101〉 |101〉 50.37% 49.63
|110〉 |011〉 02.01% 97.99
|111〉 |000〉 48.38% 51.62

Table 5.6: Comparison of target solution for 3 Node ISP Single Solution.

Parameter Selection

From the previous analysis, we conclude that for the 3 node generalized ISP,

the ES parameters should be:

• (10, 1000) ES.

• Initial/Reset σ of 0.5.

• Probabilistic target.

5.5.4 Test and Fitness for the Generalized 3 Node ISP

Using the parameters we determined, the ES was ran for 1000 generations for

both the single and multiple best solution cases. We’ll look at the probability

distribution and compare it to the target distribution for each input graph

condition. The best way to show the fitness is to compare only the probability

of measuring the output states of interest.

Table 5.6 shows the target single solution for a given input encoded graph

state and the actual probability of our evolved operator measuring the correct

solution. For a couple of these, such as input states |000〉 and |011〉, the results
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Input Graph Target Solution Probability of
Measuring Solution

|000〉 |111〉 89.94%
|001〉 50% |101〉+ 50% |110〉 21.83% |101〉+ 7.0% |110〉
|010〉 50% |011〉+ 50% |110〉 24.93% |011〉+ 25.95% |110〉
|011〉 |110〉 65.73%
|100〉 50% |101〉+ 50% |110〉 18.39% |101〉+ 0.01% |110〉
|101〉 |101〉 57.39%
|110〉 |011〉 5.38%
|111〉 |000〉 3.41%

Table 5.7: Comparison of target solution for 3 Node ISP Single Solution.

are good at > 88% and > 90%, respectively. However, for other input states,

the performance is definitely subpar with embarrassingly poor performance on

input states |100〉 and |110〉 which completely missing the target. Overall, the

performance is not very desirable, but we understand that training with multiple

input–output pairs is a significantly more difficult task than instance problems.

We do a similar performance analysis for the multi–solution case which is

shown in table 5.7. Unfortunately, the performance for multi–solution is also

undesirable with only one input state (|000〉) having its target solution being

measured with a good probability at 89.94%. Again, we see cases of extremely

poor performance such as input states |110〉, |111〉, and we complete miss one

of the solutions for input state |100〉.

The overall performance for the generalized problems using the ISP was lower

than expected. For only 3 qubits, we should be able to achieve a much higher

fitness. The limitation is likely from multiple aspects. For one — as we have

previously mentioned — the increased complexity from having 8 input–output

states makes finding better fit individuals very difficult. Also, it is possible

that our random unitary matrix method creates strong dependencies that make

training multiple input–output pairs difficult. It seems odd that some output
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states are measured at close to 0% while others are around 90%. There is likely

some push and pulling happening.

Better parameter selection is probably not the solution. We need to go back

to the random unitary matrix and architect one that could potentially have

fewer dependencies although it is not straight–forward how this could be done.

However, having far less angle parameters would be a good start. We address

this concept in our future work in section 9.
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Chapter 6

Eigenanalysis

The eigenanalysis of a quantum operator involves gathering the eigenvalues

and eigenvectors from one or more related unitary operators and determining

if there are any key characteristics. In particular, we are looking for revealing

information that would aid us in designing more accurate quantum operators

and/or enhancing existing operators to yield better measurements.

We start with examining the eigenvalue placement of our previously gen-

erated unitary operators. This reviews how we plot the eigenvalues and their

properties. We’re interested how various parameters of the ES altered the be-

haviors of the eigenvalues. For example, we would expect that a family of

operators evolved using probabilistic targets would have less restrictions and

possible result in a more varied eigenvalue plots.

We then do a deep dive into what the eigenvalues mean. For example,

had I been given the eigenvalues and eigenvectors for a NOT gate, it would

be difficult at first glance to tell had we not known it was a NOT gate. We

develop a methodology to relate the eigenvalues and eigenvectors back to a well

outer–product format1 which typically uses the standard computational basis

1Unfortunately, the outer–product method is not well defined in the literature but is widely
used.
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vectors we’ve reviewed before.

Once we have the eigenvalues, can we adjust them. For example, if we

see certain eigenvalues wanting to be close, we might assume they are tending

toward the same value – thus introducing degeneracy. In section 6.4, we look

at how eigenvalues can be adjusted, how we can re–construct the new unitary

operator, and their implications.

6.1 Eigenvalue Placement

As part of our journey, we are very interested how the eigenvalues for evolved

solutions land on the unit circle. That is, if we evolve a family of unitary

operators which solve the same problem but under varied conditions, how would

their eigenvalue placement vary?

One might expect to see complex conjugate pairs, however, and as we will

see in our eigenvalue placement plots, we don’t always see complex conjugates.

The definition below helps us to understand why this is the case:

Definition 19 Let A be a unitary operator and |b〉 be an eigenket (eigenvector

or sometimes called an eigenfunction) with (complex) eigenvalue b. Then b∗ is

the eigenvalue for At (the transpose of A) with the same eigenket. Put another

way, if b is an eigenvalue of A, then b∗ is an eigenvalue of At and not A. In

addition, b and b∗ will have the same eigenket.

For this study, we ran numerous simulations using the setup conditions

mentioned in equations 5.0.1 and 5.0.2. For the target vector, we allow both

Complex (that is, pre–measurement) targets and Probabilistic (that is, post–

measurement) targets. For the target fitness, we look at 70% fitness and 99%
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fitness. In figures 6.1 through 6.4, we present eigenvalue placement plot of the

best individual and the superposition plot of the top 10 individuals. In Complex

target mode, the constraint is harder because sign and complex value need to

be met therefore we expect less scattering for pre–measurement targets. For

the Probabilistic mode, only the magnitude needs to match. When we relax the

target fitness to 70%, we expect more variability in the superposition plot since

we individuals don’t have to be as exact as in the 99% case.

Our general intuition is met by the eigenvalue placement figures. Where we

found the best individual, the top 10 individual eigenvalue positions are in the

general vicinity. For the two–qubit cases this is easier to see. In the complex

target cases, we see the result of much harder restrictions, especially in the

99% target fitness mode. The eigenvalues are tighter clumped. In fact, in the

two–qubit case for 99% and complex target, all top 10 individuals had the same

eigenvalue placement. With probabilistic mode, there is some variability but

not much. In the 5–qubit case, we see a more even spreading of the eigenvalues

in the probabilistic target case as compared to the complex target case. Of

interest is that the two–qubit case with 99% target fitness actually seems to

have more variability in probabilistic mode than in the 70% case. This may be

an artifact of the particular simulation results chosen but definitely noteworthy.

6.2 Degeneracy

The question of eigenvalue degeneracy and whether it plays a role in the for-

mation or exploitation of the matrix evolved by the ES is asked. Before we

continue, we present the following definition of eigenvalue degeneracy:

Definition 20 Given operator A defined by a N ×N square matrix. An eigen-
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Qubits Best Individual Top 10 Individuals
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Figure 6.1: Eigenvalue plots for Complex Target, 70% Target Fitness
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Qubits Best Individual Top 10 Individuals
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Figure 6.2: Eigenvalue plots for Probabilistic Target, 70% Target Fitness
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Figure 6.3: Eigenvalue plots for Complex Target, 99% Target Fitness
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Qubits Best Individual Top 10 Individuals
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Figure 6.4: Eigenvalue plots for Probabilistic Target, 99% Target Fitness
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value ei of a operator A is said to be k–fold degenerate if there exists k linearly–

independent eigenvectors {|u1〉 , |u2〉 , . . .} with the same eigenvalue. Therefore,

A |ui〉 = ei |ui〉 for i = 1, 2, . . . , k. Thus, the system defined by A is degenerate.

The implication is also that A is no longer defined by N linearly–independent

eigenvectors, but less depending on the amount of degeneracy.

However, our definition of a unitary operator from section 2.1.6 appears

to form a contradiction that implies unitary matrices of order N must have a

complete defined orthonormal set of N eigenvectors. This is still true, but with

degeneracy, we simply will have more than one linearly independent set of basis

vectors.

To look at this problem further we first examine a couple definitions which

impose constraints on eigenvalues and eigenvectors for Hermitian and Unitary

matrices and then show the proof that it is legal to have a unitary matrix with

degeneracy.

Definition 21 The eigenvalues, {w}, of a Hermitian matrix, W , are real.

Given W and one of its eigenvalues, w, then we have the relationship:

W |w〉 = w |w〉. This implies that the relationship 〈w|W |w〉 = w〈w|w〉. Since

W is hermitian, W = W T , and therefore 〈w|W |w〉 = w∗〈w|w〉. Subtracting

the left side from the right and setting to zero we get (w−w∗)〈w|w〉 = 0. Since

|w〉 > 0, (if W were unitary it would have an absolute value |w| = 1), then we

must conclude that w = w∗ meaning it does not have a complex component and

therefore is real valued.

Definition 22 The eigenvalues, {u}, of a unitary matrix, U , are complex with

unit magnitude and mutually orthonormal.
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Given unitary matrix, U with any two arbitrary eigenvectors ketui and |uj〉

with their associated eigenvalues ui and uj, we have the relationship: U |ui〉 =

ui |ui〉 and U |uj〉 = ui |uj〉. Then, 〈uj|UTU |ui〉 = u∗jui〈uj|ui〉. Since U is

unitary, UTU = I and therefore, 〈uj|ui〉 = u∗jui〈uj|ui〉. Through subtraction we

get: (1 − u∗jui)〈uj|ui〉 = 0. If i = j then 〈uj|ui〉 = 0 and therefore u∗jui = 1. If

i 6= j then (1−u∗jui) = 0. Because uj 6= ui, this implies u∗jui 6= u∗iui ⇒ u∗juj 6= 1.

Therefore, 〈uj|ui〉 = 0 and must be orthogonal.

Definition 23 A Unitary matrix, U , with eigenvectors {|u〉} and associated

eigenvalues {u} can be degenerate.

Assume U has two eigenvectors, |u1〉 and |u2〉, associated with eigenvalue u

so that it is degenerate. We know that U |u1〉 = u |u1〉 and that U |u2〉 = u |u2〉.

Then U(a1 |u1〉+ a2 |u2〉) = u(a1 |u1〉+ a2 |u2〉) for any a1, a2. Thus, there exists

a whole subspace spanned by eigenvectors |u1〉 and |u2〉 with elements that are

eigenvectors of U with eigenvalue u.

Let’s look at the single qubit case and analyze the behavior of the eigenvalues

and eigenvectors. For brevity, we’ll use the single qubit form from our random

unitary matrix method as shown in equation 6.2.1.

 cos(φ)eiψ sin(φ)eiχ

− sin(φ)e−iχ cos(φ)e−iψ

 (6.2.1)

First we’ll look at the eigenvalues and the condition(s) that allow us to have

equivalent eigenvalues. If we defined a general 2× 2 matrix as so,

 a b

c d


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Then the generalized equation for the two eigenvalues is given by the charac-

teristic equation as

λ0 = +

√
a2 − 2ad+ 4bc+ d2 + a+ d

2

λ1 = −
√
a2 − 2ad+ 4bc+ d2 + a+ d

2

By substituting a, b, c, and d with the expressions from our general unitary

matrix, we get the following expressions for the eigenvalues:

λ0 = cos(ψ) cos(φ) + i
√

1− cos2(ψ) cos2(φ)

λ1 = cos(ψ) cos(φ)− i
√

1− cos2(ψ) cos2(φ)

We note that the eigenvalues are not dependent on χ.

The condition where λ0 = λ1 is such when the term under the radical is

zero. That is,

1− cos2(ψ) cos2(φ) = 0 (6.2.2)

which is satisfied when both cosine terms are unity which occurs when both ψ

and φ are integer multiples of π.

The most basic example is the identity gate who is realized in equation 6.2.1

when φ = ψ = 0.

There is no issue with a quantum operator having equal eigenvalues as long as

there is a complete set of linearly–independent (and orthonormal) eigenvectors.

Looking back at our eigenvalue plots from figures 6.1 to 6.4, we notice that

the eigenvalue placement of the best individual is well distributed around the

unit circle. This behavior seems to be standard for many of the unitary operators
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evolved by our ES. The likely reason for this behavior stems from our random

unitary matrix method described in section 3.2 which was designed for CUE

(circular uniform ensembles). Translated roughly, our random unitary matrices

will tend to have a spectrum of eigenvalues that are even spread on the unit

circle.

6.3 Interpretation of Eigenvalues

Certainly the understanding of eigenvalues and eigenvectors has been investi-

gated. We highlight example research in our overview of quantum state sep-

arability in section 3.3 using eigenvalues and eigenstates to detect the degree

of entanglement [61]. Kitaev gives an approach to a general class of problems

in [74] using eigenvalue estimation. Also, the use of eigenvalues for unitary

operators to reveal common structures of quantum algorithms and relations

to interferometry experiments is presented by Cleve et al in [75]. Galindo and

Martin-Delgado do a superb analysis of the eigenvalue nature in [76] for a family

of Grover’s algorithms. Shevi et al perform a detailed mathematical analysis of

the role of the eigenvalues and their placement on the unit circle in [77] for their

construction and analysis of a quantum random walk based searching algorithm.

Ambainis et al conduct a similar investigation in [78] where eigenanalysis is used

to analyze the use of coins to speed up quantum walks searching a
√
N ×

√
N

grid. Mosca and Ekert expand on Kitaev’s approach and eloquently relate us-

ing eigenvalue estimation for solving Abelian hidden subgroup problems in [79].

Similar techniques of eigenvalue approximation using a coarse grid are used by

Abrams [80] and Jaksch [81].

We take a much simpler approach and examine two methods of expressing
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a unitary operator, namely, spectral representation and outer–product form.

Spectral representation is a well known method and was described in section

2.1.8. The outer–product method of quantum logic is less formally defined

and more–or–less an adopted method used in common quantum logic books to

express a quantum operator using input and output state mappings and is used

in section 2.2.2.

We again define the spectral representation of a unitary quantum operator

as:

U =
N−1∑
i=0

λi |vi〉 〈vi| (6.3.1)

Where the |vi〉 vectors form a set of orthonormal eigenvectors with λi being the

corresponding set of eigenvalues.

The definition of an outer–product expression of a quantum operator can be

summarized this way:

Definition 24 Given an n qubit N×N unitary operator, U , such that N = 2n,

a complete standard computational basis set of input ket vectors,

I = {|00〉 , |01〉 , . . . , |N − 1〉},

a complete set of target bra vectors,

B = {〈B0| , 〈B1| , . . . , 〈BN−1|},

and the mapping, M, of each input ket vector to an output bra vector through
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an outer–product operation such that

M = {|00〉 〈B0| , |01〉 〈B1| , . . . , |N − 1〉 〈BN−1|},

the outer–product expression of a unitary operator, U , is defined as the sum of

the outer–products:

U =
N−1∑
j=0

Mj =
N−1∑
j=0

|j〉 〈Bj| (6.3.2)

We now have two definitions of a unitary operator, U . We make the as-

sumption that we can set these two expressions to be equal to each other. That

is,
N∑
i=0

λi |vi〉 〈vi| =
N−1∑
j=0

|j〉 〈Bj| (6.3.3)

The goal is to relate the set of eigenvalues back to the more commonly

used outer–product method. The reason for doing this is twofold. For one, we

typically examine the behavior of a quantum operator on the standard com-

putational basis. For example, we think of the inverter (X) as operating on

the basis |0〉 or |1〉 rather than, for example, the set (1/
√

2)(− |0〉 + |1〉) and

(1/
√

2)(|0〉+ |1〉). Both are perfectly acceptable but the later is obviously more

cumbersome to deal with. Secondly, the outer–product form explicitly shows

the mapping from input state to output state. Not only that, but the output

state will be a superposition of the standard computational basis states. This

is also desirable because it gives us a more intuitive sense of the function of the

operator. Going back to our example with the quantum inverter (which we use

as a detailed example later), it is not obvious from the spectral representation

that the gate functions as an inverter. However, in outer–product form, it is

blatantly obvious.
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To derive a mapping from spectral representation to outer–product form,

we dive a little deeper into equations and consider the generalized single qubit

case. In this case, we have the mapping:

|0〉 =⇒ 〈a|

|1〉 =⇒ 〈b|
This results in the outer–product expression for U :

U = |0〉 〈a|+ |1〉 〈b| (6.3.4)

For the spectral representation, we construct U such that it has arbitrary

eigenstates a′ and b′ to derive:

U = λ1 |a′〉 〈a′|+ λ2 |b′〉 〈b′| (6.3.5)

Setting these two expression equal yields:

|0〉 〈a|+ |1〉 〈b| = λ1 |a′〉 〈a′|+ λ2 |b′〉 〈b′| (6.3.6)

And more appropriately, we show this in matrix form noting 〈a| = [a1, a2],

〈b| = [b1, b2], and likewise:

 a1 a2

0 0

+

 0 0

b1 b2

 = λ1

 a′1a
′
1 a′1a

′
2

a′2a
′
1 a′2a

′
2

+ λ2

 b′1b
′
1 b′1b

′
2

b′2b
′
1 b′2b

′
2

 (6.3.7)

We can now develop a general mapping by equating the position of each

matrix component on the left to the summation of the same indexed components

multiplied by their respective eigenvalues on the right side of the equation.
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Namely,

a1 = λ1a
′
1a
′
1 + λ2b

′
1b
′
1

a2 = λ1a
′
1a
′
2 + λ2b

′
1b
′
2

b1 = λ1a
′
2a
′
1 + λ2b

′
2b
′
1

b2 = λ1a
′
2a
′
2 + λ2b

′
2b
′
2

We proceed to the 2 qubit case but only enough to show the general pattern.

For the 2 qubit case we introduce two new target states, 〈c| and 〈d|, and form

the new outer–product expression:

U = |00〉 〈a|+ |01〉 〈b|+ |10〉 〈c|+ |11〉 〈d| (6.3.8)

And we’ll set this equal to the spectral representation:

U = λ1 |a′〉 〈a′|+ λ2 |b′〉 〈b′|+ λ3 |c′〉 〈c′|+ λ4 |d′〉 〈d′| (6.3.9)

Without expanding on the matrix form, we are able to develop the mapping

for the first target state, 〈a|:

a1 = λ1a
′
1a
′
1 + λ1b

′
1b
′
1 + λ1c

′
1c
′
1 + λ1d

′
1d
′
1

a2 = λ1a
′
1a
′
2 + λ1b

′
1b
′
2 + λ1c

′
1c
′
2 + λ1d

′
1d
′
2

a3 = λ1a
′
1a
′
3 + λ1b

′
1b
′
3 + λ1c

′
1c
′
3 + λ1d

′
1d
′
3

a4 = λ1a
′
1a
′
4 + λ1b

′
1b
′
4 + λ1c

′
1c
′
4 + λ1d

′
1d
′
4

We now see the pattern emerge and to generalize we change our notation so

that a target vector is denoted by ~v and eigenvectors are denoted by ~e. From
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our expressions above, 〈a| is the target vector for input |00〉 and so with our

new notation, 〈v1| = 〈a|. Likewise, 〈v2| = 〈b|, 〈v3| = 〈c|, etc. This way we can

refer to the ith target vector by ~vi whose jth component is given by vij. We

likewise represent the eigenvectors of in the spectral representation basis using

~e such that ~e1 = |a′〉, e2 = |b′〉, and so on and so forth. Thus, the ith eigenvector

is ~ei whose jth component is given by eij.

Using this new convention we go back to the single qubit case and we can

re–write the expression for the output vectors as:

~v1 =

[
λ1e11e11 + λ2e21e21 λ1e11e12 + λ2e21e22

]
(6.3.10)

~v2 =

[
λ1e12e11 + λ2e22e21 λ1e12e12 + λ2e22e22

]
(6.3.11)

Finally, we are able to construct our general equation which relates the out-

put vectors in the outer–product form (which uses the standard computational

basis set) to the eigenvalues and eigenvectors used in the spectral representation:

vij =
N∑
k=1

λkekiekj (6.3.12)

Let’s consider an example, the Inverter (X):

Recall the X gate matrix,

 0 1

1 0

, and note that asking MATLAB to

produce its eigenvalues and eigenvectors yields:
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λ1 = −1

λ2 = 1

~e1 = 1√
2

 −1

1


~e2 = 1√

2

 1

1


Therefore we have the spectral representation:

U = (−1)
1

2

 −1

1

[ −1 1

]
+ (1)

1

2

 1

1

[ 1 1

]
(6.3.13)

Had we been given the eigenvalues and eigenvectors, it’s not obvious that

they are simply for a quantum inverting gate. Using equation 6.3.12 we can

derive the outer–product form of the operator using standard computational

basis vectors as inputs. We do this now knowing that we should get ~v1 = 〈1|

and ~v2 = 〈0|:

~v1 =

[
λ1e11e11 + λ2e21e21 λ1e11e12 + λ2e21e22

]
=

[
(−1)−1√

2
−1√

2
+ (1) 1√

2
1√
2

(−1)−1√
2

1√
2

+ (1) 1√
2

1√
2

]
=

[
0 1

]
= 〈1|

~v2 =

[
λ1e12e11 + λ2e22e21 λ1e12e12 + λ2e22e22

]
=

[
(−1) 1√

2
−1√

2
+ (1) 1√

2
1√
2

(−1) 1√
2

1√
2

+ (1) 1√
2

1√
2

]
=

[
1 0

]
= 〈0|

We can thus write the outer–product form as simply:

U = |0〉 〈~v1|+ |1〉 〈~v2| = |0〉 〈1|+ |1〉 〈0| (6.3.14)
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And thus we’ve shown how the eigenvalues and eigenvectors relate to the

outer–product form. Although we show an example with a relative simple quan-

tum gate, the method is general and extensible to more complicated unitary

operators. The limitation is that we assume a standard computational basis. In

the more complicated case where we have an input state which is not a standard

basis state but a linear superposition then it is possible that the target states

for basis states is not that interesting. In such as case, it is debatable what the

target mappings for basis states represent.

6.4 Adjusting Eigenvalues

An interesting question is do we have the ability to adjust eigenvalues on the unit

circle for a given unitary operator and what are its implications? For example,

if we see two or more eigenvalues that are close in value, it might indicate that

a certain level of degeneracy is desired. In this section we’ll briefly analyze if

this is possible and what it can do for us.

First we’ll start with a very simple operator, the NOT gate (X) which is

defined by the unitary matrix:

X =

 0 1

1 0


The eigvenvalues for the NOT gate are e1 = 1 and e2 = −1. The eigenvectors

are:

~v1 =
1√
2

 1

1


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and

~v2 =
1√
2

 −1

1


As we’ve established, the eigenvalues for unitary operators have modulus 1

and are of the form eiθ. So, the first question we may ask is can we substitute

the known eigenvalues with arbitrary values as long as their modulus is unity?

The spectral decomposition method we described in section 2.1.8 allows us

to test this hypothesis. Using spectral decomposition, the NOT gate can be

expressed as:

X = e1 |v1〉 〈v1|+ e2 |v2〉 〈v2| (6.4.1)

We now re–write this expression substituting e1 with eix and e2 with eiy but

keeping the same eigenvectors.

X(x, y) = eix |v1〉 〈v1|+ eiy |v2〉 〈v2| (6.4.2)

Next, we’ll see what X(x, y) becomes as we sample some typical angle com-

binations for x and y:

X(0, 0) = I

X(0, π) = X

X(π, 0) = −X

X(π, π) = −I

We note that all the above instances of X(x, y) are known to be unitary and
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in fact, a general unitary test reveals:

X(x, y)†X(x, y) = I

Therefore, the general form of X(x, y) is in fact unitary! This means we can

adjust the eigenvalue placement for the NOT operator and reconstruct it using

the spectral decomposition method and we would still have a valid unitary

operator.

We’ll examine if this same method works on the Hadamard gate which is

defined by the matrix:

H =
1√
2

 1 1

1 −1


The eigvenvalues for the H gate are e1 = 1 and e2 = −1. The eigenvectors

are:

~v1 =

 0.924

0.383


and

~v2 =

 −0.383

0.924


We again make the same generalization and assume we can re–write the

spectral decomposition of the Hadamard operator using e1 = eix and e2 = eiy

while still using the eigenvectors from the Hadamard:

H(x, y) = eix |v1〉 〈v1|+ eiy |v2〉 〈v2| (6.4.3)
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Again we sample with various angles:

H(0, 0) = I

H(0, π) = H

H(π, 0) = −H

H(π, π) = −I

And again, we prove that the general expression H(x, y) is unitary by noting

that H(x, y)†H(x, y) = I.

Therefore, we make the broad hypothesis:

Given a unitary operator, U, with the set of eigenvalues {e1, . . . , en} and

corresponding set of eigenvectors {~v1, . . . , ~vn}, a new generalized unitary opera-

tor can be constructed using the spectral decomposition of U and by substituting

one or more eigenvalues with an arbitrary value of the form eiθ but keeping the

original eigenvectors. Thus, the new general unitary operator, U′, would have

the form:

U′(θ1, . . . , θn) =
n∑
i=1

eiθi |vi〉 〈vi| (6.4.4)

Now that we have a method of adjusting eigenvalues for a given unitary

operator and then re–constructing a new unitary operator, let’s apply it to a

real example. We’ll choose the best 5–qubit best individual from figure 6.2

and shown larger in figure 6.5 where we notice there are a few pairs of eigen-

values (circled in blue) which are very close together — enough that perhaps

degeneracy was being approached and would be, in fact, desirable.

We’ll call this matrix, U , and note that as a 5–qubit operator it has 25 = 32
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Figure 6.5: Best 5 qubit, probability mode, 70% target, pairs close in value to
be made degenerate are circled in blue.

eigenvalues which are listed below,

e[1] = 0.7958 + 0.6056i

e[2] = 0.5638 + 0.8259i

e[3] = 0.4915 + 0.8709i

e[4] = 0.2988 + 0.9543i

e[5] = 0.2363 + 0.9717i

e[6] = 0.9532 + 0.3025i

e[7] = 0.9784 + 0.2067i

e[8] = -0.1450 + 0.9894i

e[9] = 0.9988 - 0.0486i

e[10] = 0.9828 - 0.1846i

e[11] = -0.3585 + 0.9335i

e[12] = 0.9293 - 0.3693i

e[13] = -0.5713 + 0.8207i

e[14] = 0.8945 - 0.4471i

e[15] = -0.6259 + 0.7799i
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e[16] = 0.7311 - 0.6822i

e[17] = -0.8306 + 0.5569i

e[18] = -0.9234 + 0.3838i

e[19] = -0.9505 + 0.3108i

e[20] = 0.5994 - 0.8004i

e[21] = -0.6317 - 0.7752i

e[22] = 0.4597 - 0.8881i

e[23] = -0.8235 - 0.5673i

e[24] = -0.8910 - 0.4539i

e[25] = -0.9992 - 0.0404i

e[26] = 0.3071 - 0.9517i

e[27] = -0.3048 - 0.9524i

e[28] = -0.9613 - 0.2756i

e[29] = -0.9883 - 0.1528i

e[30] = -0.2017 - 0.9794i

e[31] = 0.1350 - 0.9908i

e[32] = -0.0988 - 0.9951i

For brevity we omit showing the eigenvectors.

We’ve identified 3 pairs of eigenvalues which are within an absolute difference

(|ei− ej|) of 0.08 (this is an arbitrary limit). The way we determine these pairs

is through a simple search using the following MATLAB routine:

% get our eigenvalues and eigenvectors

[V,D] = eig(U);

% for each eigenvalue, determine abs

% difference to another eigenvalue
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for i=1:31

for j=i+1:32

% only look at unique eigenvalues

if(i ~= j)

% note pairs with < 0.08 difference

if(abs(D(i,i)-D(j,j))<0.08)

disp(i)

disp(j)

disp(abs(D(i,i)-D(j,j)))

end

end

end

end

The 3 pairs are {e4, e5}, {e13, e15}, and {e18, e19}. To form the degenerate

pairs, we’ll set each element of the pair to an average of their values such that

given pair ei, ej, the new value will be e′i = e′j = (ei + ej)/2. If we had a case

of a larger number of eigenvalues within a certain distance of each other, then

perhaps we could consider setting them all to an average of their eigenvalues.

Our new degenerate pairs are formed:

e4 = e5 = ((0.2988+0.9543i)+(0.2363+0.9717i))
2

= 0.2676 + 0.9630i

e13 = e15 = ((0.2988+0.9543i)+(0.2363+0.9717i))
2

= −0.5986 + 0.8003i

e18 = e19 = ((0.2988+0.9543i)+(0.2363+0.9717i))
2

= −0.9369 + 0.3473i

To reconstruct the new unitary operator, we implement our spectral decom-
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position form in MATLAB and override our eigenvalues with our newly formed

degenerate pairs:

% get eigenvalues and eigenvectors

[V,D] = eig(U)

% override the eigenvalues with our degenerate pairs

% D(4,4) = D(5,5) = 1/2*(D(4,4)+D(5,5))

% D(13,13) = D(15,15) = 1/2*(D(13,13)+D(15,15))

% D(18,18) = D(19,19) = 1/2*(D(18,18)+D(19,19))

% zero out our 32x32 U matrix

U = eye(32)-eye(32)

% re-construct using spectral representation

for i=1:32

U = U + D(i,i)*(V(:,i)*ctranspose(V(:,i)))

end

This forms our new U operator which should now have 3 degenerate eigen-

value pairs and should be unitary. To verify, we test its unitary property

(U †U = I). This is done in MATLAB using:

ctranspose(U)*U

At this point, some number accuracy is lost but the result of the above expres-

sion is within a small error margin of being an identity matrix.

We also look at the new eigenvalue placement which should show all other

values untouched except for our new degenerate pairs. We show this comparison

in figure 6.6. The squares indicate where our degenerate pairs were formed by

using their average values.
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Figure 6.6: Adjusted 5–qubit operator eigenvalue placement. Squares indicate
our newly formed degenerate pairs.

Next we look at the impact to our behavior, or rather, the fitness of the new

unitary operator versus the original before adjusting some of the eigenvalues.

The hope is that by predicting a level degeneracy was desired, that by manually

adjusting, that our fitness will also increase. We recall the original U was

constructed with a goal such that with an initial state in an equal superposition

state, the final state after applying U would be |0 . . . 0〉. And in particular, we

were looking for a probability distribution of the output vector showing that we

would measure state |00000〉 at least 70% of the time.

In figure 6.7 we show the probability distribution of the original operator

as compared to our new eigenvalue–adjusted operator. The probability of mea-

suring the desired state (state–1) with the original evolved operator is 70.68%.

Remarkably, the probability of measuring the same desired state with our ad-

justed operator is 70.87%. It is quite possible that it would have taken many

generations of the ES just to increase the fitness even by that small amount,

especially since we’re dealing with 5–qubit operators.

In summary, we described a method to adjust the eigenvalues of a unitary
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Figure 6.7: 5–qubit probability distribution of original operator (blue) versus
one with adjusted eigenvalues to add degeneracy (red).

operator which results in a new operator which still retains its unitary property.

We demonstrated at least one case where we used our method to adjust the

eigenvalues and the resulting operator had better measurement accuracy. We

showed this with a 5–qubit example where the probability of measuring the

desired state was enhanced by simply setting our 3 closest eigenvalue pairs to

their respective average values, thus introducing degeneracy. This was entirely

visual and this definitely paves the way for more intricate methods to adjust

the eigenvalues and examine the benefit.
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Chapter 7

Logic Synthesis Results

For logic synthesis we used the Qubiter [3] software designed by Dr. Robert

Tucci. Qubiter is provided for free to researchers on Dr. Tucci’s website at

http://www.ar-tiste.com/qubiter.html and is covered by US Patent

6, 456, 994. At the time of this research, Qubiter was the only publicly available

quantum synthesis tool capable of handling general unitary quantum operators.

Although other quantum compilers existed, they were either not mature enough

or too limited. We give a brief overview of quantum compilers in section 3.4.5.

The goal of the logic synthesis was to look for more information that could

help us design or enhance quantum operators. For example, do we see patterns

in the usage of specific quantum gates or structures? How does the quantum

gate count change as we alter the unitary matrix or increase the complexity?

Unfortunately, we hit a very fundamental barrier with Qubiter which we’ll

explain right away since it quickly limited our planned studies. Namely, Qubiter

uses a pre–determined structure for synthesizing a quantum operator based on

Cosine–Sine Decomposition (or CSD). We described CSD in section 3.4.4. There

is nothing wrong with CSD, however, Qubiter does little to no optimizations

on the resultant quantum netlist and the algorithm relies heavily on phase and

rotation gates of arbitrary angles. In fact, Qubiter synthesized netlists were
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made up of only 4 types of gates: CNOT, C-Phase, ROTY, and potentially one

overall PHASE gate. This means that we had one static gate (CNOT) and the

rest used arbitrary angles. To make matters worse, we see approximately the

same circuit structure for a given number of qubits no matter how different the

function of the operators. This is also because of the static mapping Qubiter

uses from a given unitary operator to a circuit by following a deterministic

algorithm. We’ll see this in more detail later, however, it’s sufficient to say this

made doing a structural analysis of the quantum netlist mostly fruitless.

In section 7.1 we describe how the Qubiter software is compiled and run

since this was a very difficult. In sections 7.2 and 7.3 we give an overview of

the input collateral is needed and how we interpret the output of the software.

In section 7.4, we show how we synthesized the results from our best single

instance operators as reviewed in our eigenanalysis done in section 6. We give

our summary and conclusions in section 7.7.

7.1 Compiling and Running Qubiter

Qubiter has a somewhat surprising characteristic, it was developed on an older

MacOS. In fact, the original version we used (version 1.01) was developed on

Mac OS9 using CodeWarrior1 Professional (CWP) versions 1 and 2. Although

the sourcecode is considered C++, it has CWP–specific compiling commands

which make porting the sourcecode difficult. In addition, Qubiter uses a mod-

ified version of BLAS2 as well as math libraries geared towards the PowerPC

(PPC) architecture. Qubiter did not use the STL (Standard Template Library),

1CodeWarrior is produced by FreeScale and more information can be found at
http://www.freescale.com/codewarrior

2BLAS stands for “Basic Linear Algebra System”, more information can be found at
http://www.netlib.org/blas/
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but rather used a customized template library written by a 3rd–party developer

which was included with CodeWarrior. Lastly, there are many files — hundred,

perhaps — and libraries which make up Qubiter and the top–level project file

which maintains the order and linking commands to generate the libraries and

the final Qubiter executable is in a proprietary format and there was no way to

convert it to a GNU Makefile or Microsoft Visual-C++ project file.

We made an attempt to port the Qubiter sourcecode so that we could compile

and run it on a standard linux OS using GNU C++ (g++). However, given

the highly customized and proprietary nature of the code to an older Mac OS

and libraries, it became a very difficult process and we decided to abandon the

effort. We kept in good communication with Dr. Tucci throughout this process.

We finally resolved to simply purchase an older Mac computer (an iMac G3,

PowerPC based, 450MHz) which had both OS-X and OS9 running in Mac–

Classic mode. However, we still had issues with compilations because of lacking

3rd–party libraries. Eventually, Dr. Tucci uploaded his Qubiter executable to

us which was able to run on our “old” Mac.

7.2 Qubiter Input Files

Upon executing Qubiter, it looks for a file called “qbtr-params.in” which spec-

ifies the parameters of the synthesis. An example params file is shown:

//file prefix indicating matrix name?

5q_best_p1_t99

//Do compilation?(0,1)

1

//Do decompilation?(0,1)

1
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//Do light right optimization?(0,1)

1

//Do complex D matrix optimization?(0,1)

1

//Specify pmut_opt (permutation optmization level) (0,1,2)

1

//If pmut_opt=1, should I run through all bit permutations?(0,1)

1

//If pmut_opt=1, should I keep results for the identity permu.?(0,1)

1

//If pmut_opt=1 & answered NO to prev. question, then give another permu.

//Give length on 1st line, permu. on 2cd (0 1 2 ... is identity).

4

2 1 3 0

The first entry is the name of file containing the description of the quantum

unitary matrix to be synthesized. In the above example, we are pointing to the

unitary matrix of our most fit individual from the 5–qubit, probability mode

case. We won’t cover the other parameters, for the most part we left these at

their suggested default values.

The file which describes the unitary matrix is also a “.in” file. In the above

example, the matrix file would be “5q best p1 t99.in”. The format of the input

matrix file is rather simple. We first specify how many qubits are represented

by the matrix and then describe the matrix using real–imaginary pairs. We

specify the entries of the matrix as a string of columns. For example, we first

write down column 1, then append column 2, and so on. For an n qubit matrix,

we should have 2n entries. We show an example from a 2 qubit unitary matrix:

//number of bits
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2

//matrix u, as a string of columns

4.5488998475545628e-01 -2.7300421615946958e-02

1.2462256983509622e-01 -1.8462155396393282e-01

7.0185746166411134e-01 8.9098769276772558e-02

3.8208328574244116e-01 -3.1013506932374924e-01

4.5100703438276363e-01 -2.7275921393111951e-02

-5.9658489318826580e-01 -1.6165649550398006e-01

1.3737996029357016e-01 -4.6714541565998940e-02

-1.7557008766957286e-01 6.0159950478873636e-01

5.3810841699814282e-01 -2.0609961987595526e-02

3.8601128516668837e-01 5.8409387424338000e-01

-8.4172067771916253e-03 -6.7626353441249858e-03

-4.6875111969062311e-01 0.0000000000000000e+00

5.4603387750316812e-01 -6.3271984062368680e-03

1.0034604220263768e-02 -2.7940415189115725e-01

-6.8873987078214327e-01 -6.2632409534129727e-02

3.0048327528278729e-01 -2.3465713445274747e-01

7.3 Qubiter Output Files

Qubit produces a number of output files after synthesis. We briefly summarize

them here:

The file that is most interesting to us is the “engl.out” file which contains

the final result of the quantum circuit. This file can be lengthy for so we’ll show
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File Description
chk.out This is a copy of the input matrix “.in” file

after being loaded by Qubiter.
engl.out This is the detailed result of the synthesis

describing the gates and connectivity.
err.out This is the error matrix produced from the

difference between the input and result matrices.
log.out This is the detailed log file from Qubiter.
pict.out This is an ASCII visual representation of the

synthesized circuit.
pmut.out This is the result of various permutations tried and

the number of steps (gates) that resulted.

Table 7.1: Table of Qubiter output files.

an example from a 2 qubit run which corresponds to figure 7.9.

2

{ angles: 0.00000000 ^ 0.00000000 ^ 0.00000000 ^ 0.00000000

}

====================

CPHA 0 T 25.0747572

CPHA 1 T 24.7735822

CPHA 1 T 0 T 112.522734

{ angles: 45.4729213 & 3.03109044

ROTY 0 24.2520059

CNOT 1 T 0

ROTY 0 21.2209154

CNOT 1 T 0

}

CPHA 0 T 180.000000

CPHA 1 T 0 T 158.336638

246



====================

{ angles: 0.00000000 ^ 0.00000000 ^ 0.00000000 ^ 0.00000000

}

====================

{ angles: 49.4416822 86.6913857

ROTY 1 68.0665339

CNOT 0 T 1

ROTY 1 341.375148

CNOT 0 T 1

}

====================

{ angles: 0.00000000 ^ 0.00000000 ^ 0.00000000 ^ 0.00000000

}

====================

CPHA 0 T 231.741129

CPHA 1 T 300.430356

CPHA 1 T 0 T 302.815461

{ angles: 40.6683918 & 52.0097530

ROTY 0 46.3390724

CNOT 1 T 0

ROTY 0 354.329319

CNOT 1 T 0

}

CPHA 0 T 267.169649

CPHA 1 T 0 T 207.391615
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====================

{ angles: 0.00000000 ^ 0.00000000 ^ 0.00000000 ^ 0.00000000

}

====================

PHAS 280.138651

{ number of steps = 22

}

Starting at the top of the file, it describes the sequence of elementary gates

are encountered, their parameters, and their connectivity. To better understand

how this encodes the quantum netlist, we need to understand the format.

Qubiter uses a small set of elementary gates: CNOT, CPHA (Controlled

Phase), ROTY (Pauli–Y Rotation), and PHAS (Phase Gate that operates on

all qubits). The format in the “engl.out” file is encoded as such:

CNOT <qubit1> <T|F> [<qubit2> <T|F>] [...] <target_qubit>

The CNOT first specifies a list of one or more controlling qubits and their

assertion levels (T means true, implying a positive control node. F is a negative

control node). The last term is the target qubit to be flipped if the input nodes

and their assertion levels are valid.

ROTY <target_qubit> <angle>

The ROTY gate rotates the Y–component (using the Pauli–Y matrix denoted

by σy(θ) of a the target qubit by an arbitrary angle defined in degrees.

CPHA <qubit1> <T|F> [<qubit2> <T|F>] [...] <angle>

248



The CPHA (Controlled–Phase) gate has as arguments the gates involved in

its control and their assertion levels, similar to the CNOT gate. However, the

target qubit is all qubits which will have their phase adjusted by the angle as

specified in degrees.

PHAS <angle>

The PHAS (Phase) gate has only one argument which specifies the angle in

degrees to shift the phase of all qubits. There is no control condition. There

are either one or no instances of this gate in the resulting synthesized quantum

netlist.

Using our example “engl.out” file above, we can see the first three gates in

the array are CPHA gates. The first CPHA gate uses qubit 0 as the control

using a positive assertion level. When qubit 0 is |1〉, all qubits will have their

phase shifted by 25.07o degrees.

7.4 Synthesis Results

Now that we’ve shown how we run Qubiter, define its inputs, and interpret its

output we’re prepared to test some of our evolved unitary operators. We’ll do

this with the best case individuals we found while optimizing our ES parameters

in section 5.2 and are the “best” individuals we show in our eigenanalysis shown

in figures 6.1 to 6.4.

As we noted in our introduction to this chapter, the deterministic nature of

Qubiter resulted in largely the same gates and structures for all operators of the

same number qubits. The arbitrary angles of the gates were different and some

circuits concluded with a final PHAS gate whereas some did not. But apart

from that, visually, the circuits were the same.
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Figure 7.1: Average Number of Synthesized Gates

We wrote a small utility to read in the “engl.out” file from each run and

convert it into a visual quantum “schematic”. Unfortunately, we run into a

limitation of how many gates we can visualize. To give an idea of how many

gates are used in synthesis we refer to figure 7.1 which shows the average total

number quantum gates and figure 7.2 which shows the average breakdown of

the different types of gates used.

There is roughly a 4× increase in gates as we increment the number of qubits

which relates to the size of the matrix in terms of entries. For example, a 2 qubit

operator has a 4 × 4 matrix, a 3 qubit matrix is 4× larger at 8 × 8, a 4 qubit

matrix is 4× larger at 16× 16, and so on.

We can estimate the curve which determines the total number of gates by

using the approximate equation,

TG(q) = [10(2q−3)]2 = 25[22(q−2)] (7.4.1)

We show the accuracy of the above equation in the table 7.2 which shows
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Figure 7.2: Breakdown of Gates used in Synthesis

Average Predicted
Qubits Total Gates Total Gates
1 2 6
2 22 25
3 96 100
4 400 400
5 1600 1600

Table 7.2: Average total synthesized gates versus our predicted total gates.

that equation 7.4.1 does a very accurate job of predicting the total number of

gates with some inaccuracy at single qubit.

We can display roughly the first 15 to 20 gates which means for 3 qubit and

above, we cannot show the entire circuit. However, we now refer to figures 7.3

to 7.20. The CPHA gates are depicted by the “C” gates and the PHAS gate at

the end (if one exists) is depicted as a “P” gate. CNOT use their traditional

style of using an EXOR symbol (⊕) and ROTY gates are depicted as “Y” gates

although we note these are arbitrary rotations about the Y–axis. Therefore,
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the “C”, “P”, and “Y” gates have associated angle parameters not shown in the

figures.

The single qubit showed the most variety due to their limited number of

gates and either had one of two structures: (1) a single ROTY gate, or (2)

a CPHA–ROTY–CPHA–PHAS structure. The second structure occurs when

we used probability mode. This is perhaps because there was more freedom

to adjust the phases of the qubits as long as the probability distribution was

highly fit.

The 2 and 3 qubit synthesis results are prime examples that the structure is

shared for the same number of qubits. These are small enough to visualize all

the gates. All the 2 qubit schematics (figures 7.7 to 7.10) are visually the same.

The same is true for the 3 qubit schematics (figures 7.11 to 7.14). Of course

their angles will be different. In both 2 and 3 qubit netlists, a general PHAS

gate is found at the end.

The 4 and 5 qubit synthesis results (figures 7.15 through 7.20) are so large

that they are visually unappealing. An analysis of the circuits show they share

the same structure as well as being terminated with a PHAS gate.
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q0 Y

Figure 7.3: 1 qubit, complex mode, 70% target synthesized circuit.

q0 Y

Figure 7.4: 1 qubit, complex mode, 99% target synthesized circuit.

q0 C Y C P

Figure 7.5: 1 qubit, probability mode, 70% target synthesized circuit.

q0 C Y C P

Figure 7.6: 1 qubit, probability mode, 99% target synthesized circuit.
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q0
C C C

Y ��
��	
� Y ��
��	
�
C C

• •
C C C

Y ��
��	
� Y ��
��	
�
C C P

q1 • • Y ��
��	
� Y ��
��	
� • •

Figure 7.7: 2 qubit, complex mode, 70% target synthesized circuit.

q0
C C C

Y ��
��	
� Y ��
��	
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C C

• •
C C C

Y ��
��	
� Y ��
��	
�
C C P

q1 • • Y ��
��	
� Y ��
��	
� • •

Figure 7.8: 5 qubit, complex mode, 99% target synthesized circuit.

q0
C C C

Y ��
��	
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��	
�
C C

• •
C C C

Y ��
��	
� Y ��
��	
�
C C P

q1 • • Y ��
��	
� Y ��
��	
� • •

Figure 7.9: 2 qubit, probability mode, 70% target synthesized circuit.
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Y ��
��	
� Y ��
��	
�
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q1 • • Y ��
��	
� Y ��
��	
� • •

Figure 7.10: 2 qubit, probability mode, 99% target synthesized circuit.
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q0

C C C C C C

Y ��
��	
� Y ��
��	
� Y ��
��	
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��	
�
C C C

• • · · ·

q1 • • Y ��
��	
� Y ��
��	
� Y ��
��	
� Y · · ·

q2 • • • · · ·

Figure 7.11: 3 qubit, complex mode, 70% target synthesized circuit.
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��	
� Y · · ·

q2 • • • · · ·

Figure 7.12: 3 qubit, complex mode, 99% target synthesized circuit.
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• • · · ·

q1 • • Y ��
��	
� Y ��
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� Y ��
��	
� Y · · ·

q2 • • • · · ·

Figure 7.13: 3 qubit, probability mode, 70% target synthesized circuit.
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��	
�
C C C

• • · · ·

q1 • • Y ��
��	
� Y ��
��	
� Y ��
��	
� Y · · ·

q2 • • • · · ·

Figure 7.14: 3 qubit, probability mode, 99% target synthesized circuit.
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q0

C C C C C C C C C C C C

Y ��
��	
� Y ��
��	
� Y ��
��	
� Y ��
��	
� Y ��
��	
� Y ��
��	
� · · ·
q1 • • • · · ·
q2 • • · · ·
q3 • · · ·

Figure 7.15: 4 qubit, complex mode, 70% target synthesized circuit.

q0

C C C C C C C C C C C C

Y ��
��	
� Y ��
��	
� Y ��
��	
� Y ��
��	
� Y ��
��	
� Y ��
��	
� · · ·
q1 • • • · · ·
q2 • • · · ·
q3 • · · ·

Figure 7.16: 4 qubit, complex mode, 99% target synthesized circuit.
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q2 • • · · ·
q3 • · · ·

Figure 7.17: 4 qubit, probability mode, 70% target synthesized circuit.

q0
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��	
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q1 • • • · · ·
q2 • • · · ·
q3 • · · ·

Figure 7.18: 4 qubit, probability mode, 99% target synthesized circuit.
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q0

C C C C C C C C C C C C C C C C C C C C C

· · ·
q1 · · ·
q2 · · ·
q3 · · ·
q4 · · ·

Figure 7.19: 5 qubit, complex mode, 70% target synthesized circuit.

q0

C C C C C C C C C C C C C C C C C C C C C

· · ·
q1 · · ·
q2 · · ·
q3 · · ·
q4 · · ·

Figure 7.20: 5 qubit, probability mode, 70% target synthesized circuit.

The CPHA gates are indeed control gates that work on all the qubits. We

don’t show the controls we have concluded that the same controls and assertion

levels are used for same–size operators. Again, confirming that a structural

analysis won’t lead to any valuable conclusions.

7.5 Input, Loaded, and Result Matrix Errors

Qubiter provides us with two output files that allow us to check the difference

between the loaded and input unitary matrices and the difference between the

loaded and synthesized matrices. The “chk.out” file is a reproduction of the

input matrix after it has been loaded into Qubiter’s internal data–structures.

Qubiter may have its own set of dependencies on loading a structure, floating

point accuracy, or potential bugs. The other file is the “err.out” file. This

compares the loaded unitary matrix with the resultant unitary matrix after

synthesis. Even though Qubiter uses many arbitrary angles, it still uses CNOT

gates which are static, and each angle has a limit on its floating–point accu-

racy. We expect that large qubit simulations which have much higher error.
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For example, in 5 qubit matrices resulted in 1600 gates and roughly 70% use

arbitrary angle and we expect the errors quickly add up.

As our first test we compared our evolved unitary matrix with the matrix

in the “chk.out” file. In particular, we looked at the average error per matrix

element and we averaged this over the various simulations. Figure 7.21 shows

the average per–element error. The 1 and 2 qubit errors were very small —

on the order of 10−9. However, for 3 qubit the error shoots up to 0.094 per

element. Although the input and loaded matrices had some difference, they

were both tested unitary. An in–depth look at individual elements showed that

some elements had very small errors while others had larger errors. It’s possible

that Qubiter adjusted the values to fit its internal data structures. Oddly, the

4 qubit per element error was almost half of the 3 qubit error at 0.054. The 5

qubit was the worst at 0.179 per element.

The next test was to simply look at Qubiter’s “err.out” file to see how the

loaded matrix compared to the synthesized matrix. Figure 7.22 shows a graph

of the per element error between the loaded matrix and the synthesized matrix.

Remarkably, we see a resemblance to figure 7.21 where 1 and 2 qubit error was

extremely small — also on the order of 10−9. The 4 qubit error at 0.054 was

about half of the 3 qubit error of 0.094, and the 5 qubit was the worst at 0.143

per element. This is more than just a resemblance because the numbers are

almost identical. It seems that the error that was added in loading the unitary

matrix is almost added again after synthesis.
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Figure 7.21: Average Error between the Evolved U and the Loaded U
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Figure 7.22: Average Error between the Loaded U and the Synthesized U
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7.6 Synthesis Runtimes, Limitations,

and Memory Usage

Since Qubiter was developed on a much older platform ( 100MHz and 32MB of

memory), it made to be very efficient and run on very little memory. Although

a limit to the number of qubits is not explicitly stated, Qubiter handled up to

5 qubit unitary matrices with no issues. Based on the studies we ran, Qubiter

could likely handle potentially up to 7 or even 8 qubits.

The machine we ran Qubiter on was an iMac G3 running at 450MHz with

384MB of RAM. Run times for 1 to 3 qubit operators was on the order of a

few seconds. For 5 qubit operators, it typically took a few minutes but some

of the overhead also came from issues with the Mac–Classic emulator. Overall,

runtime and memory were not an issue with Qubiter.

7.7 Synthesis Conclusions

Putting aside the challenges we had getting Qubiter up and running given its

development on an outdated platform which made porting to a more modern

system next to impossible, we were fortunate to have a general quantum com-

piler freely available. It was also very helpful to receive support from the author

to help us get up and running.

There were some unfortunate aspects about Qubiter that we did not like.

The most significant negative aspect was that Qubiter did not do any optimiza-

tions or use more static quantum gates for its library. Instead, Qubiter used the

same circuit structure for a given number of qubits and relied heavily on rotation

and phase gates of arbitrary angles. While this is fine for the initial synthesis, it

takes a considerable amount of work to map Hadamards, Y, X, and other gates
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while still maintaining some level of fidelity. Because of Qubiter’s limitations,

we were unable to do any sort of quantum circuit structural comparisons or

investigations.

Overall, we were excited to synthesize our evolved operators. However, we

were dissatisfied that Qubiter’s limitations did not allow further investigations.

We hope that as newer quantum compilers emerge with more advanced tech-

niques, features, and optimizations that this investigation can be tried again.
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Chapter 8

Summary and Major Findings

Our research started out with a proposal to evolve quantum operators using an

ES and a method of randomly generating unitary matrices (section 3.2) with

the hope of being able to learn more about creating better quantum unitary op-

erators through their eigenanalysis and synthesis. It was quite surprising that

our ES was able to perform so well as indicated by the graph in figure 5.32

where valid solutions were found for even 5 qubit cases in under 30 generations

for single problem instances. However, this did not come for free. It took a

tremendous amount of effort in both implementing the ES as well as conduct-

ing numerous (as in tens–of–thousands) studies to tune the ES parameters as

detailed in section 5.2. The result was, for the first time, an algorithm which

designed quantum unitary operators represented using real–valued vectors and

was published in [4]. Although the method has some limitations, it was used

to evolve known single qubit quantum gates (section 5.3.2), the Hadamard gate

which actually resulted in the pseudo–Hadamard instead (section 5.3.1). We

also used it design a sub–circuit by evolving the 2 qubit oracle for Deutsch’s

Problem in section 5.3.3. We used the ES to quite successfully evolve quantum

operators which represented the solution to problem instances of 3 and 4 node

independent set problems (ISP) in section 5.4. We even went as far as to evolve
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a general quantum operator for solving any 3–node ISP in section 5.5 albeit

with partial success.

The eigenanalysis in section 6 was not as fruitful as we had hoped. The

eigenvalue plots detailed in section 6.1 did not provide any real discernible

patterns or information. This was later justified by the behavior of our random

unitary matrix method. The same was also true of the eigenvectors. Although

we showed how one could map the eigenvectors to the standard computational

basis in section 6.3, we did not use this in our analysis. We were curious if

pairs of eigenvalues close in value might suggest some degree of degeneracy.

Therefore, it was like a silver lining when we found that spectral decomposition

could be used to adjust eigenvalues and in our one application we found benefit

by forcing degeneracy where it seemed suggested. This method, which was

described in section 6.4, was discovered late in our research so it should be

given more consideration in future work.

As we concluded in chapter 7 on our quantum logic synthesis results, we

were hindered by the capabilities of our quantum compiler. At the time, it

was the only mature quantum compiler publicly available. However, because

of its lack of optimizations, heavy reliance on gates with arbitrary angles, and

pre–determined circuit structure, very little useful data could be gleamed from

the synthesis results. Also, the inability to port its code to linux or Windows

prevented us from running on much more powerful machines and limited the

number of parallel studies.

We had breakthrough in the middle of the research with the invention of our

quantum algebraic method which was described in chapter 4 and published in

[5]. It absorbed a tremendous amount of time to construct, derive its canonical
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representation, as well as research its potential applications (e.g., the primary

focus was on quantum logic synthesis where we attempt to form a circuit directly

from the algebraic representation). Unfortunately, the majority of the material

was not mature enough to be added to this dissertation. However, for the first

time, a quantum circuit could be easily represented using a simple mathematical

expression using well–known operations of matrix algebra and thus opens a

whole new area of research using a wealth of previous knowledge. We used this

method to prove known quantum circuit identities and as we mention in chapter

9, it has many more important potential applications.
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Chapter 9

Future Work

9.1 Further Evolving Unitary Matrices

One of the fundamental developments from this research which was detailed in

chapter 5 was an EA based on an Evolution Strategy (ES) paired with a random

unitary matrix method to evolve unitary operators that try to solve a particular

problem. However, there are definitely improvements which can be made and

further areas of research. We review these areas in this section.

Better Random Unitary Matrix Models

In section 3.2 we defined a method of generating a random unitary matrix

given a set of angle parameters. In all respects, it is a very good method

especially when considering how a random matrix should behave. However,

the number one problem with this method was that for an N × N matrix

(where N = 2q and q is the number of qubits), we needed (N − 1)N/2 φ

angles, (N − 1)N/2 ψ angles, and N − 1 χ angles giving us a total of N2 − 1

angles. That means we need almost as many angles as we do elements in our

matrix. This has an impact on our ES which has a σ parameter associated with

every object parameters. Therefore, our 5–qubit individual is encoded with
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1024 object parameters and another 1024 strategy parameters. Thus, having so

many angle parameters means a very large search space for the ES. Also, our

chosen random matrix method is computationally expensive to implement. It

requires O(2q(2q+1)
2

) matrix multiplications to produce the final unitary matrix.

At 5–qubits, that’s 528 32× 32 complex double–precision matrix calculations.

Smaller and more simple random matrix model which are constructed to

cater to the particular problem(s) we are trying solve should be investigated.

It doesn’t need to be ultimately configurable and as we saw with our chosen

method, the anti–symmetric limitation prevented us from evolving many known

elementary gates. Let’s take for example the simple 2–qubit random model

represented by the circuit in figure 9.1.

q1 • E2 •

q0 E1 • E3

Figure 9.1: Simple Random Unitary Model Example.

The unitary gates E1, E2, and E3 could be simple one–dimensional rotation

gates of arbitrary angles like X(θ), Y (θ), or adjusts phase like S(θ). Or, they

could be more general Bloch–sphere rotations like we described in 2.2.2 using

any combination of the rotation gates from the equations in 2.2.4. For example,

E1 could be a combination of Rx(θx)× Ry(θy) and have two angle parameters.

Or, being more general, all three could use the general 1–qubit form defined in

equation 2.2.5 and repeated below,

Ei = e−iγiRz(θzi)Ry(θyi)Rx(θxi)

However, this would create 12 angle parameters for the circuit in figure 9.1 which
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is worse than what our chosen method required. However, maybe this model

has qualities which lend itself to solving certain problems better? Perhaps it

can be simplified to remove angle parameters?

There is potentially a lot of reward in investigating if we can intelligently

construct the random unitary model using information about the problem(s) we

intend to solve. For example, we typically know the input states and associated

output states, and if we saw that a particular input qubit was always the same

in the output state (for example, q1 = |0〉 before and after for all training pairs),

then we can make an assumption that no gate needs to operate on qubit q1 and

that it is probably only used as a control node. The circuit from figure 9.1 could

be reduced down to the circuit in figure 9.2.

q1 • •

q0 E1 E3

Figure 9.2: Reduced Simple Random Unitary Model. E2 appeared not to be
needed as q1 always remained in the same state.

Having a potentially simpler model (especially one geared towards the prob-

lem at hand) could yield fewer angle parameters and — more importantly —

operators that are more apt to find a higher fit solution and not hit limitations

that would prevent it from being a better solution. Both of these traits would

aid the ES greatly. It is also possible that custom random models could benefit

in other areas such a generalized learning and general problem solving, both of

which involve multiple input–output training pairs.
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Hybrid Algorithms and Optimizations

No one single algorithm is best for all cases, and sometimes it is better to have

a mixture of algorithms to help cover a broader range of problems. This could

also be true for our ES. Early in our research we investigated merging a greedy

(and deterministic) algorithm into our ES. Its job was to select a small set of

angles (like 2 or 3 of them) and run a greedy search to see what configuration

of those angles resulted in a maximum fitness. The angle selection was purely

random. What we found was that the greedy algorithm had a large impact to

the ES runtime. In fact, it was better to not use the greedy algorithm since

our ES alone could search faster. With that said, we shouldn’t totally omit the

possibility that a hybrid solution could be found.

In the area of ES optimizations, we also tried running deterministic routines

that would give us a more fit initial population. And in all cases, the time

spent on preparing the initial population was actually better spent on a totally

random initial population but allowed to run for more generations. This could

have been our weak attempt and more investigation into producing a healthier

initial population should still be conducted.

However, one optimization that we did had a large impact on our ES perfor-

mance: We limited the angles to be integer factors of π/12. We did this for the

case where we were evolving an oracle to solve for Deutsch’s problem in section

5.3.3. What normally would take hundreds of generations was now happening

in only 26 generations. Part of the reason is that we knew the oracle was likely a

permutation matrix1 and this would help solve for those solutions by increasing

the probability of producing strong 1’s and 0’s in the matrix.

1A permutation matrix is essentially an identity matrix but the columns have been arranged
in some arbitrary order. An example is the Toffoli gate.
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Benefits of Recombination

While tuning the parameters for the ES in section 5.2, we investigated recom-

bination. Earlier studies in our research indicated that adding recombination

caused more disturbance than benefit. However, as the ES matured we at-

tempted adding recombination a second time and actually found cases which

outperformed pure mutation. However, it seemed to only be of value where our

target percentage was lower. For the remainder of our studies we only consid-

ered pure mutation. Recombination is still a valuable aspect of ES although it

is not the primary operation, and could use more investigation.

Generalized Learning Behavior

One of the early topics we tried tackling in our research was that of a form

of quantum machine learning. The idea was simple, have the ES evolve (or

“train”) a unitary operator on a sub–set of input–output states and then see

how the operator would perform when given an input it was not trained with.

As a lofty example, we could train the unitary operator to solve for most of

the solutions to any N node ISP, then test its solutions for input configurations

we never trained it with. The first problem we ran into was that multiple

input–output training was very difficult in terms of convergence. We saw this

in section 5.5 with the 3 node general ISP. Earlier tests also confirmed that

our evolved operators were not generalizing well. Part of the difficulty was our

random unitary matrix scheme. With a different model, perhaps generalized

training would be more interesting. However, we still feel this area warrants

further investigation.
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9.2 Applications of our Quantum

Logic Algebra

One of the most important areas of future research deals with the quantum

logic algebra we defined in chapter 4. Although some basic applications were

described such as showing circuit identities and extensions to multi–valued logic,

there are many more applications.

Quantum Computing Simulation

In the area of quantum computing simulation, not only can our quantum logic

algebra be used to represent a quantum circuit in a simple mathematical expres-

sion using basic matrix operations which has a wealth of research behind it, but

it could potentially be used to reduce equations, thereby reducing the number of

matrix calculations and thus increase simulation and time and perhaps reduced

memory overhead.

As an example we look at the circuit in figure 9.3 which is a well known

circuit original investigated by Barenco et al in [33] which shows a general 3–

qubit double–controlled unitary gate (Barenco called this gate: ∧2(U)) being

decomposed into 2–qubit operations.

q2 • • • •
q1 • = • �������� • ��������
q0 U V V † V

Figure 9.3: Barenco et al’s decomposition of ∧2(U) where V 2 = U .

In our algebra, the right side circuit has – at first – a lengthy description.

The left side is simple. We use the notation that Kronecker products are implied
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(that is, AB = A⊗B).

The left side equation is simply

S = D0II +D1D0I +D1D1U (9.2.1)

The right side has 5 slices from left–to–right

S1 = ID0I + ID1V (9.2.2)

S2 = D0II +D1XI (9.2.3)

S3 = ID0I + ID1V
† (9.2.4)

S4 = D0II +D1XI (9.2.5)

S5 = D0II +D1IV (9.2.6)

When we write out S = S5×S4×S3×S2×S1, the expansion can look painful

and it is not apparent that this whole expression is equivalent to equation 9.2.1.

However, while expanding we see a natural simplification take place. Namely,

anytime we have a term where a D0 is multiplied by a D1 (or D1 multiplied

by D0), then the term is dropped because D0 ×D1 = D1 ×D0 = 0. We wrote

a small perl script which was able to symbolically multiply the right–side slice

equations above. The result is shown below,

S ′ = D0D0I +D0D1(V †V ) +D1D1(V V ) +D1D0(V V †) (9.2.7)

Since V is unitary, V †V = V V † = I. Also, since V 2 = U , the above equation

simplifies to equation 9.2.1!

So, we discovered two things in this exercise: (1) we were able to prove

272



using our algebraic method that Barenco’s decomposition is valid, and, (2) an

otherwise complex circuit consisting of multiple slices can quickly be reduced

into only a few terms which required far less matrix multiplies and additions

than the original right–side equation. Therefore, future research should involve

using our quantum logic algorithm to benefit quantum computing simulation.

Quantum Logic Synthesis

The power of our quantum logic algebra is its ability to quickly transform a

quantum circuit into an algebraic expression. With this expression we are able

to use the wealth of knowledge to manipulate it with known mathematical rules,

laws, and identities, and perhaps pave the way to forming new ones. However,

one of the areas we did not cover although considerable time was spent in its

initial investigation, was that of forming a quantum circuit based on a quantum

algebraic expression.

This is a very difficult task and as of this writing, has no known method

apart from considerable manipulation of the expression which might involve

non–intuitive expansions.

Why this would be valuable should be quite obvious. If we were given a

quantum circuit which was potentially not optimal, then we could transform

it to our quantum algebra, simplify it through expanding and collapsing terms

(or other methods), then re–generate the circuit based on our new simplified

algebraic expression. This is much easier said than done.

Where things get complicated is when we have multiple slices. Not all ex-

amples will collapse to a single slice expression like they did in figure 9.3. Let’s

take a simple example and say after simplifying my circuit, we ended up with
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the following algebraic expression (note that matrix multiplies are explicitly

written use the · symbol rather than the × symbol):

U = D0D0 + (D0 ·X)D1 +D1(X ·D0) + (D1 ·X)(X ·D1) (9.2.8)

By looking at equation 9.2.8, it is not clear what circuit this expression

implements. However, with some simple factoring, we can start to see known

algebraic structures appear,

Factor out D0I.

U = (D0I) · (ID0 +XD1) +D1(X ·D0) + (D1 ·X)(X ·D1)

Factor out D1X.

U = (D0I) · (ID0 +XD1) + (D1X) · (ID0 +XD1)

Factor out common term ID0 +XD1.

U = (D0I +D1X) · (ID0 +XD1)

This leaves us with two terms which are known circuit structures multiplied

together. If we let S1 = ID0 + XD1 and S2 = D0I + D1X, then we recognize

these circuit structures as CNOT gates and thus can draw the quantum circuit,

shown in figure 9.4.

q1 �������� •
q0 • ��������

S1

_ _�
�
�
�
�
�

�
�
�
�
�
�_ _

S2

_ _�
�
�
�
�

�
�
�
�
�_ _

Figure 9.4: Reconstructed circuit from a quantum algebraic expression.

This example shows only single–controlled gates, the complexity of identi-
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fying gates with many controls and how to factor their terms out is obviously

much higher.

We can take the above simple concept one more step by developing rules to

look for as we’re manipulating the expressions. For example, the function, F ,

before a CNOT operation in a circuit is shown in figure 9.5.

q1

F
•

q0 ��������

Figure 9.5: General circuit showing F following by a CNOT.

The expression for such a circuit will have the form

U = (D0I +D1X) · F = (D0I) · F + (D1X) · F (9.2.9)

So, when we are manipulating our equations and we see a sub–expression

like

(D0I) · F + (D1X) · F

then we can recognize the factoring and see this is the two necessary terms (D0I

and D1X) to form a CNOT followed by some expression, F . The idea here is

that we are trying to extract out the circuit starting from the end (or right–most

gate) to the beginning.

As an extension, we can look at the circuit in figure 9.6 which separates the

function of the upper qubit from the lower qubit. There are instances this might

help decompose the expression into a circuit.

The derived expression is

U = (D0I +D1X) · (f1f2) = (D0I) · f1 + (D1X) · f2 (9.2.10)
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q1 f1 •

q0 f2
��������

Figure 9.6: General circuit where the function of the upper circuit is separated
by from the function of the lower qubit, followed by a CNOT.

Therefore, if during our equation manipulation we see a sub–expression

which has the form:

(D0I) · f1 + (D1X) · f2

then we can see that it has the circuit form in figure 9.6.

These examples showed how a couple of forms could reveal a CNOT gate but

these forms could be made even more general to expose any general gate. Also,

we looked at right–most but nothing prevents us from looking for factoring to

expose left–hand side circuits (e.g., U = F · (D0I +D1X)).

Obviously an intimate understanding of manipulating equations which are

a mixture of addition/subtraction, multiplication, and Kronecker products of

matrices must be attained. As we experimented with these equations, we also

investigated specialized division operations although the work is not stated here

since it wasn’t yet conclusive. However, division exposed some very interesting

properties and is definitely a potentially fruitful area of research.

One can envision a quantum logic synthesizer that does a first–pass mapping

of the input description of the quantum computer (e.g., a unitary matrix) into

a quantum circuit. Then the circuit, either in whole or in part, is transformed

into our algebraic notation. A series of algorithms using known identities and

rules then work on the circuit to simplify the expression. Next, another set of

algorithms manipulate the equations into a sequence of multiplied terms where
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each term is a known circuit structure.

Overall, applying our quantum logic algebra to synthesis is clearly one of

the areas that needs further research and would greatly increase the usefulness

and power of the method.

Exploring Multi–Value Logic

We briefly mention how our quantum logic algebra can encompass multi–value

quantum logic and give a simple example in section 4.8. However, this was

the only treatment we gave to multi–valued logic and clearly deserves more

investigation. It is quite possible that our quantum logic algebra has an even

more important role in multi–valued logic.

9.3 Expanding The Eigenanalysis

The eigenanalysis we did in section 6 was largely focused on the eigenvalues.

Although it was interesting to visualize the eigenvalues on the unit circle, their

comparisons didn’t provide us much insight. Individuals trained with a proba-

bilistic target had more eigenvalue variation than complex target which was an

intuitive finding. Most individuals tended to have similar eigenvalues. In the

cases where we changed the problem instance and looked at how the eigenvalues

were altered, there wasn’t a clear reason — some eigenvalues didn’t change and

some did but not for an obvious reason. It was interesting to see how the eigen-

value compared for single versus multi–solution ISP instances. In some cases

an averaging of eigenvalues was seen, but not in others. Overall, we pulled very

little useful information from the plots. It is possible that more useful infor-

mation can be extracted from the eigenvectors themselves. We did have some
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highlights while examining the eigenanalysis but we feel a lot is still left on the

table to be investigated. In this section, we highlight a few of those areas.

Eigenvector Mapping and Eigenvalue Adjusting

In section 6.3, we discovered a way to map the eigenvalues and eigenvectors

from the spectral decomposition format into the common outer–product format

using equation 6.3.12 repeated here:

vij =
N∑
k=1

λkekiekj

The basis vectors were mapped from mostly non–intuitive eigenvectors to the

standard computational basis (e.g., |00〉, |01〉, etc.). We showed how this trans-

formation could be applied to the NOT gate. For example, by looking at the

eigenvalues and eigenvectors, it wasn’t clear if it was a NOT gate. However,

this is as far as we went. With most mathematical transformations, it is pos-

sible that this method lends itself to simplifying or facilitating the solutions to

other problems and warrants further research. For example, this might provide

a method to adjusting eigenvectors for a given operator. Or, given a unitary

operator, we could see how standard input vectors are mapped to output vec-

tors (as a function standard basis vectors) which might tell us more about the

function of the operator, highlighting dependencies or even entanglement.

The other highlight which was probably the most useful outcome of the

eigenanalysis was described in section 6.4 which gave us a method to adjust

the eigenvalues of a given operator without destroying its unitary property.

But again, we only showed a few examples of its application and it should be

investigated further.
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Let’s say we had a given unitary operator U which we knew was a good

solution but needed enhancement. Section 6.4 allows us to adjust the eigenvalues

to form a new unitary operator, U ′, using:

U′(θ1, . . . , θn) =
n∑
i=1

eiθi |vi〉 〈vi|

What we never investigated is how to alter the eigenvalues in the above equation

to enhance the fitness over the original U . This is an area for exploration. For

example, one could use another ES that explored various values of eiθi . An ES

lends itself well since we have N = 2q eigenvalues which is a relatively small

number (this is the square–root of the number of angle parameters our main ES

had to deal with) and our individual could encode the N angles as a real–valued

vector: < θ1, θ2, . . . , θN >. Or, even a deterministic greedy or gradient–decent

type search could be used to hone the angles by small deltas, reconstruct the

new U ′, and determine its fitness and select the new angle configuration with

the best fitness.

Eigenvector Analysis

We had mentioned some eigenvector analysis techniques in section 3.3 but they

were largely omitted because of the unitary nature of our operators. There

really wasn’t a concept of a dominant eigenvector because our eigenvalues all

had unity modulus. Also, the eigenvectors formed the orthonormal basis vectors

for our operator, which meant the eigenvector was a pure state of the operator

which took away a lot of the mystery of the eigenvectors (it was this fact that

made it possible to map the eigenvectors to the standard computational basis in

section 6.3). Eigenvectors are harder to compare and view. However, there are
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still some remaining analysis methods we did not try. Methods of comparing

the eigenvectors of unitary operators could be investigated. Also, just as we

developed a method to adjust eigenvalues and see a benefit, maybe a similar

method can be done for eigenvectors. For example, possibly as long as the

eigenvectors form an orthonormal basis, the spectral decomposition form can

be used and eigenvector adjustments could be made which benefit the fitness of

a unitary operator.

9.4 Better Logic Synthesis

All of the quantum logic synthesis we did was with Qubiter and the results

are summed up in chapter 7. We noted in our conclusions in that chapter

that Qubiter had some severe limitations that inhibited further investigations;

Namely, no optimizations and the excessive reliance on gates with arbitrary

angles. So, this begs the continuation of this research as newer and better

quantum compilers are developed. For example, it would be interesting to see

how Dr. Lukac’s GA compiler[40] described in section 3.1.1 — which implements

configurable quantum gate library and various optimizations — would deal with

our evolved unitary operators.

As part of the future work that can be done in logic synthesis, we largely

re-state a lot of what we had planned to do but ran into limitations with the

synthesizer. For example, if we had two operators related in some way, we could

perform the following:

• Compare gate usage and overall count counts.

• Identify common sub–circuits and their frequency.
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And more advanced techniques could be investigated which might involve how

well the operators map to certain technologies such as NMR or ion trap.

It would also be interesting to see how operators of varying fitness compare

in terms of synthesis results. For example, would more fit operators require

more or less gates?

Since our ES creates random unitary matrices based on angles, there is an

intuitive feeling that those arbitrary angles will need to be mapped to static

gates in some way. Obviously very obscure angles which have many digits of

accuracy will have some error associated with them, so, perhaps it would be

interesting to see how (and if) an optimized operator which uses more integral–

friendly angles would result in a cleaner synthesis result.
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Appendix A

Compiling and Running the ES

The source code for the ES is written in C++ and composed of only four

files. The main file (es.cpp) and three accompanying header files (random.h,

unitary.h, matrix.h, and parse args.h). A description of these files is as follows:

• es.cpp is the main C++ file which contains the main() function and the

primary ES code.

• matrix.h is a basic header file which contains all of the basic matrix class

and accompanying functions.

• unitary.h contains the function which implements the method described

in section 3.2 to generate random unitary matrices.

• random.h is a header file which defines standard random functions useful

for evolutionary algorithms in general.

• parse args.h is a header file which handles parsing command–line argu-

ments.
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A.1 Compiling the ES

Compiling was done using a standard GNU C++ compiler like gcc. Since there

is only one C++ file, compilation and linking is extremely simple. All that is

needed are the five source files we described previously in the same directory

and run the compiler command:

gcc es.cpp -o es.exe

This will produce an executable called es.exe.

A.2 Running the ES

There is only one required argument for ES executable which is the ES file

while we’ll describe in more detail later. The other arguments are optional and

are used to override settings in the ES, invoke special options, experimental

settings, or for debug.

The command–line use of the es.exe has the following format:

es.exe <es_file> [-runs <uint>] [-gens <uint>] [-mu <uint>] [-lambda <uint>]

[-mpl <1|0>] [-is <uint>] [-tprob <1|0>] [-tfit <uint>]

[-fit <1|0>] [-train_mask <uint>] [-pm <uint>]

[-recomb_mode <1|0>] [-recomb_parent <uint>] [-recomb_prob <uint>]

[-d1] [-d2]

Descriptions:

=============

Required:

---------

<es_file> # ES file

Optional:

---------

[-runs <uint>] # number of ES runs
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[-gens <uint>] # number of generations per run

[-mu <uint>] # number of parents

[-lambda <uint>] # number of children

[-mpl <1|0>] # 1=(mu+lambda), 0=(mu,lambda)

[-is <uint>] # initial/reset sigma (x 100)

[-tprob <1|0>] # target mode: 1=probability, 0=complex

[-tfit <uint>] # target fitness (x 100)

[-fit <1|0>] # fitness mode (experimental)

[-train_mask <uint>] # mask out certain input/output pairs from training

[-pm <uint>] # probability of mutation

[-recomb_mode <1|0>] # recombination mode: 1=intermediate, 0=discrete

[-recomb_parent <uint>] # number of parents used for recombination

[-recomb_prob <uint>] # probability of apply recombination to an allele

[-d1] # debug level 1 messages (high level debug)

[-d2] # debug level 2 messages (low level debug)

A.3 The ES File Format

The ES file is a text file which describes the configuration of the quantum circuit,

the input and output states, and various parameters for the ES. The format for

the ES file is as follows:

qubit=<uint> # The number of qubits

runs=<uint> # The number of runs for the ES

gens=<uint> # The maximum number of generations per run

mu=<uint> # The number of parents

lambda=<uint> # The number of children

mpl=<0|1> # 1=(mu+lambda), 0=(mu,lambda)

io_pairs=<uint> # number of input/output states for training

init_sigma=<float> # The value for the inital/reset sigma

target_prob=<0|1> # target state mode: 1=probability, 0=complex

target_fitness=<float> # Target fitness. 1=perfect. 0.75=75% fitness

# Define Input-Output states pairs (there will be <io_pairs> of these)

# ...

The last part of the ES file defines the input/output state pairs. These are

based on the standard basis states. To support superposition, we can define the
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input state using multiple pure states. The format of a single input/output pair

is

N c_1|I_1> c_2|I_2> ... c_N|I_N> M d_1|O_1> d_2|O_2> ... d_M|O_M>

Where N represents the number of basis state terms needed for the input

state. The output state is made up of a superposition of M basis states. There-

fore, using the form above, the input state, |ψi〉, will be:

|ψi〉 = c1 |I1〉+ . . .+ cN |IN〉 =
N∑
i=1

ci |Ii〉 (A.3.1)

And the output (or target) state, |ψt〉, will be:

|ψi〉 = d1 |O1〉+ . . .+ dN |OM〉 =
M∑
j=1

dj |Oj〉 (A.3.2)

An example ES file which trains a unitary operator to solve for general

3–node ISP problem is as follows:

qubits=3

runs=1

gens=1000

mu=15

lambda=500

mpl=1

io_pairs=8

init_sigma=0.1

target_prob=1

target_fitness=0.99

1 1.0|000> 1 1.0|111>

1 1.0|001> 2 0.7071067811865476|101> 0.7071067811865476|110>

1 1.0|010> 2 0.7071067811865476|011> 0.7071067811865476|110>

1 1.0|011> 1 1.0|110>

1 1.0|100> 2 0.7071067811865476|011> 0.7071067811865476|101>

1 1.0|101> 1 1.0|101>
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1 1.0|110> 1 1.0|011>

1 1.0|111> 1 1.0|000>

A.4 The ES Output

The ES executable does not generate any output files. All output is sent to the

standard–output and was typically re–directed to a file. The output is verbose

mostly for debugging purposes. The output has the following basic stages:

1. Parsing the ES file.

2. Constructing the Input/Output states.

3. Parsing the command-line arguments.

4. Showing the final parameters to be used by the ES.

5. Initializing the population.

6. Iterate through the runs and generation (main ES loops)

7. The best individual is displayed (per run and generation and overall)

Below is an example output taken from an ES executable for the 3–node

ISP:

-D- Parsing isp.es

-D- Qubits=3, N=8, IO_PAIRS=8

-D- Read Input 0, term 0 = 000> with coefficient 1

-I- Converted 000> to 0

-D- Input State 0 with 1 terms

-D- Read Output 0, term 0 = 111> with coefficient 1

-I- Converted 111> to 7

-D- Output State 0 with 1 terms

-D- Input Vector = (8 x 1)[[1.0000000000000000e+00+0.00000000000000...
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-D- Output Vector = (8 x 1)[[0.0000000000000000e+00+0.00000000000000...

-D- Read Input 1, term 0 = 001> with coefficient 1

-I- Converted 001> to 1

-D- Input State 1 with 1 terms

-D- Read Output 1, term 0 = 101> with coefficient 0.707107

-I- Converted 101> to 5

-D- Read Output 1, term 1 = 110> with coefficient 0.707107

-I- Converted 110> to 6

-D- Output State 1 with 2 terms

-D- Input Vector = (8 x 1)[[0.0000000000000000e+00+0.00000000000000...

-D- Output Vector = (8 x 1)[[0.0000000000000000e+00+0.00000000000000...

...

-D- Found -mu = 15

-D- Found -lambda = 500

-D- Found -is = 0.1

-D- Found -tfit = 0.98

-I- Info:

-I- Qubits = 3

-I- RUNS = 1, MAX Generations = 1000

-I- MU = 15, LAMBDA = 500

-I- MU_PLUS_LAMBDA = 1

-I- TARGET_PROB = 1

-I- TARGET_FITNESS = 0.98

-I- IO_PAIRS = 8

-I- INIT_SIGMA = 0.1

-D- Size of an individual = 394264 bytes

-D- Size of population = 203045960 bytes

-D- Setting poplist[0] to point to population[0]

-D- Setting poplist[1] to point to population[1]

-D- Setting poplist[2] to point to population[2]

-D- Setting poplist[3] to point to population[3]

-D- Setting poplist[4] to point to population[4]

-D- Setting poplist[5] to point to population[5]

...

-I- Generation: 0

-I- Run 0: Gen=0: Best=0.934777, Prob.Dist=(8 x 1)[[3.80492644562836...

-I- Generation: 1

-I- Run 0: Gen=1: Best=0.940681, Prob.Dist=(8 x 1)[[1.28243517050193...
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-I- Generation: 2

-I- Run 0: Gen=2: Best=0.947328, Prob.Dist=(8 x 1)[[1.06678743852447...

-I- Generation: 3

-I- Run 0: Gen=3: Best=0.947328, Prob.Dist=(8 x 1)[[1.06678743852447...

-I- Generation: 4

-I- Run 0: Gen=4: Best=0.949542, Prob.Dist=(8 x 1)[[2.71768436890629...

-I- Generation: 5

-I- Run 0: Gen=5: Best=0.953403, Prob.Dist=(8 x 1)[[2.08142988475689...

...

-I- Best of Run 0 = 0.965463, with Prob.Dist=(8 x 1)[[2.575499149816...

-I- Best U = (8 x 8)[[2.6614338399183344e-02+1.5826139292238883e-01i...

-I- Final Parent Population and Fitness:

-I- Parent[0] = 0.965463, Prob.Dist=(8 x 1)[[2.5754991498160990e-02+...

-I- Parent[1] = 0.965463, Prob.Dist=(8 x 1)[[2.4917651369587426e-02+...

-I- Parent[2] = 0.965463, Prob.Dist=(8 x 1)[[2.4740887611428956e-02+...

-I- Parent[3] = 0.965463, Prob.Dist=(8 x 1)[[2.6511076756574343e-02+...

-I- Parent[4] = 0.965463, Prob.Dist=(8 x 1)[[2.5360371481615053e-02+...

-I- Parent[5] = 0.965462, Prob.Dist=(8 x 1)[[2.5849219920282794e-02+...

...

-I- VeryBest=0.965463, Err=7.739611, U=(8 x 8)[[2.6614338399183344e-...

-I- Probability Distribution for input 0 = (8 x 1)[[2.57549914981609...

-I- Probability Distribution for input 1 = (8 x 1)[[1.07400676397577...

-I- Probability Distribution for input 2 = (8 x 1)[[1.65591433105776...

-I- Probability Distribution for input 3 = (8 x 1)[[9.33277319285629...

-I- Probability Distribution for input 4 = (8 x 1)[[1.29769749481549...

-I- Probability Distribution for input 5 = (8 x 1)[[2.32171743177962...

-I- Probability Distribution for input 6 = (8 x 1)[[1.23535896048615...

-I- Probability Distribution for input 7 = (8 x 1)[[1.22447778361793...

...

-I- psi[1][2] = 1.60048 (sig_psi=0.00069657)

-I- phi[1][2] = 0.565421 (sig_phi=0.000177666)

-I- chi[2] = 0.49849 (sig_chi=0.00604527)

-I- psi[2][3] = 3.77186 (sig_psi=0.000184942)

-I- phi[2][3] = 0.00466546 (sig_phi=0.000373294)

-I- psi[1][3] = 4.31741 (sig_psi=0.0130396)

-I- phi[1][3] = 1.15522 (sig_phi=0.000436296)

...

-I- Showing the top 10 (or MU if MU < 10) in the final population:
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-I- Parent[0] = 0.965463, U=(8 x 8)[[2.6614338399183344e-02+1.582613...

-I- Parent[1] = 0.965463, U=(8 x 8)[[5.0585520272807036e-02+1.495284...

-I- Parent[2] = 0.965463, U=(8 x 8)[[5.4524651803217361e-02+1.475396...

-I- Parent[3] = 0.965463, U=(8 x 8)[[3.9887442645027665e-02+1.578609...

-I- Parent[4] = 0.965463, U=(8 x 8)[[4.7408133526010823e-02+1.520290...

-I- Parent[5] = 0.965462, U=(8 x 8)[[4.4688607567537897e-02+1.544414...

-I- Parent[6] = 0.965462, U=(8 x 8)[[4.7483150090648414e-02+1.511969...

-I- Parent[7] = 0.965462, U=(8 x 8)[[4.1307960560509074e-02+1.587297...

-I- Parent[8] = 0.965462, U=(8 x 8)[[5.3721833473884963e-02+1.488251...

-I- Parent[9] = 0.965462, U=(8 x 8)[[5.8040128974821789e-02+1.459133...

-I- Done
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Appendix B

ES Source Code

B.1 The Main ES Code: ES.CPP

#include "unitary.h"

#include "random.h"

#include <stdio.h>

#include <iostream.h>

#include "parse_args.h" // my arg parser

#define MAX_POPSIZE 1500 // Max Population Size

#define MAX_IO_PAIRS 1024 // Max IO Pairs

// global

matrix INPUT_VECTOR[MAX_IO_PAIRS], TARGET_VECTOR[MAX_IO_PAIRS];

// basic globals

int RUNS = 0; // Max number of runs

int GENS = 0; // Max generations

int QUBITS = 0; // Qubits

int N = 0; // 2^(qubits), number of states

int PM = 100; // Prob. of mutation, usually 100%

int MU = 0; // Number of parents

int LAMBDA = 0; // Number of children

int POPSIZE = 0; // MU+LAMBDA

int MU_PLUS_LAMBDA = 0; // =1 for (mu+lambda), =0 for (mu,lambda)

int DEBUG1 = 0, DEBUG2 = 0; // Dumb level1 and/or level2 debug information

int IO_PAIRS = 0; // Number of IO pairs to train with

double TARGET_FITNESS = 1.0; // Target Fitness to quit training
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double INIT_SIGMA = 0.1; // Value to initially set sigmas to and also reset when we hit

// boundaries

int TARGET_PROB = 1; // =1 to use the target vector as a probability or =0 if it’s

// treated as a complex (pre-measure) value

int FITNESS = 0; // =0 for SUM(1/(err+1)) (slightly better)

// =1 for 1/(SUM(err)+1)

unsigned long TRAIN_MASK = 0xFFFFFFFF; // determines which I/O pairs we should use for training,

// upto 32 I/O pairs (5 qubits)

double ROUND_ANGLES = PI / 12.0; // 0.261799387799149; if >0, then

// we round the angles after mutation to the closest

// integral of ROUND_ANGLES

int RECOMB_MODE = 1; // 1=intermediate(average), 0=discrete (pick one)

int RECOMB_PARENTS = 2; // how many parents to chose for recombination

int RECOMB_PROB = 10; // 10% chance that we’ll actually recombine an angle/sig_angle

double FN = (double) N; // For real-number equations

float tau = 0.0, // use FN-1 = N-1 = number of angle parameters

tau_prime = 0.0;

typedef unsigned long uint32;

int ParseFile (char *); // This loads our cfgs from a file, qubits, flags, input/output

// pairs, etc.

matrix ConvertState (char *, int); // Convert from a state string (e.g, |0110>) to a vector

// create the structure which represents an individual

class individual

{

public:

// First, our object parameters which are the angles which define the unitary matrix

double psi[MAX_ANGLES][MAX_ANGLES], phi[MAX_ANGLES][MAX_ANGLES], chi[MAX_ANGLES];

// Second, are our strategy parameters

double sig_psi[MAX_ANGLES][MAX_ANGLES], sig_phi[MAX_ANGLES][MAX_ANGLES], sig_chi[MAX_ANGLES];

// fitness value

double fitness, err;

// unitary matrix

matrix U;
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// functions:

individual ()

{ // random initialization

// initialize();

}

void initialize ()

{

int i, j;

// random angles

for (int j = 2; j <= N; j++)

{

for (int i = j - 1; i > 0; i--)

{

psi[i][j] = 2.0 * PI * uniform (&idum);

phi[i][j] = PI / 2.0 * uniform (&idum);

sig_psi[i][j] = INIT_SIGMA; // 1.0;

sig_phi[i][j] = INIT_SIGMA; // 1.0;

}

chi[j] = 2.0 * PI * uniform (&idum);

sig_chi[j] = INIT_SIGMA; // 1.0;

}

U = create_unitary_matrix (N, psi, phi, chi);

// calc_fitness(INPUT_VECTOR, TARGET_VECTOR); // need to fix eventually

calc_fitness (); // need to fix eventually

}

void update_matrix ()

{ // run this when we’ve updated the angle parameters

if (DEBUG2)

cout << "\n-D- Updating Matrix!";

U = create_unitary_matrix (N, psi, phi, chi);

}

double calc_fitness (matrix * I, matrix * T)

{ // given column vectors I (input)

// and desired output, T, determine fitness

int i;
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matrix R; // (N,1); // result vector ~ Nx1 = column vector

err = 0.0;

fitness = 0.0;

if (DEBUG2)

{

printf ("\n-D- calc_fitness U=");

U.show ();

}

// Here, we assume T is always complex, so if we’re in TARGET_PROB mode, it means we use

// |T|^2 instead!

if (TARGET_PROB)

{

R = (U * (*I)).modulus_squared () - T->modulus_squared ();

if (DEBUG2)

{

printf ("\n-D- R=|U*I|^2 - |T|^2 = ");

R.show ();

}

}

else

{

R = (U * (*I)) - (*T);

if (DEBUG2)

{

printf ("\n-D- R=(U*I) - T = ");

R.show ();

}

}

// At this point, R is our error vector (either complex or probability error)

// The fitness function is : SUM(i=0 to N-1)(1/(((^2+epsilon)))

// Either way, we need absolute positive error, so we use

// do |R|^2 or |R|.

// R = R.modulus_squared(); // mod_squared is faster than modulus...

R = R.modulus (); // mod_squared is faster than modulus...

if (DEBUG2)

{

printf ("\n-D- |R| = ");

R.show ();
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}

for (i = 0; i < N; i++)

{

if (FITNESS)

{ // = 1/(SUM(err)+1)

err += R.M[i][0].r; // sum the absolute errors

}

else

{ // = SUM(1/(err+1)) - should be better

err += R.M[i][0].r; // sum the absolute errors

fitness += 1.0 / (R.M[i][0].r + 1.0);

}

}

if (FITNESS)

{ // = 1/(SUM(err)+1) - previously, this yielded bad results

fitness = (1.0 / (err + 1.0)); // perfect fit is when err=0, fitness = 1

}

else

{ // = SUM(1/(err+1))

// perfect fit when err = 0, fitness = N

// fitness = fitness/N; // so that perfect fitness = 1

}

if (DEBUG1)

printf ("\n-D- Err=%lf, Fitness=%lf", err, fitness);

return fitness; // return fitness

}

double calc_fitness ()

{ // uses all available IO PAIRS

double myfit = 0.0, my_err = 0.0;

int i;

int cnt = 0;

for (i = 0; i < IO_PAIRS; i++)

{ // test across all IO pairs

if ((unsigned long) pow (2, i) & TRAIN_MASK)

{ // are we supposed to train with this io-pair?

if (DEBUG2)
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cout << "\n-D- Calculating fitness for input " << i;

calc_fitness (&INPUT_VECTOR[i], &TARGET_VECTOR[i]);

myfit += fitness;

my_err += err;

cnt++;

}

else

{

if (DEBUG2)

cout << "\n-D- skipping io pair number " << i;

}

}

// fitness = myfit/IO_PAIRS; // Avg. fitness of all pairs

// New method, take cumulative err and recalculate fitness

if (FITNESS)

{ // = 1/(SUM(err)+1)

fitness = 1.0 / (my_err + 1.0); // perfect fit = 1 when my_err = 0

}

else

{ // = SUM(1/(err+1))

fitness = myfit; // perfect fit = N*IO_PAIRS or IO_PAIRS if already divided by N

fitness = myfit / (cnt * N);

}

if (DEBUG2)

cout << "\n-D- Total err was " << my_err << " and fitness was " << fitness;

return fitness;

}

void show_probabilities (matrix * I)

{ // this function does a mod_squared of the result to give the

// probability distribution

matrix P;

P = (U * (*I)).modulus_squared ();

// show P

// printf("\n-I- Probability Distribution = "); P.show();

P.show ();

}

void show_probabilities ()

{ // show probability distribution (O=U*I) mod squared
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// for all INPUT vectors

matrix P;

int i;

for (i = 0; i < IO_PAIRS; i++)

{

P = (U * INPUT_VECTOR[i]).modulus_squared ();

printf ("\n-I- Probability Distribution for input %d = ", i);

P.show ();

}

}

void show_angles ()

{ // shows the angles

int i, j;

for (int j = 2; j <= N; j++)

{

for (int i = j - 1; i > 0; i--)

{

cout << "\n-I- psi[" << i << "][" << j << "] = " << psi[i][j] << " (sig_psi=" <<

sig_psi[i][j] << ")";

cout << "\n-I- phi[" << i << "][" << j << "] = " << phi[i][j] << " (sig_phi=" <<

sig_phi[i][j] << ")";

}

cout << "\n-I- chi[" << j << "] = " << chi[j] << " (sig_chi=" << sig_chi[j] << ")";

}

}

}; // class individual

void

copy_individual (individual * A, individual * B)

{ // copy A to B

// method 1 - this won’t work if it only copies pointers

B->U = A->U;

B->fitness = A->fitness;

B->err = A->err;

for (int i = 0; i < MAX_ANGLES; i++)

{

for (int j = 0; j < MAX_ANGLES; j++)

{
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B->psi[i][j] = A->psi[i][j];

B->phi[i][j] = A->phi[i][j];

B->sig_psi[i][j] = A->sig_psi[i][j];

B->sig_phi[i][j] = A->sig_phi[i][j];

}

B->chi[i] = A->chi[i];

B->sig_chi[i] = A->sig_chi[i];

}

} // copy_individual

void

mutate (individual * p)

{ // mutate individual p

// each angle has a strategy parameter (sigma) such as sig_psi, sig_phi, and sig_chi

// we update the angles according to:

// beta = tau_prime*RAND_NORMAL;

// sig_psi = sig_psi*exp(beta+(tau*RAND_NORMAL)

// ...etc..

// then update angles:

// psi = psi + (sig_psi*RAND_NORMAL)

int i, j;

float beta = tau_prime * normal (&idum);

if (DEBUG2)

cout << "\n-D- MUTATE: beta = " << beta << ", tau = " << tau;

for (j = 2; j <= N; j++)

{

for (i = j - 1; i > 0; i--)

{

if (DEBUG2)

cout << "\n-D- MUTATE BEFORE: sig_psi[" << i << "][" << j << "] = " << p->

sig_psi[i][j];

if (DEBUG2)

cout << "\n-D- MUTATE BEFORE: psi[" << i << "][" << j << "] = " << p->psi[i][j];

p->sig_psi[i][j] *= exp (beta + tau * normal (&idum));

p->sig_phi[i][j] *= exp (beta + tau * normal (&idum));

// reset strategy parameters
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if (p->sig_psi[i][j] < 0.0001 || p->sig_psi[i][j] > 2.0)

p->sig_psi[i][j] = INIT_SIGMA; // 1.0;

if (p->sig_phi[i][j] < 0.0001 || p->sig_phi[i][j] > 2.0)

p->sig_phi[i][j] = INIT_SIGMA; // 1.0;

p->psi[i][j] += p->sig_psi[i][j] * normal (&idum);

p->phi[i][j] += p->sig_phi[i][j] * normal (&idum);

// limit checks, phi is between 0 and pi/2, psi and chi are 0 to 2*pi

if (p->psi[i][j] < 0.0)

p->psi[i][j] = 0.0;

if (p->phi[i][j] < 0.0)

p->phi[i][j] = 0.0;

if (p->psi[i][j] > 2 * PI)

p->psi[i][j] = 2 * PI;

if (p->phi[i][j] > PI / 2)

p->phi[i][j] = PI / 2.0;

if (DEBUG2)

cout << "\n-D- MUTATE AFTER: sig_psi[" << i << "][" << j << "] = " << p->

sig_psi[i][j];

if (DEBUG2)

cout << "\n-D- MUTATE AFTER: psi[" << i << "][" << j << "] = " << p->psi[i][j];

}

if (DEBUG2)

cout << "\n-D- MUTATE BEFORE: sig_chi[" << j << "] = " << p->sig_chi[j];

if (DEBUG2)

cout << "\n-D- MUTATE BEFORE: chi[" << j << "] = " << p->chi[j];

p->sig_chi[j] *= exp (beta + tau * normal (&idum));

if (p->sig_chi[j] < 0.0001 || p->sig_chi[j] > 2.0)

p->sig_chi[j] = INIT_SIGMA; // 1.0;

p->chi[j] += p->sig_chi[j] * normal (&idum);

if (p->chi[j] < 0.0)

p->chi[j] = 0.0;

if (p->chi[j] > 2 * PI)

p->chi[j] = 2 * PI;

if (DEBUG2)

cout << "\n-D- MUTATE AFTER: sig_chi[" << j << "] = " << p->sig_chi[j];
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if (DEBUG2)

cout << "\n-D- MUTATE AFTER: chi[" << j << "] = " << p->chi[j];

}

// mutate parameters, update the matrix

p->update_matrix ();

} // mutate

void

round_angles (individual * p, double angle)

{ // rounds the matrix angles using the supplied granularity

int n;

double r, f;

int i, j;

if (DEBUG1)

cout << "\n-D- round_angles: angle=" << angle;

// round the angles

// ? what to do with the sigmas?

for (int j = 2; j <= N; j++)

{

for (int i = j - 1; i > 0; i--)

{

// psi

r = p->psi[i][j] / angle;

n = int (r);

f = r - n;

if (f >= 0.5)

{

n++;

}

if (DEBUG1)

cout << "\n-D- round_angles: changing psi[" << i << "][" << j << "] from " << p->

psi[i][j] << " to " << n * angle;

p->psi[i][j] = n * angle;

// phi

r = p->phi[i][j] / angle;
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n = int (r);

f = r - n;

if (f >= 0.5)

{

n++;

}

if (DEBUG1)

cout << "\n-D- round_angles: changing phi[" << i << "][" << j << "] from " << p->

phi[i][j] << " to " << n * angle;

p->phi[i][j] = n * angle;

}

// chi

r = p->chi[j] / angle;

n = int (r);

f = r - n;

if (f >= 0.5)

{

n++;

}

if (DEBUG1)

cout << "\n-D- round_angles: changing chi[" << j << "] from " << p->

chi[j] << " to " << n * angle;

p->chi[j] = n * angle;

}

} // round_angles

//

// *** MAIN ***

//

// FORMAT: <exe> <cfg_file>

int

main (int argc, char *argv[])

{

int run, gen, i, rv, j, bi;

individual *population; // actual population in no-sorted order

individual *poplist[MAX_POPSIZE]; // this is the sorted list of population

individual best, verybest, *temp;
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int plist[MAX_POPSIZE]; // tracks a list of parents for recomb, maybe other things

// Parse cfg file

ParseFile (argv[1]);

// Allow args to override certain settings, not qubits

if (GetIntOpt (MU, "-mu", argc, argv))

{

cout << "\n-D- Found -mu = " << MU;

}

if (GetIntOpt (LAMBDA, "-lambda", argc, argv))

{

cout << "\n-D- Found -lambda = " << LAMBDA;

}

GetIntOpt (MU_PLUS_LAMBDA, "-mpl", argc, argv);

int tmpvar = 0;

if (GetIntOpt (tmpvar, "-is", argc, argv))

{

// init sigma is divided by 100. so, for 0.1, give -is 10

INIT_SIGMA = (double) tmpvar / 100.0;

cout << "\n-D- Found -is = " << INIT_SIGMA;

}

GetIntOpt (TARGET_PROB, "-tprob", argc, argv);

if (GetIntOpt (tmpvar, "-tfit", argc, argv))

{

// target fitness is divided by 100. so, for 0.99, give -is 99

TARGET_FITNESS = (double) tmpvar / 100.0;

cout << "\n-D- Found -tfit = " << TARGET_FITNESS;

}

if (GetIntOpt (tmpvar, "-train_mask", argc, argv))

{

TRAIN_MASK = (unsigned long) tmpvar;

cout << "\n-D- Found -train_mask = " << TRAIN_MASK;

}

// Mutation/Recomb probability

GetIntOpt (PM, "-pm", argc, argv);
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// Recombination knobs

GetIntOpt (RECOMB_MODE, "-recomb_mode", argc, argv);

GetIntOpt (RECOMB_PARENTS, "-recomb_parents", argc, argv);

GetIntOpt (RECOMB_PROB, "-recomb_prob", argc, argv);

// Get RUN and GEN overrides

GetIntOpt (RUNS, "-runs", argc, argv);

GetIntOpt (GENS, "-gens", argc, argv);

// debug

DEBUG1 = GetBoolOpt ("-d1", argc, argv);

DEBUG2 = GetBoolOpt ("-d2", argc, argv);

// fitness level

GetIntOpt (FITNESS, "-fit", argc, argv);

// recalc again just in case we changed MU or LAMBDA

POPSIZE = MU + LAMBDA;

tau = 1.0 / sqrt (2.0 * sqrt (FN - 1.0)); // use FN-1 = N-1 = number of angle parameters

tau_prime = 1.0 / sqrt (2.0 * (FN - 1.0));

population = new individual[POPSIZE];

cout << "\n-I- Info:";

cout << "\n-I- Qubits = " << QUBITS;

cout << "\n-I- RUNS = " << RUNS << ", MAX Generations = " << GENS;

cout << "\n-I- MU = " << MU << ", LAMBDA = " << LAMBDA;

cout << "\n-I- MU_PLUS_LAMBDA = " << MU_PLUS_LAMBDA;

cout << "\n-I- TARGET_PROB = " << TARGET_PROB;

cout << "\n-I- TARGET_FITNESS = " << TARGET_FITNESS;

cout << "\n-I- IO_PAIRS = " << IO_PAIRS;

cout << "\n-I- INIT_SIGMA = " << INIT_SIGMA;

cout << "\n-I- TRAINING_MASK = " << TRAIN_MASK;

cout << "\n-I- ROUND_ANGLES = " << ROUND_ANGLES;
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cout << "\n-I- PROBABILTIY OF MUTATION vs RECOMBINATION = " << PM;

cout << "\n-I- RECOMB: MODE=" << RECOMB_MODE << ", PROB=" << RECOMB_PROB << ", PARENTS=" <<

RECOMB_PARENTS;

// size check

printf ("\n-D- Size of an individual = %d bytes", sizeof (individual));

printf ("\n-D- Size of population = %d bytes", sizeof (individual) * POPSIZE);

// simple check

if (MU + LAMBDA != POPSIZE)

{

cout << "\n-E- MU(" << MU << ")+LAMBDA("

<< LAMBDA << ") != POPSIZE(" << POPSIZE << ")!\n";

exit (1);

}

// initialize random

srand ((unsigned) time (NULL));

// idum = -rand(); // only rand in the code

idum = -1193804919; // hard-coded seed for now

best.fitness = verybest.fitness = -999999.9;

// matrix H = HADAMARD();

// matrix H = PHASE();

// set initial INPUT, TARGET.

// INPUT is all 1’s times 1/sqrt(N)

// INPUT_VECTOR[0] = ONEHOT_COLUMN_VECTOR(1,N);

// INPUT_VECTOR[1] = ONEHOT_COLUMN_VECTOR(2,N);

// Determine output vectors

/* Examples:

// TARGET_VECTOR[0] = ONEHOT_COLUMN_VECTOR(1,N);

// TARGET_VECTOR[1] = (H*INPUT_VECTOR[1]);

*/

for (i = 0; i < IO_PAIRS; i++)

{

INPUT_VECTOR[i] = matrix (N, 1);
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INPUT_VECTOR[i].fill (1.0 / sqrt (FN));

// TARGET_VECTOR[i] = ONEHOT_COLUMN_VECTOR(1,N);

printf ("\n-I- INPUT_VECTOR[%d]=", i);

INPUT_VECTOR[i].show ();

printf ("\n-I- TARGET_VECTOR[%d]=", i);

TARGET_VECTOR[i].show ();

}

// set initial poplist to be 1-to-1 with population

for (i = 0; i < POPSIZE; i++)

{

printf ("\n-D- Setting poplist[%d] to point to population[%d]", i, i);

poplist[i] = &population[i];

}

// check random individual

j = r0n (POPSIZE);

if (DEBUG1)

printf ("\n-D- Checking individual %d", j);

if (DEBUG1)

printf ("\n-D- addr = %d, poplist[%d]= %d", &population[j], j, poplist[j]);

// OPTIMIZATION IDEA:

// Might be easier to just have population[] and always keep the parents at the top.

// When sorting, for (mu,lambda), we only sort using the bottom lambda

// individuals but fill from the top.

// Whereas, with (mu+lambda) we sort the whole population.

if (DEBUG1)

printf ("\n-D- Starting Runs Loop\n");

for (run = 0; run < RUNS; run++)

{

// intialize parents which are the top MU of the poplist

for (i = 0; i < MU; i++)

{

if (DEBUG1)

printf ("\n-D- Init Parent %d", i);

poplist[i]->initialize ();

if (DEBUG1)
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{

printf (" - Fitness = %lf", poplist[i]->fitness);

poplist[i]->U.show ();

}

}

// generation loop

for (gen = 0; gen < GENS; gen++)

{

cout << "\n-I- Generation: " << gen;

for (i = 0; i < LAMBDA; i++)

{ // create the LAMBDA children

rv = r0n (100) + 1;

if (rv <= PM)

{ // do mutation

j = r0n (MU); // pick random parent

if (DEBUG1)

cout << "\n-D- MUTATE: Picking random parent: " << j

<< ". Copying to " << i+ MU;

// copy parent to child portion of pool (spot i+mu)

copy_individual (poplist[j], poplist[i + MU]);

mutate (poplist[i + MU]);

}

else

{ // recombination

j = r0n (MU); // pick random parent

copy_individual (poplist[j], poplist[i + MU]);

if (DEBUG1)

cout << "\n-D- RECOMB: Picking random parent: " << j

<< ". Copying to " << i+ MU;

if (DEBUG2)

cout << "\n-D- Recombination, mode = " << RECOMB_MODE

<< ", parents = " << RECOMB_PARENTS;

// select k random parents

for (int ii = 0; ii < RECOMB_PARENTS; ii++)

{

plist[ii] = r0n (MU); // re-selection is fine

if (DEBUG2)
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cout << "\n-D- Selected parent " << plist[ii]

<< " for recombination";

}

// go through each allele

for (int jj = 2; jj <= N; jj++)

{

for (int ii = jj - 1; ii > 0; ii--)

{

// PHI

if ((r0n (100) + 1) <= RECOMB_PROB)

{ // recombine?

if (RECOMB_MODE)

{ // intermediate

double tmpa = 0.0, tmps = 0.0;

for (int pp = 0; pp < RECOMB_PARENTS; pp++)

{

tmpa += poplist[pp]->psi[ii][jj]; // angle

tmps += poplist[pp]->sig_psi[ii][jj]; // sigma

}

tmpa = tmpa / double (RECOMB_PARENTS);

tmps = tmps / double (RECOMB_PARENTS);

// update angle

poplist[i + MU]->psi[ii][jj] = tmpa;

poplist[i + MU]->sig_psi[ii][jj] = tmps;

if (DEBUG2)

cout << "\n-D- RECOMB INTERMEDIATE: psi"

<< ii << " " << jj

<< " updated to value of " << tmpa

<< ", psi_sig to " <<

tmps;

}

else

{ // discrete

int pp = r0n (RECOMB_PARENTS);

poplist[i + MU]->psi[ii][jj] =

poplist[pp]->psi[ii][jj];

poplist[i + MU]->sig_psi[ii][jj] =

poplist[pp]->sig_psi[ii][jj];
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if (DEBUG2)

cout << "\n-D- RECOMB DISCRETE: psi "

<< ii << " " << jj

<< " updated from parent " << pp

<< " to " << poplist[pp]->

psi[ii][jj] << ", psi_sig to "

<< poplist[pp]->sig_psi[ii][jj];

}

}

// PHI

if ((r0n (100) + 1) <= RECOMB_PROB)

{ // recombine?

if (RECOMB_MODE)

{ // intermediate

double tmpa = 0.0, tmps = 0.0;

for (int pp = 0; pp < RECOMB_PARENTS; pp++)

{

tmpa += poplist[pp]->phi[ii][jj]; // angle

tmps += poplist[pp]->sig_phi[ii][jj]; // sigma

}

tmpa = tmpa / double (RECOMB_PARENTS);

tmps = tmps / double (RECOMB_PARENTS);

// update angle

poplist[i + MU]->phi[ii][jj] = tmpa;

poplist[i + MU]->sig_phi[ii][jj] = tmps;

}

else

{ // discrete

int pp = r0n (RECOMB_PARENTS);

poplist[i + MU]->phi[ii][jj] =

poplist[pp]->phi[ii][jj];

poplist[i + MU]->sig_phi[ii][jj] =

poplist[pp]->sig_phi[ii][jj];

}

}

}

// CHI

if ((r0n (100) + 1) <= RECOMB_PROB)
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{ // recombine?

if (RECOMB_MODE)

{ // intermediate

double tmpa = 0.0, tmps = 0.0;

for (int pp = 0; pp < RECOMB_PARENTS; pp++)

{

tmpa += poplist[pp]->chi[jj]; // angle

tmps += poplist[pp]->sig_chi[jj]; // sigma

}

tmpa = tmpa / double (RECOMB_PARENTS);

tmps = tmps / double (RECOMB_PARENTS);

// update angle

poplist[i + MU]->chi[jj] = tmpa;

poplist[i + MU]->sig_chi[jj] = tmps;

}

else

{ // discrete

int pp = r0n (RECOMB_PARENTS);

poplist[i + MU]->chi[jj] = poplist[pp]->chi[jj];

poplist[i + MU]->sig_chi[jj] = poplist[pp]->sig_chi[jj];

}

}

}

// we’ve changed the params, recreate the unitary matrix

poplist[i + MU]->update_matrix ();

}

// Round the angles if desired

if (ROUND_ANGLES)

{

round_angles (poplist[i + MU], ROUND_ANGLES);

// this modifies the angles, need to update the matrix

poplist[i + MU]->update_matrix ();

}

// compute fitness of new child

// poplist[i+MU]->calc_fitness(INPUT_VECTOR, TARGET_VECTOR);

poplist[i + MU]->calc_fitness ();

}

// sort_population(poplist,k); TO-DO, sort the bottom k individuals to the top
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// (for Mu,Lambda, k = LAMBDA, for Mu+Lambda, k = POPSIZE)

if (DEBUG1)

cout << "\n-D- Sorting!";

for (i = MU_PLUS_LAMBDA ? 0 : MU; i < POPSIZE - 1; i++)

{ // FOR (Mu,Lambda), start i at MU rather than 0

bi = i; // initial best

for (j = i + 1; j < POPSIZE; j++)

{ // compare best to others

if (poplist[bi]->fitness < poplist[j]->fitness)

{ // update best-index

bi = j;

}

}

if (DEBUG2)

cout << "\n-D- Swapping " << i << "(" << poplist[i]

<< ") = " << poplist[i]->fitness << " with "

<< bi << "(" << poplist[bi] << ") = " << poplist[bi]->fitness;

temp = poplist[i];

if (MU_PLUS_LAMBDA)

{

poplist[i] = poplist[bi];

}

else

{

poplist[i - MU] = poplist[bi]; // for (mu,lambda), copy the children to

// the parent space of the poplist

}

poplist[bi] = temp;

if (DEBUG2)

cout << "\n-D- Check Swap: " << i << "(" << poplist[i]

<< ") = " << poplist[i]->fitness << " , " << bi

<< "(" << poplist[bi] << ") = " << poplist[bi]->fitness;

}

if (best.fitness < poplist[0]->fitness)

{

if (DEBUG1)

printf ("\n-D- Updating fitness from %lf to %lf", best.fitness,

poplist[0]->fitness);
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copy_individual (poplist[0], &best); // NOTE, best is not a pointer. Need to

// OVERLOAD copy_individual function?

}

// output generation report (best individual fitness)

printf ("\n-I- Run %d: Gen=%d: Best=%lf, Prob.Dist=", run, gen, best.fitness);

best.show_probabilities (&INPUT_VECTOR[0]);

// did we meet target fitness!

// if(best.fitness >= TARGET_FITNESS) {

double foo = (best.U * INPUT_VECTOR[0]).M[0][0].modulus_squared ();

if (foo > TARGET_FITNESS)

{

printf ("\n-I- Target fitness of %lf met by %lf in

generation %d!", TARGET_FITNESS, best.fitness, gen);

// break all loops

run = RUNS;

gen = GENS;

}

}

printf ("\n-I- Best of Run %d = %lf, with Prob.Dist=", run, best.fitness);

best.show_probabilities (&INPUT_VECTOR[0]);

printf ("\n-I- Best U = ");

best.U.show ();

if (verybest.fitness < best.fitness)

{

copy_individual (&best, &verybest); // keep track of overall very best

}

best.fitness = -999999.9; // reset best

}

// display final parent population

printf ("\n-I- Final Parent Population and Fitness:");

for (i = 0; i < MU; i++)

{

printf ("\n-I- Parent[%d] = %lf, Prob.Dist=", i, poplist[i]->fitness);

poplist[i]->show_probabilities (&INPUT_VECTOR[0]);

}

// check
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// For the final calculations, allow all I/O PAIRs for fitness computation

printf ("\n-I- VeryBest=%lf, Err=%lf, U=", verybest.fitness, verybest.err);

verybest.U.show ();

printf ("\n-I- VeryBest Generalization Test on all I/O Pairs");

TRAIN_MASK = 0xFFFF;

verybest.calc_fitness ();

printf ("\n-I- VeryBest All IO Fitness=%lf, Err=%lf, U=", verybest.fitness, verybest.err);

verybest.U.show ();

if (DEBUG1)

{

printf ("\n-I- CHECK: VeryBest=%lf, Err=%lf, U=", verybest.fitness, verybest.err);

verybest.U.show ();

}

verybest.show_probabilities ();

verybest.show_angles ();

// Show top (?) in population

printf ("\n-I- Showing the top 10 (or MU if MU < 10) in the final population:");

for (i = 0; i < 10 && i < MU; i++)

{

poplist[i]->calc_fitness ();

printf ("\n-I- Parent[%d] = %lf, U=", i, poplist[i]->fitness);

poplist[i]->U.show ();

}

printf ("\n-I- Done\n");

delete population;

}

int

ParseFile (char *fn)

{

// File format is defined as follows:

// qubits=<int>

// runs=<int>

// gens=<int>

// mu=<int>

// lambda=<int>

// mpl=<int>

// io_pairs=<int>
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// init_sigma=<float>

// target_prob=<int>

// target_fitness=<double>

// train_mask=<ulong>

// |<input_state_0>> <terms> <float_coeff0>|output0> <float_coeff1>|output1> ...

// ...

int i, j, n;

FILE *fh = fopen (fn, "rb");

char str[80];

double coef;

matrix input, output;

cout << "\n-D- Parsing " << fn;

fscanf (fh, "qubits=%d\n", &QUBITS);

fscanf (fh, "runs=%d\n", &RUNS);

fscanf (fh, "gens=%d\n", &GENS);

fscanf (fh, "mu=%d\n", &MU);

fscanf (fh, "lambda=%d\n", &LAMBDA);

fscanf (fh, "mpl=%d\n", &MU_PLUS_LAMBDA);

fscanf (fh, "io_pairs=%d\n", &IO_PAIRS);

fscanf (fh, "init_sigma=%lf\n", &INIT_SIGMA);

fscanf (fh, "target_prob=%d\n", &TARGET_PROB);

fscanf (fh, "target_fitness=%lf\n", &TARGET_FITNESS);

fscanf (fh, "train_mask=0x%lx\n", &TRAIN_MASK);

fscanf (fh, "round_angles=%lf\n", &ROUND_ANGLES);

N = (int) pow (2, QUBITS);

FN = (double) N;

POPSIZE = MU + LAMBDA;

// sanity check

cout << "\n-D- Qubits=" << QUBITS << ", N=" << N << ", IO_PAIRS=" << IO_PAIRS;

cout << "\n-D- Training Mask = " << TRAIN_MASK;

// read i/o pairs which will have dimension matrix(N,1)

for (i = 0; i < IO_PAIRS; i++)
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{

input.zero (N, 1); // init input vector

fscanf (fh, "%d", &n); // read number of input terms

for (j = 0; j < n; j++)

{

fscanf (fh, " %lf|%s", &coef, str);

cout << "\n-D- Read Input " << i << ", term " << j << " = " << str <<

" with coefficient " << coef;

input += (ConvertState (str, QUBITS) * coef);

}

cout << "\n-D- Input State " << i << " with " << n << " terms";

output.zero (N, 1); // init output vector

fscanf (fh, " %d", &n); // read number of output terms

for (j = 0; j < n; j++)

{

if (j == n - 1)

{

fscanf (fh, " %lf|%s\n", &coef, str);

}

else

{

fscanf (fh, " %lf|%s", &coef, str);

}

cout << "\n-D- Read Output " << i << ", term " << j << " = " << str <<

" with coefficient " << coef;

output += (ConvertState (str, QUBITS) * coef);

}

cout << "\n-D- Output State " << i << " with " << n << " terms";

// define the input/output

INPUT_VECTOR[i] = input;

TARGET_VECTOR[i] = output;

cout << "\n-D- Input Vector = ";

input.show ();

cout << "\n-D- Output Vector = ";

output.show ();

}

fclose (fh);
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return 1;

}

matrix

ConvertState (char *str, int q)

{ // Convert from a state string (e.g, |0110>) to a vector

matrix v;

int i, index = 0;

int rows = (int) pow (2, q);

for (i = 0; i < q; i++)

{

if (str[q - i - 1] == ’1’)

{

index += (int) pow (2, i);

}

}

cout << "\n-I- Converted " << str << " to " << index;

v.zero (rows, 1);

v (index, 0) = 1.0;

return v;

}
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B.2 The Header Files

B.2.1 MATRIX.H

// MATRIX library by Steven R. Hutsell

// June 25th, 2006

// Currently performs very simple complex matrix and vector operations

// such as multiply, add and subtract.

// Vector ops like inner (dot) and outer product are

// performed using single column and/or single row matrices

//

// To be extended is the ability to do more complex operations

// such as determinants, inverse, adjoints, conguate, transpose, etc.

//

// More advanced linear operations will likely not be added but who

// knows. For example, RREF and eigen-analysis to name a couple.

//

// RULES:

// =====

// When overloading operators, we set certain LEFT-RIGHT precedences:

//

// Rule 1: multiply/dividing a complex with a scalar:

// Always have the scalar to the RIGHT of the complex:

// E.g., z*k or z/k, never k*z or k/z

// to get 1/z then create a complex 1 = (1+i0) then do complex_1/z instead.

//

// Rule 2: multiply/dividing a matrix by a complex or scalar

// Always have the matrix to the LEFT and the complex or scalar to the RIGHT

// E.g, M*k, M/k, M*z, M/z. Never k*M or z*M or k/M

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

#include <time.h>

#define MAX_ROWS 64 // 6 qubit

#define MAX_COLUMNS 64

#define STRING_WIDTH 48 // String width of a complex number
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#define PI 3.141592653589793238462643383279502884197169399375105820974944592307

// Print Format: 0=MATLAB=[[a+bi]], 1=DERIVE=[[a+#ib]]

// #define PRINT_FORMAT 0 // MATLAB

enum printformats

{

MATLAB,

DERIVE

};

enum precisionformats

{

HIGH,

LOW

};

// by default, set PRINT_FORMAT to MATLAB

printformats PRINT_FORMAT = MATLAB; // DERIVE;

// by default, set precision to LOW

precisionformats PRECISION_FORMAT = HIGH; // LOW;

// Complex class

class complex

{

public:

// vars

double r, i; // the real and imaginary components

char s[STRING_WIDTH]; // string of the complex number

// functions

complex ()

{

r = 0.0;

i = 0.0;

}; // default constructor

complex (double a, double b)

{ // init with two doubles
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r = a;

i = b;

}

complex (double a)

{ // init with only real

r = a;

i = 0.0;

}

complex (const complex & z)

{ // init with another complex

r = z.r;

i = z.i;

}

complex operator + (const complex & z)

{ // addition

complex a;

a.r = r + z.r;

a.i = i + z.i;

return a;

}

complex operator - (const complex & z)

{ // subtraction

complex a;

a.r = r - z.r;

a.i = i - z.i;

return a;

}

complex operator * (const complex & z)

{ // multiplication

complex a;

a.r = (r * z.r) - (i * z.i);

a.i = (r * z.i) + (i * z.r);

return a;

}

complex operator / (const complex & z)

{ // divide

complex a;

a.r = (r * z.r + i * z.i) / (z.r * z.r + z.i * z.i);
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a.i = (i * z.r - r * z.i) / (z.r * z.r + z.i * z.i);

return a;

}

complex operator *= (const complex & z)

{ // multiplication

complex a;

a.r = (r * z.r) - (i * z.i);

a.i = (r * z.i) + (i * z.r);

r = a.r;

i = a.i;

return a;

}

complex operator /= (const complex & z)

{ // divide

complex a;

a.r = (r * z.r + i * z.i) / (z.r * z.r + z.i * z.i);

a.i = (i * z.r - r * z.i) / (z.r * z.r + z.i * z.i);

r = a.r;

i = a.i;

return a;

}

complex & operator = (const complex & z)

{ // equal

r = z.r;

i = z.i;

return *this;

}

complex & operator = (const double &x)

{ // equal

r = x;

i = 0.0;

return *this;

}

int operator == (const complex & z)

{ // equality check

return (r == z.r && i == z.i) ? 1 : 0;

}

int operator != (const complex & z)
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{ // inequality check

return (r == z.r && i == z.i) ? 0 : 1;

}

complex operator * (double k)

{ // multiply by constant

complex a;

a.r = k * r;

a.i = k * i;

return a;

}

complex operator / (double k)

{ // divide by constant

complex a;

a.r = k / r;

a.i = k / i;

return a;

}

complex & operator += (const complex & z)

{ // +=

r += z.r;

i += z.i;

return *this;

}

complex & operator -= (const complex & z)

{ // +=

r -= z.r;

i -= z.i;

return *this;

}

char *p ()

{ // return a string of the result

return ~(*this);

}

char *operator ~ ()

{ // another print function

if (PRINT_FORMAT == MATLAB)

{ // MATLAB

if (PRECISION_FORMAT == HIGH)
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{

sprintf (s, "%.16e+%.16ei", r, i);

}

else

{

sprintf (s, "%lf+%lfi", r, i);

}

}

else if (PRINT_FORMAT == DERIVE)

{ // DERIVE

if (PRECISION_FORMAT == HIGH)

{

sprintf (s, "%.16e+#i%.16e", r, i);

}

else

{

sprintf (s, "%lf+#i%lf", r, i);

}

}

else

{

printf ("\n-E- Unknown PRINT_FORMAT = %d\n", PRINT_FORMAT);

exit (1);

}

return s;

}

complex operator ! ()

{ // conjugate

complex a;

a.r = r;

a.i = -i;

return a;

}

complex operator ^ (int pow)

{ // z^pow

complex a, b;

int n;

if (pow == 0)
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{

a.r = 1.0;

a.i = 0.0;

return a;

}

else if (pow > 0)

{

a.r = r;

a.i = i;

b.r = r;

b.i = i;

for (n = 1; n < pow; n++)

{

b.r = (r * a.r) - (i * a.i);

b.i = (r * a.i) + (i * a.r);

a.r = b.r;

a.i = b.i;

}

return a;

}

else

{ // pow is negative

pow = -pow;

a.r = r;

a.i = i;

b.r = r;

b.i = i;

for (n = 1; n < pow; n++)

{

b.r = (r * a.r) - (i * a.i);

b.i = (r * a.i) + (i * a.r);

a.r = b.r;

a.i = b.i;

}

b.r = a.r;

b.i = a.i;

a.r = b.r / (b.i * b.i + b.r * b.r);

a.i = -b.i / (b.i * b.i + b.r * b.r);
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return a;

}

}

double modulus ()

{ // returns sqrt(r^2+i^2)

return sqrt (r * r + i * i);

}

double modulus_squared ()

{ // square modulus returns r^2+i^2

return r * r + i * i;

}

};

// MATRIX CLASS

// The matrix class will be kept as simple as possible

// a by default will be complex.

class matrix

{

public:

// vars

complex M[MAX_ROWS][MAX_COLUMNS]; // matrix data

int rows, columns;

// functions

matrix ()

{

}; // default constructor

matrix (int n, int m)

{

zero (n, m);

}; // default constructor, n rows, m columns

matrix & operator = (const matrix & X)

{ // equal

int r, c;

rows = X.rows;

columns = X.columns;

for (r = 0; r < rows; r++)

{
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for (c = 0; c < columns; c++)

{

M[r][c] = X.M[r][c];

}

}

return *this;

}

complex operator () (int r, int c) const

{ // matrix index (row,col)

return M[r][c];

}

complex & operator () (int r, int c)

{ // matrix index (row,col)

return M[r][c];

}

void eye (int n)

{ // initializes to the identity matrix (nxn)

int r, c;

for (r = 0; r < n; r++)

{

for (c = 0; c < n; c++)

{

M[r][c].r = (r == c) ? 1.0 : 0.0;

M[r][c].i = 0.0;

}

}

rows = n;

columns = n;

}

void zero (int n, int m)

{ // initializes a zero matrix (n rows, m columns)

int r, c;

for (r = 0; r < n; r++)

{

for (c = 0; c < m; c++)

{

M[r][c].r = 0.0;

M[r][c].i = 0.0;
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}

}

rows = n;

columns = m;

}

void one (int n, int m)

{ // initializes a matrix with all 1’s (n rows, m columns)

int r, c;

for (r = 0; r < n; r++)

{

for (c = 0; c < m; c++)

{

M[r][c].r = 1.0;

M[r][c].i = 0.0;

}

}

rows = n;

columns = m;

}

void show ()

{ // print the matrix

int r, c;

printf ("(%d x %d)[", rows, columns);

for (r = 0; r < rows; r++)

{

printf ("[");

for (c = 0; c < columns; c++)

{

printf ("%s", ~M[r][c]);

if (c != columns - 1)

{

if (PRINT_FORMAT == MATLAB)

{

printf (" ");

}

else if (PRINT_FORMAT == DERIVE)

{

printf (", ");
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}

else

{

printf ("\n-E- Invalid PRINT_FORMAT = %d\n", PRINT_FORMAT);

exit (1);

}

}

}

printf ("]");

if (r != rows - 1)

{

if (PRINT_FORMAT == MATLAB)

{

printf ("; ");

}

else if (PRINT_FORMAT == DERIVE)

{

printf (", ");

}

else

{

printf ("\n-E- Invalid PRINT_FORMAT = %d\n", PRINT_FORMAT);

exit (1);

}

}

}

// printf("]\n");

printf ("]");

}

matrix operator + (const matrix & X)

{ // addition

int r, c;

matrix A;

if (rows != X.rows || columns != X.columns)

{

printf ("\n-E- Matrix size mismatch for addition!\n");

exit (1);

}
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for (r = 0; r < rows; r++)

{

for (c = 0; c < columns; c++)

{

A.M[r][c] = M[r][c] + X.M[r][c];

}

}

A.rows = rows;

A.columns = columns;

return A;

}

matrix & operator += (const matrix & X)

{ // addition

int r, c;

for (r = 0; r < rows; r++)

{

for (c = 0; c < columns; c++)

{

M[r][c] += X.M[r][c];

}

}

return *this;

}

matrix operator - (const matrix & X)

{ // addition

int r, c;

matrix A;

if (rows != X.rows || columns != X.columns)

{

printf ("\n-E- Matrix size mismatch for addition!\n");

exit (1);

}

for (r = 0; r < rows; r++)

{

for (c = 0; c < columns; c++)

{

A.M[r][c] = M[r][c] - X.M[r][c];

}
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}

A.rows = rows;

A.columns = columns;

return A;

}

matrix & operator -= (const matrix & X)

{ // addition

int r, c;

for (r = 0; r < rows; r++)

{

for (c = 0; c < columns; c++)

{

M[r][c] = M[r][c] - X.M[r][c];

}

}

return *this;

}

matrix operator * (const matrix & X)

{ // multiplication

int r, c, i;

matrix A (rows, X.columns);

if (columns != X.rows)

{

printf ("\n-E- Matrix size mismatch for multiplication!

LHS=(%d x %d) RHS=(%d x %d)\n", rows, columns, X.rows, X.columns);

exit (1);

}

for (r = 0; r < rows; r++)

{

for (c = 0; c < X.columns; c++)

{

for (i = 0; i < columns; i++)

{

A.M[r][c] += M[r][i] * X.M[i][c];

}

}
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}

return A;

}

matrix & operator *= (const matrix & X)

{ // multiplication (M = M * X.M)

int r, c, i;

matrix A (rows, X.columns);

if (columns != X.rows || rows != X.columns)

{

printf ("\n-E- Matrix size mismatch for multiplication!\n");

exit (1);

}

for (r = 0; r < rows; r++)

{

for (c = 0; c < X.columns; c++)

{

for (i = 0; i < columns; i++)

{

A.M[r][c] += M[r][i] * X.M[i][c];

}

}

for (c = 0; c < X.columns; c++)

{

M[r][c] = A.M[r][c];

}

}

return *this;

}

matrix operator ! ()

{ // conjugate matrix

int r, c;

matrix A;

for (r = 0; r < rows; r++)

{

for (c = 0; c < columns; c++)
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{

A.M[r][c] = !M[r][c];

}

}

A.rows = rows;

A.columns = columns;

return A;

}

matrix operator * (const complex & z)

{ // multiply by complex number, e.g., M=X*z

int r, c;

matrix A;

for (r = 0; r < rows; r++)

{

for (c = 0; c < columns; c++)

{

A.M[r][c] = M[r][c] * z;

}

}

A.rows = rows;

A.columns = columns;

return A;

}

matrix operator * (const double &k)

{ // multiply by real number, e.g., M=X*k

int r, c;

matrix A;

for (r = 0; r < rows; r++)

{

for (c = 0; c < columns; c++)

{

A.M[r][c] = M[r][c] * k;

}

}

A.rows = rows;

A.columns = columns;
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return A;

}

matrix operator / (const complex & z)

{ // divide by complex number, e.g., M=X/z

int r, c;

matrix A;

for (r = 0; r < rows; r++)

{

for (c = 0; c < columns; c++)

{

A.M[r][c] = M[r][c] / z;

}

}

A.rows = rows;

A.columns = columns;

return A;

}

matrix operator ^ (const matrix & X)

{ // tensor product (kronecker) X (x) Y

matrix A;

A.rows = rows * X.rows;

A.columns = columns * X.columns;

int r1, r2, c1, c2;

for (r1 = 0; r1 < rows; r1++)

{

for (c1 = 0; c1 < columns; c1++)

{

for (r2 = 0; r2 < X.rows; r2++)

{

for (c2 = 0; c2 < X.columns; c2++)

{

A.M[r1 * X.rows + r2][c1 * X.columns + c2] = M[r1][c1] * X.M[r2][c2];

}

}

}
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}

return A;

}

matrix transpose ()

{ // returns the transpose version of this matrix

matrix A;

A.rows = columns;

A.columns = rows;

int r, c;

for (r = 0; r < rows; r++)

{

for (c = 0; c < columns; c++)

{

A.M[c][r] = M[r][c];

}

}

return A;

}

matrix adjoint ()

{ // return conjugate transpose (aka dual)

// could do: return !transpose();

matrix A;

A.rows = columns;

A.columns = rows;

int r, c;

for (r = 0; r < rows; r++)

{

for (c = 0; c < columns; c++)

{

A.M[c][r] = !M[r][c];

}

}

return A;

}

matrix dual ()

{ // same as adjoint

return adjoint ();

}
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complex trace ()

{ // sum of the diagonal of a matrix

complex tr = 0.0;

if (rows != columns)

{

printf ("\n-E- Cannot perform trace on a non-square matrix!\n");

exit (1);

}

for (int i = 0; i < rows; i++)

{

tr += M[i][i];

}

return tr;

}

matrix modulus ()

{ // returns the modulus by taking performing sqrt(a^2+b^2) on each

// element

int r, c;

matrix A;

A.rows = rows;

A.columns = columns;

for (r = 0; r < rows; r++)

{

for (c = 0; c < columns; c++)

{

A.M[r][c] = M[r][c].modulus ();

}

}

return A;

}

matrix modulus_squared ()

{ // returns the modulus by taking performing (a^2+b^2) on each

// element

int r, c;

matrix A;

A.rows = rows;

A.columns = columns;

for (r = 0; r < rows; r++)
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{

for (c = 0; c < columns; c++)

{

A.M[r][c] = M[r][c].modulus_squared ();

}

}

return A;

}

complex unitary_error ()

{ // returns an error value which is the sum of

// square-difference of each element from the

// equivalent unity matrix

complex err = 0.0;

int r, c;

if (rows != columns)

{

printf ("\n-E- Cannot check unity matrix error since

this is not a square matrix!\n");

exit (1);

}

for (r = 0; r < rows; r++)

{

for (c = 0; c < columns; c++)

{

if (r == c)

{ // diagonal should be 1.0

err += (M[r][c] - 1.0) ^ 2;

}

else

{ // non-diagonal elements should be 0.0

err += (M[r][c] - 0.0) ^ 2;

}

}

}

return err;

}

void fill (complex z)

{ // make each element in our matrix = z
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int r, c;

for (r = 0; r < rows; r++)

{

for (c = 0; c < columns; c++)

{

M[r][c] = z;

}

}

}

// TO DO

// modulus and modulus_squared (per element)

// ADVANCED:

// determinant

// others?

};

matrix

HADAMARD ()

{

matrix H (2, 2);

H (0, 0) = 1.0;

H (0, 1) = 1.0;

H (1, 0) = 1.0;

H (1, 1) = -1.0;

H = H * (1.0 / sqrt (2.0));

return H;

}

matrix

NOT ()

{ // Also known as PauliX

matrix N (2, 2);

N (0, 1) = 1.0;

N (1, 0) = 1.0;

return N;

}
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matrix

PHASE ()

{ // AKA. S-Gate

matrix P (2, 2);

P (0, 0) = 1.0;

P (1, 1) = complex (0.0, 1.0);

return P;

}

matrix

V ()

{ // SQRT(NOT) gate

matrix V (2, 2);

V (0, 0) = complex (1, 1);

V (0, 1) = complex (1, -1);

V (1, 0) = complex (1, -1);

V (1, 1) = complex (1, 1);

V = V * 0.5;

return V;

}

matrix

PAULIY ()

{

matrix P (2, 2);

P (0, 1) = complex (0, -1.0);

P (1, 0) = complex (0, 1.0);

return P;

}

matrix

PAULIZ ()

{

matrix P (2, 2);

P (0, 0) = 1.0;

P (1, 1) = -1.0;

return P;

}
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matrix

ONEHOT_COLUMN_VECTOR (int pos, int length)

{

matrix X (length, 1);

X (pos - 1, 0) = 1.0;

return X;

}

matrix

ONEHOT_ROW_VECTOR (int pos, int length)

{

matrix X (1, length);

X (0, pos - 1) = 1.0;

return X;

}

matrix

Toffoli ()

{ // 3 qubit

matrix T (8, 8);

T.eye (8);

// last two 1’s on the diagonal are swizzled.

T (7, 7) = 0.0;

T (8, 8) = 0.0;

T (8, 7) = 1.0;

T (7, 8) = 1.0;

return T;

}

//

// END

//

346



B.2.2 UNITARY.H

// UNITARY.H

// Steven R. Hutsell

// June 30th, 2006

// --------------------------

// Contains the functions and structures to create

// unitary matrices

#include "matrix.h"

#define MAX_ANGLES 64 // rule-of-thumb, for NxN matrix, MAX_ANGLES = N

// CREATE_UNITARY_MATRIX

// Returns: NxN unitary matrix

// Params:

// N = NxN matrix

// psi pointer to psi angle array (same for phi and chi)

matrix

create_unitary_matrix (int N, double psi[MAX_ANGLES][MAX_ANGLES],

double phi[MAX_ANGLES][MAX_ANGLES], double chi[MAX_ANGLES])

{

matrix U, E_i_j;

int i, j, ii, jj;

U.eye (N); // set U to NxN identity matrix

// calculate E1*E2*...*E(N-1) by

// calculating (E12)*(E23*E13)*(E34*E24*E14)*... the E_i_j’s

for (j = 2; j <= N; j++)

{ // the j param for E_i_j

for (i = j - 1; i > 0; i--)

{ // the i param for E_i_j

ii = i - 1;

jj = j - 1; // for indexing matrices

// U *= E_i_j(N,i,j+1);

E_i_j.eye (N);

// RULES

// (i,i)

E_i_j (ii, ii).r = cos (phi[i][j]) * cos (psi[i][j]);
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E_i_j (ii, ii).i = cos (phi[i][j]) * sin (psi[i][j]);

// (i,j)

if (i == 1)

{ // chi only exists when i==1

E_i_j (ii, jj).r = sin (phi[i][j]) * cos (chi[j]);

E_i_j (ii, jj).i = sin (phi[i][j]) * sin (chi[j]);

}

else

{

E_i_j (ii, jj).r = sin (phi[i][j]);

E_i_j (ii, jj).i = 0.0;

}

// (j,i)

if (i == 1)

{ // chi only exists when i==1

E_i_j (jj, ii).r = -sin (phi[i][j]) * cos (chi[j]);

E_i_j (jj, ii).i = sin (phi[i][j]) * sin (chi[j]);

}

else

{

E_i_j (jj, ii).r = -sin (phi[i][j]);

E_i_j (jj, ii).i = 0.0;

}

// (j,j)

E_i_j (jj, jj).r = cos (phi[i][j]) * cos (psi[i][j]);

E_i_j (jj, jj).i = -cos (phi[i][j]) * sin (psi[i][j]);

// debug

// printf("-D- (i,j)=%d,%d, psi=%lf, phi=%lf, chi=%lf, E_i_j=

// ",i,j,psi[i][j],phi[i][j],chi[j]); E_i_j.show();

// Now we have E_i_j

U *= E_i_j;

}

}

// U *= e^(i*alpha); // NOT UNITARY!!??

return U;
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}
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B.2.3 PARSE ARGS.H

// srhutsel

// nov 20th, 2007

// parses args

#include <string>

int

GetBoolOpt (char *str, int argc, char **argv)

{

int i;

int found = 0;

for (i = 1; i < argc; i++)

{

if (!strcmp (str, argv[i]))

{

found = 1;

}

}

return found;

}

int

GetIntOpt (int &res, char *str, int argc, char **argv)

{

int i;

int found = 0;

for (i = 1; i < argc; i++)

{

// cout << "\n-D- arg " << i << " = " << argv[i];

if (!strcmp (str, argv[i]))

{

res = atoi (argv[i + 1]);

found = 1;

}

}

return found;

}
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int

GetStringOpt (char *res, char *str, int argc, char **argv)

{

int i;

int found = 0;

for (i = 1; i < argc; i++)

{

if (!strcmp (str, argv[i]))

{

res = argv[i + 1];

found = 1;

cout << "\n-D- ParseArgs: found " << str << " = " << res;

}

}

return found;

}
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B.2.4 RANDOM.H

/*

************ RANDOM.H ***********

This include file contains routines for getting a uniformly distributed

random variable in the interval [0,1], a gaussian

distributed random variable with zero mean and unity variance,

an exponential distributed random variable, and a

and a cauchy distributed random variable with

To use them (x & y declared as floats),

x = uniform(&idum);

y = normal(&idum);

z = cauchy(&idum);

u = expdev(&idum);

Notice that a pointer to "idum" is used.

The file also contains routines for getting uniformly

generated integers over specified intervals.

Before you use any of these routines, you must initialize

the long variable "idum" (declared in this file). To do this

you must include in your main program the following:

#include <time.h>

int main(void )

{

.

.

.

srand((unsigned) time(NULL));

idum = -rand();
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}

*/

#define IA 16807

#define IM 2147483647

#define AM (1.0/IM)

#define IQ 127773

#define IR 2836

#define NTAB 32

#define NDIV (1+(IM-1)/NTAB)

#define EPSILON 1.2e-7

#define RNMX (1.0-EPSILON)

long idum;

float

uniform (long *idum)

{

int j;

long k;

static long iy = 0;

static long iv[NTAB];

float temp;

if (*idum <= 0 || !iy)

{

if (-(*idum) < 1)

*idum = 1;

else

*idum = -(*idum);

for (j = NTAB + 7; j >= 0; j--)

{
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k = (*idum) / IQ;

*idum = IA * (*idum - k * IQ) - IR * k;

if (*idum < 0)

*idum += IM;

if (j < NTAB)

iv[j] = *idum;

}

iy = iv[0];

}

k = (*idum) / IQ;

*idum = IA * (*idum - k * IQ) - IR * k;

if (*idum < 0)

*idum += IM;

j = (int) iy / NDIV;

iy = iv[j];

iv[j] = *idum;

if ((temp = AM * iy) > RNMX)

return RNMX;

else

return temp;

}

float

normal (long *idum)

{

static int iset = 0;

static float gset;

float fac, rsq, v1, v2;

if (iset == 0)

{

do

{

v1 = 2.0 * uniform (idum) - 1.0;

v2 = 2.0 * uniform (idum) - 1.0;

rsq = v1 * v1 + v2 * v2;
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}

while (rsq >= 1.0 || rsq == 0.0);

fac = sqrt (-2.0 * log (rsq) / rsq);

gset = v1 * fac;

iset = 1;

return v2 * fac;

}

else

{

iset = 0;

return gset;

}

}

float

expdev (long *idum)

{

float dum;

do

dum = uniform (idum);

while (dum == 0.0);

return -log (dum);

}

double

cauchy (long *idum)

{

/* gives cachy r.v. centered about 0 with pdf

f(x) = 1/(pi*(1+x*x)). */

double z1, z2;

z1 = normal (idum);

z2 = normal (idum);

if (z2 != 0.0)
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return (z1 / z2);

else

return 0.0;

}

int

r0n (int n)

/* returns a random integer in the interval [0,n-1] */

{

return (int) floor ((float) n * uniform (&idum));

}

int

rnm (int n, int m)

/* returns a random integer in the interval [n,m] */

{

int k;

do

{

k = r0n (m + 1);

}

while (k < n || k > m);

return k;

}
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