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Analytically Continued Hypergeometric Expression
of the Incomplete Beta Function

Jack C. Straton
[This is the accepted version of an article appearing in Results in Mathematics

May 2002, Volume 41, Issue 3, pp 394-395, DOI 10.1007/BF03322781.]

Abstract The Incomplete Beta Function is rewritten as a Hypergeometric Function that is the analytic
continuation of the conventional form, a generalization of the finite series, which simpifies the Stieltjes
transform of powers of a monomial divided by powers of a binomial.
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The finite hypergeometric series expression for the Incomplete Beta Function, [1]

2F1(−n, 1; c; z) = (1− c)z1−c(z − 1)n+c−1B1−1/z(1− c− n, n+ 1) , (1)

may be generalized to

Theorem

2F1(−ν, 1; γ; z) = (1− γ)z1−γ(z − 1)ν+γ−1
[
B1−1/z(1− γ − ν, ν + 1)

− B(1− γ − ν, ν + 1)

(
1− (−1)−ν sin[π(γ + ν)]

sin(πγ)

)]
. (2)

The Incomplete Beta Function [2] is conventionally defined [3] with real parameters for statistical problems,

Bx(p, q) =

∫ x

0

tp−1(1− t)q−1 dt (0 ≤ x ≤ 1, p, q > 0) , (3)

but is a smooth function of p, q or x when any or all are taken off the real axis (though it diverges as x takes
on large, real values). Its hypergeometric expression [4] is likewise well-behaved for complex parameters, so
we rewrite this expression in its more general form

2F1(α, β;β + 1;w) = βw−βBw(β, 1− α) = βw−βB(β, 1− α) (1− I1−w(1− α, β))

= βw−β [B(1− α, β)−B1−w(1− α, β)] . (4)

One may analytically continue the left-hand side to [5]

2F1(α, β;β + 1;w) = (−1)−α(w)−α
Γ(β + 1)Γ(β − α)

Γ(β)Γ(β + 1− α)
2F1(α, α− β;α+ 1− β; 1/w)

+ (−1)−β(w)−β
Γ(β + 1)Γ(α− β)

Γ(α)Γ(1)
2F1(β, 0;β + 1− α; 1/w) , (5)

Then equating right-hand sides of (4) and (5) and transforming the nontrivial hypergeometric function again
[6] gives

1



(B(1− α, β)−B1−w(1− α, β)) = (−1)−αw−α+β
1

(β − α)

(
1− 1

w

)1−α

2F1(1− β, 1;α+ 1− β; 1/w)

+ (−1)−βB(1− α, β)
Γ[1− (α− β)]Γ(α− β)

Γ(1− α)Γ(α)
, (6)

Letting z = 1/w this simplifies [7] to

B1−1/z(1− α, β) = zα−β
1

(β − α)
(z − 1)1−α2F1(1− β, 1;α+ 1− β; z)

+ B(1− α, β)

(
1 + (−1)1−β

sin[πα)]

sin[π(α− β)]

)
, (7)

Finally one substitutes β = ν + 1 and α = γ + β − 1 and rearranges sides to obtain Eq. (2).

In addition, if one substitutes β = 1 − ν, α = 2 − µ, and z = β
γ and analytically continues the Gauss

function, [8] one may obtain a more useful form for the known [9] Stieltjes transform [10] of powers of a
monomial divided by powers of a binomial,

Corollary∫ ∞
0

xν−1(β + x)1−µ

γ + x
dx = 2

∫ ∞
0

xν−1/2(β + x2)1−µ

γ + x2
dx = πγν−1(β − γ)1−µ csc(νπ)I1− γ

β
(µ− 1, 1− ν)

= πγν−1(β − γ)1−µ csc(νπ)

(
1 + (−1)ν

sin[π(2− µ)]

sin[π(1 + ν − µ)]

)
− π csc(νπ)βν+1−µ

(µ− 1− ν)(β − γ)B(µ− 1, 1− ν)
2F1(2− µ, 1; 2− µ+ ν;

β

β − γ
) , (8)

(|argγ| < π|, |argβ| < π|, 0 < Re ν < Re µ) which is a finite series for integer µ > 1.
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