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Near-field acousto monitoring shear interactions inside a drop of fluid: The role of 
the zero-slip condition   

Xiaohua Wang,1 Rodolfo Fernandez,1 Nan Li,2 Hsien-Chih Hung,1 Anuradha Venkataraman,1  
Richard Nordstrom,1 and Andres H. La Rosa1,

1
a) 

1Department of Physics, Portland State University, P.O. Box 751; Portland, Oregon 97207 

2Bronx Science High School, 75 West 205th Street, Bronx, NY 10468 

 

 
A full understanding of nanometer-range (near-field) interactions between 

two sliding solid boundaries, with a mesoscopic fluid layer sandwiched in 

between, remains challenging. In particular, the origin of the blue-shift 

resonance frequency experienced by a laterally oscillating probe when 

approaching a substrate is still a matter of controversy. A simpler problem 

is addressed here, where a laterally oscillating solid probe interacts with a 

more sizable drop of fluid that rests on a substrate, aiming at identifying 

interaction mechanisms that could also be present in the near-field 

interaction case. It is found that the inelastic component of the probe-fluid 

interaction does not constitute the main energy-dissipation channel and 

has a weak dependence on fluid’s viscosity, which is attributed to the 

zero-slip hydrodynamic condition. In contrast, the acoustic signal 

engendered by the fluid has a stronger dependence on the fluid’s viscosity 

(attributed also to the zero-slip hydrodynamic condition) and correlates 

well with the probe’s resonance frequency red-shift. We propose a similar 

mechanisms happens in near field experiments, but a blue-shift in the 

probe’s resonance results as a consequence of the fluid molecules 

(subjected to the zero-slip condition at both the probe and substrate 

boundaries) exerting instead a spring type restoring force on the probe.  
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I. INTRODUCTION 

Quartz tuning forks (QTF) have been successfully incorporated into scanning probe 

microscopy (SPM).1,2 Upon electrical excitation, the piezoelectric property of the QTF allows 

setting its two tines into lateral oscillations, one of which carries an attached probe (typically few 

millimeters long, ~100 m wide but tapered to an apex of nanometer-sized radius). A probe 

approaching a sample (referred here as a substrate with its naturally adsorbed fluid layer3) 

experiences near-field “shear-forces” that significantly affect the TF oscillations (near-field 

refers here to the nanometer probe-substrate separation distance). The perception that an 

adsorbed fluid layer of few nanometer thickness can exert such  a strong effect on  a millimeter 

size probe springs from the fact that, as it is well known, confined mesoscopic fluids display 

properties quite different than the bulk (namely, enhanced shear viscosity, prolonged relaxation 

time, confinement-induced phase transformation).4 However, the exact nature of the near-field 

“shear forces” and the involved striking properties of mesoscopic fluids are not yet well 

understood.  

The dynamic behavior of mesoscopic fluids trapped between the boundaries of a probe and 

substrate is indeed complex. But if we focused instead on the interaction involving a more 

sizeable volume of fluid (few L), the complexity will be reduced considerably, still we may be 

able to identify a subset of characteristics also present in the mesoscopic-volume near-field case. 

Herein we describe a systematic implementation of such tests, using probes of various sizes and

fluid droplets of various viscosities. What type of responses from the probe and the fluid would 

we see by inserting the probe to various immersion lengths? What is the role of the fluid in these 

interactions, and how does the fluid response relates to the probe’s physical parameters (shift in 

resonance frequency for example)? Would a change of the droplet volume affect the 

results? Upon performing these tests, what responses could we infer if an actual surface were 

placed closer to the probe? Could these insights be extrapolated to interpret the results from 

mesoscopic fluid cases?  These are the questions addressed herein.   

A new feature in the measurements reported here (but no present in a typical QTF-SPM) 

involves using an acoustic transducer to monitor the droplet fluid response (in addition to the 

QTF signal that monitors the probe’s oscillation amplitude). The combined QTF and acoustic 

sensing strategy has been called Shear-force Acoustic Near-field Microscopy (SANM).5 From 
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near field measurements6,7 it is known that typically the acoustic signal strengthens as the QTF 

signal weakens, however the vertical range of comparison is obviously limited.  By using instead 

a drop of water one has the ability to achieve deeper immersion into the fluid and, thus, could 

allow making a clearer correlation, if exists, between the QTF and acoustic signals. Possible 

factors such as damping, mass loading, and energy transfer, will be discussed in the context of 

synchronous measurements of changes in amplitude, resonance frequency shift, and in response 

to variations in probe diameter and fluid viscosity. 

II. EXPERIMENTAL DETAILS 

A. Control variables 

Table 1 shows the set of variables investigated to evaluate their influence in the probe-fluid 

interaction. The primary variables, namely the probe diameter, probe’s immersion length, and 

fluid’s viscosity, were chosen as they were a priori estimated to have the best chance to exhibit 

tangible consequences. The secondary parameters like driving force, fluid volume and water 

evaporation time were investigated in order to verify the stability and reproducibility of the 

results. 

Each test followed a preparation of the sample surface, adding a water droplet, submersion of the 

probe into the droplet, and measurement with the SANM system. The hydrophilic character of 

atomically flat mica allowed an easy spread of the fluid on the surface (still forming droplet-type 

geometry). The fiber protruding from one of the QTF’s tines is dipped into a droplet of glycerol 

aqueous solution (~5 L in volume) placed on a mica disk. The submersion length was 

controlled using a set of fine-pitch screws (100 TPI precision, 7 m travel per 10o turn, AJS100-

2 from Newport), complemented with the nanopositioning stage (Nano-OP65, 65 m range 

linear motion, 0.13 nm precision; from Mad City Labs, Inc.) built into the SANM. All 

experiments reported herein were performed under ambient temperature ~23 °C and relative 

humidity of ~45%. 
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Table 1.  Test Program 
Figure Control Variable Tests series  

Fig 2 Depth of probe in water droplet Depth  0-, 0+, 10, 20, 30, 40, 80, 
120, 160, 200, 240, 280 m 

Fig 3, 4 Probe diameter 125, 114, 98, 81 m 

Fig 5, 6 Viscosity Water droplet of  0%, 30%, 40%, 
50% glycerin concentration 

Fig 7 Driving force dependence   
Fig 8 Water evaporation time        
Fig 9 Water volume.    

Table 2.  Baseline Parameters 
Probe diameter 125 m cylindrical, optical glass fiber  
Probe mounting Outside one of the QTF prongs 
Nominal QTF AC voltage excitation 40 mVrms amplitude 
Glycerol concentration 0% w.t.  (i.e., 100% distilled water) 
Spectra recording time 20 s 

B. Probe Fabrication  

We use commercial QTF (520-TFC3X8-X, 12.5 pF, from Mouser Electronics) with nominal 

frequency of 32768 Hz, and with a calculated spring constant Kstat  (E/4)w(t/L)3 = 26 103 N/m 

(the value obtained using the prong’s dimensions L = 3.8 mm, t = 0.6 mm, and w = 0.35 mm, and  

the quartz elastic modulus E= 7.87 1010 N/m2). After mounting the probe, the mechanical quality 

factor Q fall around 103.  For constructing the complete probe, the QTF is removed from its 

vacuum lid and a cleaved optical fiber (SMF-28 Corning) of ~ 3 mm in length and 125 m initial 

diameter, is glued to one of the QTF prongs; the fiber purposely protrudes ~1 mm beyond the 

prong so it can be partially immersed into a drop of liquid. For the purpose of additional tests 

presented herein, we also prepared glass fibers of reduced diameters through a chemical etching 

process that uses buffered hydrofluoric acid (BHF) solution.8 By using BHF solution with a 

volume ratio of NH4F: HF: H2O  2:1:1, the fiber becomes uniformly thinner.  

C. Liquid preparation  

Glycerol-water solutions of different viscosities were prepared by mixing calculated weights of 

glycerol and distilled water as followed from the literature.9,10 For pure water (0% glycerin 

concentration): density 0  997.34 kg/m3; dynamic viscosity 005.10 centipoise, where 1 
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Fig 5, 6 Viscosity Water droplet of 0%0%0%0%00%0%0%0%0%0%0%0%0%0%0%0%00%00%%%%%%%%%%%%, 30%, 4
50% glycerin cooooooooooooooooooc ncnnnncncnnnncnnnnnnnnnnnnncennnnnnnnnnntrtrtrtrtrtrtrtrtrtrtrrtrtrtrtrttrtrttrrt ataataaaataaataatttaation

Fig 7 Driving force ff dependence
Fig 8 Water evaporation time     
Fig 9 Water volume.

Table 2. Baseline Parameters
Probe diameter 125 m cyyyyyyyyyyyyyyyyyyyyyylillilillililliliilllil ndnnnnn ricacaaaaaaaaacaaaaacaaaaaal,lllllllllll  optical glass fib
Probe mounting Outsididididdididdiddidididdididdiddi eeeeeeeeeeeeeeeeee oonooooooooooooo e ofofofofofofoffofofofofofofofofoffofofofofo ttttttttttttttttttthehehehehehehehehehehehehehehehehhehehhhehee QTF prongs
Nominal QTF AC voltage excitation 400000 mmmmVVVVVVVVVVVVVVVVVVVVVVVVVrmsrmsrmsrmsrmsmsrmsmsmrmsmmrmrmsrmsrmssmsm amamamamamamamamammmamaamamamamaamplplplplplplpplpppplplpppplplpplpplplpplpplpp itude
Glycerol concentration 0%%%% wwwwwwwwwwwwwwwwwwwwwww.t.t..ttt.t.tt.t.t.t.t. .. (((iii.i.ii.i.ii.ii.iiiii.i.ii eeeeeeeeeeeeee.,.,.,.,.,,.,,.,..,, 1100% distilled water)
Spectra recording time 2020202020202020202002020200002020202020200200202020200020200202200 ssssssss

B. Probe Fabrication

We use commercial QTF (520-TFFFFFFFFFFFFFFFFFFFFFC3C3C3C3C3C3C3C3C3C3CC3C3C3C3C3C3CCC3C3C33C3C3CCC3C3CCC3X88888X888XX8XXXXXXXXXX -----------X,X,XXXXXX,X,X,XX,XXX,XXXXXXXXXXX 1222.22222 5 pF, from Mouser Electronics)

frequency of 32768 Hz, and wiiiththhhhhthththhhththththththhhthhththth aaaaaaaaaaaaaaaaaaaaa ccccccccccccalalalllalllllllallllllllla ccucuccucccccccucccucuccccuuc lalalalalalaaaalalallalalaallllaaatettetetetttetetetetetetetteettttttedddddddd spring constant KstatKK (E/4)EE w(t/tt L)// 3

(the value obtained using the prong’g’’’’’’’’g’’’’’’’ssssssssssssss ssssssss didddddddddddidd memmm nsions L = 3.8 mm, t = 0.6 mm, and w =

the quartz elastic moduluususususssuususussususussssssu  EEEEEEEEEEEE=EE 7.77777777.7.7 87878787878878787878888787788778878787878877 1010 N/m2). After mounting the probe, the mec

factor Q fall around 10010110101010101010110101111010111001 3333333. FoFoFoFooooFooooooooorrrrrrrrrrrrrrr r rrrrr cocococococococococococooococococcoccccc nnnsnnnnnn tructing the complete probe, the QTF is rem

vacuum lid and a cccccccccccccccclelellelelelelelllelelllelelllleleeeeava ededededdddededdedddddd ooooooooooooooooooptpppptptttptppppp iciciciciciciciciciciciciciciccicaalaaaaa  fiber (SMF-28 Corning) of ~ 3 mm in length and

diameter, is gluuluuuuuuuuuuuluuuuuuuuedededededededdededddededddededededededededed tttttttttto oo ononnnnnnnnnnnnonnnnnnnnnneeeeeeeeeeeeeeeeeeee ofooo  the QTF prongs; the fiber purposely protrudes ~1 m

prong so it caccacacaccccccaccccacaccccac n nnn bbebebebbebebbebebebebebebebebebebebebebebebebeebebeeeebeeb pppppppppppartially immersed into a drop of liquid. For the purpose of 

presented dd hehehehehehehehehehehehhehehheheheheheehehhhereeeerreerereerereerrereeeeererer ininininiiinininiininiiininiiin, weweewwweeweeweewwweeww aaaaaaalso prepared glass fibers of reduced diameters through a ch

processssssssssssssssssssssssssss thhhhhhhhhhhhat uuuuuuuuuuuseseeeeeeeeeeeessssssssssss sssss bbbubbb ffered hydrofluoric acid (BHF) solution.8 By using BHF s

vooooooooooooooooooolululululuululululululululuuuuuuuummmmmmemmmemmmememmmemmmmmm rrrrrrrrrrratatatatatatatatatatatatatataaatatataataataatioiioioioioiioioioioiooioioi ooooooooooooooooooooofff ffffff fffffffffff NH4F: HF: H2O 2:1:1, the fiber becomes uniformly thinner. 

C.CC LiLiLLiLiLiLiLiLiLiLiLiLiLiLiiLiLiLiLiLiiLiLLiLiiLiLiLiLL ququqqququqququququqququuquqququqqq idddididddddiddidddddiddiddiddi pppppppppreparation

GGGlGlGGGGGGGGGGGGGGGGGG ycycycycycycycycycycyycycycycycycycyy eerererererrrrrrerereerererereereerrererolooooooooooooooooooooo -water solutions of different viscosities were prepared by mixing calcula

glycycycycyccccccccycccyccccccccereeeeeeeee ol and distilled water as followed from the literature.9,10 For pure water
3



centipoise = (cP) =10-3 2 s/mN . For 50% glycerin concentration: 50 1129.65 Kg/m3 and

000.650  cp.     

D. Description of the Experimental Measurements  

The Shear-force Acoustic Near-field Microscopy (SANM) system5,6 combines synchronous 

detection of two signals, i) the electrical QTF signal (the current measured by the lock-in #1 in 

Fig. 1) from which one can retrieve the probe’s amplitude of oscillation (as described in Results 

section  below), and ii) the acoustic signal (the current from the acoustic transducer monitored by 

the lock-in #2) that measures the acoustic signal generated at the liquid droplet. Both are 

acquired simultaneously while a cleaved optical fiber oscillates laterally and partially-immersed 

in the fluid. Here the fluid is a droplet of glycerol aqueous mixture (~5 L) placed on a mica disk 

substrate (which contrasts with a “mesoscale” fluid film involved in near-field measurements.) 

The configuration of the experimental setup is shown in figure 1.  

The most general observed behavior (as will be shown in more detail in the next sections) is 

a QTF signal (the probe’s amplitude of oscillations) decreasing while the acoustic signal 

(response from the fluid) gaining strength as the probe progressively gets immersed into the bulk 

liquid.  At a given immersion length, both signals are recorded across the frequency spectrum 

while driving the QTF with a harmonic voltage of constant amplitude.  The individual spectra are 

then analyzed for peak frequency, mechanical quality factor Q, and resonance frequency shifts 

relative to baseline conditions. Since the electrical detection of the probe’s amplitude has a 

drawback in the QTF’s inherent capacitance (which modifies the spectral response and, thus, 

does not reflect an accurate measurement of the QTF’s prongs oscillation amplitude),11 the 

spectrum is fit to an RLC equivalent circuit in order to separate out the capacitance contribution 

and thus calculate more accurately the probe’s amplitude of oscillation.12,13 This procedure gives 

a current-to-amplitude calibration factor of 2.5 nA/nm.5  
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a)                                                                                  b) 

Fig. 1 a) Schematic of the Shear-force Acoustic Near-field Microscope (SANM) setup. b) Optical 

image of a cleaved fiber probe right after its immersion into the the fluid. 

Due to the lateral motion of the probe, an acoustic signal is generated inside the droplet, 

which couples to the substrate and reaches the acoustic transducer (SE32-Q sensor of 10 mm 

diameter sensitive area, and customized for maximum response near 32 kHz; from Score Atlanta 

Inc.)  The substrate and the acoustic sensor are in intimate mechanical contact. It is observed that 

the response from both sensors, the QTF and the acoustic transducer, vary linearly with the 

amplitude of the ac driving voltage, as described in more detailed in the Results section below. 

 

III. The ADDITIONAL INERTIAL MASS MODEL 
A. Simple harmonic oscillator model of the QTF probe 

A tuning fork vibrating with limited or negligible interaction with an external environment is 

usually well described by analyzing the motion of just one of its prongs as a cantilever beam 

vibrating in flexure. The eigen-frequencies14,15 of such a system are given by 
2/12 )()/(2  AEI/Lnf n , where the cantilever dimensions are T, W, and L (thickness, width, 

length of the individual prong), A=WT is the individual prong’s cross section area, E and  are 
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the elastic constant and density of quartz respectively, and I the areal momentum of inertia. The 

values of  n  are determined by the expression imposed by the boundary condition 

01))(cosh(cos LL nn .  

B. Interaction of the probe with a fluid described in terms of an additional inertial mass 

However the purpose here is not to ignore the environmental surrounding the QTF, but rather 

to characterize the interaction of the probe with a droplet. It turns out, nonetheless, that the 

frequency response of an elastic beam immersed in a viscous fluid constitutes a formidable 

problem.16 Even for very simple structures like beams and plates, an analytical solution involves 

rather complicated functions of the wavelength, frequency and dimensional shape factors.17,18 

However, given the fact that the experimental results reported below reveal signatures that can 

be accounted by a simple harmonic motion model, it is justified then to attempt a much simpler 

description as follows. 

When a solid body undergoes oscillatory motion inside a fluid medium, the extra energy 

needed to keep the fluid in motion can be taken into account by an equivalent “additional inertial  

mass m ” added to the cantilever oscillations, which has an effect in the value of the probe’s 

resonant frequencies. Assuming that the added inertia is much smaller than the mass of the 

prong, the modified eigen-frequencies are given by )2/1(  nf
2/12 )][()/( AEI/Ln

)
2
11( 

A
fon , where onf  stands for the eigen-frequencies outside the fluid, and is the added 

mass inertia per unit length. It turns out that for a body of cylindrical geometry /Lmo2 , 

where om is the mass of the fluid volume displaced by the QTF prong (the factor 2 in front of this 

expression is associated to a cylindrical geometry).17,18  This gives )1(
Prong

o
onn M

mff , where 

ProngM  is  the mass of one of the QTF’s prongs.  

However, the description above assumes that the prong is fully immersed in the fluid, while 

in our case only part of the attached probe is immersed. Hence, if we considered a mass

fluido mm (the mass of the fluid volume displaced by the partially submerged probe) as an 

added mass whose location is concentrated at the end of the prong, its effect on the change in the 

cantilever’s resonance frequency would be greater compared to a similar mass distributed over 
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the full length of the QTF prong. On the other hand, it has been pointed out in the literature that, 

when describing the dynamics of a QTF, the coupling between the two prongs should also to be 

taken into account;19 so a mass greater than the mass of a single prong ProngM  should be 

considered, whose effect would be to lower the resonance  frequency value. Thus, the influence 

of these two factors on the resonance frequency tend to cancel each other; still we will take the 

expression  )1( 
Prong

fluid
onn M

m
ff  as a cautious approximation, whose accuracy will have to be 

verified experimentally (as we do below); for simplicity we will consider only the fundamental 

resonance mode. But first, in anticipation to the experimentally observed non-linear variation of 

the resonance frequency f with the immersion length d (to be shown below), and to emphasize 

that the approximations employed above are valid for small values of d (compared to the length 

of the TF), it is convenient to rewrite the expression above in the following form, 
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df
df

M
m

Prong

fluid (1) 

In this expression, at a given immersion length d the resonance frequency is )( dff  ; an 

additional immersion length d  (controlled by the user) produces an additional fluid mass 

displacement fluidm , which gives rise to a corresponding change in the resonance frequency f 

)( df  detected in the SANM; all the quantities are subsequently updated for the next 

approximation. Given the rationale and approximations that led to obtain expression (1), the 

additional mass inertia model is then basically the description of a simple harmonic oscillator 

(SHO).

For a cylindrical probe of radius r immersed in a fluid of density fluid , an increase in the 

immersion length by d , produces an additional displacement of fluid mass given by, 

 drVm 2
fluidfluidluidfluid            f    (2) 

From (1) and (2), one obtains, 
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All the quantities on the right side of (3) are under experimental control within the SANM 

system, which provides an opportunity to verify the validity of the SHO model being used. For 

measurement taken at different immersion length, we should expect to obtain a constant value 

for ProngM . This is verified in the Analysis section below.

IV. RESULTS 

Table 3 shows a summary of order of magnitude changes in the probe’s amplitude of 

oscillations (an indicator of damping effects), the probe’s resonance frequency shift (an indicator 

of elastic effects) and acoustic signal (sound engender by the fluid and monitored by the SANM), 

which were obtained from systematic measurements performed with probes of different 

diameters and using droplets of different viscosities. The partial results quoted in the table 

correspond to behavior of the signals near the, arbitrarily selected, 160 m immersion length, 

just to obtain first a rough comparison among them. Notice that the values of the “resonance 

frequency shift” in column-3 and the “acoustic” signal in column-5 are somewhat close to each 

other, but both are quite different than the values in column-4 (“amplitude of oscillation”). This 

correlation (or lack of it) among these three signals turns out to be consistent across the full 

range of immersion length, 0 to 280 m, as will be shown below. 
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Table 3.  Test Results  
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Probe diameter 

At d = 160 m: 
45% rate reduction 
in frequency shift 

per immersion 
length due to a 58% 
decrease of probe 
cross section area. 

At d = 160 m: 
Amplitude decreases 

2% more per 
immersion length due 
to a 35% decrease in 

probe diameter. 

At d = 160 m: 
67% rate reduction in 

acoustic signal per 
immersion length due 
to a 58% decrease of 
probe’s cross section 
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A. Probe immersed in a droplet of pure water  

Fig. 2 shows few representative spectral responses from the QTF and the acoustic sensor, 

both acquired simultaneously with the probe immersed in a drop of water.  

 
 

  

Mica Disk 

 
Fig. 2 Effects of probe immersion in a drop of water. a) Few representative 
electrical QTF spectra, and b) corresponding SANM acoustic response from the 
fluid, for a probe of 125 m diameter at 40, 120, 200, and 280 m immersion 
lengths respectively. Notice that both signals peak at the same frequency. c) 
Calculated mechanical oscillation-amplitude spectra obtained from a) after 
removing the effect of the QTF’s intrinsic capacitance (as described in the text); the 
right vertical axis uses a 2.5 nA/nm calibration factor. 

Notice that at each immersion length the peak frequency of both signals experience the same 

negative shift. (A similar feature is also observed in near-field measurements of mesoscopic fluid 

films using a SANM system, except that the frequency-shift is positive).5 The figure also shows 
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that at deeper immersion lengths the QTF peak amplitude decreases while the peak of the 

acoustic signal increases. For comparison, in the near field case a similar trend is observed at 

large probe-sample distances, but at smaller separation distances both decrease;6 the latter can be 

attributed then to effects caused by the substrate.  

The results presented in Figures 3 and 4 confirm further that the signals vary monotonically 

and with smooth variations in the slope (i.e. non-linearly) over the entire 0 to 280 m immersion 

range. For comparison, in the near field case the variation in slope is not that predictable and, 

occasionally, abrupt changes are observed.20 

B. Effects of Probe Diameter 

Figures 3 and 4 show the changes in resonance frequency shift and resonance oscillation 

amplitude for probes of different diameter positioned at various submersion lengths inside a 

pure-water droplet. Each of the four traces corresponds to a new probe attached to a different 

QTF, which in general resulted in correspondingly different initial resonance frequency and 

resonance peak amplitude. For each approaching step, a CCD camera allowed observing the 

instant when the fiber probe gets in contact with the water boundary (as shown in Fig. 1b); this 

vertical position is defined as the 0d  immersion length.   

One parameter of interest is the negative resonance frequency shift (colloquially referred here 

also as “red shift”) experienced by the probe as it gets progressively immersed into a ~5 L 

water droplet. The shift is tracked relative to the resonance frequency measured when the probe 

is completely withdrawn from droplet (a location referred to as 0d ). The slope of a given 

frequency-shit trace changes with immersion length. At d~160 m, the rates of change are 20 Hz 

and 11 Hz per every 100 m immersion length for the 125 m diameter and 81 m diameter 

probes, respectively. This represents a 9/20 45% rate reduction in frequency shift per 

immersion length caused by a 58% decrease in probe’s cross section area. Figure 3 also shows 

that the rate at which the probe’s frequency redshift changes per immersion length is the same as 

the rate at which the corresponding acoustic signal peak frequency changes.  
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Immersion Length ( m)                               Immersion Length ( m)   
Fig. 3 Effects of probe diameter on the magnitude of the probe’s resonant frequency shift 
(left) and on the corresponding magnitude of the peak frequency shift of the acoustic 
response (right), at various immersion length in a pure-water droplet.  

In Figure 4, the diagram on the left shows the mechanical resonance amplitude at different 

immersion lengths for probes of different diameters. Notice the rate of resonance-amplitude 

reduction per immersion length is practically the same for each probe. Indeed, at d ~ 160 m the 

thinnest probe decreases barely 2% more in amplitude than the thicker probe per 100 m 

immersion depth. In contrast, the rate at which the acoustic signal changes has a much stronger 

dependence on the probe diameter, as revealed by the diagram on the right side of Fig. 4. One 

observes a 67% rate increase in acoustic signal per immersion length  when comparing the cases 

for the thinnest (81 m diameter) and the thickest (125 m diameter) probe. There is then a 

markedly difference between the light damping effects on the probe (which, in a simple 

harmonic motion model, is revealed by the changes in the probe’s oscillation amplitude) and the 

strong acoustic response from the fluid, both caused by the probe-fluid interaction.  

In the reported acoustic traces, each value (output current from the acoustic transducer) has 

been normalized with the corresponding probe’s oscillation amplitude (output current from the 

tuning fork sensor), hence giving values in “normalized acoustic units (A/A)”. This 
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normalization procedure allows comparing the strength of the acoustic signal obtained at 

different immersion lengths as if the probe were oscillating with the same amplitude in each 

single measurement. (The experimentally observed linear response of the acoustic sensor with 

the probe’s oscillation amplitude, addressed in Sections IV.D below, justifies further this 

normalization procedure).   

Immersion Length ( m)       
       

                       Immersion Length ( m)  
 

Fig. 4 Effects of probe’s diameter on the probe’s resonance amplitude (left) and on the acoustic 
signal response from pure water droplets (right) at different immersion lengths.  
 

C. Effects of fluid viscosity  

Figure 5 shows an increase in the the magnitude of the shift in the probe’s resonance 

frequency (diagram on the left) and in the fluid’s peak frequency acoustic response (diagram on 

the right) when the viscosity of the droplets increases. The results were obtained using a probe of 

125 m diameter. At d = 160 m the changes in frequency are approximately 20 Hz and 25 Hz 

per every 100 m immersion length for the droplets of 0% and 50% glycerin concentration 

respectively. In the latter case we have to factor out the frequency increase due to the larger 

density of the more viscous fluid, which results in a net 22 Hz increase instead (just due to 
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viscosity)21. The 2 Hz difference reflects a 10% difference in frequency-shift due to a change 

from 0% and 500% glycerin concentration. Changes in the peak frequency for the acoustic signal 

are shown in the right side diagram of Fig. 5; notice it is practically a replica of the diagram on 

the left.   
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Fig. 5 Effects of droplet viscosity on the magnitude of the probe’s resonant frequency shift 
(left) and on the corresponding frequency at which the acoustic signal registers a peak in its 
amplitude, as a function of the submersion length. The diameter of the probe is 125 m in 
all the cases.  

In Fig. 6, the diagram on the left shows the changes in the probe’s resonance amplitude for 

droplets of different glycerin concentrations. Notice, the rate of amplitude reduction per 

immersion length is practically independent of the viscosity; near d =160 m immersion length, 

there is a 2% difference when comparing the traces corresponding to 0% and 500% glycerin 

concentration. In contrast, the diagram on the right side of Fig. 6 shows a much stronger 

dependence of the acoustic signal strength on viscosity. Near d=160 m immersion length, there 

is a 20% change in acoustic signal due to a 500% increase in viscosity, indicating that there is an 

effective contribution from the viscous nature of the fluid to the production of sound. Again, the 
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quoted acoustic signal values are given in “normalized acoustic units (A/A)” as described in the 

previous section.  
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Fig. 6 Viscosity effect on the probe’s resonance amplitude (left) and on the 
corresponding acoustic response from the fluid (right) as a function of the immersion 
length using the same probe diameter in liquids of different viscosities.  
 
 
 

D. Effect of the driving voltage 

Figure shows the response from the QTF (top graph) and the acoustic sensor (center graph) 

as a function of the driving voltage set by the signal generator (see also Fig. 1). The observed 

linear response adds reliability to normalization processes of the acoustic signal (bottom graph), 

where the output current from the acoustic transducer has been divided by the corresponding 

probe’s oscillation amplitude; this results in “normalized acoustic units (A/A)”.  
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Fig. 7 Linear response from the QTF (top) and acoustic (center) sensors to 
increasing values of the excitation source driving voltage amplitude. 

E. The effect of liquid evaporation during experiments 

The results in Fig. 6 evaluate whether or not the liquid evaporation was a detrimental factor 

during the measurements. As the drop of liquid evaporates, the amount of liquid in contact with 

the probe would decrease and thus cause an increase in the probe’s resonance frequency, which 

would convolute the reported results. To evaluate this effect, we recorded the vibration spectra of 

the QTF and acoustic signals with a probe kept at fixed position (80 m immersion length into 

the initial water droplet). In Figure 6, the time interval between consecutive traces is 1 minute. 

The entire recording lasted ~5 minutes, which is much longer than the average time employed to 

run a given subset of the experiments described in the sections above. No significant change in 

the resonance frequency shift due to the evaporation during this interval of time is observed. 
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Fig. 8 Multiple recordings of the QTF frequency response while keeping the laterally 
oscillating probe at a fixed immersion length in distilled water. The time interval 
between two traces next to each other is 1 min, and the entire process lasted ~5 min. 
A more detailed position of the resonance peaks is shown in the inset.   

F. Effects of the Liquid Droplet Volume 

The baseline test condition is to use a droplet of consistent 5 L volume. But we wanted to 

explore whether the exact volume could have an effect on the peak frequency shift of the 

acoustic response, and hence, affect the reproducibility of the results reported above. Also, using 

droplets of different volumes places the air-fluid interface at different distances from the 

substrate, which allows evaluating a potential influence, if any, of the substrate on the reported 

results. Figure 9 shows the reproducibility of the QTF and acoustic responses when using 

different droplet volumes (5 L, 7.5 L, 10 L. 12.5 L and 15 L). In each case a 125 m 

diameter probe was submerged 80 m into the droplets. No effect of the droplet volume on the 

resonance frequency is observed. 
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Fig. 9 QTF electrical response and fluid’s acoustic response from droplets of different volumes. 

 

 

V. ANALYSIS  

A. Signatures of simple harmonic oscillatory motion in the probe’s response  

Figure 10 shows responses from the QTF sensor, which reveal the probe behaves as a simple 

harmonic oscillator (SHO). Figure 10a shows that the rate at which the mechanical quality factor 

Q changes with immersion length is practically the same whether the probe is in a droplet of pure 

water (1.005 centipoise viscosity) or in a droplet of 50% glycerin concentration (6.00 centipoise 

viscosity). The results suggest that viscosity does not play a significant role as energy dissipation 

channel in the probe-fluid interaction. A plausible explanation considers the liquid molecules 

adhering to the surface of the laterally oscillating probe upon its entrance into the droplet (a 

manifestation of the zero-slip hydrodynamic condition effect, which happens to be valid also on 

hydrophobic substrates22). In consequence, the amount of liquid set into motion (and eventually 

constituting a wave traveling in a direction transverse to the lateral oscillations) resides mainly 

inside a boundary layer surrounding the probe. That layer has a viscosity-dependent thickness of 

just a few micrometers (as estimated in Section V.E below). The small value of the boundary 

layer’s thickness (compared to the probe diameter) and the lack of relative sliding motion at the 
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solid-liquid interface (which otherwise would affect the probe’s amplitude more strongly) 

diminishes the damping effects of viscosity.  

This interpretation also helps to put in context the role of microscopic friction in the 

implementation of the zero-slip condition. As currently accepted, the energy dissipation raised by 

the viscous resistance is at the mesoscale (of the order of the boundary layer’s thickness), while 

that raised by the molecular friction, i.e. liquid molecules adsorb/desorb on solid atoms, is at the 

microscale.23,24 First, the independence of amplitude damping per immersion length on viscosity 

indicates that the zero-slip condition is strictly in place; otherwise (as argued above) a higher 

viscosity would cause a higher damping rate. Second, the observed larger change in amplitude 

when the probe just gets immersed into a fluid of higher viscosity (as indicated by the arrows 

along the horizontal axis in Fig. 10b) illustrates further the effects of microscopic friction. 

Notice, more energy is dissipated on the 50% glycerin fluid (amplitude deceases down to ~30%) 

compared to the immersion in pure water (amplitude decreases down to 50%). 

The weak effect of viscosity on damping once the probe is immersed into the few micro-liter 

volume fluid (as reported here) contrasts with its, currently controversial, role on the dynamics of 

mesoscopic fluids. On one hand, some reports suggest that viscosity increases as the fluid gets 

progressively more confined.25 Two related mechanisms may contribute to this increase in 

viscosity. First, the small probe-substrate gap (< 15 m) compared to the 125 m diameter of the 

probe (as in the case of Ref. 25) causes constrains in the motion of the confined fluid. Also, since 

such a small gap fall in the thickness range of the fluid boundary layer, the probe and substrate 

boundaries may have a significant effect of the dynamics of the trapped fluid. Second, adhesion 

forces attract the fluid molecules towards the probe and substrate solid boundaries (imposing the 

zero-slip hydrodynamic condition), which results in larger velocity gradients inside the gap. Both 

mechanisms may contribute to have a mesoscopic fluid with an “effective viscosity” much larger 

than the viscosity of bulk fluid. On the other hand, there also exist reports claiming that 

confinement does not affect the viscosity of mesoscopic fluids at all.26 A resolution of this 

controversy has been presented more recently based on experiments that test the behavior of 

mesoscopic fluids (confined between a mica surface and a silicon-oxide probe) at different 

confinement speeds.27 No variation in viscosity is observed due to both confinement and 

molecular ordering near an atomically flat surface when the mesoscopic fluid is probed at high 
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speed (1.5 nm/s confinement rate). At this high speeds, when molecules are in an ordered state 

cannot easily move out of the gap as a group, thus becoming ‘‘stuck’’ and responding elastically 

to external shears; i.e. the mesoscopic fluid behaves solid-like. 27 Higher viscosities are however 

measured when the fluid is probed at lower speed (< 0.6 nm/s) and due to the restricted motion 

imposed by confinement (as described at the beginning of this paragraph); the liquid behaves 

liquid-like, but with enhanced viscosity 27  
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Fig. 10 Variation of the mechanical quality factor Q with a) probe’s immersion length, and b) 
probe’s resonance amplitude (at different immersion length). Two cases are presented, pure water 
(open circles trace) and 50% glycerin (solid circles trace) droplets; in both cases the probe 
diameter is 125 m. The arrows along the horizontal axis in 10b) indicated the normalized 
probe’s amplitude right after the tip immerses into the corresponding fluid. The behavior in both 
graphs display signatures of a simple harmonic oscillator motion (as described in the text).  

Fig. 10b displays the mechanical Q factor as a function of the probe’s amplitude (measured 

with the probe first completely outside the droplet and then at a series of different immersion 

positions) corresponding to two different droplets of 0% and 50% glycerin concentration, 

respectively. Notice the linearity between Q (~1/(damping constant)) and the probe’s resonance 

amplitude is maintained whether the probe is immersed or not in the droplet. That is, as far as the 

probe is maintained at resonance, we observe that the net damping force (FD ~ damping constant

amplitude ~ amplitude/Q) remains constant at different immersion lengths. It is as if the 
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amplitude and corresponding damping constant confabulate to keep the total damping force the 

same while the probe gets immersed into the droplet.14 The latter is a signature of a simple 

harmonic oscillator motion (SHO). This further justifies the use of the SHO, adopted below, to 

describe the additional experimental results.  

B. Validation of the additional inertial mass model  

Fig. 11 shows calculated values for ProngM  predicted by expression (3) above,
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fluidProng rM  
   , where we have used values for d and f  measured with the probe 

placed at different immersion lengths in a droplet of pure water. Calculations were performed for 

probes of three different diameters. Notice that for the probes of 125 m diameter (“rhombus” 

trace) and 98 m diameter (“triangles” trace) the calculated values consistently lie around 

KgMProng
610)5.02( . The case for the 81 m diameter (“open circles” trace) shows more 

discrepancy, but still with a tendency to fit around a constant value. (The discrepancy may be 

due to the fact that, being the thinnest probe protruding ~1 mm beyond the prong, that fiber 

section may undergo additional bending, a situation that departs from the the assumed oscillation 

of a fully stiff prong.)  

The calculated value of ProngM  turns out to be very sensitive to the precise measurement of 

the immersion length. This sensitivity is exposed by the three “rhombus” traces in Fig 11; they 

were obtained by purposely introducing m 1   uncertainty in the immersion length d, which 

leads to an uncertainty of Kg .20  (see error bar segment at the bottom-left side of the figure as 

a reference). In spite of this sensitivity, it is remarkable that all the calculated values accumulate 

around the 2 Kg mark for each submersion length and for three different probes. An alternative 

procedure to estimate the value of ProngM   is to calculate the slope of the curve f vs d  in Fig. 

11. For the case of pure water, at d = 160 m the slope is equal to  Hzm/40 200     f/d   , for 

which expression (3) gives Kg
Hz
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one prong of the QTFs used here [of dimensions L= (3.8 0.01) mm, W  (0.35 0.01) mm, T = 

(0.6 0.01) mm; quartz density quartz  2650 kg/m3] has a mass equal to ProngM  (2.1  0.1) 
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Kg.  Thus the value obtained from the hydrodynamic measurement matches very well the 

actual mass of one tine. Beyond this surprising accuracy predicting the value for ProngM (given 

the approximations made though our calculations), what we highlight here is the consistent 

constant value obtained for ProngM  (at different probe’s submersion lengths and for three 

different probes), which validates the use of a harmonic oscillator model, expression (1).  
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Fig. 11 Calculated value of the QTF mass TFM  predicted by expression (1) using 
the experimental values of the frequency shifts measured at different immersion 
distances. Data include results for three probes of different diameters, 125 m 
(rhomboids), 98 m (triangles), 81 m (circles). The symbol on the lower left 
side is to indicate that a m 1 uncertainty in the immersion length d, produces an 
uncertainty of Kg .20 in the calculated mass. The horizontal line drawn at 2.1 

Kg is to indicate the actual mass of the TF prong. 

C. Frequency shift values expected from the observed changes in the mechanical factor Q  

In addition to the mass loading effect, a change in the probe’s resonance frequency can occur 

also as a consequence of damping effects. From a simple harmonic oscillator model, the 

amplitude peaks at 2/1)
2

11( 2Q
ff o , which for  fo = 32,000 kHz  and Q = 2500 gives 

610
Qf Hz . Figure 10a shows a change from  2,5002Q  to 1,5001Q  when the probe is 
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submerged from d = 0+ to d = 280 m. For the observed change of 1,000Q , the expression 

above predicts a frequency shift  f  in the order of Hz10  
-3 , much smaller than the observed 10s 

of Hz reported in Fig. 3. This indicates that the damping effect is not the main source for the 

observed changes in the resonance frequency. Similar changes in the value of Q are observed in 

near-field experiments (measured before and after the tip starts to interact with the sample’s 

adsorbed layer) but the frequency shift is positive and of the order of 10 Hz;28 this suggests that 

damping is not the origin of the frequency shift. In short, for the bulk and mesoscopic fluid cases 

(both treated within the SHM model), a large change in Q does not contribute significantly to the 

observed change in the probe’s resonance frequency. 

D. Effects of probe diameter and droplet viscosity 

1. Impact of probe diameter 

Fig. 3 shows that the rate at which the frequency-shift changes per immersion length is 

greater for thicker probes. The interpretation is straightforward; for larger cross section areas, a 

larger amount of water volume and mass will be driven and, according to the inertial mass 

model, a larger decrease in frequency shift will be observed. Driving a larger volume of water 

would also cause a stronger acoustic signal, which is verified in Fig. 3. On the other hand, Fig. 4 

shows the rate of change in oscillation amplitude (which is associated to the damping effects) is 

much less pronounced, with a tendency to be practically the same for all the probes tested. A rate 

of amplitude change almost independent of the probe diameter can be explained by the fact that 

the probe is shaken laterally; hence the damping effects are caused mainly by the probe’s lateral 

walls. As the probes get deeper immersed, all the probes increase their submerged lateral wall 

size in the same amount, hence contributing to the damping independent of their thickness.  

In short, an increase in the probe diameter produces a larger rate of frequency shifts per 

immersion length, a larger rate in increasing acoustic signal, and an almost invariant resonance 

amplitude.  

2. Effects of fluid viscosity  

Figures 9 and 10 show that increasing values of fluid viscosities produce i) very small 

changes in the rate at which the oscillation amplitude decreases with immersion length, ii) large 

sussusususuuuusususuusuuusususuuuuuuuuuuuuuuuuuuuuuuuuuuuuusuuusususuuuuuuussuuuubbbbbbbmmmbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

observed changes in the resonance frequency. Similar changes in the valalllllllalllallallallueuuuuuuu  of Q

near-field experiments (measured before and after the tip starts to iiiiiiiiiiiiiiiiintntntntntnttnttntntntnntnnttttererererererrerererererereerrereerereeeeracaacaaaaaaaaaact wit

adsorbed layer) but the frequency shift is positive and of the ordeerr rrr rrrrrrr r rrr oooofooooooooo  10101010101010100000000000101000110000 Hz;2828282828282828282828282822828282828222 th

damping is not the origin of the frequency shift. In short, for the e bubububububububububububuubububububububububbububuubuuububb lkkklkllklllklklklklklkk aaaaaaaaaandndndndndndndndndnddndndndndndndndndnddndndndndndnddndndnn mmmesosco

(both treated within the SHM model), a large change in Q dododoooooooooooooooooeeeeeseeeeeeeeeeeee nnnototoooooototototototoototooooo  connnnnnnnnnnnntrtrtrrtrtrtrtrtrtrtrtrrtrttrtrtttrtrtrtribiiiiiiii ute sign

observed change in the probe’s resonance frequency.

D. Effects of probe diameter and droplet viscosittttyyyyyyyyyyyyyyyyyyyyyyyy

1. Impact of probe diameter

Fig. 3 shows that the rate at which thehhee frfrffrffrffrfrfrfrfrfrfrfrfffrff eqqqeeeee ueuueueueueueueueueueueueueueueueueueueueueueeencnccncncncncccnnccncnccnnccnnncncyyyyyyyyyyyyy-shift changes per imme

greater for thicker probes. The interpretatitiiiitiiiiiononononononononononnonoononononooononononon iiiiiiiiiiiiiss ttststststststststststststtststtraaaaararararararararararaaaararaaigigigiiiiigigigiiigigiiii htforward; for larger cross 

larger amount of water volume and mmmmmmmmmmmmmmmmmmmmasasssasaaaaaaaaa ssssssssssssssss wiwiwiwiwiwwwiwwwiwwwwwiw llllllllllllllllllllll bbbbbbbbbbbbbbe driven and, according to th

model, a larger decrease in frequencncncncncncncncncncncnncncccncncnccncn y yyyyyy yyy yyyyyyy yy yy yyyy shssshsshsssshshss ififffffffffffffiffffffffttttttttttttttttttttt wiwwwww ll be observed. Driving a larger vo

would also cause a stronger acououououuuuuuououououuuuuuuuuuuststststtstststststststststststststststssss icicicicicicicciciciciciciciciciciciciciciciciccicicc ssssssssssssssssigigigigiggigigigigigigigigigigigigigigigigigiggigggiggigiignanannnnnnnnnnn llllllllllllllllllll, which is verified in Fig. 3. On the oth

shows the rate of change in nnn nnnnnn osoosoosoosoosooosssosssssscicc llatioiiooooooooonnnnnnnnnnnnnn nnnnnnnnnn amaaaaaa plitude (which is associated to the dam

much less pronounced, wiwiwwiwiwiwiwiwiwiwiwiwiwiwiwiwiiiiww thththththththththhthththththththththhth aa tennnnnnnnnnndedededdddddddddddeddddddedd ncy to be practically the same for all the probe

of amplitude change alalaalalalalalalaaalalaalalalallalallalallalalalllla moooommmoomooststssststssststssssstssststssststss  innnndedededddddedededededededededededededededededdeeppppepppppp ndent of the probe diameter can be explained 

the probe is shakekeeeeeeeeeeeeeeeeen nnn n nn nnnnnnnnnnnn lalalalalalalalalallalalaalalll tettt raaaallllllllllllllllllllllllllllllllllllllllllllyyyyyyyyyyyyyyyyyyyyyyyy;;;;;;;;; ;;;;; ; hhhehhehhhehehhhhhhhh nce the damping effects are caused mainly by the

walls. As the prprprprprprprprprprprprprprprprprprppppppppp obbbbbbbobobboboboboboboboboobobobobobobeeeseseeeseseeeseseeeeseee  getetetetetttttttetetettttet deedddddddddddddddd eper immersed, all the probes increase their submerg

size in the sasasasasasasasaasasasasasasasaasssass mmemmmmmm aaaaaaaaaaaaaaaamommmmmomommmmmmommommmomommm unt, hence contributing to the damping independent of their th

In shoortrtrtrtrtttttrtrtrttrtrtrttt, , , ananaananananananaaaaaanannaanananan inccccncccccccccnccccccccccrerrrrrrrrrrrr ase in the probe diameter produces a larger rate of frequ

immersrrrrssssssrssrsrrsrssrsrrrsrrsioiiiiii n leeengnngngngnngngnnngnnngngngnnnngngnnngnngthththhhhhhhhththhhhhhh, a larger rate in increasing acoustic signal, and an almost inva

ammmmmmmmmmmmmmmmmmmmmmplplplplpplplpllplppllplpplpppplitititttitititititiiititititititittitttudddeeeeeeeeee.ee

2222222222222222222222222222222........ EfEfEfEfEfEfEfEfEfEfEffEfEfEfEEfEfEfEfffEfEfEfEfEfEfEfEffefefefefefefefeffefefefefefefefefefeffeffefefefefefefeffefefectccccccccccccc s of fluid ff viscosity

FiFFFFFFFFFFFFFFF gures 9 and 10 show that increasing values of fluid viscosities produce

changes in the rate at which the oscillation amplitude decreases with immersion l



variation in the rate at which the frequency-shift decreases with immersion length, and iii) a 

stronger acoustic signal. These results provide further indication that the damping forces inside 

the droplets play a weak role in the probe’s motion. The minor change in amplitude despite the 

500% change in viscosity can again be explained by considering an absence of relative sliding at 

the solid-water interface (the zero-slip condition). The dissipation occurs instead within the 

boundary layer that extends just a few microns from the solid probe boundary (for all the 

viscosities considered here). This region is small enough that an increase of viscosity by 5 times 

does not change the rate at which the oscillation amplitude varies. In contrast, the larger change 

in frequency-shift indicates that a greater amount of fluid is dragged by the probe when 

immersed in droplets of higher viscosities. Such a feature is very revealing. It invites to consider 

that a similar mechanism could also be present in the case of near-field (probe-fluid-substrate) 

interactions, except that in the latter case one has to take into account that the fluid is not free to 

move (like in the bulk state) but restricted in its motion by their stronger attraction to the probe 

and substrate boundaries (fulfilling the zero-slip boundary condition). When the two solid 

boundaries become very close to each other (nanometer separation distances) a restoring force on 

the probe could then take place and, hence, cause a blue-shift in the probe’s resonance frequency. 

Further, the reaction force on the (viscous) fluid would engender an acoustic signal. Such a 

correlation between the probe’s frequency shift and the acoustic signal from the fluid in near-

field experiments has been addressed before.5 The more systematic tests, reported here, using 

fluids of different viscosities (although with a more sizable volume of fluid) support such earlier 

findings. We underscore then the effective contribution to the production of sound from the 

viscous nature of the fluid (the higher the viscosity, the greater the volume of the dragging fluid, 

and the greater the acoustic signal).  

In summary when the probes get immersed into a fluid droplet the acoustic signal is 

consistently stronger when using either probes of larger diameter or fluids of greater viscosity; 

the probe’s resonance frequency shift follows a similar trend. The resonance amplitude of 

oscillation, however, is weekly dependent on the probe diameter and fluid viscosity.  

E. The boundary layer effect  

As argued above, an additional contribution to the negative frequency shift comes from the 

motion of water molecules contained in the boundary layer neighbor to the probe’s walls.  The 
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velocity field induced by a probe oscillating at frequency 2/  establishes a wave that 

propagates in the direction perpendicular to the oscillations. They are, however, rapidly damped. 

The dampening is exponential, with a depth of penetration being given by,15,29 

2/1/2
  (4) 

where  is the dynamic viscosity and  is the density of the fluid. For the 32 kHz operating 

frequency in these experiments,  varies from 3 m to 7.5 m for the 0% and 50% glycerin 

concentration respectively. The motion of this extra layer of water makes the probe a bit 

“thicker”. The displaced mass increases by a factor 2rr   /2  r /2 , which causes an 

increase in the change of the resonance frequency according to the additional inertial mass 

model. In Section IV.C above we report 20 Hz and 25 Hz increases in frequency shift, per 100 

m immersion length, for the droplets of 0% and 50% glycerin concentration respectively, when 

using a probe of 125 m diameter. For the 0% concentration case, the factor r /2  is equal to 2

3/62.5  0.1, which gives a 20 Hz 0.1  2 Hz contribution to the frequency shift per 100 m 

immersion length. For the 50% glycerin concentration droplet that factor is 2 7.5/62.5  0.24, 

which gives 25 0.24  6 Hz. The estimated 4 Hz difference matches well the 5 Hz 

experimental results reported in Section IV.C.  

In short, the contribution (in the order of Hz) to the change in the probe’s resonance 

frequency from a boundary layer (whose thickness depends on the viscosity) is definitely much 

higher than the contribution expected from the damping effects (in the order of mHz, as 

estimated in Section V.C above). 

F. Correlation between the probe’s frequency shift and the fluid’s acoustic response 

The results above indicate that for probes of increasing diameter and fluids of increasing 

viscosity i) the rate of changes in resonance frequency and the acoustic signal with immersion 

length consistently become larger, but ii) the rate of change in resonance amplitude (ascribed to 

dissipative effects) remain approximately constant. These findings invite to further examine how 

close a given pair of any of these signals correlates with each other. Such a comparison is 

presented in Figure 12, which displays our attempts to a) linearly fit the decreasing amplitude of 
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oscillation to the decreasing frequency-shift, as well as b) linearly fit the increasing acoustic 

signal to the increasing magnitude of the frequency-shift, as a function of the immersion length. 

To implement this comparison, the signals were simply multiplied by a corresponding constant 

factor (optimized for the best fitting) and then shifted so that the four traces could be displayed in 

a single graph. The fitting process was performed for probes of three different diameters. 

According to the SHO model, signatures of increasing dissipative effects should be revealed 

by a decrease in the probe’s resonance amplitude, as well as by a linear decrease of the 

mechanical factor Q with decreasing resonance amplitudes; the latter is indeed observed in Fig. 

10b above. Here we also observe that, as the probe immerses deeper into the droplet, both the 

resonance frequency and the resonance amplitude decrease (Figs. 3 and 4). But the results 

displayed in Fig. 12 show that the frequency and amplitude variations are not related linearly (the 

concavity of their corresponding traces are actually opposite). In contrast, the changes in acoustic 

signal fit remarkably close to the changes in frequency shift for each of the three different 

probes. Incidentally, such a correlation between the probe’s resonance frequency shift and the 

fluid’s acoustic response has been previously reported in near-field experiments performed with 

the SANM system.5  
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a)                                                                                          b)                                               

 
c) 

Fig. 12 Traces of the probe’s resonance frequency shifts (open rhombus and 
open circles) fit well to a linear fitting process with the fluid’s acoustic response 
(solid rhombus trace) but not to the changes in the probe’s resonance amplitude 
(solid circles).    

 

The result described in the previous paragraph, together with the experimental confirmation 

of expression (1) that relates the change in displaced fluid mass to the frequency shift (Fig. 11), 

offers a clear picture about the generation of acoustic signal: conversion of mechanical energy 

from the oscillating probe into fluid motion (sound) inside the droplet (which then couples into 

the sample substrate and reaches the acoustic sensor, as shown in Fig. 1 above). Fig. 12 indicates 

that this mechanical-to-acoustic energy conversion is linear. It is remarkable that this linear 

relationship occurs across the full immersion length range, even at the early stages of  immersion  

(close to d 0+), where the generation of sound comes from a much (small) localized fluid 
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volume, and thus many other factors no directly related to fluid volume change (including 

surface tension) could have also affected the frequency shift.   

In the liquid droplet experiments reported here the change in the probe’s resonance frequency 

is negative because the surrounded water molecules, being in their bulk state, are compliant to 

follow the probe’s lateral motion. We conjectured that a similar transfer of energy may happen in 

near field experiments when testing the response from confined mesoscopic fluids. In the latter 

case, however, the molecules in the fluid are not as compliant to move along with the probe since 

they are instead more tightly attached to the substrate (zero-slip condition effect). As a 

consequence there will be a restoring force on the probe, which would lead to an increase in the 

observed resonance frequency (instead of a negative one, like in bulk fluid).  

VI. CONCLUSIONS 

We have addressed the interaction between a laterally oscillating cylindrical fiber-probe and 

a sizable (few l) volume of fluid. A quartz tuning fork (TF) sensor monitored the response from 

the probe, recording its variations in oscillation amplitude and resonance frequency; an acoustic 

sensor monitored the fluid’s response. 

The response signals were well described by a simple harmonic oscillator (SHO) model. The 

inertial mass model (tested using probes of different diameters and at different immersion 

lengths) predicted very well the observed resonance frequency red-shifts. The validation of this 

model provided a proper framework for the subsequent analysis of the experimental data. On one 

hand, the weak dependence of the damping component of the probe-fluid interaction on viscosity 

was attributed to the zero-slip hydrodynamic condition (i.e. weak role of sliding friction). On the 

other hand, a strong correlation was found between the probe’s frequency shift and the acoustic 

signal generated by the fluid. Remarkably, this correlation occurred across the entire 0 to 280 m 

immersion length range. Further, the acoustic signal increased with the fluid’s viscosity, which 

was explained also in terms of the zero-slip hydrodynamic condition: water molecules are forced 

to move with the solid boundary, with the viscosity helping to drag an additional mass of fluid 

(contained in a ~ 5 m thick boundary layer surrounding the probe) and thus contributing to the 

acoustic signal. 

We underscore the role played by the relatively new Near-field Scanning Acoustic Near-

Field Microscopy (SANM) technique in these measurements.  Although the monotonic decrease 
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in the probe’s resonance amplitude and monotonic decrease in the probe’s resonance frequency 

with probe immersion length was expected, the availability of the simultaneously monitored 

acoustic signal (obtained with the help of the SANM apparatus) was significant. Indeed, in the 

process of trying to find correlations (or lack of it) among these three signals led us to identify 

the important role played by the zero-slip condition.    

Placing a substrate very close to an oscillating probe (initially interacting only with bulk 

fluid) would certainly cause new probe-fluid-substrate (near-field) interaction mechanisms to be 

considered. Nonetheless, the accumulated experimental evidence from probe/bulk-fluid 

interactions about the role played by the zero-slip boundary condition (being responsible for 

dragging the fluid molecules contained in boundary layer surrounding the probe and thus 

generating sound) suggests that a similar dynamic mechanism could also be present in near-field 

probe-fluid-substrate interactions. But in the latter case we have to consider that those fluid 

molecules in the boundary layer will not be as compliant to move along the probe as in the bulk 

case, because they are now also affected by adhesion forces exerted by the nearby stationary 

substrate. As a result, the net effect is a probe experiencing instead a spring type restoring force 

with the consequent increase in the probe’s resonance frequency. This proposed hypothesis to 

explain the blue-shift in the probe’s resonance frequency in near-field probe-fluid-substrate 

interactions is supported by experimental data accounted when the SANM was first introduced.5 

The reported correlation between the probe’s frequency shift and the fluid’s acoustic signal from 

those near-field experiments can indeed be understood by invoking the zero-slip condition that 

the confined fluid must fulfill at the probe’s walls and at the substrate.  
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