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RegionGrow3D: A Deterministic Analysis for
Characterizing Discrete Three‐Dimensional Landslide
Source Areas on a Regional Scale
Nicolas W. Mathews1,2 , Ben A. Leshchinsky3 , Benjamin B. Mirus1 , Michael J. Olsen2 , and
Adam M. Booth4

1U.S. Geological Survey, Geologic Hazards Science Center, Golden, CO, USA, 2School of Civil and Construction
Engineering, Oregon State University, Corvallis, OR, USA, 3College of Forestry, Oregon State University, Corvallis, OR,
USA, 4Department of Geology, Portland State University, Portland, OR, USA

Abstract Regional‐scale characterization of shallow landslide hazards is important for reducing their
destructive impact on society. These hazards are commonly characterized by (a) their location and likelihood
using susceptibility maps, (b) landslide size and frequency using geomorphic scaling laws, and (c) the
magnitude of disturbance required to cause landslides using initiation thresholds. Typically, this is
accomplished through the use of inventories documenting the locations and triggering conditions of previous
landslides. In the absence of comprehensive landslide inventories, physics‐based slope stability models can be
used to estimate landslide initiation potential and provide plausible distributions of landslide characteristics for a
range of environmental and forcing conditions. However, these models are sometimes limited in their ability to
capture key mechanisms tied to discrete three‐dimensional (3D) landslide mechanics while possessing the
computational efficiency required for broad‐scale application. In this study, the RegionGrow3D (RG3D) model
is developed to broadly simulate the area, volume, and location of landslides on a regional scale (≥1,000 km2)
using 3D, limit‐equilibrium (LE)‐based slope stability modeling. Furthermore, RG3D is incorporated into a
susceptibility framework that quantifies landsliding uncertainty using a distribution of soil shear strengths and
their associated probabilities, back‐calculated from inventoried landslides using 3D LE‐based landslide
forensics. This framework is used to evaluate the influence of uncertainty tied to shear strength, rainfall
scenarios, and antecedent soil moisture on potential landsliding and rainfall thresholds over a large region of the
Oregon Coast Range, USA.

Plain Language Summary Landslides are potentially destructive natural hazards that may impact
topography, ecology, and important infrastructure. Often, previously triggered landslides are used to better
understand where landslides may occur in the future, but in some regions, previous landslides may be poorly
documented or characterized. In lieu of these data, models capturing the physics tied to landsliding may be
paired with digital topography to predict landslide potential across landscapes. However, existing models are
limited in their ability to efficiently capture the realistic geometry of three‐dimensional (3D) landslides across
large landscapes. This study presents RegionGrow3D, a new model that identifies slope instabilities throughout
large regions, and then grows those instabilities into landslides of previously unknown geometry by balancing
forces within the underlying soil. The model is applied to a region in the Oregon Coast Range, USA to develop
empirical relationships between landslide area, volume, and frequency for a range of rainfall scenarios and to
determine the amount of rainfall required to trigger landslides on specific terrain features. Furthermore, because
soil parameters are highly uncertain at this spatial scale (≥1,000 km2), a 3D landslide model is used to
forensically assess soil strength from previously documented landslides in the area.

1. Introduction
Shallow landslides cause loss and damage to life, property, and infrastructure on a global scale, and are exac-
erbated by high levels of soil moisture induced by rainfall (Terzaghi, 1950; Wieczorek, 1996). Regional‐scale
assessments of rainfall‐induced shallow landslides often utilize event‐based landslide inventories to determine:
(a) where landslides may occur through susceptibility maps (Highland & Bobrowsky, 2008; Pourghasemi
et al., 2018; Reichenbach et al., 2018), (b) the size and frequency of landslides through empirical scaling laws
(Guzzetti et al., 2009; Malamud et al., 2004), and (c) the magnitude of trigger required to cause landsliding
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through rainfall thresholds (Segoni et al., 2018). However, merging these hazard assessment techniques is
challenging due to incompatibilities in the information used to develop them.

Many susceptibility maps estimate the likelihood and location of potential landslides using either probabilistic or
deterministic methods (Highland & Bobrowsky, 2008; Reichenbach et al., 2018). Probabilistic methods compute
landslide susceptibility using statistical relationships based on existing inventories of landslides, topography, and
a variety of data layers (e.g., vegetation, climatic data; Lee, 2005; Lee & Talib, 2005; Highland & Bobrow-
sky, 2008; van Westen et al., 2008; Reichenbach et al., 2018). However, these approaches rely on sufficient
inventory completeness and are only representative of the data used for model construction. Thus, they cannot be
extrapolated to other regions or conditions (e.g., seismicity, rainfall, environmental conditions) for which there
are insufficient data.

Regional‐scale landslide susceptibility may also be evaluated using process‐based, deterministic slope stability
models that account for the physics tied to landslide initiation (e.g., Baum et al., 2010; Dietrich et al., 1995; Godt
et al., 2008; Hess et al., 2017; Lu & Godt, 2008; Montgomery & Dietrich, 1994; Okimura & Ichikawa, 1985). In
contrast to probabilistic approaches, incorporation of physics and process makes deterministic models less
constrained to the bounds of observed landslide occurrence data, enabling simulation of a variety of hypothetical
conditions, including rainfall (Baum et al., 2010; Brien & Reid, 2008; Godt et al., 2008; Lehmann et al., 2019;
Montgomery & Dietrich, 1994) and seismicity (Hess et al., 2017; Zhang & Wang, 2019). When combined with
hydromechanical models to compute transient changes in pore water pressure from rainfall infiltration, the sta-
bility of hillslopes subjected to rainfall may be determined on a regional scale (Baum et al., 2010; Godt
et al., 2008). However, deterministic approaches must balance the complexity of slope stability models, un-
certainties in model parameterization, and the spatial scale of their application. Thus, many regionally applied
deterministic approaches utilize simple one‐dimensional (1D) or two‐dimensional (2D) slope stability models,
such as the infinite slope or Culmann wedge (Bordoni et al., 2015; Lu & Godt, 2008; Medwedeff et al., 2020;
Mirus et al., 2007; Perkins et al., 2017; Taylor, 1948; Terzaghi et al., 1996). These models, while applicable at
large spatial scales and fine resolution, cannot capture the physics associated with discrete three‐dimensional (3D)
landslide geometry (Table 1).

Models that simulate 3D physics and discrete landsliding have been developed for regional assessments (Table 1).
Using a 3D method of columns that considered unsaturated hydrological conditions, intercolumn root strength,

Table 1
Summary of Regional‐Scale, Limit Equilibrium Slope Stability Models

Model characteristics Representative spatial scale

Model name References
Spatial

dimensions Discrete
Complex
geometrya

Spatial
scale
(km2)b

Pixel
resolution

(m) References

Translational Landslides

TRIGRS Baum et al. (2010) 1D N N >1000 10 Alvioli and Baum (2016)

SHALSTAB Dietrich et al. (1995) 1D N N <10 10 Dietrich et al. (1995)

TRIGRS w/Clusteringc Alvioli et al. (2014) 1D Y N <10 10 Alvioli et al. (2014)

3DTLE Hess et al. (2017) 3D Y N 100–1000 3–150 Hess et al. (2017)

STEP‐TRAMM Lehmann and Or (2012) 3D Y Y 10–100 10 Lehmann et al. (2019)

MD‐STAB w/Spectral
Clustering Search
Algorithm

Bellugi, Milledge, Dietrich,
McKean, et al. (2015)

3D Y Y <10 2 Bellugi, Milledge, Dietrich, Perron,
and McKean (2015)

RegionGrow3D This study 3D Y Y >1000 6 This study

Rotational Landslides

r.rotstab Mergili et al. (2014) 3D Y N 10–100 5 Mergili et al. (2014)

SCOOPS3D Reid et al. (2015) 3D Y N 10–100 30 He et al. (2021)
aComplex geometry is defined as planform landslide geometry other than elliptical or rectangular. bDetermined from a review of literature and may not represent the
maximum applicable scale. cIn this model, TRIGRS is used to identify unstable cells that are then grouped together by proximity.
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and discrete landslide failure, Lehmann and Or (2012) characterized the processes associated with the onset of
shallow landslides. Milledge et al. (2014) used a 3D model to examine the controls on landslide size and shape
based on soil depth and saturation ratio. Bellugi, Milledge, Dietrich, McKean, et al. (2015) combined the MD‐
STAB model (Milledge et al., 2014) with a spectral clustering search algorithm to model landslides with com-
plex shapes diverging from elliptical or rectangular without assuming their geometry a priori. Mergili et al. (2014)
considered deep‐seated and shallow failures to produce a regional‐scale assessment of landsliding in Italy.
SCOOPS3D (Reid et al., 2015), which uses a 3D adaptation of Bishop's Simplified Method, has been used to
assess the distribution of deep‐seated landslides triggered by seismicity (Zhang & Wang, 2019). However, these
models may not simultaneously (a) be applicable to scales beyond an individual hillslope or catchment (Table 1),
(b) capture complex planform landslide geometry (Table 1), and (c) be parameterized to consider the hetero-
geneity of soil strength parameters at a regional scale.

Regional‐scale landslide hazard assessment commonly relies on geomorphic scaling laws, such as relationships
between landslide area, volume, and frequency (Guzzetti et al., 2009; Malamud et al., 2004; Tanyaş et al., 2019).
Traditionally, these scaling laws are established through the statistical assessment of landslide inventories, some
of which are tied to either one or more rainfall events (Gao et al., 2018; Guzzetti et al., 2012; Malamud
et al., 2004; Patton et al., 2023). It is important that inventories are carefully prepared by skilled practitioners so
that they are of sufficient quality for analysis. Physics‐based models may supplement the data required to
constrain these scaling relationships in lieu of a high‐quality landslide inventory (e.g., Alvioli et al., 2014;
Medwedeff et al., 2020). However, modeling studies of a sufficiently broad spatial scale to develop scaling re-
lationships typically utilize 1D, grid‐based analyses that do not consider 3D, discrete, and complex landslide
geometries (Table 1). Further, 1D methods such as the infinite slope approach may underestimate landslide
susceptibility in gentler terrain or entrainment of downslope landslide material due to its reliance on single‐cell
topographic parameters such as slope. A model that simulates the physics of discrete 3D landslides and the
mobilization of downslope soils while remaining applicable on large spatial scales may better capture larger
landslides with gentler slope angles than those typically predicted using 1D, grid‐based slope stability analyses,
and in turn, improve upon scaling relationships developed using physics‐based models.

Rainfall thresholds define the amount of rainfall, typically in terms of intensity, I, and duration, D, required to
cause the onset of slope instability (Baum & Godt, 2010; Caine, 1980; Guzzetti et al., 2007; Keefer et al., 1987).
Most rainfall thresholds are created using landslide inventories, with some incorporating antecedent rainfall or
soil moisture conditions within a temporal window of interest (Bogaard & Greco, 2018; Mirus, Becker
et al., 2018; Mirus, Morphew, & Smith et al., 2018; Valenzuela et al., 2018). However, in the absence of both
climatic and inventory data, some studies have implemented physics‐based slope stability models to constrain
regional‐scale rainfall thresholds (e.g., De Vita et al., 2013; Fusco et al., 2021; Lehmann et al., 2019; Napolitano
et al., 2016; Thomas et al., 2018; Zhang et al., 2020). Using the Transient Rainfall Infiltration and Grid‐Based
Regional Slope‐Stability model (TRIGRS 2.0, Baum et al., 2010), which simulates transient rainfall infiltra-
tion using the linearized Richards' equation and computes slope stability for each pixel using the infinite slope
method, Alvioli et al. (2014) developed intensity‐duration (I‐D) thresholds by applying infiltration of varying
intensity and duration to a digital elevation model (DEM), where thresholds were defined as the intensity and
duration that caused at least 10% of the grid cells to fail. Alvioli et al. (2014) also developed area‐frequency
relationships (e.g., Malamud et al., 2004); however, individual landslides were defined by clustering patches
of unstable pixels assessed using the infinite slope method, as opposed to computing the equilibrium of discrete
landslide volumes. Marin (2020) implemented the TRIGRSmodel using rasters of synthetic rainfall to compute I‐
D thresholds for each cell of a DEM. However, to our knowledge, no study has yet to model 3D, discrete
landslides on a regional scale, use them to create rainfall thresholds, and relate those thresholds to geomorphic
parameters, uncertainty of failure, or the spatial heterogeneity of variables associated with the onset of rainfall‐
induced landsliding. Doing so would enable consideration of diverse landslide characteristics associated with
rainfall thresholds (i.e., mean landslide slope, likelihood of failure), supplementing traditional static and ho-
mogeneous I‐D threshold approaches.

To more effectively model landslide initiation on scales broad enough to develop geomorphic scaling laws and
rainfall thresholds, a 3D regional‐scale slope stability approach that models complex and discrete landslide ge-
ometry, maintains computational efficiency, and is parameterized to capture uncertainty in heterogeneous soil
properties is key. In this study, we present a computationally efficient, physics‐based 3D landslide initiationmodel
called RegionGrow3D (RG3D; Mathews & Leshchinsky, 2024). Using principles of 3D limit equilibrium (LE),
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RG3D assesses the size and location of discrete landslide volumes on a regional scale by identifying localized
instabilities within a DEM and then growing those instabilities by incorporating downslope columns of soil until
force equilibrium is achieved. In this study, RG3D is parameterized with a hydromechanical model, remotely
sensed antecedent soilmoisture data, and spatial distributions of rainfall—tied to various storm recurrence intervals
—to determine hydrologically derived stresses within the soil. Uncertainties in Mohr‐Coulomb shear strength are
considered by using a 3D stability analysis to forensically assess a suite of inventoried landslides (Bunn
et al., 2020a, 2020b) and develop a probability distribution of soil strength. This distribution enables the evaluation
of the likelihood of landslide initiation through an RG3D‐based susceptibility framework.

Using susceptibility outputs, we assess the influence of shear strength uncertainty and various storm scenarios on
(a) event‐based landslide distributions for each month of the water year, (b) spatial distributions of landslide
density, (c) rainfall thresholds related to geomorphic properties and parameter heterogeneity, and (d) landslide
geomorphic scaling laws (e.g., area‐frequency, area‐volume) within the Oregon Coast Range, USA. We compare
these results to geomorphic scaling laws from global inventories (Malamud et al., 2004) and inventories of
rainfall‐induced shallow landslides (Emberson et al., 2022; Martin et al., 2002).

2. RegionGrow3D Slope Stability Method
2.1. Three‐Dimensional Limit Equilibrium

RG3D uses 1D LE to identify local instabilities on a regional scale and 3D LE to grow those instabilities into
discrete 3D landslide polygons at incipient failure (Figures 1a and 1b). RG3D satisfies vertical and horizontal
force equilibrium but does not consider moment equilibrium. First, the resultant normal intercolumn force, Q, is
calculated for each column of soil in the DEM, where column dimensions are defined by the DEM cell size and an
assumed slip surface depth (Figure 1f). Q is synonymous with the remainder of all horizontal forces for a given
column. To better estimate forces stemming from realistic landslide geometry, Q is also evaluated within a
boundary structure of soil surrounding each discrete landslide at each step of growth (Figure 1c). The process for
applying RG3D is illustrated in the flowchart shown in Figure 2. RG3D requires a DEM with a corresponding
estimate of soil depth for each pixel as well as estimates of soil shear strength and subsurface hydrological
conditions. In this study, we estimate soil depth using a non‐linear landscape evolution model (Roering, 2008),
hydrological conditions using van Genuchten (1980) parameters and an unsaturated hydromechanical model, and
soil strength using Mohr‐Coulomb shear strength parameters, as determined using a 3D LE‐based inversion
method.

The resultant normal intercolumn force, in the direction of sliding, is derived from the equation for horizontal
equilibrium:

Q = N sin β − [c′A + (N − uA) tan ϕ′] cos β (1)

where c′ is effective cohesion, A is the column basal slip surface area, u is porewater pressure (when u is positive)
or suction stress (when u is negative) at the base of the column, and ϕ′ is the effective angle of internal friction.
Porewater pressure and suction are computed using a hydromechanical model discussed later in this paper. The
normal force on the slip surface, N, is derived from the equation of vertical equilibrium:

N =
W + uA tan ϕ′ sin β − c′A sin β

cos β + tan ϕ′ sin β
(2)

β is the resultant slip surface angle:

β = tan − 1(

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(
dz
dx
)

2

slip
+ (
dz
dy
)

2

slip

√
√
√

) (3)

where ( dzdx)slip and (dzdy)slip
are the elevation gradients of the slip surface in the X and Y directions (easting and

northing), dx and dy are the cell dimensions in the X and Y directions, and dz represents the vertical change in
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elevation of the slip surface in each lateral direction. We assume that all failures occur in regolith or colluvium
above bedrock, hereafter simply referred to as soil, and that slip surfaces exist at the base of each soil column. Slip
surface angles in the X and Y directions are computed as follows:

βx = tan − 1((
dz
dx
)
slip
) (4)

βy = tan − 1((
dz
dy
)
slip
) (5)

Soil weight, W, is defined as

Figure 1. (a) Pre‐ and post‐growth landslide geometry and (b) dilated columns for a single growth cycle. The selected small
clusters within the orange and pink polygons highlight a single dilated cell and the adjacent cells within the main cluster that
its elevation is compared to in order to determine eligibility for addition; (c) boundary structure and schematic of a single
boundary prism; (d) side view of landslide cluster; (e) overview of landslide cluster; and (f) free body diagram of a single
column.
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W = dxdy(Hdryγdry + Hsatγsat) (6)

where Hdry and Hsat are the soil thickness of dry and saturated soil, and γdry and γsat are the unit weight of dry and
saturated soil. For calculating soil unit weight, we assume the unsaturated zone is composed of completely dry soil
and the saturated zone is composed of fully wetted soil and combine these weights accordingly (Equation 6), but
when determining suction stress, we use the variable soil‐water content profile as described later in Section 4.4.
Unit weights are computed for each soil textural classification using volumetric water content and specific
gravity, Gs (Evans & Baker, 2021):

γdry = [Gs (1 − θs) + θr] γw (7)

γsat = [Gs (1 − θs) + θs] γw (8)

where θs is saturated volumetric water content, θr is residual water content, and γw is the unit weight of water. Due
to differences in soil structure, θs and θr vary for each soil texture, as defined using a lookup table based on the
ROSETTA pedotransfer model (Schaap et al., 2001). We assume that Gs is 2.65 for all soil textures, although it

Figure 2. Flowchart illustrating the creation of boundary and initial conditions, the RegionGrow3D slope stability model,
model parameterization, and the susceptibility framework. Hillshade was created using lidar provided by the Oregon Lidar
Consortium (https://www.oregon.gov/dogami/lidar/pages/index.aspx).
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may be defined as any value within this framework. Column base slip surface area, A, is computed using the
Hovland (1977) approach:

A = dxdy
(1 − sin2βx sin2βy)

1
2

cos βx cos βy
(9)

The normal, intercolumn resultant force is resolved into X and Y components, Qx and Qy:

Qx =
tan βx

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
tan2βx + tan2βy

√ Q (10)

Qy =
tan βy

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
tan2βx + tan2βy

√ Q (11)

Slope stability is then assessed for each column, whereQ≤ 0 indicates stability andQ> 0 indicates instability. An
image processing technique called connected components is implemented in MATLAB to identify groups of
interconnected unstable columns (8‐pixel connectivity); each group of unstable columns is considered an indi-
vidual landslide initiation cluster. Unstable columns that overlay the ineligible growth boundary raster (e.g., a
topographic ridgeline), discussed in a later section, are excluded from any initiation clusters. For computational
stability during cluster growth, single unstable columns are made stable. Also, spurs of unstable columns that are
one cell wide and several cells long are made stable, and single stable columns surrounded by unstable columns
are made unstable. This is meant to eliminate instabilities that may be caused by noise in the high‐resolution
digital elevation data used in this study. Once all landslide initiation clusters have been identified using a 1D
balance of forces, a boundary structure of soil is constructed around each cluster, and each cluster is subjected to a
region growing process until it has achieved stability, or when the sum of forces has an absolute value less than an
acceptable tolerance (Figure 2).

2.2. Landslide Boundary Forces

Following cluster creation and at the beginning of each growth cycle, a 3D structure of boundary soil, hereafter
referred to as a boundary structure, is computed for each cluster to estimate forces stemming from realistic
landslide geometry. This structure is composed of 2D wedges built around the perimeter of the landslide, which
are connected to form a series of triangular prisms around the cluster main body (Figure 1c). The dip angle of the
wedge oriented in the direction of sliding is defined by the passive wedge angle, αP, providing a stabilizing
buttress at the toe of the landslide, and the dip angle of the wedge opposite the orientation of the direction of
sliding is defined by the active wedge angle, αA (Rankine, 1857; Figure 1d):

αP = 45° −
ϕ′
2

(12)

αA = 45° +
ϕ′
2

(13)

In between these angles, the dip angle of each wedge, αwedge, is defined using linear interpolation for the entire
perimeter of the landslide:

αwedge(ω) =
(ω − ω1)(α2 − α1)

ω2 − ω1
+ α1 (14)

{
ω1 = 0°;ω2 = 180°; α1 = αA; α2 = αP, 0°≤ ω < 180°

ω1 = 180°;ω2 = 360°; α1 = αP; α2 = αA, 180°≤ ω< 360°
(15)

where ω is the orientation angle in relation to the direction of sliding (ω equals 0° or 360° in the direction of
sliding and 180° in the direction opposite of sliding). The direction of sliding, DOS (red arrow in Figures 1d–1f),
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is the four‐quadrant inverse tangent of force balances in the X and Y directions within the cluster main body (not
including boundary structure forces):

DOS = tan − 1

⎛

⎜
⎜
⎜
⎜
⎝

∑
n

i=1
Qyi

∑
n

i=1
Qxi

⎞

⎟
⎟
⎟
⎟
⎠

(16)

where i is the index of a given column and n is the total number of columns within the cluster main body. The
inside depth of each boundary wedge is equal to the depth of the adjacent column within the cluster main body,
and the outer edge of each wedge exits at the ground surface (Figure 1d). Once the geometry of each 2D wedge is
defined, they are connected to form a series of 3D prisms around the main cluster body. Normal intercolumn
forces are then computed for each prism, assuming that the downward facing plane is the slip surface (shaded light
red in Figure 1c):

Qprism = Nprism sin βprism − [c′Aprism + (Nprism − uprismAprism) tan ϕ′] cos βprism (17)

Qx,prism =
tan βx,prism

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
tan2βx,prism + tan2βy,prism

√ Qprism (18)

Qy,prism =
tan βy,prism

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
tan2βx,prism + tan2βy,prism

√ Qprism (19)

whereQprism is the prism normal intercolumn force,Qx,prism andQy,prism are the X and Y components of the prism
normal intercolumn force, βprism is the resultant slip surface angle of the prism, βx,prism and βy,prism are the slip
surface angles of the prism in the X and Y directions, Aprism is the area of the prism slip surface as computed using
the Hovland (1977) approach, and uprism is porewater pressure (when uprism is positive) or suction stress (when
uprism is negative) at the prism slip surface. Because the slip surface of the prism spans in elevation from the
ground surface to the bottom of the prism, we assume that uprism is the mean value of u in between the ground
surface and the depth of soil at the prism base. Values of u are computed for multiple depths and averaged using
the hydromechanical model. Wprism is the weight of the prism:

Wprism = Vprism × γprism (20)

where Vprism is the volume of the prism and γprism is the soil unit weight within the prism. For all prisms in the
boundary structure, γprism is assumed to be equal to the mean unit weight of the entire cluster main body:

γprism =
Wcl
Vcl

(21)

whereWcl is the weight of the entire cluster main body and Vcl is the volume of the entire cluster main body. Vprism
is computed as:

Vprism =
1
2
(Awedge(ω) + Awedge(ω + dω)) × Lprism (22)

where Awedge is the area of a 2Dwedge, dω is the angle between two wedges, and Lprism is the length of a triangular
prism or the distance between two adjacent wedges on the boundary of the cluster main body. Like the soil
columns within the main cluster, the normal force acting on the prism slip surface is derived using the equation for
vertical equilibrium:
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Nprism =
Wprism + uprismAprism tan ϕ′ sin βprism − c′Aprism sin βprism

cos βprism + tan ϕ′ sin βprism
(23)

2.3. Stability of Landslide Clusters

Once the intercolumn forces of each prism are computed, they are summed with those from the cluster main body:

Qcl,x =∑
n

i=1
Qxi +∑

m

j=1
Qx,prismj (24)

Qcl,y =∑
n

i=1
Qyi +∑

m

j=1
Qy,prismj (25)

Qcl =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Qcl,x2 + Qcl,y2
√

(26)

where Qcl,x and Qcl,y are the summations of intercolumn forces for a given cluster in the X and Y directions,Qcl is
the resultant summation of intercolumn forces, j is the index of a given prism within the boundary structure, andm
is the total number of prisms within the boundary structure. Stability for a given landslide cluster is determined as
follows:

{
stable, |Qcl|≤Eallowable
unstable, |Qcl|>Eallowable

(27)

where Eallowable is a force tolerance defining the threshold for closure, a typical component of LE slope stability
techniques. In this study, Eallowable is equal to 1% of the cluster total soil weight (including the weight of the
boundary structure). To account for uncertainty in the cluster's direction of sliding, all forces within the landslide
cluster are rotated 20° (clockwise) and − 20° (counterclockwise) around the vertical axis, and stability is assessed
for all orientations within this range. If force equilibrium is satisfied at any orientation, the landslide cluster is
considered stable and ineligible for region growth (Figure 2). While this feature increases the likelihood of
fulfilling force closure, it may also reduce the likelihood of capturing the full extent of unstable terrain. To balance
these tradeoffs, RG3Dmay be parameterized with any angle to define the range of uncertainty tied to the direction
of sliding. If force equilibrium is not satisfied, the cluster is considered unstable and region growing begins, a
process in which downslope columns of potentially unstable soil are added to the cluster, typically increasing the
net resisting force until force equilibrium is satisfied (Figure 2).

2.4. Convergence of Equilibrium Through Region Growing

For unstable clusters, downslope columns of soil are iteratively added to the cluster main body to both achieve
force equilibrium and estimate realistic landslide geometry. Because columns are mobilized by an excess of
driving force in the downslope direction at incipient failure and subsequent compression of downslope soil, only
downslope columns are considered for additions. Although retrogression or post‐initiation head scarp failure may
occur, this is a complex and time‐dependent mechanism not explicitly considered in this study. However,
sensitivity studies considering both upslope growth and a simple head scarp failure mechanism are included in
Supporting Information S1 (Text S1.1 and S1.2). As columns are added, the cluster typically grows into less steep
terrain where soil is deeper, disproportionately adding resisting forces to the toe of the landslide until force
equilibrium is satisfied. Further, as columns containing deeper soil are added to the toe of the landslide, prisms
within the boundary structure may become deeper and more voluminous at the toe, buttressing the landslide and
further contributing to resisting forces. Landslide cluster growth terminates if there are no remaining downslope
columns to add or if the cluster grows into an ineligible growth boundary, even if force equilibrium has not yet
been satisfied.

Region growing is performed for all unstable clusters and occurs in a series of growth cycles in which the main
cluster body is first dilated by one column on all sides. Of these dilated cells, only those (a) downslope of all

Journal of Geophysical Research: Earth Surface 10.1029/2024JF007815

MATHEWS ET AL. 9 of 29

 21699011, 2024, 9, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024JF007815, W

iley O
nline L

ibrary on [30/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://agupubs.onlinelibrary.wiley.com/action/rightsLink?doi=10.1029%2F2024JF007815&mode=


adjacent columns within the main cluster body (i.e., only cells within the main body that touch the dilated cell in
question, including those diagonally connected) and (b) not intersecting with an ineligible growth boundary or the
DEM boundary are deemed eligible for addition to the cluster; the rest are discarded (Figure 1b). Eligible columns
are then sorted by their ability to satisfy force equilibrium by, first, evaluating their resultant intercolumn force,
Qe,k, and the X and Y components ofQe,k,Qe,xk andQe,yk, where k is the index of a given column (Equations 1, 10,
and 11). The capability of each eligible column to satisfy force equilibrium is defined as the difference between
the sum of forces in the cluster and Qe,k:

Qdif f k = Qcl − Qe,k (28)

where Qdif f k is the force difference for column k. The column with the minimum value ofQdiff is deemed the most
capable of satisfying the force equilibrium, added to the main cluster body, and removed from the list of eligible
columns. Qcl is then reassessed, the remaining eligible columns are re‐sorted, and the most eligible column is
again added to the cluster. This process repeats until the current growth cycle is complete or until force equi-
librium is achieved. If force equilibrium is not achieved during the current growth cycle, the cluster is again
dilated and another growth cycle begins (Figure 2). Each cluster is eroded by one column on all sides prior to the
first growth cycle to ensure that a potentially stable landslide geometry smaller than the initial cluster is not
missed. However, much of this eroded terrain is still incorporated by the boundary structure, and eroded columns
at the toe are typically reincorporated during downslope growth. Also, for computational efficiency, a boundary
structure is only built at the beginning of each growth cycle, as opposed to after each single column addition.

Typically, near the beginning of region growth, the most eligible column is that with the highest value of Qe,k.
However, near the end, columns with a lower value ofQe,kmay be the most eligible, as a highQe,kmay exceed the
requisite forces for most accurately satisfying force equilibrium. Although the completion of a given growth cycle
may not induce force equilibrium, subsequent construction of boundary structure forces may be sufficient to
induce cluster stability, in which case, the region growing process is considered complete. Qcl is saved after each
column addition during a growth cycle so that if any eligible columns stabilize the cluster beyond the threshold of
error (i.e., “over‐stabilizes” the cluster), they may be removed after the growth cycle. This enables post‐growth
assessment of the most stable cluster configuration. Once the most stable configuration of the landslide cluster is
determined for a given growth cycle, that configuration is saved and the growth cycle is considered complete.
Note that this approach is not aimed at finding the least stable (i.e., “critical”) landslide geometry but rather all
unstable cells that may compose a landslide. However, RG3D may be parameterized to assess critical failure
geometry for rainfall‐induced landslides (Section 7.1). It is also possible for multiple landslides to grow in
proximity to each other and sometimes make contact. In this case, we assume that each cluster is an individual
landslide for computational expedience. However, these landslides may be connected in post‐processing for
comparison to landslide inventories, which may struggle to make the distinction between two discrete landslides
in contact.

3. Landslide Forensics and Susceptibility
Similar to other physics‐based regional‐scale slope stability models (Table 1), applying RG3D on a landscape for
a single value of Mohr‐Coulomb frictional strength, ϕ′, produces discrete landslide shapes and addresses a binary
question: For a given set of input parameters, will a slope fail or not? Some of the advantages of RG3D over
previous approaches, including its computational efficiency (8.6 s per 1,000 landslides; section Text S2 in
Supporting Information S1), facilitate probabilistic assessment of landslide susceptibility using iterative model
runs with a wide range of possible input parameterizations. To characterize landslide susceptibility, or the size,
location, and likelihood of landsliding, we implemented RG3D repeatedly within a susceptibility framework to
(a) reflect the potential distribution of soil shear strengths observed throughout a landscape, and (b) assign
probabilities to values of ϕ′ to assess the likelihood of landsliding. To compute the distribution of ϕ′, we back
analyzed inventoried landslides using a landslide forensics framework based on reconstructed landslide failure
geometries and 3D limit equilibrium (Bunn et al., 2020a, 2020b). This distribution is an input for the RG3D‐based
susceptibility framework, which enables assessment of landslide size, location, and probability for a range of
rainfall scenarios. Antecedent soil moisture and rainfall are included in back analyses through incorporation of the
hydromechanical model described in Section 4.4.
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3.1. Estimating Three‐Dimensional Rupture Surface Geometry

Back analysis of an inventoried landslide requires an estimate of its failure surface geometry. We estimate 3D
rupture surface geometry by projecting a thin‐plate spline beneath the inventoried landslide using angles derived
from Rankine earth pressure theory (Bunn et al., 2020a; Rankine, 1857). The resulting spline provides a smooth
failure surface constrained to a group of control points while still retaining realistic curvature. We applied this
method to 696 landslides located in the Gales Creek watershed (Figure 3; Burns et al., 2012; Franczyk
et al., 2019).

In section Text S3 in Supporting Information S1, we compare the size, slope angle, and canopy cover of these
landslides to those predicted by RG3D and show that the inventoried landslides are typically larger in area,
volume, and mean depth. This indicates that many of the inventoried landslides may be deep‐seated and not
representative of the shallow landslides we aim to assess using RG3D. However, to prevent inclusion of deep‐
seated landslides, only shallow landslides (mean thickness between 1 and 5 m)—as identified using the
methods in Bunn et al. (2020a)—and those with a mean slope angle greater than, or equal to, 20° were forensically
analyzed for shear strength (98 landslides in total; Figure S12 in Supporting Information S1).

Figure 3. (a) Overview of the study area. Basemap provided by OpenStreetMap (OpenStreetMap contributors, 2017); (b) Map of study area and Gales Creek landslide
inventory extent (landslide polygons shown in Figure S12 in Supporting Information S1). Hillshade was created using lidar provided by the Oregon Lidar Consortium
(https://www.oregon.gov/dogami/lidar/pages/index.aspx). Highway network data provided by the Oregon Department of Transportation (Oregon Department of
Transportation, 2017). Soil texture was determined using sand and clay content data from SoilGrids250m (Hengl et al., 2017). Distributions of mean θ for select months
(February—blue, May—green, August—orange) for each (c) row and (d) column. Volumetric water content data is from SMAP (Reichle et al., 2019).
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3.2. Back‐Calculation of Shear Strength Parameters

Using estimates of failure surface geometry and a 3D LE‐based approach, we achieve force equilibrium by
iteratively solving for ϕ′ at the failure interface of each inventoried landslide, providing an estimate of shear
strength for each one (Bunn et al., 2020b). Although cohesion may be considered, we assume that all soil strength
is attributed to friction and that c′ equals zero, which is reasonable considering the frictional nature of shallow soil
landslides (Alberti et al., 2022). Apparent cohesion stemming from suction stress in partially saturated soil is
considered. Reinforcement from tree roots can be an important factor in shallow landsliding (e.g., Cohen
et al., 2011; Schmidt et al., 2001; Schwarz et al., 2010), but capturing the pullout mechanics of roots is complex
and we do not consider it in this study. However, Text S1.4 in Supporting Information S1 quantifies the sensitivity
of RG3D outputs to root cohesion. Triggering conditions for many of the landslides in the inventory are unknown;
therefore, we assume typical “winter” antecedent soil moisture for initial groundwater conditions, estimated by
averaging rasters of remotely sensed volumetric water content, θ, for 15 February from 2016 to 2019. We source
9‐km‐resolution rasters of θ from the Soil Moisture Active Passive (SMAP) satellite mission and resample them
(nearest neighbor approach) to match the resolution of the DEM (6m). The data used in this study are Level 4 (L4)
soil moisture products, which are geophysical model outputs created using SMAP data collected via an orbiting
radiometer (Reichle et al., 2019). We assume that inventoried landslides were caused by rainfall and apply a
distribution of event rainfall corresponding to a 100‐year recurrence interval. The Oregon Coast Range experi-
ences subduction zone earthquakes, which are known to trigger landslides (Serey et al., 2019; Wartman
et al., 2013). However, earthquakes have been shown to be a less prominent trigger of deep‐seated landslides in
the Oregon Coast Range when compared to rainfall (LaHusen et al., 2020) and we assume that the signatures of
most shallow landslides occurring during the last known major earthquake (1700 AD; Goldfinger et al., 2012)
have been erased through erosional processes (LaHusen et al., 2020). Thus, we do not consider inertial loading
from seismicity during back analysis.

3.3. Landslide Susceptibility and Susceptibility‐Based Discrete Landslide Failures

We create landslide susceptibility maps by considering multiple values of ϕ′ and their respective probabilities as
inputs for RG3D (Figure 2). Susceptibility maps expand upon RG3D outputs, which characterize binary failure
conditions (e.g., did the hillslope fail or not?) by conveying the spatial distribution of landslide probability (i.e.,
what is the likelihood of failure?). We compute susceptibility as follows: (a) A probability distribution of ϕ′ is
computed via forensic back analysis (Figure S20 in Supporting Information S1); (b) RG3D is applied to the DEM
for each bin of the distribution using its average value of ϕ′; (c) for a given bin, each landslide cluster is assigned
that bin's corresponding probability. This process is repeated for the entire distribution of ϕ′ with all other inputs
held constant (e.g., antecedent soil moisture, rainfall, soil depth, boundary conditions, DEM), yielding a raster of
landslide probability for each bin. Finally, these rasters are summed to create a susceptibility map that conveys the
size, location, and the probability of landslide activity (example in Figure S17 in Supporting Information S1).

To compute binary metrics commonly used to assess landslide distributions (e.g., landslide density, area‐volume
relationships, magnitude‐frequency relationships, rainfall thresholds), we create a map of discrete landslides by
applying a selected threshold of susceptibility, T, to a susceptibility map. All pixels whose susceptibility is greater
than or equal to T are clustered together using the connected components tool in MATLABwhile those less than T
are discarded. The result is a distribution of landslides that is based on the physics of discrete 3D landsliding, and
may consider any probability of failure. These maps enable statistical analyses of landslide volume, area, mean
slope, and other metrics for a variety of hypothetical rainfall conditions. Further, these amalgamated landslide
shapes better capture what may be found in a landslide inventory, as post‐event inventories may struggle to
distinguish two shallow landslides in contact with each other.

4. Computation of Regional‐Scale Inputs and Boundary Conditions
4.1. Ineligible Growth Boundaries

Without appropriate boundary conditions, landslide clusters may unrealistically wrap around ridgelines or grow
across valley floors. We limit these behaviors using a raster of ineligible growth boundaries, which makes any
superimposing columns stable, regardless of force balance, and ineligible for cluster addition during region
growth (example shown in Figure S18 in Supporting Information S1). This raster is a combined network of
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ridgelines and valley floors, where ridgelines constrain landslide cluster growth to singular hillslopes and valley
floors prevent clusters from crossing drainages. Ridgelines are identified by first inverting the DEM:

Zinv = − (Z − Zmax) + Zmin (29)

where Zinv is the inverted raster cell elevation, Z is the raster cell elevation, Zmax is the maximum raster elevation,
and Zmin is the minimum raster elevation. Drainage flow accumulation is then computed using the flowacc
function in MATLAB from TopoToolbox 2 (Schwanghart & Scherler, 2014). Drainages equal to, or exceeding, a
user defined threshold of flow accumulation are identified as valleys within the inverted DEM, which become
ridgelines when inverted back to original DEM elevations (parameterization discussed in Text S5 in Supporting
Information S1). Valleys are identified using the same procedure but on the original DEM. The ridgeline and
valley networks are then combined, and small remaining gaps are connected using image processing tools in
MATLAB (Text S5 in Supporting Information S1).

4.2. Soil Depth

We assume that the slip surface for a given column exists at the base of the soil layer. In lieu of soil depth
measurements, we estimate soil depth using a nonlinear slope‐dependent model that simulates tectonic uplift, soil
production, and erosion for a steady‐state landscape over a given timespan (Roering, 2008). We assume an initial
soil depth of 1 m, a timespan of 5,000 years, and parameterize the model to represent the Oregon Coast Range
(Text S6 in Supporting Information S1). Although we assume a slip surface at the depth of soil for this study,
RG3D may be parameterized with any slip surface geometry defined a priori.

4.3. Soil Textural Classification

The hydromechanical model relies on soil‐water characteristics that vary between soil textural classifications. We
assign soils a code representing one of 12 textural classes (Soil Survey Staff, 1975) using estimates of sand, clay,
and silt content determined using machine learning and remotely sensed environmental covariates (Soil-
Grids250m; Hengl et al., 2017). We then assign van Genuchten (1980) parameters to each column in the DEM,
based on soil texture, using a lookup table based on the ROSETTA pedotransfer model (Schaap et al., 2001). The
spatial distribution of these parameters plays a crucial role in determining how effective stress evolves throughout
the study area when subjected to varying degrees of antecedent soil moisture and rainfall.

4.4. Hydromechanical Model

Using a hydromechanical model and estimates of soil texture, antecedent soil moisture, and event rainfall, we
compute a subsurface profile of θ which is used to derive effective stress and soil shear strength. We solve for
subsurface water content by iteratively fitting a profile of θ to a remotely sensed value of θ at any given depth
(Lehmann et al., 2019; Leshchinsky et al., 2021):

θ(z) =
∫ H0 θr + (θs − θr) [1 + (αh(z))

n
](
− (1− 1

n))dz
H

(30)

where α and n are van Genuchten fitting parameters, dz is depth increment integrated from the surface to a depth
H, and h is head. We use values of θ from SMAP at 1‐m deep to represent a reasonable depth of failure for shallow
landslides. The resulting profile yields θ at any depth and enables determination of the saturated depth of soil, or
where θ= θs. This depth is also whereHdry andHsat are delineated for the computation of soil weight (Equation 6).
Pore pressure (suction or positive), u, at any depth, z, is:

u(z) = − γw (− hsat − z) [1 + α((− hsat − z)
n
)]
− (1− 1/n) (31)

where hsat is saturated pressure head. We introduce infiltration by considering an average volumetric water
content, θo, and applying a rainfall intensity flux, I, for each timestep dt. We compute a new average water content
profile, θ, for each time step:
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θ(t,z) = θ(t − dt,z) + dθ = θ(t − dt,z) +
Idt
H

(32)

where t is time, and dθ is change in θ. We then compute a new profile of θ and u using Equations 30 and 31. After
rainfall is applied, we convert the final profile into a lookup table for computational efficiency, later used to
determine u for a given combination of soil depth, event rainfall intensity, and initial volumetric water content. A
lookup table was created for all soil textural classifications. This simplified model accounts for both changes in
pore water pressure—positive and negative—and groundwater table rise but is limited in that (a) infiltration is
added instantaneously, (b) only vertical infiltration is considered (no lateral subsurface flow), and (c) all rainfall is
considered infiltration (infiltration‐excess runoff is not considered). However, RG3D could be parameterized
with a model considering these components through a similar implementation of lookup tables.

5. Study Area and Regional‐Scale Inputs
We apply RG3D to a 1,068‐km2 study area in the Oregon Coast Range that exhibits frequent landslide activity and
contains a throughway, Oregon Highway 6, connecting the Willamette Valley to the Oregon Coast, from
Washington County to Tillamook, Oregon (Figure 3). This region of the Oregon Coast Range features well‐
constrained climatic conditions, availability of high‐resolution topographic data, and a high‐quality landslide
inventory for forensic evaluation. Geology varies throughout the study area, with the western region composed of
marine sedimentary rocks, basalts, and a region of alluvial deposits west of the coastal mountains. The central
region is mainly composed of basalts (Eocene‐age Tillamook Volcanics, late Tertiary‐age Columbia River
Basalt), marine sedimentary rocks (Eocene‐age Yamhill Formation), and diabase (diabase of Lee's Falls). The
eastern region contains similar rock types as the central region and a large, relatively flat region of Missoula flood
deposits east of the coastal mountains. The southwest region contains pockets of the landslide‐prone early
Tertiary Tyee Formation (rhythmically bedded sedimentary rocks; Franczyk et al., 2020; Smith & Roe, 2015).
Surficial soil texture also varies with most of the west and central regions containing loam, with pockets of silt
loam and clay loam throughout. The eastern region is composed of a mix of silt loam, silty clay loam, clay loam,
and loam (Figure 3). Although surficial soils may not always represent soil texture at depth, this distribution
provides a first‐order estimate of soil parameters, which are used to compute hydrological response. Modeled soil
depth tends to be deeper in valley bottoms (areas of high deposition) and shallower upon ridgelines or escarp-
ments (areas of relatively high erosion rates; Text S7 in Supporting Information S1). Some deposits outside of the
coastal mountains, namely the Missoula flood deposits east of the Gales Creek watershed (Figure 3), may be
considerably deeper than those modeled in this study (Peterson et al., 2011). However, these deposits are
characteristically flat and typically have negligible inventoried landslide activity (Franczyk et al., 2019) and
RG3D‐derived susceptibility values.

We source topographic light detection and ranging (lidar) data (0.91‐m × 0.91‐m bare‐earth lidar) from the
Oregon Lidar Consortium (https://www.oregon.gov/dogami/lidar/pages/index.aspx) and landslide inventory
data (2D polygons from the Gales Creek watershed) from the Statewide Landslide Information Database for
Oregon (SLIDO)—Release 4.0 (Figure 3; Burns et al., 2012; Franczyk et al., 2019; https://www.oregongeology.
org/slido/), both provided by the Oregon Department of Geology and Mineral Industries (DOGAMI). We
resampled lidar data to 6‐m resolution and reproject the DEM to Oregon State Plane North (EPSG: 32126) prior to
analysis. A map of landslide polygons is shown in Figure S12 in Supporting Information S1.

We compute spatial distributions of θ representing mean antecedent moisture conditions for each month of the
year by averaging time histories of SMAP‐based θ at 1‐m depth (3‐hr temporal resolution) spanning from 31
March 2015 to 28 August 2020 (methods are detailed in Text S8 in Supporting Information S1; example dis-
tributions for February, May, and August are shown in Figure 3). This approach provides a first‐order approx-
imation of mean antecedent moisture but does carry limitations. The 9‐km grids of θ from SMAP may overlay
various soil textures with different values of θs and θr, potentially mischaracterizing relative levels of soil
saturation. SMAP may also be a worse predictor of landsliding than in situ measurements in some cases (Reichle
et al., 2017; Thomas et al., 2019) but remains a valuable tool for estimating broad‐scale seasonal changes in soil
moisture across large landscapes as they relate to landslides (Bessette‐Kirton et al., 2019). To account for in-
consistencies between SMAP and in situ measurements, we reduced all SMAP‐derived values of θ by a correction
factor of 0.055 m3/m3 (Reichle et al., 2017). The hydrological parameterization of RG3D could be improved by
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downscaling SMAP‐derived θ distributions to better consider topographic convergence and to eliminate sharp
gradients in θ at SMAP grid boundaries (e.g., Felsberg et al., 2021; Grieco et al., 2018). We source values of 24‐hr
event rainfall (I in Equation 32) for a range of recurrence intervals from the Oregon Department of Transportation
(ODOT) hydraulics manual (ODOT, 2014; Figure 4).

We forensically computed a probability distribution of ϕ′ using inventoried landslides for use within the sus-
ceptibility framework (Figure S20 in Supporting Information S1; Bunn et al., 2020a, 2020b), where lidar‐mapped
landslide deposits and head scarps (termed “scarp flanks in the SLIDO inventory”) were used as inputs for failure
geometry reconstruction (Figure S12 in Supporting Information S1). We assume that, in some cases, inventoried
landslide deposits may overlap with the landslide failure surface; this is addressed within the forensics framework
as described in Text S3 in Supporting Information S1. In total, we assessed 696 inventoried landslides within the
Gales Creek watershed (Figure 3), but to best represent shallow landslides in the inventory, we only included 98
landslides with a mean depth of 1–5 m and a mean slope greater than 20° in the ϕ′ distribution. Although we only
consider frictional strength in this study, an analysis highlighting the sensitivity of RG3D outputs to mineral
cohesion is discussed in Text S1.5 in Supporting Information S1.

6. Comparison to Landslide Inventory and Scaling Laws
6.1. Comparison to Landslide Inventory

We validate RG3D landslides against the Gales Creek inventory using receiver operating characteristic (ROC)
curves and the associated area under the curve (AUC), which allows us to quantify true positive and false positive
rates. For validation, we only generated RG3D landslides within a bounding box defined by the extents of the
inventory and validated them against two versions of the inventory: (a) all landslides within the inventory
(n = 696; purple in Figure S12 in Supporting Information S1) and (b) only those with a mean depth of 1–5 m and
an average slope exceeding 20° (n = 98; green in Figure S12 in Supporting Information S1). Although the failure
mechanisms are largely unknown for this inventory, version 2 is meant to best capture shallow landslides in soil.
We assume average February antecedent conditions with a range of event rainfall recurrence intervals and use
susceptibility thresholds ranging from 0% to 100% as cutoffs for ROC curve calculations.

Figure 4. Distributions of 24‐hr rainfall with mean values of rainfall, μ, and standard deviation, σ: (a) histograms of spatial
rainfall distributions; (b) spatial patterns of rainfall for a 2‐year storm; (c) 10‐year storm; and (d) 100‐year storm. Hillshade
was created using lidar provided by the Oregon Lidar Consortium (https://www.oregon.gov/dogami/lidar/pages/index.
aspx). Rainfall distributions are from the Oregon Department of Transportation Hydraulics Design Manual (Oregon
Department of Transportation, 2014).
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AUC values are 0.55–0.59 for version 1 of the inventory, increasing with rainfall recurrence interval (i.e., rainfall
intensity; Figure 5a), and 0.66–0.67 for version 2 (Figure 5b). Higher AUC indicates better model performance,
indicating that the model performs best for higher rainfall intensities and when compared to shallow landslides
only. However, this is reflective of a specific inventory and model parameterization, and would likely change for
regions with different environmental conditions. Because RG3D landslides are generally smaller in area than
those from the Gales Creek inventory (Text S3 in Supporting Information S1), we also compare RG3D landslides
produced with ineligible growth boundaries disabled; this reduces restrictions on landslide growth, allowing them
to grow larger during region growth. Comparing these data to version 2 and assuming a rainfall recurrence

Figure 5. Receiver operating characteristic (ROC) curves and area under the curve (AUC) comparing RegionGrow3D landslides to the Gales Creek inventory:
(a) version 1 with ineligible growth boundaries; (b) version 2 with ineligible growth boundaries; and (c) version 2 without ineligible growth boundaries.
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interval of 500 years, which produced the highest AUC in previous comparisons, yields an AUC of 0.77
(Figure 5c). For context, 0.5 equates model performance to random guessing and 1.0 indicates perfect
discrimination. Hosmer and Lemeshow (1989) classify 0.7 as the lower bound for “acceptable discrimination”
and 0.8–0.9 as “excellent discrimination.” Further details on the methods, assumptions, limitations, and results for
this assessment are discussed in Text S3 in Supporting Information S1.

6.2. Geomorphic Scaling Relationships

We use discrete landslides derived from RG3D‐based susceptibility maps to produce area‐volume and area‐
frequency relationships for shallow landslides. We compute area‐volume relationships using a power‐law
function:

VL = ε × AαL (33)

where VL is the landslide volume, AL is the landslide area, and ε and α are fitting parameters. Area and volume
data are log‐transformed and fit using a robust linear regression to reduce the influence of outliers (Guzzetti
et al., 2009). We compare area‐volume relationships developed using RG3D (T= 50%) to an inventory of shallow
landslides in British Columbia, Canada (Martin et al., 2002) representing a similar failure mechanism (shallow,
translational) and climate (Pacific Northwest, USA). Because Martin et al. (2002) amalgamated landslide in-
ventories tied to different rainfall events, we assumed mean antecedent moisture for February and develop area‐
volume relationships for a range of event rainfall recurrence intervals (Figure 6c). RG3D‐based relationships
show reasonable agreement withMartin et al. (2002) and all have an α value close to 1, indicating that soil depth is
close to 1 m for most landslides and that landslide volume increases nearly linearly with area. This is heavily
influenced by the soil depth model and would likely change with different parameterizations of slip surface depth.

We also compare RG3D landslides (mean February moisture, T = 50%) to frequency‐density (FD) and
probability‐density (PD) relationships from literature for a range of event rainfall recurrence intervals (Figures 6a
and 6b). RG3D‐based relationships contain similar scaling to those based on inventories (Malamud et al., 2004)
and a “rollover” at the transition from larger to smaller landslides, a characteristic feature of area‐frequency
relationships (Malamud et al., 2004; Tanyaş et al., 2019). RG3D‐based FD increases for higher magnitude
rainfall events, similar to published FD relationships for a range of landslide‐event magnitudes, mL, tied to both
rainfall and seismic triggers (Figure 6a; Malamud et al., 2004). RG3D‐based PD shows agreement with Malamud
et al. (2004) with a better fit for mid‐sized landslides than very small and very large landslides where components
of PD relationships are still a subject of debate, potentially influenced by censoring, physical and topographical
controls, and other factors (Figure 6b; Tanyaş et al., 2019). Areas of poor fit likely stem from discrepancies in
landslide type, as Malamud et al. (2004) included inventories with a range of failure styles and mechanisms (e.g.,
translational/rotational, shallow/deep, rainfall/earthquake) where we only considered translational, rainfall‐
induced shallow landslides. The uptick in FD and PD for very small landslides is likely caused by small fail-
ures predicted by RG3D and would likely be sensitive to changes in DEM resolution. Similar behavior has been
observed in distributions of real landslides, for which PD at small areas is also sensitive to the spatial resolution of
data used to create the landslide inventory (Malamud et al., 2004). Distributions may also be slightly influenced
by the elimination of single‐column and spur‐like landslides. RG3D‐based FD and PD distributions are also
compared to a suite of shallow landslide inventories (Emberson et al., 2022) in Text S10 in Supporting Infor-
mation S1. Overall, these comparisons indicate that model performance is reasonable and may be used in
landscape scale experiments to interpret known geomorphic scaling laws.

7. Applications of Model
7.1. Transient Rainfall and Critical Failure Geometry

In contrast to classical limit equilibrium analyses, which aim to capture the most critical failure geometry for a
given slope, RG3D is meant to capture the full extent of failure‐prone material (i.e., any terrain associated with a
factor of safety less than unity). However, there is relevance in finding critical geometry, or what is most likely to
fail under a set of assumed conditions. In this case, the most critical terrain is that which fails during the wetting up
process approaching our total amount of rainfall. To simulate the wetting up process, we ran RG3D iteratively for
2‐cm increments of event rainfall, assuming February antecedent moisture conditions, 20 cm of total rainfall, and

Journal of Geophysical Research: Earth Surface 10.1029/2024JF007815

MATHEWS ET AL. 17 of 29

 21699011, 2024, 9, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024JF007815, W

iley O
nline L

ibrary on [30/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://agupubs.onlinelibrary.wiley.com/action/rightsLink?doi=10.1029%2F2024JF007815&mode=


three friction angles. For the incremental application of rainfall, we performed a stability analysis for each 2‐cm of
cumulative rainfall (e.g., 0 cm, 2 cm, 4 cm…). Unstable terrain was deleted from the landscape after each RG3D
stability assessment, making that terrain ineligible for failure in subsequent assessments (i.e., terrain that fails at
2 cm of cumulative rainfall cannot fail again at 4 cm of cumulative rainfall). Terrain that failed at lower cu-
mulative rainfall was considered more critical than terrain that failed at higher cumulative rainfall. For com-
parison, we also applied 2, 8, 14, and 20 cm of rainfall prior to a single RG3D stability assessment for each friction
angle, hereafter referred to as the “all‐at‐once” approach.

Failed volume is similar between the incremental approach and the all‐at‐once approach for up to 8 cm of cu-
mulative rainfall, but diverges as rainfall increases (Figure 7a). For 20 cm of rainfall, the all‐at‐once approach
produces higher amounts of failed volume than the incremental approach for all friction angles, with percent
differences ranging from 11.0% to 13.1% (Table 2). This analysis quantifies the error associated with applying all
rainfall before a stability assessment, as opposed to simulating the wetting up process, which requires additional
computational expense. However, the computational efficiency of RG3D enables the assessment of temporal
patterns of incipient landsliding using iterative analyses, providing insight into which terrain features may fail
early in the wetting up process (Figure 7b; Figure S7 in Supporting Information S1).

For the incremental approach, we assume that failed material is deleted from the landscape instead of redistributed
as a landslide deposit. This has implications for slope stability, as redistributed soil may alter the effective stress

Figure 6. Comparison of geomorphic scaling relationships for February mean antecedent moisture and a range of event rainfall recurrence intervals: (a) frequency
density of landslide areas; (b) probability density of landslide areas; (c) area‐volume relationships. T = threshold of susceptibility. V = landslide volume. A = landslide
area. R2 = coefficient of determination.
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Figure 7. (a) Cumulative rainfall versus failed volume for selected friction angles, ϕ′. Curves represent cumulative failed
volume as calculated using RegionGrow3D after each incremental 2‐cm addition of rainfall. Points represent failed volume
when the corresponding cumulative rainfall is added all‐at‐once prior to a RegionGrow3D slope stability assessment;
(b) Map of landslides as computed using the incremental rainfall approach (ϕ′ = 35°). Lower values of cumulative rainfall
represent terrain that failed earlier in the wetting up process. Additional maps for ϕ′ = 40° and ϕ′ = 45° are shown in Figure
S7 in Supporting Information S1. Hillshade was created using lidar provided by the Oregon Lidar Consortium (https://www.
oregon.gov/dogami/lidar/pages/index.aspx).

Table 2
Comparison of Failed Volumes for Incremental and “All‐At‐Once” Application of Rainfall

Friction angle,
ϕ′ (°)

Event rainfall
applied (cm)

Failed volume (m3; rainfall applied
incrementally)

Failed volume (m3; all rainfall applied prior to
analysis)

Percent difference in failed
volume

35

20

143,981 161,760 11.6%

40 71,585 79,885 11.0%

45 38,122 43,447 13.1%
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conditions throughout the landscape, but capturing this would likely require assimilation with a landscape
evolution model, which is beyond the scope of most slope stability approaches, including RG3D.

7.2. Relative Degree of Landsliding With Seasonality

To quantify variability in regional‐scale landslide activity throughout the year, we compute landslide area density
(LAD) for a range of event rainfall recurrence intervals applied during each month of the water year (a water year
is the 12‐month period 1 October through 30 September; Figure 8), where LAD is the total failed area normalized
by the total area of the study area (1,068 km2). The spatially averaged θ reflecting antecedent moisture for the
study area, θsa, is shown for context. We assume T = 80%, but this value may be adjusted to reflect uncertainty in
soil shear strength or end‐user preference and can be calibrated to match observed landslide distributions when
available. LAD values represent individual scenarios (not cumulative landsliding throughout the year) and
provide general insight into the relative influence of rainfall intensity on shallow landsliding over a wide range of
antecedent moisture conditions. In the Pacific Northwest, landslides may occur on days with no recent rainfall due
to the percolation and accumulation of antecedent rainfall within the subsurface, posing considerable challenges
to landslide forecasting (e.g., Mirus, Becker, et al., 2018). To reflect this possibility, we model a baseline “No
Storm” scenario highlighting the state of landslide susceptibility tied to seasonal antecedent rainfall with no event
rainfall. These results may not reflect actual landslide activity for this precipitation scenario as some stabilizing
processes are not included in this model (e.g., tree root reinforcement) but provide a useful comparison to the
rainfall scenarios considered in this study.

Generally, LAD is highest in the wettest winter months (January and February) and negligible during the driest
summer months (August and September), with LAD increasing rapidly from September to January and
decreasing more gradually from February to August. This hysteretic behavior reflects changes in antecedent soil
moisture as soils gradually dry out from spring to early fall and then wet up more rapidly as fall transitions into
winter. Holding all other variables constant (month and antecedent moisture) and increasing event rainfall in-
creases LAD for all months except for August and September, where landslide activity is negligible due to
extremely dry soils. LAD increases more with event rainfall in wetter months compared to drier months, as less
water is required to fill storage and satisfy field capacity, and more of the total rainfall may contribute to landslide
triggering. There is little data to verify LAD values for this region and the modeled conditions, but historical LAD
for Oregon is between 0% and 45%, depending on geological unit (Burns et al., 2016), and Radbruch‐Hall
et al. (1982) designated areal densities of <1.5%, 1.5%–15%, and >15% as low, medium, and high landslide
incidences, respectively. Because wet months show the most change in LAD between event rainfall recurrence
intervals, we focus on detailed evaluations of potential landsliding in February in the following sections.

Figure 8. Landslide area density (LAD) for each month of the water year for antecedent moisture only (no event rainfall) and
a range of event rainfall recurrence intervals of 2, 10 and 100 years.
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7.3. Spatial Distribution of Landslide Density

We assess the spatial distribution of LAD and slides per area (S/A) for February mean antecedent moisture and a
range of event rainfall recurrence intervals, where S/A is the number of landslides within a grid cell normalized by
the grid cell area (T = 50%; Figure 9). We compute S/A using a grid resolution of 240 m (0.058 km2 per grid, or
1600 pixels of the original DEM raster) and assess LAD and S/A for the entire row of grid cells at each point on
the y‐axis (Figures 9b and 9c) and for the entire column of grid cells at each point on the x‐axis (Figures 9d and
9e). We only evaluate areas in which digital elevation data are available.

High LAD and S/A are mainly concentrated in the western coastal mountains, especially in the south and north,
and steadily decrease to the east where topography is less steep (Figure 9a). LAD and S/A are negligible both west
of the coastal mountains and in the eastern half of the study area except for a pocket of moderate activity in the
eastern coastal mountains west of the Gales Creek watershed (Figure 3). This region has exhibited historical
landslide activity (Figure 3), but because RG3D is parameterized to assess shallow landslides and because the
failure types of the inventoried landslides are largely unknown, we may miss them if governed by different failure
mechanics (e.g., deep, rotational slides or debris flows).

The low levels of LAD and S/A for antecedent moisture only (no event rainfall) are primarily driven by
topography, geomorphic properties (e.g., slope, soil depth), and the distribution of remotely sensed θ. LAD and S/
A increase with event rainfall, with some regions increasing more than others due to heterogeneity of topography,
geomorphic features, and antecedent moisture. Further, increases in LAD and S/A are spatially consistent with
recurrence interval rainfall distributions (Figures 4b–4d), with the largest increases in LAD, S/A, and event
rainfall occurring in the western half of the coastal mountains (Figures 9d and 9e). This spatial variability is not
made immediately apparent through geomorphic scaling laws or single values of LAD.

Figure 9. Landslide area density (LAD) and slides per area (S/A) for February mean antecedent moisture and a range of storm recurrence intervals: (a) LAD for 100‐year
storms; (b) LAD for each row; (c) S/A for each row; (d) LAD for each column; (e) S/A for each column. Hillshade was created using lidar provided by the Oregon Lidar
Consortium (https://www.oregon.gov/dogami/lidar/pages/index.aspx).
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7.4. Rainfall Thresholds

We develop location‐specific, susceptibility‐based rainfall thresholds by (a) applying a series of uniform 24‐hr
rainfall rasters (e.g., 0 cm, 4 cm, 8 cm) and computing a susceptibility map for each one, (b) applying a sus-
ceptibility threshold to each map to create distributions of discrete landslides for each rainfall value, and (c)
assigning the corresponding value of rainfall to each column superimposed by a landslide shape for each dis-
tribution of landslides. We repeat this process for a wide range of rainfall values (i.e., up to 36 cm in 24 hr) to
create a map of rainfall thresholds where each column is assigned the lowest amount of rainfall required to cause
landsliding, similar to q/T maps generated using SHALSTAB (Dietrich & Montgomery, 1998) or R/T maps
generated using SINMAP (Pack et al., 1998).

Rainfall thresholds vary spatially with relatively low thresholds in the western coastal mountains and west of the
Gales Creek watershed (Figure 10c; mean February antecedent moisture; T = 50%). Thresholds are higher in the
central region, possibly owing to the gentler hillslope architecture in this region, which reduces driving forces tied
to soil weight and gravity, but also likely stemming from artifacts associated with the resolution of remotely
sensed moisture data. The abrupt change in θ between 9‐km SMAP cells is unrealistic, leading to unrealistic
discontinuities in landsliding. Advances in methods of downscaling soil moisture data (e.g., Felsberg et al., 2021;

Figure 10. Rainfall threshold maps for February mean moisture: (a) cumulative distribution functions (CDFs) of rainfall
thresholds (normalized by all columns); (b) CDFs of rainfall thresholds (normalized by failed columns only); and (c) map of
rainfall thresholds for T = 50%. T = threshold of susceptibility. Hillshade was created using lidar provided by the Oregon
Lidar Consortium (https://www.oregon.gov/dogami/lidar/pages/index.aspx).
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Grieco et al., 2018) may reduce the influence of such artifacts. Rainfall thresholds may vary within a small area
and even upon the same hillslope, reflecting localized changes in slope angle and soil depth (inset in Figure 10c).
This heterogeneity demonstrates the utility of maps as a supplement to binary rainfall thresholds typically used to
characterize an entire region.

We summarize rainfall threshold maps using cumulative distribution functions (CDFs) of 24‐hr event rainfall for
a range of susceptibility thresholds, both normalized by the total number of columns in the study area (Figure 10a)
and by the number of failed columns (only those assigned a rainfall threshold; Figure 10b). These CDFs, which
show that thresholds increase with T, account for the likelihood of landsliding and uncertainties tied to landscape‐
scale mechanical and hydrological properties, as opposed to binary thresholds that simply define failure and no‐
failure conditions. For context, previously proposed 24‐hr rainfall thresholds tied to four storms during 1996 and
1997 range from about 5 to >25 cm in this region (Wiley, 2000).

8. Comparison of Landslide Slope Angles and Volumes Between Physics‐BasedModels
The creation of geomorphic scaling relationships requires a distribution of discrete landslides. Existing studies
that use physics‐based models to produce scaling relationships typically use 1D LE methods (e.g., infinite slope
with transient hydromechanical model) to assess the stability of individual grid cells and then group unstable cells
based on proximity (Alvioli et al., 2014). This approach may underpredict landsliding potential in gentler terrain
as it is heavily reliant on the slope angle of individual grid cells and does not account for realistic boundary forces
associated with discrete landslides. RG3D predicts landslides in less steep terrain (Figure 11a) and of higher
volume (Figure 11b) with region growing on (downslope soil is mobilized following incipient failure) than with
region growing off (February mean moisture; 10‐year storm; T = 50%). With region growing off, RG3D closely
resembles 1D LE models typically used to assess regional‐scale slope stability, with the added consideration of
landslide boundary forces. Other models that consider landslide growth during failure are typically used for
smaller landscapes (Table 1) but may consider upslope growth (e.g., STEP‐TRAMM; Lehmann & Or, 2012). For
RG3D, including upslope growth increases landslide area more than volume due to soils typically being thinner
near ridges (Text S1.1 in Supporting Information S1).

9. Assumptions and Limitations
To maintain numerical stability during region growth, we do not assess landslides composed of a single column
(6 m × 6 m for our DEM), but shallow landslides of this size are not uncommon (Prancevic et al., 2020). Smaller
landslides could be assessed through future improvements of the growth algorithm or use of a finer resolution
DEM, but the latter would increase computational time for a DEM of equal area.

During region growth, we assume that unstable columns mobilize and entrain stable columns downslope and that
all of these columns fail as a landslide. However, downslope columns could possibly stabilize an upslope
instability, preventing a landslide altogether, or upslope columns could evacuate their failure surface instead of
mobilizing columns below. We do not account for either of these processes, but the following condition could be
implemented to account for landslide evacuation, potentially limiting downslope growth: if the passive resistance
at the landslide toe exceeds the net driving force of the landslide, the landslide cluster evacuates its failure surface
and the region growing ceases. Since all soil columns are initially evaluated for stability based on their basal shear
resistance, we assume that any cells upslope of a cluster would remain stable despite any potential debuttressing.
However, it is possible that upslope columns could be pulled downslope by tensile bonds such as tree roots (i.e.,
Lehmann & Or, 2012). We do not explicitly test this mechanism, but a study examining sensitivity to upslope
growth is included in Text S1.1 in Supporting Information S1. Finally, we prioritize adding columns that best
satisfy force equilibrium during growth to expedite and increase the likelihood of force closure, but more research
would be valuable to determine the algorithms that most appropriately prioritize cell addition, such as that
proposed by Bellugi, Milledge, Dietrich, McKean, et al. (2015). For example, prioritizing the addition of cells that
provide the least stabilization may increase landslide size and encourage growth into steeper terrain.

We assume that the boundary soil structure of each landslide is defined using traditional earth pressure angles for
cohesionless soil with a horizontal surface slope (Rankine, 1857; Section 2.2). We adopt this simplifying
assumption because the forces exerted by the boundary soil structure are typically small compared to the forces
exerted by the cluster main body (3%–4% for an example landslide shown in Text S1.6 in Supporting Infor-
mation S1). Although we do account for surface slope angle by using the ground surface to define the upper extent
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of each boundary wedge (Figure 1d), alternative methods for determining earth pressure coefficients for soils with
sloped surfaces and/or cohesion (Mazindrani & Ganjali, 1997) would likely improve estimates of forces tied to
active and passive earth pressures at the landslide boundary (Milledge et al., 2014). Furthermore, depending on
the geometry of a landslide and its direction of sliding, some prisms may generate passive earth pressure even if
they are not at the toe of the landslide (e.g., a “T” shaped landslide projects prisms in the downslope direction at
the bottom of the “upper arms”). As a simplifying assumption, we compute earth pressure angles depending on the
orientation of the landslide boundary relative to the direction of sliding, but computing earth pressure angles using
the orientation of the prism may further improve estimates of forces tied to earth pressures at the landslide
boundary.

Forensic analysis of inventoried landslides is a valuable means of parameterizing RG3D and quantifying un-
certainty in shear strength inputs; however, ideally, these landslides would be mechanistically similar to those
modeled by RG3D. Like many inventories, SLIDO contains 2D geometry (planform), limited metadata, and a
range of landslide types, while RG3D is solely focused on shallow, translational landslides. To best match RG3D,
we forensically estimate the failure geometry for each SLIDO landslide and only back‐calculate shear strength for
landslides with mean depths between 1 and 5 m. However, this does not guarantee that all of these landslides are
shallow, colluvial failures, and comparison of RG3D and SLIDO landslides shows differences in areas, mean
depths, and volumes (Text S3 in Supporting Information S1). This reflects a limitation in the parametrization of
RG3D that could be addressed by either (a) using an inventory specific to shallow landslides, which are limited in
most regions, or (b) foregoing forensics and assuming a Gaussian—or otherwise—distribution of ϕ′. Despite
these limitations, forensic back analysis provides an improved and physics‐based means of estimating shear
strength based on region‐specific landslide characteristics.

Figure 11. Comparison of RegionGrow3D‐based landslides with and without region growing applied (February mean
moisture; 10‐year storm; T = 50%): (a) mean slope angle; and (b) volume. T = threshold of susceptibility.
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We only consider vertical infiltration when quantifying the influence of event rainfall on suction stress and
subsurface hydrology. This is a common assumption in the parameterization of some regional‐scale slope stability
models (e.g., TRIGRS) but does not reflect realistic gravity‐driven water distribution that occurs during rainfall.
Although modeling this type of subsurface hydrology is complex, relating soil wetness to topographic conver-
gence (e.g., Dietrich et al., 1995; Pack et al., 1998) could be a simple and efficient means of partially addressing
this limitation. In lieu of refined textural data at the scale of this analysis, we assume one soil texture and a set of
van Genuchten parameters for each soil column; however, it is possible that these parameters could change with
depth if a gradient of soil textures is present. Further, we do not consider root reinforcement or cohesion, but have
provided sensitivity studies showing the potential influence of both on RG3D outputs (Text S1.4 and S1.5 in
Supporting Information S1). We also assume homogenous soil interfacing with bedrock, acting as the failure
surface for all landslides. The consideration of soil stratigraphy could be a substantial control on failure depth but
would also increase computational time.

We used receiver operating characteristic (ROC) curves and the associated area under the curve (AUC) to
compare results from RG3D to a landslide inventory (Section 6.1). This is a common method for evaluating
models but carries unique challenges for regional‐scale slope stability and landslide susceptibility models. First,
landslide susceptibility models may identify potentially unstable terrain that has not yet failed, although it may
have an appreciable likelihood of failure under certain conditions. Second, inventories are often incomplete and
biased toward large deep‐seated landslides, as shallow landslide scars are often smaller, have more subtle
geomorphic signatures, and may be eroded and made obscure over shorter periods of time. Finally, there is a high
level of uncertainty for regional‐scale models, where precise parameterization is both cost‐prohibitive and
challenging. Thus, comparing RG3D outputs to inventories may result in high false positive rates that may not
directly reflect the model's performance or utility. Further discussion related to this comparison and its limitations
may be found in Text S3 in Supporting Information S1.

10. Conclusion
We present RG3D, a regional‐scale, physics‐based slope stability method and shallow landslide susceptibility
framework based on the principles of 3D LE and the growth of discrete landslide geometries. We estimate un-
certainty in regional‐scale landsliding through 3D LE‐based forensic analyses of inventoried landslides.

We use RG3D to evaluate geomorphic scaling relationships, seasonal and spatial trends in landslide initiation, and
rainfall thresholds over a large region in the Oregon Coast Range (>1,000 km2) considering: (a) the probability of
failure, (b) heterogeneity in triggering conditions throughout a landscape, and (c) geomorphic and soil param-
eters. RG3D enables the creation of synthetic landslide distributions tied to triggers that have either not occurred
or for which there are no high‐quality landslide inventories available. These distributions include areas and
volumes, which could help parameterize models tied to other mechanisms, such as debris flow initiation. We
evaluate model performance using ROC curves and compare our results with published empirical relationships
between landslide area, volume, and frequency. Using RG3D, we quantify the coupled influence of seasonal
changes in antecedent soil moisture and event rainfall tied to a range of recurrence intervals on spatial trends in
rainfall thresholds and landslide density that regional‐scale empirical metrics may miss.

Data Availability Statement
The source code for RegionGrow3D is hosted in a repository at https://doi.org/10.5066/P1BSMGGD (Mathews
& Leshchinsky, 2024). Basemap in Figures 3a and 3b provided by OpenStreetMap (OpenStreetMap contribu-
tors, 2017). Hillshade in Figure 1a, 2, 3b, 4b‐d, 8a, and 9c created using lidar from the Oregon Lidar Consortium
(Oregon Department of Geology and Mineral Industries, 2022). State boundary data in Figure 3a are provided by
the U.S. Census Bureau (U.S. Census Bureau, 2011). Highway network data in Figure 3b were provided by the
Oregon Department of Transportation (Oregon Department of Transportation, 2017). Soil texture data in
Figure 3b were determined using sand and clay content data from SoilGrids250m (Hengl et al., 2017; https://files.
isric.org/soilgrids/former/2017‐03‐10/data/). The landslide inventory extent in Figure 3b is from the Statewide
Landslide Information Database for Oregon (SLIDO; Burns et al., 2012; Franczyk et al., 2019; https://www.
oregon.gov/dogami/slido/Pages/data.aspx). Geological mapping data is from the Oregon Geological Data
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Compilation (OGDC‐7; Franczyk et al., 2020). Volumetric water content data in Figures 3c and 3d are from Soil
Moisture Active Passive (SMAP; Reichle et al., 2019; accessed from https://appeears.earthdatacloud.nasa.gov/).
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