Portland State University

PDXScholar

Mathematics and Statistics Faculty Fariborz Maseeh Department of Mathematics
Publications and Presentations and Statistics
1-1-2000

About Non-Spherically Symmetric Deformations of
an Incompressible Neo-Hookean Sphere

Marek ElZanowski
Portland State University, hmmz@pdx.edu

Follow this and additional works at: https://pdxscholar.library.pdx.edu/mth_fac

0 Part of the Mathematics Commons
Let us know how access to this document benefits you.

Citation Details
Marek ElZanowski. (2000). "About Non-Spherically Symmetric Deformations of an Incompressible Neo-
Hookean Sphere" Wilmanski's Anniversary Volume, WIAS, 68-72.

This Article is brought to you for free and open access. It has been accepted for inclusion in Mathematics and
Statistics Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us
if we can make this document more accessible: pdxscholar@pdx.edu.


https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/mth_fac
https://pdxscholar.library.pdx.edu/mth_fac
https://pdxscholar.library.pdx.edu/mth
https://pdxscholar.library.pdx.edu/mth
https://pdxscholar.library.pdx.edu/mth_fac?utm_source=pdxscholar.library.pdx.edu%2Fmth_fac%2F250&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=pdxscholar.library.pdx.edu%2Fmth_fac%2F250&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/mth_fac/250
mailto:pdxscholar@pdx.edu

About Non-Spherically Symmetric Deformations of
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Summary

A class of non-spherically symmetric deforma-
tions of a neo-Hookean incompressible elastic
ball is considered. It is shown that the only pos-
sible solutions to the equilibrium equations are
the trivial solution, the cavitated radially sym-
metric solution and the deformation of radial
inflation and polar stretching. These are the
same solutions as found by Polignone-Warne
and Warne [6] for a smaller class of deforma-
tions. This fact shows once again that the ra-
dial deformations are the only deformations, at
least within the class considered, which may
support a formation of a cavity in the center of
an incompressible, isotropic, elastic sphere.

1 Introduction

The phenomenon of cavitation in nonlinear
elastic solid has been the subject of quite ex-
tensive theoretical research in recent years
mainly due to the celebrated work of Ball

*An earlier version of this paper was presented
at the 5th meeting on Current Ideas in Mechanics
and Related Fields, CIMRF 99, held in Jerusalem,
23-26 August, 1999. The travel support for this
meeting was provided by Portland State University
and the Ben-Gurion University of the Negev.

[1]. In this pioneering paper Ball studied a
class of singular solutions of the equations
of nonlinear elasticity. He showed, among
other things, that considering the class of
radially symmetric deformations of a ho-
mogeneous, isotropic, incompressible solid
ball subjected to a dead-load traction at the
boundary a traction-free spherical cavity bi-
furcates from the undeformed configuration
at the sufficiently large tensile loads.

The effects of material inhomogeneity
on formation of cavities were investigated
within the realm of the spherically sym-
metric deformations by Sivaloganathan [2]
and Horgan and Pence [3] (see also Horgan
and Polignone [4]). In both cases the dis-
tribution of inhomogeneities was assumed
to be radially symmetric whether varying
smoothly or non-smoothly, respectively.

Very little work, however, has been
done on non-spherically symmetric defor-
mations. Somewhat relevant for what is
being presented in this note is the work of
Abeyaratne and Hou [5] where it was shown
how the radially symmetric cavitated de-
formation may become unstable relative to
asymmetric non-singular deformations un-
der symmetric dead-load conditions. The
authors show that the trivial solution may



bifurcates not only to a cavitated deforma-
tion but also to an asymmetric deformation
carring the sphere into an ellipsoid. More-
over, if there is a stable cavitated deforma-
tion, then necessarily there exists a stable
asymmetric deformation with less energy.
The results of [5] may be viewed as par-
tial answer to the question whether the ra-
dial solutions with holes are prefered (min-
imize the elastic strain-energy) when non-
radial deformations are allowed to compete.
In fact, the results of [5] suggest that the
appearance of a spherical cavity is unlikely
under dead-load conditions.

In this paper, motivated partially by
the work of Abeyaratne and Hou [5], we con-
sider a broad class of not necessarily spheri-
cally symmetric smooth deformations of an
incompressible, homogeneous neo-Hookean
sphere. The class we consider here includes,
as a special case, the spherically symmet-
ric deformations but it is different from the
class considered in [5]. We try to determine
if there are any truly non-spherically sym-
metric deformations (stable or not) which
may support a formation of a cavity. This
tedious but relatively simple exercise pre-
sented here is an extension of the work done
by Polignone-Warne and Warne [6]. The
class of deformations we consider here is
larger than the class already considered in
[6]. Adopting the methodology of [6], in
particular, as far as the use of the nomi-
nal stress tensor is concerned!, we show that
the results obtained by Polignone-Warne &
Warne hold also for this broader class of
possibly non-spherically symmetric defor-

1The results presented in this note were origi-
nally obtained using the Cauchy stress tensor. This
presentation has been purposely adopted to make
use of the nominal stress tensor to conform with the
presentation in [6]. Indeed, as remarked therein, the
use of the nominal stress tensor seems to be more
appropriate in this context; it simplifies derivations
significantly.

mations. That is, the only deformations
which can be sustained by the sphere, while
no body forces are present, are the radial de-
formations of Ball [1] (trivial or cavitated)
and the deformation of radial inflation cou-
pled with a (linear) polar stretching.

The paper is divided into two sections.
In the first part we show the role of the con-
straint of incompressibility in imposing re-
strictions on the class of solutions while in
the second part we discuss the derivation of
the governing equations and the solution of
these equations for a neo-Hookean material.

2 The Incompressibility
Constraint

Let us consider an incompressible nonlin-
early elastic solid sphere B. Our goal is to
investigate the existence of non-symmetric
(spherically) deformations which can be sus-
tained by the sphere B with no body forces
present. We consider, therefore, a class of
sufficiently (for our purposes) smooth defor-
mations of the form

r=f(R,©)R, §=g(RO), $=0. (1)

where we have employed spherical coordi-
nates in both the undeformed (references)
and the deformed configurations and where
it is as usually assumed that 0 < R < 1,
0<0O <27 and 0 < & < 7. Thus, the
deformation gradient of the deformation (1)
when referred to the spherically coordinates
R,0,® has the following form (cf., Ogden

[7])

f+Rfr 25 0
F= ng;R sin @ fg;G 0 (2)

0 0 f



The semicolon indicates here partial differ-
entiation.

As our sphere is assumed to be (locally)
incompressible the choice of functions f and
g is, in general, not completely arbitrary.
Namely, they must satisfy the constraint of
incompressibility

J=detF=1 (3)

which for our class of deformation gradients
(2) takes the form

f3g;® + Rf2(g;®f;R - g;Rf;@) =1 (4)

This form of the incompressibility con-
straint is not transparent enough in pro-
viding any significant information about our
class of deformations (1), and one is forced
to resort to the equilibrium equations. How-
ever, in some special cases, which we investi-
gate below, equation (4) alone can be quite
helpful in producing significant limitations
on the class of deformations allowed for it
leads to a solvable quasi-linear partial dif-
ferential equation.

(a) Suppose that g.g = 0, and g.o #
0, that is # = ¢(©). Then, equation (4)
reduces to

Rg;e(f3);R + 3f3g;® —-3=0 (5)

which can be easily integrated to show that

f(R,@)=(gi®—AZ?))

W=

(6)

(see also Polignone-Warne and Warne [6]),
where A(©), which for obvious reasons may
be nonnegative, is still an undetermined
function. Notice that should A(©) be al-
lowed to be nonzero this class of defor-
mations would support a cavity formation.
Such a cavity might even be non-spherical
due to the dependence of A on the polar
angle ©.

(b) Assume that f.,o = 0. Then, from
equation (4) one obtains that § = g(©) =
©. This in turn reduces it to

(f).rR+3f*-3=0 (7)

the solution of which is

A3

f(B) = (1+ Z5)%.

From (1) one then gets that

r(R) = (R® + A%)3 9)

where A is a nonnegative constant. These
are the radially symmetric deformations al-
lowing, for A > 0, a spherical cavity to form
at some critical dead-load tension applied at
the boundary of the sphere B (cf., Ball [1]).

(c) In the case when g = 0 the in-
compressibility constraint (4) takes the form

Rf’fegr = —3. (10)

It is obvious that in order to satisfy this con-
straint the deformation (1) would have to
be an eversion. Hence, we postulate that
g # 0 to rule out this type of deforma-
tions. In fact, we assume that g.¢ > 0.



3 Deformations of a Neo-
Hookean Sphere

Consider a homogeneous isotropic nonlin-
early elastic solid ball. Thus, as it is well
known, there exists a symmetric function
¢ : RE, — R, R, = {(c,c2,c3) €
IR3; ¢; > 0} such that the density (per
unit undeformed volume) of the strain-
energy function

W(F) = ¢(v1, va, v3) (11)

where vy, 15,73 are the eigenvalues of the
root of the right Cauchy-Green tensor B =
FFT. If we restrict our choice even more
and limit ourselves to the neo-Hookean ma-
terials only then

W(F) =i +v; +v5 —3) (12)

N =

where the shear modulus p > 0. The corre-
sponding nominal stress tensor N = JF~!T
(cf., Ogden [7]), where T denotes the usual
Cauchy stress tensor, is given by

N = uFT — pF~! (13)

where p = p(R, 0, ®) is the unknown pres-
sure associated with the constraint of in-
compressibility. Note that the nominal
stress tensor N is the transpose of the first
Piola-Kirchhoff stress tensor S = JTF7T,
and that given the orthonormal bases {E,}
and {e;} in the undeformed and the de-
formed configurations respectively its com-
ponent N,; is the e;-component of force
on a surface element in the current con-
figuration whose normal was in the E,-
direction in the (reference) undeformed con-
figuration. To obtain the components V,;

(. = R,0,9; j=r0,¢) of the nominal
stress tensor N corresponding to the defor-
mation (1) we first need to identify F~!.
This can easily be obtained from (1) and the

incompressibility constraint (4). Namely,
F~! equals to
/90 s 0
f| —Rfgrsin® f+Rfr 0 [. (14)
0 0 f%

Substituting this into equation (13) one gets
the following relations for the components of
the stress tensor N.

NRr = f+ Rf;R - §f2g;®7

sin ®Ngy = Rfgpsin® + 2 ff,
1

sin ®Ne, = fo + LRf2g.psin d,
7

Neoo = fg0 — %f(f + RfR), (15)
fNsy = f*— B,
w
N<I>r = N<I>0 = 07
NR¢ = N@¢ =0.

We are now in the position to consider the
equations of equilibrium

DivN =0 (16)

where divergence must be taken with re-
spect to the coordinates of the undeformed
(reference) state, i.e., R,© and ®. The
spherical form of the equations of equilib-
rium for the nominal stress N was originally
derived by Polignone-Warne and Warne [6].
These equations when formulated for our



particular class of deformations (1) for the
neo-Hookean material (12) reduce to the fol-
lowing set of three equations

9.0Rsin®Np, + RNpy.r + 2Npgo+

1
+g.0Ner + —Nego =0,

sin ® (17)

g;RRsin @NRH - RNRT;R - 2NR7‘+

1
1n

+9g.0Nop + Nog — P

(g;@Neg — Nq;.d)) cot® =

= Nq;d);q) - g;RRCOS @NRg (19)

After substituting the formulae for the com-
ponents of the nominal stress (15) the last
equilibrium equation (19) enables one to de-
termine the dependence of the unknown hy-
drostatic pressure p on the spherical variable
®. Namely, making use of the incompress-
ibility constraint (4) one obtains that

p(R,0,®) = uf*(1 — g%) In(sin ®)—

—L(Rfgrsin @)’ +po(R,0)  (20)

where po(R,©) must still be determined
from the equilibrium equations (17 & 18).

After rather lengthy and tedious
manipulations? one can finally conclude
that there are only two different types
of deformations of the investigated class
(1) which satisfy the equilibrium equations
(17,18 & 19) subject to the constraint of in-
compressibility (3). These are the trivial

2Some of these manipulations were done with
the aid of MAPLE.

solution, the radially symmetric cavitated
deformations

A31 1
MR)z(L+E@§R=(RW+A%a

6=0, ¢=29, (21)

and the deformation of inflation and (polar)
stretching

r(R) = g, 6 =00, ¢=09, (22)

where « is a positive constant. The pres-
sures corresponding to these deformations
are respectively

R(3R3 + 443)
R =p—"" T "7 4y, 23
p()u2(R3J“43)g po,  (23)
and
p(R, ®) = 5(1 — o) In(Rsin®) +po. (24)

where pg is a constant. When A = 0 or
a = 1 we recover the trivial (undeformed)
solution maintained by a constant hydro-
static pressure.

The first solution is the well known
and extensively studied radially symmet-
ric solution which allows a cavity to form
at some critical load. The second class
is completely non-singular; a cavity can-
not form. It is specially remarkable as
well as surprising that Polignone-Warne and
Warne [6] when considering a more re-
stricted class of non-spherically symmetric
solutions, namely g.r = 0, obtained exactly



the same set of admissible deformations.
Thus, if there are still non-spherically sym-
metric solutions allowing a cavity to form
they may only come from a class of defor-
mations explicitly dependent on the spheri-
cal angle ®. We are currently investigating
such a class of deformations as well as the
effects of material inhomogeneity on cavity
formation.
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