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Abstract 

Literature on algorithmic bias identifies its source in either biased data or statistical 
methods, more rarely in the development of algorithmic solutions as a potential factor. 
Because of the prior unknowability of algorithms, data scientists developing such 
solutions have to take various design decisions. Drawing from the flow-oriented 
approach, we study algorithmic unknowability and how data scientists respond to it in 
35 public data science Jupyter notebooks containing algorithmic solutions to predict 
customer churn in a credit card dataset on a data science platform Kaggle.com. We offer 
a more thorough understanding of the unknowability in algorithmic development that 
can enable algorithmic bias: resource, problem, dataset, analytical, model, and 
performance unknowability. We find that in response, data scientists engage in bias-
enabling interpretation, bias-enabling optionalizing, and bias-enabling 
experimentation. These findings contribute to literature on algorithmic bias and can help 
avert bias earlier in practice. 

Keywords: Algorithms, algorithmic bias, machine learning, artificial intelligence, flow of action, 
information systems development, data science, algorithmic development 

Introduction 

“A kind of ‘magic’ happens between inputting data to train, validate, and test algorithms and receiving the 
final output data, usually in the form of discrete classifications or continuous probabilities”, stated Baum 
and Haveman recently (2020, p. 270) in their editors’ comments on the future of organizational theory. 
Researchers increasingly point out, however, that this algorithmic ‘magic’ may end up being a ‘curse’ in the 
form of algorithmic bias that occurs when “the outputs of an algorithm benefit or disadvantage certain 
individuals or groups more than others without a justified reason for such unequal impacts” (Kordzadeh 
and Ghasemaghaei 2021, p. 1). Algorithmic bias may result in adverse consequences for individuals, 
organizations, and society, and as such its effects are studied increasingly more often to avert negative 
impacts, but its sources are still not fully understood (Favaretto et al. 2019; Gal et al. 2018; Ransbotham et 
al. 2016; Tarafdar et al. 2020).  

Information systems (IS) with its focus on socio-technical aspects is well positioned to contribute to 
knowledge on algorithmic bias by providing a better understanding of the mechanisms that generate it 
(Ransbotham et al. 2016). So far, the sources of algorithmic bias have been commonly identified in 
algorithm’s inputs, that is biased data, statistical methods, and more recently - algorithm design (Barocas 
and Selbst 2016; Favaretto et al. 2019; Kordzadeh and Ghasemaghaei 2021). However, our current 
understanding of how bias may be introduced during algorithm design is partial and limited, pointing 
towards more social and organizational factors that can impact the development process (van den Broek et 
al. 2021; Ghasemaghaei et al. 2018; Ghasemaghaei and Turel 2021; Joshi 2020). Instead, we propose to 
turn to the technical side of algorithms to investigate how it contributes to enabling bias in the process of 
developing algorithmic solutions. 
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Algorithmic solutions, a term we use to refer to a wide range of information systems that deploy algorithms 
to process input data and produce computed outputs, are developed by data scientists, professionals skilled 
in computer science, programming, and development (Vaast and Pinsonneault 2021). The development of 
algorithmic solutions (henceforth algorithmic development, AD) opens up various possibilities to introduce 
bias because of their prior unknowability. We argue and demonstrate that such solutions are characterized 
by algorithmic unknowability of the relationships between inputs and outputs not only in run-time (Zhang 
et al. 2021), but also in design-time, or development. Data scientists charged with AD have to deal with this 
unknowability during development through exploratory programming (Kery et al. 2017; Kery and Myers 
2017), and their subjective, individual responses may introduce bias to algorithm design. However, so far 
we have limited knowledge of design-time algorithmic unknowability and how data scientists specifically 
respond to it. To address this gap, we studied 35 public data science Jupyter notebooks containing 
algorithmic solutions developed to predict customer churn in a credit card dataset on a popular data science 
and machine learning platform Kaggle.com (Dissanayake et al. 2015; Mangal and Kumar 2016). Referring 
to a common problem faced by many companies and often tackled by algorithmic solutions, the credit card 
dataset attracted over 200 notebooks with code and comments describing attempts to best predict customer 
churn. Studying the flow of development action, including code, code execution and computational 
narratives, in Jupyter notebooks (Baygi Mousavi et al. 2021), we identify the precise sources of algorithmic 
unknowability and action that emerges in response. Focusing then on the role of data scientists in this 
action, we isolate three modes of response that they deploy: bias-enabling interpretation, bias-enabling 
optionalizing, and bias-enabling experimentation. 

We build on current literature by identifying the technical roots of algorithmic unknowability, outlining a 
comprehensive set of discrete actions that take place during developing algorithmic solutions, and showing 
how the modes of data scientists’ responses to unknowability may open up opportunities to introduce bias. 
In practice, our findings can help data scientists and managers identify the parts of the development process 
that may lead to the introduction of bias, and thus increase the likelihood of averting algorithmic bias. A 
better understanding why, how and where bias can occur in algorithmic design can help address the 
problem (Silva and Kenney 2019). 

Background Literature 

Algorithmic solutions are commonly perceived as a neutral source of objective knowledge derived nearly 
autonomously from datasets, as they help “to overcome many of the irrationalities and biases that plague 
domain experts, thereby providing more objective knowledge” (van den Broek et al. 2021, p. 7). In this 
perspective, human data scientists play only an instrumental role and should even be eliminated for the 
sake of efficiency and increasing objectivity (Davenport and Harris 2017). Similarly, AD is seen as a rational 
endeavor that follows a fixed, established process of deriving neutral insights from objective, neutral data, 
akin to the rational design paradigm in software engineering (Ralph 2018), or the perception of systems 
development as instrumental reasoning based on “naïve realism” where the developer is the expert who 
takes managers’ objectives “and turns them into a constructed product, the system. Management dictates 
the ends; the developers use specific means to achieve the ends” (Hirschheim and Klein 1989, p. 1203). 

Despite these firm convictions regarding algorithmic objectivity, a growing body of literature recognizes the 
issues of algorithmic bias, that is the fact that the outputs of an algorithmic solution may “benefit or 
disadvantage certain individuals or groups more than others without a justified reason for such unequal 
impacts” (Kordzadeh and Ghasemaghaei 2021, p. 1). This is widely perceived as detrimental and there is 
ongoing research that aims at identifying the consequences of algorithmic bias on individuals, 
organizations, and society (Kordzadeh and Ghasemaghaei 2021). Noting that this phenomenon is socio-
technical in nature, researchers point out that especially IS can contribute to uncovering the antecedents of 
bias (Kordzadeh and Ghasemaghaei 2021; Ransbotham et al. 2016), as “for engineers and policymakers 
alike, understanding how and where bias can occur in algorithmic processes can help address it” (Silva and 
Kenney 2019, p. 37). For this reason, the understanding what mechanisms can generate algorithmic bias 
has been identified as a central challenge in IS research (Ransbotham et al. 2016). Below we provide an 
overview of literature on the sources of algorithmic bias, focusing on the role of the data scientist in AD, 
and we draw from exploratory programming as a response to algorithmic unknowability in AD. 
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Introducing Bias into Algorithmic Solutions 

Three main potential enablers of bias, that is places where bias can be introduced into algorithmic solutions, 
have been discussed. First, a sizable amount of work focuses on identifying algorithm input, that is training 
data, as a potential source of bias (Barocas and Selbst 2016; Favaretto et al. 2019; Kordzadeh and 
Ghasemaghaei 2021): if biased data are used to train algorithms, they are likely to offer equally biased 
outputs (Tarafdar et al. 2020). Second, statistical discrimination has been identified as a contributor to 
bias, that is to say that algorithms, like all statistical methods, only represent objects via mathematical 
proxies, and so “adverse outcomes against protected classes might occur involuntarily due to the 
classification system” (Favaretto et al. 2019, p. 12).  

While these two potential enablers of algorithmic bias are fairly well studied with established solutions 
proposed (Kordzadeh and Ghasemaghaei 2021), it is the third source that is most relevant to this paper: 
algorithm design. During AD, choices and decisions need to be made regarding the features to be used, 
weights attached to them, and objective functions that all impact how algorithms process inputs and the 
outputs they produce (Barocas and Selbst 2016; Kordzadeh and Ghasemaghaei 2021). Others note that the 
entire process of AD is dependent on data scientists’ design choices: “insofar as the data scientist needs to 
translate a problem into formal computer coding, deciding on the target variable and the class labels is a 
subjective process” (Favaretto et al. 2019, p. 12). Going even further, “human subjectivity is at the very core 
of the design of data mining algorithms since the decisions regarding which attributes will be taken into 
account and which will be ignored are subject to human interpretation [12], and will inevitably reflect the 
implicit or explicit values of their designers [1]” (Favaretto et al. 2019, p. 17). Thus, literature recognizes 
that as long as data scientists are involved in AD, they will make subjective decisions and choices that impact 
algorithmic solutions and may open up possibilities for introducing bias. 

Recent IS studies investigating the work of data scientists poignantly show their engagement in and impact 
on AD. For example, Ghasemaghaei and colleagues (Ghasemaghaei et al. 2018; Ghasemaghaei and Turel 
2021) discuss the practices of knowledge hiding that data scientists engage in, thus impacting how 
algorithmic outputs are used in organizations by evasive hiding, playing dumb, and rationalized hiding, that 
all have varying effects on decision-making (Ghasemaghaei and Turel 2021). Joshi (2020) investigated how 
the practices of data scientists in the banking industry rely on both subjectivity and objectivity in the 
production of information, emphasizing the role of data scientists’ choices at various stages of the analysis 
process, for example choices regarding algorithms, the use of variables to be included, methods of 
evaluation, and similar. In an ethnography of how a machine learning-based algorithmic solution was 
developed, van den Broek and colleagues (2021) show how knowledge produced within such systems relies 
on a hybrid practice combining machine learning and domain expertise: data scientists and subject matter 
experts need to reflect on developing algorithmic solutions for producing knowledge in the course of a 
mutual learning process that takes place during AD. Thus, even this nascent research shows that data 
scientists introduce their own subjectivities into the process. However, these findings are focused more on 
the social and organizational aspects that require data scientists to take decisions and make choices 
influencing the design, while little is still known about the technical side of algorithmic solutions that 
requires these choices and decisions. 

Algorithmic Unknowability in Development 

As with other autonomous tools, algorithmic solutions are characterized by algorithmic unknowability 
(Zhang et al. 2021), that is the ex ante and ex post unknowability of the input-output relationships. As we 
argue, this unknowability applies not only to run-time, but also to design-time, which we refer to as AD. 
Algorithmic unknowability in development means that during the process, the input-output relationships 
are unknowable ex ante to the developer: the data scientist does not know what outputs will be produced 
by each input component of the solution under development until such outputs are presented to her. As a 
basic example, the data scientist does not know whether there are any missing values in the dataset that 
need to be dealt with before running code to check for missing values and evaluating the results – the 
outcome of each command in code is only known after the code is executed, and only then the next design 
decision can be made. In AD then, “human actors and technology artifacts interact to produce specific 
cognitive outcomes” (Zhang et al. 2021, p. 7): decisions and choices that shape development. This 
unknowability is furthered by the fact that algorithms are non-deterministic which makes it difficult to 
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know the outcomes in advance (Seidel et al. 2018; Zhang et al. 2021), and the exact resources, such as 
computing power needed to run algorithms, are also unknowable in advance (Zhang et al. 2021). As such, 
AD is characterized by design-time unknowability, where the effects of development action are emergent, 
the relationships between inputs and outputs in the development process are unknown, and multiple 
potential trajectories are possible at every decision point.  

It is for the reasons of algorithmic unknowability that AD differs from more traditional forms of IS 
development, as it does not have clear ends or goals that are knowable a priori. AD falls under exploratory 
programming, where there are no clear requirements for the code at the onset, and there is a broad space 
of possible solutions (Kery et al. 2017; Kery and Myers 2017), it is “a programming task in which a specific 
goal or a means to that goal must be discovered by iteratively writing code for multiple ideas” (Kery et al. 
2017, p. 1). As such then, AD has open-ended goals and relies on exploring different approaches while the 
goal evolves based on insights, differently from traditional programming (Subramanian et al. 2019). 

The Impact of Unknowability on Development 

As a result of algorithmic unknowability, data scientists engage in exploratory programming in AD (Hill et 
al. 2016; Kery et al. 2017). Exploratory programming is key under circumstances of flexibility, discovery, 
and innovation, and its defining characteristic is “the practice of designing the goal at the same time as 
experimenting in code” (Kery and Myers 2017, p. 25). Data scientists write code to prototype or experiment 
with different ideas to obtain insight from data, but they do not engineer working code to match a pre-
defined specification – instead, the goal is open-ended and evolves together with the evolution of code (Kery 
and Myers 2017). This kind of work is highly iterative, exploratory and non-linear (Patel et al. 2008), and 
relies heavily on the professional judgment and decisions made by data scientists (Rule et al. 2018).  

Current research into the work of data scientists who engage in exploratory programming reveals the extent 
to which they have to draw on their own, subjective, human judgment in making various decisions in AD: 
“insights are sensitive to the methods used to produce them; small changes in how data are collected, 
cleaned or processed can lead to vastly different results” (Rule et al. 2018, p. 1). As data scientists engage in 
obtaining, cleaning, profiling, analyzing and interpreting data (Rule et al. 2018), they may be tasked with 
data merging and cleaning, sampling, feature selection, defining metrics, building predictive models, 
defining ground truth, hypothesis testing, and even applying insights or models to business (Kim et al. 
2016). At every step, they “try different versions of the same analysis, slowly improve analytical methods, 
and hit numerous ‘dead ends’ before finding an explanation that ‘fits’ the data” which “can make it difficult 
to perform an ‘objective’ analysis” (Rule et al. 2018, p. 2), while data scientists must be clear and transparent 
in their reasoning “if others are to understand, and ultimately trust their work” (Rule et al. 2018, p. 1).  

Current literature points towards algorithm design as a potential enabler of bias in algorithmic solutions, 
suggesting that human subjectivity, judgment and decisions in this process may introduce various biases. 
While most IS literature in this area focuses on the social and organizational factors that shape data 
scientists’ engagement in AD, little is known about the technical aspect of algorithmic solutions that 
requires the developers to draw on their own judgment in making development decisions and choices. We 
argue that algorithmic unknowability inherent in such solutions requires data scientists to engage in 
exploratory programming in response, but we do not yet know enough about the sources of unknowability 
in developing algorithmic solutions and how data scientists respond to it. 

Theoretical Framework 

We adopt the flow-oriented approach and vocabulary, as suggested in a recent MISQ paper proposing the 
flow of action as a new lens to study continuous socio-technical transformation in a fluid and dynamic 
digital world (Baygi Mousavi et al. 2021): we want to ‘think movement’. The flow-oriented approach focuses 
on becoming over time, tracing ongoing action and its results in time. The phenomena are understood as 
ongoingly (trans)forming accomplishments. This perspective encourages the focus on evolution, becoming, 
diversity, flow, movement, creativity and conditionality, among other aspects, and puts stability, spatiality, 
planning and actors into the background (Baygi Mousavi et al. 2021). The flow-oriented approach draws 
attention to the impact of contingencies, unpredictability, seeming insignificance of various flows of action 
in the explanations of how and why transformations happen. In IS, this for example entails a shift from 
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users and systems towards the temporal flows of using and computing (Baygi Mousavi et al. 2021; Yoo 
2010), or a move from understanding software as static assemblies of modules and features to “continuous 
meandering flows of computational services or experiences—experiences made possible through 
confluences along unfolding trajectories of languages, frameworks, devices, data streams, web services, 
APIs, but also those of careers, habits of use, trends and fads, regulation, best practices, and so forth” (Baygi 
Mousavi et al. 2021, p. 15). The flow-oriented approach invites us to investigate the trails along which action 
flows (Baygi Mousavi et al. 2021). The flow of action cannot be broken up without affecting the 
phenomenon, as phenomena emerge from “the creative absorption of previous trajectories of action and 
their ongoing weaving into ever-new paths” (Baygi Mousavi et al. 2021, p. 16). Trajectories of flowing action 
unfolding along trails create “conditions of possibility” for further action in a certain direction (Baygi 
Mousavi et al. 2021, p. 16).  

We appreciate that this is a novel approach to study IS phenomena, but we believe it is particularly fitting 
to the study of developing algorithmic solutions, not only because it foregrounds action, but primarily 
because it allows to zoom in on unknowability and its impact on subsequent action. The nascent literature 
on AD and exploratory programming confirms that there is a significant degree of contingencies, 
unpredictability and seemingly insignificant action that can have big impacts on the development of 
algorithms. This is in line with seeing algorithmic solutions as ongoingly (trans)forming accomplishments 
that become over time, based on the conditions of possibility revealed in action. In other words, we see 
algorithmic solutions as emerging in the flow of development action. We describe how this theoretical 
framework informed our research design next. 

Research Design 

Kaggle.com is a popular platform for data scientists and machine learning engineers where they can develop 
and improve their skills, as well as participate in corporate-sponsored competitions by addressing a variety 
of problems related to datasets published. Kaggle.com, part of Alphabet Inc, allows to upload datasets, set 
specific tasks and create interactive Jupyter notebooks where users can develop algorithmic solutions. 
Kaggle.com was selected as a setting because of its public availability and openness in sharing notebooks 
that allows an unprecedented access to the design of algorithmic solutions. Others have used Kaggle.com 
for research purposes as well (Dissanayake et al. 2015; Mangal and Kumar 2016). 

The dataset we selected for this study is a well-regarded and popular one, containing the details of around 
10,000 credit card customers of a bank, whereby a portion of customers churned. The goal is to identify, 
based on 18 variables such as age, salary, credit card limit and similar, what makes a customer churn (give 
up a credit card) to be able to predict customers at risk of churning in the future, as well as to identify the 
variables that are most predictive of the risk of churn (“Kaggle.Com” 2021). When we investigated the 
dataset, there were around 210 notebooks submitted that contained algorithmic solutions to this dataset, 
with constant daily activity in existing notebooks and new notebooks being added. Kaggle.com users can 
contribute with their proposed algorithmic solutions by creating and working on Jupyter notebooks. 
Jupyter notebooks are a popular format used among data scientists and machine learning engineers to 
develop, share and display their algorithmic solutions. The notebooks allow combining code and user-
generated computational narratives of the steps taken and the findings, and can be easily shared with 
elements of code executed, that is for example with embedded diagrams or results. Segments of code can 
be re-executed at later stages in the Jupyter environment. A typical Kaggle.com notebook is hosted in 
Google cloud and gives users access to Google-sponsored processing resources. 

We selected an open and public dataset rather than a competition because the majority of notebooks 
submitted for competitions are private and thus visible only to sponsor companies, and competitions are 
usually very specific and limit the variety of potential algorithmic solutions developed. In contrast, public 
notebooks allow good access to notebooks containing fairly unrestricted solutions with much more 
experimentation. From the datasets available on Kaggle.com, we selected the credit card customers dataset 
because it is related to a common problem that many organizations face, and it is a problem that is often 
tackled by developing algorithmic solutions, thus it is a good representative sample of what researchers in 
IS and management would consider of interest. 
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Data Collection 

In January and February 2021, we collected 57 Jupyter notebooks that were created using the credit card 
customer dataset in Python as the programming language. The notebooks were arranged from the ‘hottest’ 
(a measure used on Kaggle.com to define notebooks with most activity, edits and highest votes by the 
community, Kaggle.Com, 2021), and thus those collected were considered among the ‘hottest’ at the time. 
We decided to select the ‘hottest’ notebooks as these were assessed as high quality by the community, thus 
were likely to contain well-developed algorithmic solutions. We discarded notebooks in R to eliminate 
differences in programming languages, and notebooks that contained only partial solutions, for example 
only analyzed data without building actual models. Using a feature available on Kaggle.com, we downloaded 
all of the selected notebooks and converted them to PDF documents to analyze them in nVivo. The PDF 
documents contained all code, code execution, and computational narratives. In total, we collected 841 
pages of code, code execution and narrative in the PDF format (on average 24 pages per notebook) and 
1,692 segments of code (on average 35 per notebook) consisting of several lines of code each. 

Notebooks are appropriate a source of data to study the flow of action because they document the way action 
takes place, allowing for the study of the flow of action, accounting for code, its execution, and 
computational narratives, illuminating how both the technological artifact and the human actor (Zhang et 
al. 2021) interact to produce decisions and choices. Further, the sequential nature in which notebooks detail 
AD allows to study how actions flow from one another and how they create “conditions of possibility” for 
further action. This foregrounds the unknowability of algorithmic solutions and actions in response. The 
presence of computational narratives allows to focus on the role of data scientists, as in them developers 
explain, justify, and keep track of design decisions (Rule et al. 2018; Subramanian et al. 2019). Notebooks 
are used to provide explanatory annotations, but also give a narrative structure that explains and justifies 
choices (Kery et al. 2018).  

Data Analysis 

Bagyi Mousavi and colleagues offer some methodological suggestions regarding setting up a study that 
adopts the flow-oriented approach (2021). They encourage to focus on tracing the flows of action in 
answering how and along which lines phenomena are brought into being and carry on trans(forming), how 
and along which lines is the phenomenon flowing, what is the story of the happening of X (p. 46, 48, 52). 
Drawing from these suggestions, we set out to study action in AD by uncovering how and along which lines 
this developing is flowing, and what actions bring algorithmic solutions into being. 

Methodologically, we adopted an action as a unit of analysis, where an action is the unfolding of steps 
directed at accomplishing a specific task, identified in code, code execution, and accompanying 
computational narrative. Once action towards accomplishing a specific task is completed, it enables the 
unfolding of ensuing action, and so on, with the main flow of action directed towards developing an 
algorithmic solution. We bracketed action we identified into stages commonly present in data science 
development (Kurgan and Musilek 2006), that is 1) Preparing the environment, 2) Reading in data, 3) 
Cleaning data, 4) Exploratory data analysis, 5) Pre-processing the dataset, 6) Building and training the 
model, 7) Testing and validating the model. In other words, we encountered these stages in the data and 
used them to group action we identified.  

Stage Stage start Action unfolding in the stage Stage end 

Reading in 
data 

Headline: 
“Meeting the 
data” 

Action aimed at loading the data used into the notebook environment and 
understanding its shape to clean it appropriately 

Following 
headline 

Action Action start Code Code execution Narrative Action end 

Loading 
data 

Computational 
narrative 

data = 
pd.read_csv('../input/ 
credit-card-
customers/Bank 
Churners.csv') 

File attached to the 
notebook 

Lets open the data and 
see what we have 

Following code 
segment 
concerns a 
different task 

Inspecting 
data 

Computational 
narrative 

data.shape (10127, 23) Lets see the shapes of 
the data so we know 

Following code 
segment 
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what we are dealing 
with  

concerns a 
different task 

Table 1. Example of identifying Loading data and Inspecting data action from Notebook_009 

 

We proceeded by inductively coding the notebooks to identify action as defined above and exemplified in 
Table 1. Because of the inductive nature of our study, we oscillated between data analysis and further data 
collection. After coding the first 35 notebooks, we began to identify only action we had already coded for, 
and the subsequent 10 notebooks did not add any new action. At this point we decided to stop coding and 
analyzing the notebooks as we reached the point of saturation, arriving at 32 discernible actions. 
Subsequently, we developed sequences of development action in each notebook, as shown in Table 2.  

Sequence of action 1.1 1.2 1.3 1.4 2.1 2.2 3.3 2.2 3.1 3.5  
4.3 4.1 4.4 4.2 4.4 4.2 
4.4 4.2 4.4 4.3 

Stage 1 Preparing the environment 2 Reading in data 3 Cleaning data 
4 Exploratory data 
analysis 

Sequence of action 5.3 5.1 5.4 5.2 6.2 6.6 6.3 6.4 7.1 7.2 7.2  
6.5 6.5 5.1 5.4 5.2 6.2 
6.3 6.4 

Stage 5 Pre-processing the dataset 6 Model building 7 Model validation 6 Model building 

Sequence of action 7.1 7.2 7.4 7.2 6.2 6.6 6.4 6.3 6.4 7.1 7.2 7.4 7.2 6.5 6.2 6.6 6.4 6.3 6.4 

Stage 7 Model validation 6 Model building 7 Model validation 6 Model building 

Sequence of action 7.1 7.2 7.4 7.2 6.5 7.5 
   

Stage 7 Model validation 
   

Table 2 Example of a flow of action in Notebook_008 with a detailed sequence of action in stages 

 

This provided us with a schematic representation of the flow of development action in every notebook. We 
report on our findings regarding the unknowability in development and how data scientists responded to it 
below. 

Algorithmic Development Under Unknowability 

In this section, we present the stages in developing an algorithmic solution with identified sources of 
unknowability, as well as responses to these types of unknowability evidenced in action. Algorithmic 
unknowability was evident in the notebooks we studied, exemplified by the fact that only the business 
problem was stated, that is the need to be able to predict customer attrition based on the available data, and 
when input data were obtained, the specifics of the final solution were unknown, they emerged in the flow 
of action. 

Stage 1: Preparing the Environment Under Resource and Problem Unknowability 

In the first step in AD, the programming environment is set up, which entails creating a new Jupyter 
notebook on Kaggle.com with a few clicks and initiating a new processing session. This is required to set up 
the notebook so that AD can start. Since all processing happens in the cloud, each notebook has some 
processing capacity allocated, with the maximum session lime of 9 hours, maximum of 19.6 GB disk space, 
maximum of 16 GB RAM and an indication of CPU usage in percentage, and an accelerator can be added at 
any point to increase processing capacity, with a choice of GPU and TPU v3-8. The kind of resources and 
their level is unknown, and thus this stage is characterized by resource unknowability. Next, a choice of 
programming language needs to be made, with Python as a default and the option of selecting R. Access to 
the internet, for example for loading data held online, can be enabled. At the point where these decisions 
are made, problem unknowability is also evident – the exact specifics of the problem and how it will be 
defined, e.g. the dependent variable, are unknown. 
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To deal with these sources of unknowability, data scientists set up the processing environment as defined 
by Kaggle.com, and have some choice over the parameters for the notebook to satisfy estimated processing 
needs, for example by enabling an accelerator, and they also select the programming language of their 
choice. Because of both resource and problem unknowability, in many notebooks data scientists import 
libraries, that is software packages up front, drawing on their experience and knowledge of packages that 
proved to be useful in the past. By default, Jupyter notebooks on Kaggle.com come equipped with some 
starter code that recommends importing some packages: “# This Python 3 environment comes with many 
helpful analytics libraries # It is defined by the kaggle/python Docker image: 
https://github.com/kaggle/docker-python # For example, here's several helpful packages to load” 
(Notebook_002). 

Finally, to deal with problem unknowability, we found that data scientists often identify the problem and 
the prediction task by re-stating it in the computational narrative: “In this notebook we will try to find the 
most important reasons that a customer would churn and also devise multiple models that would predict 
churning customers” (Notebook_001) that sometimes extends into a comprehensive summary of the 
contents of the notebook (e.g. Notebook_012). In this action, data scientists begin to interpret the problem 
in programming terms to identify the dependent variable. 

Stage 2: Reading in Data Under Dataset Unknowability 

In this stage, action is aimed at loading the data into the notebook and understanding the contents of the 
dataset. At this point, the data scientist may know the dataset somewhat from the description on 
Kaggle.com, but its exact specifics, such as data types and basic statistics, are unknown. In response to this 
prior dataset unknowability, we found that first data is loaded, which involves attaching data to the 
notebook environment, executed in a single line of code: data=pd.read_csv("/kaggle/input/credit-card-
customers/BankChurners.csv") (Notebook_001), and then inspected: “Meeting the data. Lets open the 
data and see what we have” (Notebook_009), as data scientists need to familiarize themselves with the 
variables and values in the dataset. Checking data types is aimed at identifying what data types variables 
are stored in is essential to inform further data cleaning (e.g. “There are 6 categorical and 14 numeric 
features.”, Notebook_022). Descriptive statistics are sometimes obtained to get a basic statistical summary 
of the dataset, also for the purposes of confirming the dataset is of the expected shape and informing the 
need of further data cleaning, e.g. “There is a big gap between max and min values. This situation 
strengthens the presence of outliers.” (Notebook_022). In some cases, preliminary observations and 
conclusions are drawn from this summary that inform later exploratory data analysis, e.g. “Some 
observations from the table:  • Majority of clients are married. • Almost all clients have Blue Card (~%93)” 
(Notebook_022). 

Stage 3: Cleaning Data Under Dataset Unknowability 

At this stage, action is aimed at removing unnecessary or unneeded elements from the dataset to enable 
further processing. Similar to the previous stage, here dataset unknowability is present and requires 
appropriate action: some elements need to be removed or changed, but it is not possible to know what 
interventions are needed in advance. In response, we found that in some notebooks action includes 
renaming variables, that is changing the names of variables to ease referring to them: “Columns title is TO 
LONG, let’s rename it.” (Notebook_012), removing unnecessary variables: data=data.iloc[:,:-2]#deleting 
last two rows as mentioned in database (Notebook_001), or removing outliers, that is rows in the dataset 
that contain values too far from the mean that could skew the model: “credit limit, avg oepn to buy, 
total_trans_amt seems to have outliers” (Notebook_002). These actions take place in some notebooks 
(renaming variables – 4, removing variables – 33, removing outliers – 2 notebooks), but sometimes are 
omitted or take place at different stages.  

Dealing with missing values, that is checking for and removing missing values from the dataset is required 
as prediction models do not work with missing values. With large datasets, it cannot be known in advance 
if there are any missing values, so it is only after executing code to check for missing values that it can be 
known: “We are off to a great start as there appears to be no missing values!” (Notebook_016), “there are 
no null/missing values SIGH!” (Notebook_002), “LUCKY! NO need to handle with NaN or missing data” 
(Notebook_012). Otherwise, missing values have to be dealt with, for example by means of imputation, that 
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is artificial generation of data points to fill in the gaps, as suggested e.g. in. Notebook_030. The second 
action that allows the flow of AD to move forward is transforming data types, that is changing data types 
(from e.g. categorical) into types suitable to be used in model building: 
data[data.select_dtypes(['object']).columns] = data.select_dtypes(['object']). → apply(lambda x: 
x.astype('category')) (Notebook_001). Categorical data include for example marital status or education 
level, which are often coded to 0 (married) or 1 (single), and thus they cannot be used in model building in 
this format: “Machine learning algorithms work best with numerical data. However, in our dataset, we 
have some categorical columns. These columns contain data in textual format; we need to convert them 
to numeric columns.” (Notebook_012). There are several different ways of dealing with categorical 
variables: “These are the categorical variables, we will now either do encoding or make dummy so as to 
make them all numerical so that we can plot out heatmap and proceed further” (Notebook_003). 

Stage 4: Exploratory Data Analysis Under Analytical Unknowability 

The exploratory data analysis stage concerns action aimed at learning insights from data to be used to guide 
model building. The whole of action at this stage is underpinned by analytical unknowability, that is the 
lack of prior knowability of the relationships between variables and their usefulness in developing the 
algorithmic solution. In response, AD usually starts with analyzing the dependent variable, where 
familiarizing with the predicted variable takes place so that data scientists can understand which 
independent variables may help predict it: data.Attrition_Flag.value_counts() (Notebook_001). The 
understanding of the dependent variable enabled by code execution informs other steps needed in pre-
processing the data later: “We can see that there are very few rows for ‘attrited customer’ we might need 
to oversample the data” (Notebook_002). Unknowability is also countered by visualizing data, that is 
producing visual representations of independent variables. These visualizations inform which independent 
variables may be predictive and thus should be included in the model in later episodes. Visualizing data was 
the single most common action in the notebooks, appearing in as many as 203 code segments in the 
notebooks analyzed. Usually, multiple plots, graphs and charts are generated based on imported 
visualization libraries: “[Data] is analyzed through visual exploration to gather insights about the model 
that can be applied to the data, understand the diversity in the data and the range of every field. We use 
a bar chart, box plot, distribution graph, etc. to explore each feature varies and its relation with other 
features including the target feature” (Notebook_012). Some notebooks contain narratives describing 
main learnings from data visualization: “it is analyzed through visual exploration to gather insights about 
the model that can be applied to the data, understand the diversity in the data and the range of every 
field. We use a bar chart, box plot, distribution graph, etc. to explore each feature varies and its relation 
with other features including the target feature” (Notebook_012). 

Analyzing independent variables can be conducted via other means than visual, for example by comparing 
counts df['Income_Category'].value_counts() (Notebook_002) and drawing conclusions from numerical 
analysis: “We can see that there are more number of female who uses the card than males” 
(Notebook_002). Identifying correlations often takes place at this stage, where action is aimed at finding 
out which variables correlate with the dependent variable: “lets make a heatmap so as to get, whats the 
correlation b/w every other columns. But as we have categorical columns as well, so we will use integer 
encoding so make them numerical and then make heatmap” (Notebook_003). 

Stage 5: Pre-processing the dataset under model unknowability 

Action at this stage concerns preparing the dataset for model building by giving it the right shape, and this 
stage is characterized by model unknowability: since the exact algorithm that will be deployed in the model 
built in the solution and its features and requirements are not yet known, action here needs to prepare the 
dataset to work well with a wide range of potential algorithms. Scaling data can be conducted to change the 
scale of variables to make sure that they do not influence the model unduly just because their unit. Scaling 
can sometimes include normalization, that is enforcing standard distribution on each variable: “Next, we 
normalize numerical so that each feature has mean 0 and variance 1 using Standar Scaler” 
(Notebook_005). Scaling is performed using appropriate libraries and executed using few lines of code. 
Another possible action is data resampling, that is increasing or decreasing the number of observations in 
one of the classes (in this case, attired customers) that is in a disproportionate minority, thus creating a 
balanced dataset. This is also performed using a common library package: “To balance the dataset we use 
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SMOTE which stands for Synthetic Minority Oversampling Technique” (Notebook_005). However, these 
actions are not uniformly present across all notebooks: we observed scaling data in 15 notebooks, and 
resampling data in 10. 

While previous actions are optional and appear variably across notebooks, it is required at this stage to 
remove the target variable that should be predicted: “Our data is now ready, and we can train our machine 
learning model. But first, we need to isolate the variable that we’re predicting from the dataset” 
(Notebook_012). It is essential for this to take place as otherwise the model is not predictive, since the target 
variable is known to the model. Usually, the dataset containing independent variables is named X, and the 
dataset containing the target variable - y, or very similar. A common action concerns the formatting of the 
dataset, that is adding or removing variables (other than the target variable which needs to be removed) to 
prepare the final dataset for model building. It can include removing other unnecessary variables, and 
putting together the dataset if it had been separated for example to transform categorical variables.  

This stage ends with the action of splitting the dataset, that is dividing it into the training and test datasets 
that will enable model building and testing, respectively. This is conducted using a standard library and 
executed in one line of code: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, // →  
random_state=42) (Notebook_001), where the dataset of predictive, independent variables X and the 
dataset of the target, dependent variable y (in this case: whether customer attired or not) is split into four 
datasets, with 70% of the data used for training (X_train and y_train datasets) and 30% of the dataset saved 
for later testing (X_test, y_test), where these numbers vary between notebooks. 

Stage 6: Building and Training the Model Under Model Unknowability 

Action at this stage is aimed at building a model based on a selected algorithm and training it on the training 
dataset to obtain a model capable of predictions. At this stage, prior model unknowability is evident: AD 
starts without a specific model pre-defined, that is the algorithm, features, weights and parameters emerge 
in development. Since the dataset we studied contained a supervised classification problem, all models used 
in the notebooks deployed algorithms applicable to this type of a predictive problem. The types of 
algorithms we observed were some simpler and common ones, such as logistic regression, a k-nearest-
neighbour classifier, Naïve Bayes or decision tree classifier, to more advanced classifiers such as AdaBoost, 
Bernoulli NB, Extra Trees Classifier, Gradient Boosting Classifier, LGBM Classifier, Principal Component 
Analysis, Random Forest Classifier, Support Vector Classifier or XGBoost classifier. Two notebooks 
experimented with using a neural network for this task. Algorithm selection was always indicated by 
importing the selected algorithm’s library, sometimes preceded with a narrative headline introducing the 
selected algorithm, and on few occasions, notebooks contained longer explanations of the selection: “We 
are going to predict those customers who will churn using random forests which are widely used for 
classifiction problem like this one” (Notebook_039). Regardless of the type of the algorithm selected, all 
these were implemented using pre-packaged functions, thus selecting the algorithm required importing the 
relevant library. 

The next action is model training, that is applying the selected algorithm to the training dataset to build a 
model that maps the relationships between independent variables and the dependent variable, where these 
relationships are unknowable a priori. This action is described in detail in the narrative in Notebook_012: 
“Now, we’ll use a machine learning algorithm that will identify patterns or trends in the training data. 
This step is known as algorithm training. We’ll feed the features and correct output to the algorithm; 
based on that data, the algorithm will learn to find associations between the features and outputs. After 
training the algorithm, you’ll be able to use it to make predictions on new data. (…) To train this 
algorithm, we call the fit method and pass in the feature set (X) and the corresponding label set (y)”. In 
all notebooks studied, algorithms are deployed by importing them from pre-existing libraries. For example, 
in Notebook 001 we observe from sklearn.linear_model import LogisticRegression // logmodel = 
LogisticRegression(), whereby the algorithm for logistic regression is imported from the sklearn library in 
one line of code, and then invoked as logmodel in another line of code. Thus, logmodel is an instance of the 
logistic regression algorithm that is created in the notebook. In the next line of code, this model is trained: 
logmodel.fit(X_train_pd,y_train) – the instance of the logistic regression algorithm is “fit” to the training 
dataset. After this operation, the model is trained, that is it learned how the predictive (independent) 
variables (X) are correlated with the target (dependent) variable (y). 
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There are several optional actions at this stage. For example, in some notebooks creating the pipeline takes 
place first, that is coding a sequence of steps that can be executed repeatedly for different models, for 
example: “Pipeline Steps: One Hot Encoding Quantile Proccesing Fit the model” (Notebook_009). This 
means that a function is created that will repeat these steps (in Notebook_009: transforming data, 
formatting the dataset, fitting the model) with various models passed into the function. Another optional 
action is setting parameters, that is selecting the desired algorithm hyperparameters for model training. 
This action takes place especially with algorithms that are more sophisticated and those that actually deploy 
machine learning to uncover the best parameters. A typical example of parameter setting is a simpler case 
of specifying the number of nearest neighbors in the K-nearest neighbors classifier: knnmodel = 
KNeighborsClassifier(n_neighbors=3) (Notebook_001), in this case set to 3. With more complex 
algorithms, setting parameters is the first step to deploying machine learning: “Now that we know the best 
architecture for the neural network, we can set these params for our model and get to comparing different 
models” (Notebook_037). Another optional action is selecting features, that is identifying the variables that 
the model(s) trained base their predictions on. This is done to leave in variables that are strongly predictive 
and remove less predictive variables that may be decreasing the performance of the model. When taking 
place at this stage, selecting features is not based on the exploratory data analysis or conducted manually. 
Rather, a model is trained (usually a Random Forest Classifier or similar) solely for the purposes of 
obtaining “features importances”, that is an indication of which features the model relied on the most in its 
classification. 

Setting parameters is often present together with another optional action, parameter tuning, where 
algorithm parameters are changed to train alternative model(s) based on the same algorithm but with 
different parameters. For example, for a Random Forest Classifier, such parameters may include the 
number of features, the number of levels in the tree, and the minimum values for splitting the trees. This 
usually takes the form of a function that iterates over code with changing the values to train a number of 
models with changed parameter values: #decision tree pruning max_depth=[] acc_gini=[] 
acc_entropy=[] for i in range(1,50,5): // dtree=DecisionTreeClassifier(criterion='gini',max_depth=i) 
dtree.fit(X_train,y_train)//pred=dtree.predict(X_test)//acc_gini.append(accuracy_score(y_test,pred)
)//dtree=DecisionTreeClassifier(criterion='entropy',max_depth=i)dtree.fit(X_train,y_train)//pred=dtr
ee.predict(X_test) // acc_entropy.append(accuracy_score(y_test,pred)) max_depth.append(i) 
(Notebook_002). In this case, depth, Gini coefficient and entropy coefficient are modified in the range from 
1 to 50 by 5 points, and respective models are trained, tested, and stored for model performance 
comparison. Parameter tuning is a type of experimentation, that is selecting and applying a set of different 
parameters to train a different model on the training dataset in search of better performance. Running 
experiments in this way was less common in the notebooks than training different algorithms, and included 
for example selecting features with the highest importance: “Now we look for the features with higher 
importance, to run a new Random Forest using only some of the most important ones” (Notebook_005). 

Stage 7: Testing and Validating the Model Under Performance Unknowability 

Action aimed at testing the built model on the test dataset and verifying its performance to confirm its 
predictive capacity takes place in stage seven, and is a result of performance unknowability, that is the fact 
that the actual results and performance of the models built and trained cannot be known in advance. In 
response, various action takes place. Predicting on unseen data relies on applying the trained model to the 
test dataset that was retained earlier to obtain predictions as to the target, dependent variable. This is 
customarily done in one line of code, e.g. ypred = model_1.predict(X_test) (Notebook_017), whereby the 
trained model model_1 is applied to X_test dataset to yield predictions saved in ypred. The results of this 
prediction are then used to assess the performance of the model by comparing the predicted values of the 
target, dependent variable y stored in ypred with actual values of y that were retained and not used in 
training or testing.  

Evaluating model performance involves calculating performance measures according to selected criteria to 
obtain a measure of the model performance. All notebooks contain a way to evaluate model performance. 
This is usually done both for the training and test dataset, albeit it is commonly accepted to use the 
performance results on the test dataset as final. The most common measure of model performance in the 
notebooks is accuracy, that is how many times the model predicted the correct classification of the 
dependent variable in comparison to the known but withheld labels in the test dataset. The second common 
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measure in this dataset is recall, that is how often the model correctly identified churning customers – this 
measure is particularly relevant to the problem set in the dataset. Sometimes models are evaluated on the 
time it took to train them. Evaluating model performance is done using pre-packaged functions, most often 
imported from sklearn. In some notebooks, this scene has some narrative: “Then using accuracy_score 
and the confusion matrix to evaluate the models performance” (Notebook_004). Comparing model 
performance, that is comparing the calculated performance measure between alternative models trained to 
identify the best performing model, is an action taking place where various models were trained. In some 
notebooks, this comparison is conducted across a number of metrics. Also optionally, this action may 
contain visualizing results, where visual representations of the model(s) performance are displayed, often 
to select the best performing model: “Before that making any decisions let’s make one more graph, but for 
another metric: recall (which is important for us)” (Notebook_029) for the comparison of multiple 
notebooks. In some notebooks, we identified one final action: indicating the best performing model, where 
the narrative included a clear statement of the model identified as best performing, e.g. “We can see that 
combining the features generated with PCA with the others is what gives the better results, this can be due 
to higher degrees of freedom for the model” (Notebook_028). A large number of notebooks do not make 
any comments on the best performing model, either because there is only one model trained or because the 
numerical results are considered as self-explanatory. 

The Modes of Responses to Unknowability 

As discussed above, we identified various sources of algorithmic unknowability in developing algorithmic 
solutions: resource, problem, dataset, analytical, model, and performance unknowability. Various actions 
take place in response to this unknowability, as summarized in Table 3 below. In response to unknowability, 
action is characterized by modes of data scientists reacting to it: unknowability is inherently present in 
algorithmic design, yet design action needs to proceed to develop an algorithmic solution, and thus a way 
of reasoning through, accepting or minimizing unknowability needs to be deployed. We call these data 
scientists’ modes of responses, and we identified three modes: interpreting, optionalizing, and 
experimenting. The deployment of these modes of response is required for AD to continue, as only this way 
current action can take place, and thus enable the conditions of possibility for the following action. 

Interpreting is a mode of dealing with unknowability by reasoning through it, and it is deployed to tackle 
problem, dataset, analytical, and performance unknowability. When engaging in interpreting, data 
scientists rely on and draw from their own judgment and understanding to interpret outputs, which informs 
the next action. This is evident in computational narratives that allow data scientists to explain their 
thinking: “In my personal opinion, this variable shows the maximum number of consecutive months of 
inactivity and a customer is classified as churned after 6 or 7 months of inactivity” (Notebook_032), or 
“A key assumption made at this point is that any column relative to a time (e.g. months inactive), for 
leavers, is reflective of their tenure rather than a fixed point. If the latter is true, differences in these 
columns may be due to timing (for instance, if months inactive counts the last twelve months, and a 
customer left 8 months ago,their inactivity would be high by default)” (Notebook_028). In these two cases, 
in response to dataset unknowability, data scientists analyzed code execution, reasoned through what was 
unknowable, and interpreted the variables based on their own judgment when inspecting data and 
analyzing independent variables, respectively. 

Optionalizing as a mode of dealing with output unknowability rests on accepting algorithmic unknowability 
and taking decisions regarding AD from optional choices – since resource, dataset, and model 
unknowability cannot be ever fully eliminated, decisions regarding AD are made from a variety of choices. 
In this mode, various decisions and choices are often explicated in computational narratives, and their 
subjectivity is either left without a comment: “These are the categorical variables, we will now either do 
encoding or make dummy so as to make them all numerical so that we can plot out heatmap and proceed 
further” (Notebook_003) when transforming data types, or acknowledged as such: “The main reason I 
enjoy using this library is because it given me a starting point as to where I should start my data analysis” 
(Notebook_007), when importing libraries. Optionalizing is also present in how the notebooks differed with 
respect to actions being deployed, namely we found scaling data only in 15 notebooks, resampling data in 
10 notebooks, and removing outliers in 2 notebooks.  
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We identified experimenting as a mode of responding to model unknowability. The goal of developing an 
algorithmic solution in the case we studied was to design the most accurate classification model. Since the 
exact model to be built, that is the algorithm, weights, parameters and features used, that would yield the 
best performance was unknown in advance, data scientists responded to this unknowability by minimizing 
it through trying out various approaches to modeling. In all but one notebook, after the first model was 
trained, attempts have been made to achieve a better outcome through running experiments that involve 
selecting other algorithms, selecting features, or parameter tuning and training other models on the same 
dataset: “After fitting the train data, we can see the results of using the different combinations of 
parameters” (Notebook_004). In notebooks that we investigated, it was not uncommon for up to 7 
experiments to be conducted.  

Stage and type of 
unknowability 

Action in response to unknowability Mode of response 

Stage 1: Preparing the 
environment 
Resource unknowability: 
computational resources needed to 
develop the algorithmic solution 
are unknown before the work 
begins 
Problem unknowability: the 
formulation of the problem the 
algorithmic solution is supposed to 
tackle in programming terms is 
unknown up front 

- Setting up the environment: deploying the default 
computational resources in the cloud environment 

- Selecting the programming language: choosing a flexible 
programming language to accommodate potential future needs 

- Identifying the problem: restating and clarifying the problem 
to be tackled to ensure the appropriate dependent variable is 
identified 

- Importing libraries: importing a variety of software packages 
that may be useful 

Optionalizing: taking 
decisions regarding 
the steps in the 
algorithmic 
development process 
from optional 
choices 
Interpreting: relying 
on own judgment 
and understanding 
to interpret 
algorithmic inputs 
informing further 
work  

Stage 2: Reading in data 
Dataset unknowability: the 
exact contents and specific 
characteristics of the dataset are 
unknown in advance 

- Loading in data: attaching data to the notebook 
- Inspecting data: familiarizing with the variables and values in 

the first few rows of the dataset to confirm the shape of the 
dataset 

- Checking data types: identifying what data types variables are 
stored in to inform the need for data cleaning 

- Obtaining descriptive statistics: familiarizing with the basic 
statistics summarizing the dataset to inform the need of data 
cleaning 

Interpreting: relying 
on own judgment 
and understanding 
to interpret 
algorithmic inputs 
informing further 
work 

Stage 3: Cleaning data 
Dataset unknowability: the 
exact contents and specific 
characteristics of the dataset are 
unknown in advance 

- Dealing with missing values: checking for and potentially 
removing missing values in the dataset to enable modelling 

- Renaming variables: changing the default names of variables to 
different names to ease referring to variables 

- Removing outliers: checking for and potentially removing rows 
from the dataset that are too far from the mean to eliminate the 
risk of skewing the model 

- Transforming data types: changing data types to those that can 
be used in model building 

Optionalizing: taking 
decisions regarding 
the algorithmic 
development process 
from optional 
choices 

Stage 4: Exploratory data 
analysis 
Analytical unknowability: the 
lack of prior knowability of the 
relationships between variables 
and their usefulness in developing 
the algorithmic solution 

- Analyzing the dependent variable: numerically familiarizing 
with the target variable that the model should predict to 
uncover independent variables may be predictive 

- Analyzing independent variables: numerically familiarizing 
with variables that can possibly help predict the target variable 
to know which should be included in the model 

- Identifying correlations: identifying which variables correlate 
with the dependent variable and thus may be predictive to 
include them in the mode 

- Visualizing data: producing visual representations of variables 
to learn which may be relevant and need to be included in the 
model 

Interpreting: relying 
on own judgment 
and understanding 
to interpret 
algorithmic inputs 
informing further 
work 

Stage 5: Pre-processing the 
dataset 
Model unknowability: the exact 
model to be built, including the 
algorithm, weights, parameters 
and features, is unknown in 
advance 

- Scaling data: changing the scale of variables to ensure that 
none of them has an undue bearing on the model 

- Resampling data: increasing or decreasing the number of 
observations to ensure the dataset is balanced in terms of 
observations 

- Formatting the dataset: adding or removing variables to 
prepare the final dataset for model building 

- Splitting the dataset: dividing the dataset into training and test 
dataset to enable model building 

Optionalizing: taking 
decisions regarding 
the steps in the 
algorithmic 
development process 
from optional 
choices 
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Stage 6: Building and training 
the model 
Model unknowability: the exact 
model to be built, including the 
algorithm, weights, parameters 
and features, is unknown in 
advance 

- Creating the pipeline: coding a sequence of steps that are 
executed repeatedly for different models 

- Selecting the algorithm: choosing the algorithm to be used in 
the model to be trained 

- Setting parameters: selecting the desired algorithm parameters 
for the model(s) to be trained 

- Model training: applying the selected algorithm to the training 
dataset to build a model of relationships between independent 
variables and the dependent variable 

- Running experiments: selecting and applying different 
parameters to the algorithms to build alternative models in 
search of better performance 

- Selecting features: identifying the features that the model(s) 
base their predictions on most strongly and excluding the less 
predictive ones to improve predictive powers 

- Parameter tuning: changing the algorithm parameters for 
alternative model(s) to be trained to improve prediction results 

Experimenting: 
trying out various 
approaches to 
modeling to 
experiment with 
obtaining the best 
result 

Stage 7: Testing and 
validating the model 
Performance unknowability: 
actual results and performance of 
the models built and trained 
cannot be known in advance 

- Predicting on unseen data: applying the trained model to the 
test dataset to obtain predictions 

- Evaluating model performance: calculating performance 
according to the selected criteria to obtain a statement of 
model performance 

- Comparing model performance: comparing the calculated 
performance between alternative models trained to identify the 
best performing model 

- Visualizing results: producing visual representations of 
alternative models’ performance to select the best performing 
model 

- Indicating the best performing model: identifying the model 
that is characterized by the best performance for use in later 
prediction on new datasets 

Interpreting: relying 
on own judgment 
and understanding 
to interpret 
algorithmic inputs 
informing further 
work 

Table 3. Types of unknowability, actions deployed in response and their modes 

Discussion   

This paper was motivated by the need to uncover the sources of unknowability in developing algorithmic 
solutions and data scientists’ responses to this unknowability. We identified six types of unknowability 
present in AD: resource, problem, dataset, analytical, model, and performance unknowability. We were able 
to focus on algorithmic unknowability drawing from the flow-oriented approach that emphasizes 
contingencies, unpredictability and the role of seemingly insignificant actions in how various phenomena 
emerge. Consequently, we identified actions that take place during development and investigated how these 
actions present a response to unknowability. Since human actors and technology artifacts interact to 
produce cognitive outcomes (Zhang et al. 2021) in algorithmic development, we isolated data scientists’ 
modes of response to unknowability from the actions: reasoning through unknowability by interpreting, 
accepting its presence by optionalizing, and minimizing it by experimenting.  

The modes of response allow us to explain how bias can make its way into AD. While none of the actions 
themselves are inherently biased, the modes of response to algorithmic unknowability can be bias-
enabling, that is they open up the possibility to introduce data scientist’s bias into the process. Bias-
enabling interpreting, that is relying on own judgment and understanding to interpret algorithmic outputs 
informing further work, makes it possible to introduce own bias into, for example, analyzing independent 
variables to select which ones may be predictive of the outcome, or evaluating model performance, where 
bias towards certain criteria over others (e.g. speed versus accuracy) may influence the final indication of 
the best performing model. Bias-enabling optionalizing, taking decisions regarding AD from a range of 
optional choices, enables the possibility to introduce bias for example by opting in or out of removing 
outliers, deciding for or against transforming certain data types so that they can be taken into account in 
modelling, or in resampling data to artificially increase or decrease the number of certain observations. 
Bias-enabling experimenting, whereby data scientists try out various approaches to modeling aiming at 



 Enablers of Bias in Algorithmic Development
  

 Forty-Second International Conference on Information Systems, Austin 2021
 15 

obtaining the bet result, opens up scope for introducing bias in what algorithms are selected, what 
parameters are set, and what features are selected.  

Our findings offer three theoretical contributions. First, we build on literature that analyses the enablers of 
algorithmic bias (Barocas and Selbst 2016; Favaretto et al. 2019; Kordzadeh and Ghasemaghaei 2021). 
Focusing on algorithmic design as a potential source of bias (Barocas and Selbst 2016; Favaretto et al. 2019; 
Kordzadeh and Ghasemaghaei 2021), we extend this literature by providing a comprehensive overview of 
AD and identifying 32 discrete actions where bias may be enabled through data scientists’ modes of 
responding to unknowability. We show that bias may enter AD not only through previously acknowledged 
bias-enabling choices of features or weights, but in seemingly trivial actions, such as removing outliers, 
resampling data, or evaluating model performance. Similarly, we extend current IS literature shedding light 
on the role of data scientists in shaping the outputs of algorithmic solutions by supplementing it with a 
more technical perspective. Not only social or organizational factors, such as struggles over access to 
knowledge, deploying various cognitive frames, or the mechanisms of producing organizational knowledge 
(van den Broek et al. 2021; Ghasemaghaei et al. 2018; Ghasemaghaei and Turel 2021; Joshi 2020) influence 
how data scientists develop algorithmic solutions, but it is also their prior unknowability as a technical 
aspect that shapes data scientists’ engagement in AD, thus influencing outputs. Further research is needed 
to understand how the social, organizational, and technical factors interact in shaping data scientists’ 
decisions in the course of AD, and in consequence what kind of bias may be enabled. Since our work was 
conducted outside of organizational boundaries, our findings should be tested and refined within an 
organizational setting. 

We argued that algorithmic unknowability, the ex ante and ex post unknowability of the input-output 
relationship in algorithmic solutions (Zhang et al. 2021), is not only evident in run-time, where users 
engaging such solutions have to cope with their variability and unpredictability, but also in design-time. 
Data scientists developing algorithmic solutions need to deal with unknowability during AD. We contribute 
to this line of reasoning by identifying six types of algorithmic unknowability present in design-time: 
resource, problem, dataset, analytical, model, and performance unknowability. We hypothesize that these 
types of unknowability may also apply to run-time, but further research is needed to confirm this and thus 
contribute further to the understanding of the sources and consequences of algorithmic unknowability. 

Finally, we drew on the concept of exploratory programming which captures how, in general, data scientists 
engage in AD where specific programming goals and tasks are not defined a priori but rather discovered 
while writing code (Kery et al. 2017; Kery and Myers 2017). We extend this literature by showing that as 
part of thus conceived exploratory programming, data scientists deploy bias-enabling interpreting, 
optionalizing, and experimenting as modes of response to algorithmic unknowability. By doing so, we 
provide a better understanding of the characteristics of exploratory programming, and we help delineate it 
as a different type of IS development where the unknowability of the system to be developed defies some 
commonly held assumptions about development (Hirschheim and Klein 1989; Ralph 2018). More work is 
needed to understand AD as a distinct form of information systems development. 

Our work also offers contributions to practice. The actions we identified as taking place during AD provide 
managers with a better understanding of what is happening when such solutions are developed, and make 
visible the level of subjectivity that enters such actions through the data scientists’ modes of bias-enabling 
responses. As a result, those responsible for AD have a better understanding of discrete actions where bias 
may enter, and in consequence can take steps to prevent it. Both managers and developers themselves, 
when conscious of bias-enabling interpreting, optionalizing, and experimenting, can become more aware 
of how these modes, when deployed, may channel implicit or explicit bias into AD.  

Conclusions 

In this work, we focused on algorithmic unknowability in design-time as a catalyst for action during the 
development of algorithmic solutions. We identified specific types of such unknowability, and outlined the 
role of data scientists’ modes of response to unknowability as they develop solutions. Action that we traced 
in each Jupyter notebook containing an algorithmic solution was heavily influenced by these modes of 
response affecting the individual, subjective decisions taken by data scientists. In fact, all notebooks and 
algorithmic solutions developed that we studied followed different flows and yielded different results. This 
reflects our main argument that bias-enabling interpreting, optionalizing, and experimenting opens up 
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possibilities to introduce subjective, individual perspectives which may reflect individual biases of data 
scientists. Each instance of dealing with algorithmic unknowability by interpreting outputs, selecting some 
actions but not others, and experimenting with various features and parameters potentially enables bias.  
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