
Portland State University Portland State University

PDXScholar PDXScholar

Business Faculty Publications and
Presentations The School of Business

12-2021

How To Train Your Algo: Investigating the Enablers How To Train Your Algo: Investigating the Enablers

of Bias in Algorithmic Development of Bias in Algorithmic Development

Marta Stelmaszak Rosa
Portland State University, stmarta@pdx.edu

Follow this and additional works at: https://pdxscholar.library.pdx.edu/busadmin_fac

 Part of the Business Commons

Let us know how access to this document benefits you.

Citation Details Citation Details
Stelmaszak, M. (2021) How To Train Your Algo: Investigating the Enablers of Bias in Algorithmic
Development. International Conference on Information Systems, 12-15 December 2021.

This Conference Proceeding is brought to you for free and open access. It has been accepted for inclusion in
Business Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us
if we can make this document more accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/busadmin_fac
https://pdxscholar.library.pdx.edu/busadmin_fac
https://pdxscholar.library.pdx.edu/busadmin
https://pdxscholar.library.pdx.edu/busadmin_fac?utm_source=pdxscholar.library.pdx.edu%2Fbusadmin_fac%2F255&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/622?utm_source=pdxscholar.library.pdx.edu%2Fbusadmin_fac%2F255&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/busadmin_fac/255
mailto:pdxscholar@pdx.edu

 Enablers of Bias in Algorithmic Development

 Forty-Second International Conference on Information Systems, Austin 2021
 1

How To Train Your Algo: Investigating the
Enablers of Bias in Algorithmic Development

Completed Research Paper

Marta Stelmaszak
The School of Business

Portland State University
stmarta@pdx.edu

Abstract

Literature on algorithmic bias identifies its source in either biased data or statistical
methods, more rarely in the development of algorithmic solutions as a potential factor.
Because of the prior unknowability of algorithms, data scientists developing such
solutions have to take various design decisions. Drawing from the flow-oriented
approach, we study algorithmic unknowability and how data scientists respond to it in
35 public data science Jupyter notebooks containing algorithmic solutions to predict
customer churn in a credit card dataset on a data science platform Kaggle.com. We offer
a more thorough understanding of the unknowability in algorithmic development that
can enable algorithmic bias: resource, problem, dataset, analytical, model, and
performance unknowability. We find that in response, data scientists engage in bias-
enabling interpretation, bias-enabling optionalizing, and bias-enabling
experimentation. These findings contribute to literature on algorithmic bias and can help
avert bias earlier in practice.

Keywords: Algorithms, algorithmic bias, machine learning, artificial intelligence, flow of action,
information systems development, data science, algorithmic development

Introduction

“A kind of ‘magic’ happens between inputting data to train, validate, and test algorithms and receiving the
final output data, usually in the form of discrete classifications or continuous probabilities”, stated Baum
and Haveman recently (2020, p. 270) in their editors’ comments on the future of organizational theory.
Researchers increasingly point out, however, that this algorithmic ‘magic’ may end up being a ‘curse’ in the
form of algorithmic bias that occurs when “the outputs of an algorithm benefit or disadvantage certain
individuals or groups more than others without a justified reason for such unequal impacts” (Kordzadeh
and Ghasemaghaei 2021, p. 1). Algorithmic bias may result in adverse consequences for individuals,
organizations, and society, and as such its effects are studied increasingly more often to avert negative
impacts, but its sources are still not fully understood (Favaretto et al. 2019; Gal et al. 2018; Ransbotham et
al. 2016; Tarafdar et al. 2020).

Information systems (IS) with its focus on socio-technical aspects is well positioned to contribute to
knowledge on algorithmic bias by providing a better understanding of the mechanisms that generate it
(Ransbotham et al. 2016). So far, the sources of algorithmic bias have been commonly identified in
algorithm’s inputs, that is biased data, statistical methods, and more recently - algorithm design (Barocas
and Selbst 2016; Favaretto et al. 2019; Kordzadeh and Ghasemaghaei 2021). However, our current
understanding of how bias may be introduced during algorithm design is partial and limited, pointing
towards more social and organizational factors that can impact the development process (van den Broek et
al. 2021; Ghasemaghaei et al. 2018; Ghasemaghaei and Turel 2021; Joshi 2020). Instead, we propose to
turn to the technical side of algorithms to investigate how it contributes to enabling bias in the process of
developing algorithmic solutions.

 Enablers of Bias in Algorithmic Development

 Forty-Second International Conference on Information Systems, Austin 2021
 2

Algorithmic solutions, a term we use to refer to a wide range of information systems that deploy algorithms
to process input data and produce computed outputs, are developed by data scientists, professionals skilled
in computer science, programming, and development (Vaast and Pinsonneault 2021). The development of
algorithmic solutions (henceforth algorithmic development, AD) opens up various possibilities to introduce
bias because of their prior unknowability. We argue and demonstrate that such solutions are characterized
by algorithmic unknowability of the relationships between inputs and outputs not only in run-time (Zhang
et al. 2021), but also in design-time, or development. Data scientists charged with AD have to deal with this
unknowability during development through exploratory programming (Kery et al. 2017; Kery and Myers
2017), and their subjective, individual responses may introduce bias to algorithm design. However, so far
we have limited knowledge of design-time algorithmic unknowability and how data scientists specifically
respond to it. To address this gap, we studied 35 public data science Jupyter notebooks containing
algorithmic solutions developed to predict customer churn in a credit card dataset on a popular data science
and machine learning platform Kaggle.com (Dissanayake et al. 2015; Mangal and Kumar 2016). Referring
to a common problem faced by many companies and often tackled by algorithmic solutions, the credit card
dataset attracted over 200 notebooks with code and comments describing attempts to best predict customer
churn. Studying the flow of development action, including code, code execution and computational
narratives, in Jupyter notebooks (Baygi Mousavi et al. 2021), we identify the precise sources of algorithmic
unknowability and action that emerges in response. Focusing then on the role of data scientists in this
action, we isolate three modes of response that they deploy: bias-enabling interpretation, bias-enabling
optionalizing, and bias-enabling experimentation.

We build on current literature by identifying the technical roots of algorithmic unknowability, outlining a
comprehensive set of discrete actions that take place during developing algorithmic solutions, and showing
how the modes of data scientists’ responses to unknowability may open up opportunities to introduce bias.
In practice, our findings can help data scientists and managers identify the parts of the development process
that may lead to the introduction of bias, and thus increase the likelihood of averting algorithmic bias. A
better understanding why, how and where bias can occur in algorithmic design can help address the
problem (Silva and Kenney 2019).

Background Literature

Algorithmic solutions are commonly perceived as a neutral source of objective knowledge derived nearly
autonomously from datasets, as they help “to overcome many of the irrationalities and biases that plague
domain experts, thereby providing more objective knowledge” (van den Broek et al. 2021, p. 7). In this
perspective, human data scientists play only an instrumental role and should even be eliminated for the
sake of efficiency and increasing objectivity (Davenport and Harris 2017). Similarly, AD is seen as a rational
endeavor that follows a fixed, established process of deriving neutral insights from objective, neutral data,
akin to the rational design paradigm in software engineering (Ralph 2018), or the perception of systems
development as instrumental reasoning based on “naïve realism” where the developer is the expert who
takes managers’ objectives “and turns them into a constructed product, the system. Management dictates
the ends; the developers use specific means to achieve the ends” (Hirschheim and Klein 1989, p. 1203).

Despite these firm convictions regarding algorithmic objectivity, a growing body of literature recognizes the
issues of algorithmic bias, that is the fact that the outputs of an algorithmic solution may “benefit or
disadvantage certain individuals or groups more than others without a justified reason for such unequal
impacts” (Kordzadeh and Ghasemaghaei 2021, p. 1). This is widely perceived as detrimental and there is
ongoing research that aims at identifying the consequences of algorithmic bias on individuals,
organizations, and society (Kordzadeh and Ghasemaghaei 2021). Noting that this phenomenon is socio-
technical in nature, researchers point out that especially IS can contribute to uncovering the antecedents of
bias (Kordzadeh and Ghasemaghaei 2021; Ransbotham et al. 2016), as “for engineers and policymakers
alike, understanding how and where bias can occur in algorithmic processes can help address it” (Silva and
Kenney 2019, p. 37). For this reason, the understanding what mechanisms can generate algorithmic bias
has been identified as a central challenge in IS research (Ransbotham et al. 2016). Below we provide an
overview of literature on the sources of algorithmic bias, focusing on the role of the data scientist in AD,
and we draw from exploratory programming as a response to algorithmic unknowability in AD.

 Enablers of Bias in Algorithmic Development

 Forty-Second International Conference on Information Systems, Austin 2021
 3

Introducing Bias into Algorithmic Solutions

Three main potential enablers of bias, that is places where bias can be introduced into algorithmic solutions,
have been discussed. First, a sizable amount of work focuses on identifying algorithm input, that is training
data, as a potential source of bias (Barocas and Selbst 2016; Favaretto et al. 2019; Kordzadeh and
Ghasemaghaei 2021): if biased data are used to train algorithms, they are likely to offer equally biased
outputs (Tarafdar et al. 2020). Second, statistical discrimination has been identified as a contributor to
bias, that is to say that algorithms, like all statistical methods, only represent objects via mathematical
proxies, and so “adverse outcomes against protected classes might occur involuntarily due to the
classification system” (Favaretto et al. 2019, p. 12).

While these two potential enablers of algorithmic bias are fairly well studied with established solutions
proposed (Kordzadeh and Ghasemaghaei 2021), it is the third source that is most relevant to this paper:
algorithm design. During AD, choices and decisions need to be made regarding the features to be used,
weights attached to them, and objective functions that all impact how algorithms process inputs and the
outputs they produce (Barocas and Selbst 2016; Kordzadeh and Ghasemaghaei 2021). Others note that the
entire process of AD is dependent on data scientists’ design choices: “insofar as the data scientist needs to
translate a problem into formal computer coding, deciding on the target variable and the class labels is a
subjective process” (Favaretto et al. 2019, p. 12). Going even further, “human subjectivity is at the very core
of the design of data mining algorithms since the decisions regarding which attributes will be taken into
account and which will be ignored are subject to human interpretation [12], and will inevitably reflect the
implicit or explicit values of their designers [1]” (Favaretto et al. 2019, p. 17). Thus, literature recognizes
that as long as data scientists are involved in AD, they will make subjective decisions and choices that impact
algorithmic solutions and may open up possibilities for introducing bias.

Recent IS studies investigating the work of data scientists poignantly show their engagement in and impact
on AD. For example, Ghasemaghaei and colleagues (Ghasemaghaei et al. 2018; Ghasemaghaei and Turel
2021) discuss the practices of knowledge hiding that data scientists engage in, thus impacting how
algorithmic outputs are used in organizations by evasive hiding, playing dumb, and rationalized hiding, that
all have varying effects on decision-making (Ghasemaghaei and Turel 2021). Joshi (2020) investigated how
the practices of data scientists in the banking industry rely on both subjectivity and objectivity in the
production of information, emphasizing the role of data scientists’ choices at various stages of the analysis
process, for example choices regarding algorithms, the use of variables to be included, methods of
evaluation, and similar. In an ethnography of how a machine learning-based algorithmic solution was
developed, van den Broek and colleagues (2021) show how knowledge produced within such systems relies
on a hybrid practice combining machine learning and domain expertise: data scientists and subject matter
experts need to reflect on developing algorithmic solutions for producing knowledge in the course of a
mutual learning process that takes place during AD. Thus, even this nascent research shows that data
scientists introduce their own subjectivities into the process. However, these findings are focused more on
the social and organizational aspects that require data scientists to take decisions and make choices
influencing the design, while little is still known about the technical side of algorithmic solutions that
requires these choices and decisions.

Algorithmic Unknowability in Development

As with other autonomous tools, algorithmic solutions are characterized by algorithmic unknowability
(Zhang et al. 2021), that is the ex ante and ex post unknowability of the input-output relationships. As we
argue, this unknowability applies not only to run-time, but also to design-time, which we refer to as AD.
Algorithmic unknowability in development means that during the process, the input-output relationships
are unknowable ex ante to the developer: the data scientist does not know what outputs will be produced
by each input component of the solution under development until such outputs are presented to her. As a
basic example, the data scientist does not know whether there are any missing values in the dataset that
need to be dealt with before running code to check for missing values and evaluating the results – the
outcome of each command in code is only known after the code is executed, and only then the next design
decision can be made. In AD then, “human actors and technology artifacts interact to produce specific
cognitive outcomes” (Zhang et al. 2021, p. 7): decisions and choices that shape development. This
unknowability is furthered by the fact that algorithms are non-deterministic which makes it difficult to

 Enablers of Bias in Algorithmic Development

 Forty-Second International Conference on Information Systems, Austin 2021
 4

know the outcomes in advance (Seidel et al. 2018; Zhang et al. 2021), and the exact resources, such as
computing power needed to run algorithms, are also unknowable in advance (Zhang et al. 2021). As such,
AD is characterized by design-time unknowability, where the effects of development action are emergent,
the relationships between inputs and outputs in the development process are unknown, and multiple
potential trajectories are possible at every decision point.

It is for the reasons of algorithmic unknowability that AD differs from more traditional forms of IS
development, as it does not have clear ends or goals that are knowable a priori. AD falls under exploratory
programming, where there are no clear requirements for the code at the onset, and there is a broad space
of possible solutions (Kery et al. 2017; Kery and Myers 2017), it is “a programming task in which a specific
goal or a means to that goal must be discovered by iteratively writing code for multiple ideas” (Kery et al.
2017, p. 1). As such then, AD has open-ended goals and relies on exploring different approaches while the
goal evolves based on insights, differently from traditional programming (Subramanian et al. 2019).

The Impact of Unknowability on Development

As a result of algorithmic unknowability, data scientists engage in exploratory programming in AD (Hill et
al. 2016; Kery et al. 2017). Exploratory programming is key under circumstances of flexibility, discovery,
and innovation, and its defining characteristic is “the practice of designing the goal at the same time as
experimenting in code” (Kery and Myers 2017, p. 25). Data scientists write code to prototype or experiment
with different ideas to obtain insight from data, but they do not engineer working code to match a pre-
defined specification – instead, the goal is open-ended and evolves together with the evolution of code (Kery
and Myers 2017). This kind of work is highly iterative, exploratory and non-linear (Patel et al. 2008), and
relies heavily on the professional judgment and decisions made by data scientists (Rule et al. 2018).

Current research into the work of data scientists who engage in exploratory programming reveals the extent
to which they have to draw on their own, subjective, human judgment in making various decisions in AD:
“insights are sensitive to the methods used to produce them; small changes in how data are collected,
cleaned or processed can lead to vastly different results” (Rule et al. 2018, p. 1). As data scientists engage in
obtaining, cleaning, profiling, analyzing and interpreting data (Rule et al. 2018), they may be tasked with
data merging and cleaning, sampling, feature selection, defining metrics, building predictive models,
defining ground truth, hypothesis testing, and even applying insights or models to business (Kim et al.
2016). At every step, they “try different versions of the same analysis, slowly improve analytical methods,
and hit numerous ‘dead ends’ before finding an explanation that ‘fits’ the data” which “can make it difficult
to perform an ‘objective’ analysis” (Rule et al. 2018, p. 2), while data scientists must be clear and transparent
in their reasoning “if others are to understand, and ultimately trust their work” (Rule et al. 2018, p. 1).

Current literature points towards algorithm design as a potential enabler of bias in algorithmic solutions,
suggesting that human subjectivity, judgment and decisions in this process may introduce various biases.
While most IS literature in this area focuses on the social and organizational factors that shape data
scientists’ engagement in AD, little is known about the technical aspect of algorithmic solutions that
requires the developers to draw on their own judgment in making development decisions and choices. We
argue that algorithmic unknowability inherent in such solutions requires data scientists to engage in
exploratory programming in response, but we do not yet know enough about the sources of unknowability
in developing algorithmic solutions and how data scientists respond to it.

Theoretical Framework

We adopt the flow-oriented approach and vocabulary, as suggested in a recent MISQ paper proposing the
flow of action as a new lens to study continuous socio-technical transformation in a fluid and dynamic
digital world (Baygi Mousavi et al. 2021): we want to ‘think movement’. The flow-oriented approach focuses
on becoming over time, tracing ongoing action and its results in time. The phenomena are understood as
ongoingly (trans)forming accomplishments. This perspective encourages the focus on evolution, becoming,
diversity, flow, movement, creativity and conditionality, among other aspects, and puts stability, spatiality,
planning and actors into the background (Baygi Mousavi et al. 2021). The flow-oriented approach draws
attention to the impact of contingencies, unpredictability, seeming insignificance of various flows of action
in the explanations of how and why transformations happen. In IS, this for example entails a shift from

 Enablers of Bias in Algorithmic Development

 Forty-Second International Conference on Information Systems, Austin 2021
 5

users and systems towards the temporal flows of using and computing (Baygi Mousavi et al. 2021; Yoo
2010), or a move from understanding software as static assemblies of modules and features to “continuous
meandering flows of computational services or experiences—experiences made possible through
confluences along unfolding trajectories of languages, frameworks, devices, data streams, web services,
APIs, but also those of careers, habits of use, trends and fads, regulation, best practices, and so forth” (Baygi
Mousavi et al. 2021, p. 15). The flow-oriented approach invites us to investigate the trails along which action
flows (Baygi Mousavi et al. 2021). The flow of action cannot be broken up without affecting the
phenomenon, as phenomena emerge from “the creative absorption of previous trajectories of action and
their ongoing weaving into ever-new paths” (Baygi Mousavi et al. 2021, p. 16). Trajectories of flowing action
unfolding along trails create “conditions of possibility” for further action in a certain direction (Baygi
Mousavi et al. 2021, p. 16).

We appreciate that this is a novel approach to study IS phenomena, but we believe it is particularly fitting
to the study of developing algorithmic solutions, not only because it foregrounds action, but primarily
because it allows to zoom in on unknowability and its impact on subsequent action. The nascent literature
on AD and exploratory programming confirms that there is a significant degree of contingencies,
unpredictability and seemingly insignificant action that can have big impacts on the development of
algorithms. This is in line with seeing algorithmic solutions as ongoingly (trans)forming accomplishments
that become over time, based on the conditions of possibility revealed in action. In other words, we see
algorithmic solutions as emerging in the flow of development action. We describe how this theoretical
framework informed our research design next.

Research Design

Kaggle.com is a popular platform for data scientists and machine learning engineers where they can develop
and improve their skills, as well as participate in corporate-sponsored competitions by addressing a variety
of problems related to datasets published. Kaggle.com, part of Alphabet Inc, allows to upload datasets, set
specific tasks and create interactive Jupyter notebooks where users can develop algorithmic solutions.
Kaggle.com was selected as a setting because of its public availability and openness in sharing notebooks
that allows an unprecedented access to the design of algorithmic solutions. Others have used Kaggle.com
for research purposes as well (Dissanayake et al. 2015; Mangal and Kumar 2016).

The dataset we selected for this study is a well-regarded and popular one, containing the details of around
10,000 credit card customers of a bank, whereby a portion of customers churned. The goal is to identify,
based on 18 variables such as age, salary, credit card limit and similar, what makes a customer churn (give
up a credit card) to be able to predict customers at risk of churning in the future, as well as to identify the
variables that are most predictive of the risk of churn (“Kaggle.Com” 2021). When we investigated the
dataset, there were around 210 notebooks submitted that contained algorithmic solutions to this dataset,
with constant daily activity in existing notebooks and new notebooks being added. Kaggle.com users can
contribute with their proposed algorithmic solutions by creating and working on Jupyter notebooks.
Jupyter notebooks are a popular format used among data scientists and machine learning engineers to
develop, share and display their algorithmic solutions. The notebooks allow combining code and user-
generated computational narratives of the steps taken and the findings, and can be easily shared with
elements of code executed, that is for example with embedded diagrams or results. Segments of code can
be re-executed at later stages in the Jupyter environment. A typical Kaggle.com notebook is hosted in
Google cloud and gives users access to Google-sponsored processing resources.

We selected an open and public dataset rather than a competition because the majority of notebooks
submitted for competitions are private and thus visible only to sponsor companies, and competitions are
usually very specific and limit the variety of potential algorithmic solutions developed. In contrast, public
notebooks allow good access to notebooks containing fairly unrestricted solutions with much more
experimentation. From the datasets available on Kaggle.com, we selected the credit card customers dataset
because it is related to a common problem that many organizations face, and it is a problem that is often
tackled by developing algorithmic solutions, thus it is a good representative sample of what researchers in
IS and management would consider of interest.

 Enablers of Bias in Algorithmic Development

 Forty-Second International Conference on Information Systems, Austin 2021
 6

Data Collection

In January and February 2021, we collected 57 Jupyter notebooks that were created using the credit card
customer dataset in Python as the programming language. The notebooks were arranged from the ‘hottest’
(a measure used on Kaggle.com to define notebooks with most activity, edits and highest votes by the
community, Kaggle.Com, 2021), and thus those collected were considered among the ‘hottest’ at the time.
We decided to select the ‘hottest’ notebooks as these were assessed as high quality by the community, thus
were likely to contain well-developed algorithmic solutions. We discarded notebooks in R to eliminate
differences in programming languages, and notebooks that contained only partial solutions, for example
only analyzed data without building actual models. Using a feature available on Kaggle.com, we downloaded
all of the selected notebooks and converted them to PDF documents to analyze them in nVivo. The PDF
documents contained all code, code execution, and computational narratives. In total, we collected 841
pages of code, code execution and narrative in the PDF format (on average 24 pages per notebook) and
1,692 segments of code (on average 35 per notebook) consisting of several lines of code each.

Notebooks are appropriate a source of data to study the flow of action because they document the way action
takes place, allowing for the study of the flow of action, accounting for code, its execution, and
computational narratives, illuminating how both the technological artifact and the human actor (Zhang et
al. 2021) interact to produce decisions and choices. Further, the sequential nature in which notebooks detail
AD allows to study how actions flow from one another and how they create “conditions of possibility” for
further action. This foregrounds the unknowability of algorithmic solutions and actions in response. The
presence of computational narratives allows to focus on the role of data scientists, as in them developers
explain, justify, and keep track of design decisions (Rule et al. 2018; Subramanian et al. 2019). Notebooks
are used to provide explanatory annotations, but also give a narrative structure that explains and justifies
choices (Kery et al. 2018).

Data Analysis

Bagyi Mousavi and colleagues offer some methodological suggestions regarding setting up a study that
adopts the flow-oriented approach (2021). They encourage to focus on tracing the flows of action in
answering how and along which lines phenomena are brought into being and carry on trans(forming), how
and along which lines is the phenomenon flowing, what is the story of the happening of X (p. 46, 48, 52).
Drawing from these suggestions, we set out to study action in AD by uncovering how and along which lines
this developing is flowing, and what actions bring algorithmic solutions into being.

Methodologically, we adopted an action as a unit of analysis, where an action is the unfolding of steps
directed at accomplishing a specific task, identified in code, code execution, and accompanying
computational narrative. Once action towards accomplishing a specific task is completed, it enables the
unfolding of ensuing action, and so on, with the main flow of action directed towards developing an
algorithmic solution. We bracketed action we identified into stages commonly present in data science
development (Kurgan and Musilek 2006), that is 1) Preparing the environment, 2) Reading in data, 3)
Cleaning data, 4) Exploratory data analysis, 5) Pre-processing the dataset, 6) Building and training the
model, 7) Testing and validating the model. In other words, we encountered these stages in the data and
used them to group action we identified.

Stage Stage start Action unfolding in the stage Stage end

Reading in
data

Headline:
“Meeting the
data”

Action aimed at loading the data used into the notebook environment and
understanding its shape to clean it appropriately

Following
headline

Action Action start Code Code execution Narrative Action end

Loading
data

Computational
narrative

data =
pd.read_csv('../input/
credit-card-
customers/Bank
Churners.csv')

File attached to the
notebook

Lets open the data and
see what we have

Following code
segment
concerns a
different task

Inspecting
data

Computational
narrative

data.shape (10127, 23) Lets see the shapes of
the data so we know

Following code
segment

 Enablers of Bias in Algorithmic Development

 Forty-Second International Conference on Information Systems, Austin 2021
 7

what we are dealing
with

concerns a
different task

Table 1. Example of identifying Loading data and Inspecting data action from Notebook_009

We proceeded by inductively coding the notebooks to identify action as defined above and exemplified in
Table 1. Because of the inductive nature of our study, we oscillated between data analysis and further data
collection. After coding the first 35 notebooks, we began to identify only action we had already coded for,
and the subsequent 10 notebooks did not add any new action. At this point we decided to stop coding and
analyzing the notebooks as we reached the point of saturation, arriving at 32 discernible actions.
Subsequently, we developed sequences of development action in each notebook, as shown in Table 2.

Sequence of action 1.1 1.2 1.3 1.4 2.1 2.2 3.3 2.2 3.1 3.5
4.3 4.1 4.4 4.2 4.4 4.2
4.4 4.2 4.4 4.3

Stage 1 Preparing the environment 2 Reading in data 3 Cleaning data
4 Exploratory data
analysis

Sequence of action 5.3 5.1 5.4 5.2 6.2 6.6 6.3 6.4 7.1 7.2 7.2
6.5 6.5 5.1 5.4 5.2 6.2
6.3 6.4

Stage 5 Pre-processing the dataset 6 Model building 7 Model validation 6 Model building

Sequence of action 7.1 7.2 7.4 7.2 6.2 6.6 6.4 6.3 6.4 7.1 7.2 7.4 7.2 6.5 6.2 6.6 6.4 6.3 6.4

Stage 7 Model validation 6 Model building 7 Model validation 6 Model building

Sequence of action 7.1 7.2 7.4 7.2 6.5 7.5

Stage 7 Model validation

Table 2 Example of a flow of action in Notebook_008 with a detailed sequence of action in stages

This provided us with a schematic representation of the flow of development action in every notebook. We
report on our findings regarding the unknowability in development and how data scientists responded to it
below.

Algorithmic Development Under Unknowability

In this section, we present the stages in developing an algorithmic solution with identified sources of
unknowability, as well as responses to these types of unknowability evidenced in action. Algorithmic
unknowability was evident in the notebooks we studied, exemplified by the fact that only the business
problem was stated, that is the need to be able to predict customer attrition based on the available data, and
when input data were obtained, the specifics of the final solution were unknown, they emerged in the flow
of action.

Stage 1: Preparing the Environment Under Resource and Problem Unknowability

In the first step in AD, the programming environment is set up, which entails creating a new Jupyter
notebook on Kaggle.com with a few clicks and initiating a new processing session. This is required to set up
the notebook so that AD can start. Since all processing happens in the cloud, each notebook has some
processing capacity allocated, with the maximum session lime of 9 hours, maximum of 19.6 GB disk space,
maximum of 16 GB RAM and an indication of CPU usage in percentage, and an accelerator can be added at
any point to increase processing capacity, with a choice of GPU and TPU v3-8. The kind of resources and
their level is unknown, and thus this stage is characterized by resource unknowability. Next, a choice of
programming language needs to be made, with Python as a default and the option of selecting R. Access to
the internet, for example for loading data held online, can be enabled. At the point where these decisions
are made, problem unknowability is also evident – the exact specifics of the problem and how it will be
defined, e.g. the dependent variable, are unknown.

 Enablers of Bias in Algorithmic Development

 Forty-Second International Conference on Information Systems, Austin 2021
 8

To deal with these sources of unknowability, data scientists set up the processing environment as defined
by Kaggle.com, and have some choice over the parameters for the notebook to satisfy estimated processing
needs, for example by enabling an accelerator, and they also select the programming language of their
choice. Because of both resource and problem unknowability, in many notebooks data scientists import
libraries, that is software packages up front, drawing on their experience and knowledge of packages that
proved to be useful in the past. By default, Jupyter notebooks on Kaggle.com come equipped with some
starter code that recommends importing some packages: “# This Python 3 environment comes with many
helpful analytics libraries # It is defined by the kaggle/python Docker image:
https://github.com/kaggle/docker-python # For example, here's several helpful packages to load”
(Notebook_002).

Finally, to deal with problem unknowability, we found that data scientists often identify the problem and
the prediction task by re-stating it in the computational narrative: “In this notebook we will try to find the
most important reasons that a customer would churn and also devise multiple models that would predict
churning customers” (Notebook_001) that sometimes extends into a comprehensive summary of the
contents of the notebook (e.g. Notebook_012). In this action, data scientists begin to interpret the problem
in programming terms to identify the dependent variable.

Stage 2: Reading in Data Under Dataset Unknowability

In this stage, action is aimed at loading the data into the notebook and understanding the contents of the
dataset. At this point, the data scientist may know the dataset somewhat from the description on
Kaggle.com, but its exact specifics, such as data types and basic statistics, are unknown. In response to this
prior dataset unknowability, we found that first data is loaded, which involves attaching data to the
notebook environment, executed in a single line of code: data=pd.read_csv("/kaggle/input/credit-card-
customers/BankChurners.csv") (Notebook_001), and then inspected: “Meeting the data. Lets open the
data and see what we have” (Notebook_009), as data scientists need to familiarize themselves with the
variables and values in the dataset. Checking data types is aimed at identifying what data types variables
are stored in is essential to inform further data cleaning (e.g. “There are 6 categorical and 14 numeric
features.”, Notebook_022). Descriptive statistics are sometimes obtained to get a basic statistical summary
of the dataset, also for the purposes of confirming the dataset is of the expected shape and informing the
need of further data cleaning, e.g. “There is a big gap between max and min values. This situation
strengthens the presence of outliers.” (Notebook_022). In some cases, preliminary observations and
conclusions are drawn from this summary that inform later exploratory data analysis, e.g. “Some
observations from the table: • Majority of clients are married. • Almost all clients have Blue Card (~%93)”
(Notebook_022).

Stage 3: Cleaning Data Under Dataset Unknowability

At this stage, action is aimed at removing unnecessary or unneeded elements from the dataset to enable
further processing. Similar to the previous stage, here dataset unknowability is present and requires
appropriate action: some elements need to be removed or changed, but it is not possible to know what
interventions are needed in advance. In response, we found that in some notebooks action includes
renaming variables, that is changing the names of variables to ease referring to them: “Columns title is TO
LONG, let’s rename it.” (Notebook_012), removing unnecessary variables: data=data.iloc[:,:-2]#deleting
last two rows as mentioned in database (Notebook_001), or removing outliers, that is rows in the dataset
that contain values too far from the mean that could skew the model: “credit limit, avg oepn to buy,
total_trans_amt seems to have outliers” (Notebook_002). These actions take place in some notebooks
(renaming variables – 4, removing variables – 33, removing outliers – 2 notebooks), but sometimes are
omitted or take place at different stages.

Dealing with missing values, that is checking for and removing missing values from the dataset is required
as prediction models do not work with missing values. With large datasets, it cannot be known in advance
if there are any missing values, so it is only after executing code to check for missing values that it can be
known: “We are off to a great start as there appears to be no missing values!” (Notebook_016), “there are
no null/missing values SIGH!” (Notebook_002), “LUCKY! NO need to handle with NaN or missing data”
(Notebook_012). Otherwise, missing values have to be dealt with, for example by means of imputation, that

 Enablers of Bias in Algorithmic Development

 Forty-Second International Conference on Information Systems, Austin 2021
 9

is artificial generation of data points to fill in the gaps, as suggested e.g. in. Notebook_030. The second
action that allows the flow of AD to move forward is transforming data types, that is changing data types
(from e.g. categorical) into types suitable to be used in model building:
data[data.select_dtypes(['object']).columns] = data.select_dtypes(['object']). → apply(lambda x:
x.astype('category')) (Notebook_001). Categorical data include for example marital status or education
level, which are often coded to 0 (married) or 1 (single), and thus they cannot be used in model building in
this format: “Machine learning algorithms work best with numerical data. However, in our dataset, we
have some categorical columns. These columns contain data in textual format; we need to convert them
to numeric columns.” (Notebook_012). There are several different ways of dealing with categorical
variables: “These are the categorical variables, we will now either do encoding or make dummy so as to
make them all numerical so that we can plot out heatmap and proceed further” (Notebook_003).

Stage 4: Exploratory Data Analysis Under Analytical Unknowability

The exploratory data analysis stage concerns action aimed at learning insights from data to be used to guide
model building. The whole of action at this stage is underpinned by analytical unknowability, that is the
lack of prior knowability of the relationships between variables and their usefulness in developing the
algorithmic solution. In response, AD usually starts with analyzing the dependent variable, where
familiarizing with the predicted variable takes place so that data scientists can understand which
independent variables may help predict it: data.Attrition_Flag.value_counts() (Notebook_001). The
understanding of the dependent variable enabled by code execution informs other steps needed in pre-
processing the data later: “We can see that there are very few rows for ‘attrited customer’ we might need
to oversample the data” (Notebook_002). Unknowability is also countered by visualizing data, that is
producing visual representations of independent variables. These visualizations inform which independent
variables may be predictive and thus should be included in the model in later episodes. Visualizing data was
the single most common action in the notebooks, appearing in as many as 203 code segments in the
notebooks analyzed. Usually, multiple plots, graphs and charts are generated based on imported
visualization libraries: “[Data] is analyzed through visual exploration to gather insights about the model
that can be applied to the data, understand the diversity in the data and the range of every field. We use
a bar chart, box plot, distribution graph, etc. to explore each feature varies and its relation with other
features including the target feature” (Notebook_012). Some notebooks contain narratives describing
main learnings from data visualization: “it is analyzed through visual exploration to gather insights about
the model that can be applied to the data, understand the diversity in the data and the range of every
field. We use a bar chart, box plot, distribution graph, etc. to explore each feature varies and its relation
with other features including the target feature” (Notebook_012).

Analyzing independent variables can be conducted via other means than visual, for example by comparing
counts df['Income_Category'].value_counts() (Notebook_002) and drawing conclusions from numerical
analysis: “We can see that there are more number of female who uses the card than males”
(Notebook_002). Identifying correlations often takes place at this stage, where action is aimed at finding
out which variables correlate with the dependent variable: “lets make a heatmap so as to get, whats the
correlation b/w every other columns. But as we have categorical columns as well, so we will use integer
encoding so make them numerical and then make heatmap” (Notebook_003).

Stage 5: Pre-processing the dataset under model unknowability

Action at this stage concerns preparing the dataset for model building by giving it the right shape, and this
stage is characterized by model unknowability: since the exact algorithm that will be deployed in the model
built in the solution and its features and requirements are not yet known, action here needs to prepare the
dataset to work well with a wide range of potential algorithms. Scaling data can be conducted to change the
scale of variables to make sure that they do not influence the model unduly just because their unit. Scaling
can sometimes include normalization, that is enforcing standard distribution on each variable: “Next, we
normalize numerical so that each feature has mean 0 and variance 1 using Standar Scaler”
(Notebook_005). Scaling is performed using appropriate libraries and executed using few lines of code.
Another possible action is data resampling, that is increasing or decreasing the number of observations in
one of the classes (in this case, attired customers) that is in a disproportionate minority, thus creating a
balanced dataset. This is also performed using a common library package: “To balance the dataset we use

 Enablers of Bias in Algorithmic Development

 Forty-Second International Conference on Information Systems, Austin 2021
 10

SMOTE which stands for Synthetic Minority Oversampling Technique” (Notebook_005). However, these
actions are not uniformly present across all notebooks: we observed scaling data in 15 notebooks, and
resampling data in 10.

While previous actions are optional and appear variably across notebooks, it is required at this stage to
remove the target variable that should be predicted: “Our data is now ready, and we can train our machine
learning model. But first, we need to isolate the variable that we’re predicting from the dataset”
(Notebook_012). It is essential for this to take place as otherwise the model is not predictive, since the target
variable is known to the model. Usually, the dataset containing independent variables is named X, and the
dataset containing the target variable - y, or very similar. A common action concerns the formatting of the
dataset, that is adding or removing variables (other than the target variable which needs to be removed) to
prepare the final dataset for model building. It can include removing other unnecessary variables, and
putting together the dataset if it had been separated for example to transform categorical variables.

This stage ends with the action of splitting the dataset, that is dividing it into the training and test datasets
that will enable model building and testing, respectively. This is conducted using a standard library and
executed in one line of code: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, // →
random_state=42) (Notebook_001), where the dataset of predictive, independent variables X and the
dataset of the target, dependent variable y (in this case: whether customer attired or not) is split into four
datasets, with 70% of the data used for training (X_train and y_train datasets) and 30% of the dataset saved
for later testing (X_test, y_test), where these numbers vary between notebooks.

Stage 6: Building and Training the Model Under Model Unknowability

Action at this stage is aimed at building a model based on a selected algorithm and training it on the training
dataset to obtain a model capable of predictions. At this stage, prior model unknowability is evident: AD
starts without a specific model pre-defined, that is the algorithm, features, weights and parameters emerge
in development. Since the dataset we studied contained a supervised classification problem, all models used
in the notebooks deployed algorithms applicable to this type of a predictive problem. The types of
algorithms we observed were some simpler and common ones, such as logistic regression, a k-nearest-
neighbour classifier, Naïve Bayes or decision tree classifier, to more advanced classifiers such as AdaBoost,
Bernoulli NB, Extra Trees Classifier, Gradient Boosting Classifier, LGBM Classifier, Principal Component
Analysis, Random Forest Classifier, Support Vector Classifier or XGBoost classifier. Two notebooks
experimented with using a neural network for this task. Algorithm selection was always indicated by
importing the selected algorithm’s library, sometimes preceded with a narrative headline introducing the
selected algorithm, and on few occasions, notebooks contained longer explanations of the selection: “We
are going to predict those customers who will churn using random forests which are widely used for
classifiction problem like this one” (Notebook_039). Regardless of the type of the algorithm selected, all
these were implemented using pre-packaged functions, thus selecting the algorithm required importing the
relevant library.

The next action is model training, that is applying the selected algorithm to the training dataset to build a
model that maps the relationships between independent variables and the dependent variable, where these
relationships are unknowable a priori. This action is described in detail in the narrative in Notebook_012:
“Now, we’ll use a machine learning algorithm that will identify patterns or trends in the training data.
This step is known as algorithm training. We’ll feed the features and correct output to the algorithm;
based on that data, the algorithm will learn to find associations between the features and outputs. After
training the algorithm, you’ll be able to use it to make predictions on new data. (…) To train this
algorithm, we call the fit method and pass in the feature set (X) and the corresponding label set (y)”. In
all notebooks studied, algorithms are deployed by importing them from pre-existing libraries. For example,
in Notebook 001 we observe from sklearn.linear_model import LogisticRegression // logmodel =
LogisticRegression(), whereby the algorithm for logistic regression is imported from the sklearn library in
one line of code, and then invoked as logmodel in another line of code. Thus, logmodel is an instance of the
logistic regression algorithm that is created in the notebook. In the next line of code, this model is trained:
logmodel.fit(X_train_pd,y_train) – the instance of the logistic regression algorithm is “fit” to the training
dataset. After this operation, the model is trained, that is it learned how the predictive (independent)
variables (X) are correlated with the target (dependent) variable (y).

 Enablers of Bias in Algorithmic Development

 Forty-Second International Conference on Information Systems, Austin 2021
 11

There are several optional actions at this stage. For example, in some notebooks creating the pipeline takes
place first, that is coding a sequence of steps that can be executed repeatedly for different models, for
example: “Pipeline Steps: One Hot Encoding Quantile Proccesing Fit the model” (Notebook_009). This
means that a function is created that will repeat these steps (in Notebook_009: transforming data,
formatting the dataset, fitting the model) with various models passed into the function. Another optional
action is setting parameters, that is selecting the desired algorithm hyperparameters for model training.
This action takes place especially with algorithms that are more sophisticated and those that actually deploy
machine learning to uncover the best parameters. A typical example of parameter setting is a simpler case
of specifying the number of nearest neighbors in the K-nearest neighbors classifier: knnmodel =
KNeighborsClassifier(n_neighbors=3) (Notebook_001), in this case set to 3. With more complex
algorithms, setting parameters is the first step to deploying machine learning: “Now that we know the best
architecture for the neural network, we can set these params for our model and get to comparing different
models” (Notebook_037). Another optional action is selecting features, that is identifying the variables that
the model(s) trained base their predictions on. This is done to leave in variables that are strongly predictive
and remove less predictive variables that may be decreasing the performance of the model. When taking
place at this stage, selecting features is not based on the exploratory data analysis or conducted manually.
Rather, a model is trained (usually a Random Forest Classifier or similar) solely for the purposes of
obtaining “features importances”, that is an indication of which features the model relied on the most in its
classification.

Setting parameters is often present together with another optional action, parameter tuning, where
algorithm parameters are changed to train alternative model(s) based on the same algorithm but with
different parameters. For example, for a Random Forest Classifier, such parameters may include the
number of features, the number of levels in the tree, and the minimum values for splitting the trees. This
usually takes the form of a function that iterates over code with changing the values to train a number of
models with changed parameter values: #decision tree pruning max_depth=[] acc_gini=[]
acc_entropy=[] for i in range(1,50,5): // dtree=DecisionTreeClassifier(criterion='gini',max_depth=i)
dtree.fit(X_train,y_train)//pred=dtree.predict(X_test)//acc_gini.append(accuracy_score(y_test,pred)
)//dtree=DecisionTreeClassifier(criterion='entropy',max_depth=i)dtree.fit(X_train,y_train)//pred=dtr
ee.predict(X_test) // acc_entropy.append(accuracy_score(y_test,pred)) max_depth.append(i)
(Notebook_002). In this case, depth, Gini coefficient and entropy coefficient are modified in the range from
1 to 50 by 5 points, and respective models are trained, tested, and stored for model performance
comparison. Parameter tuning is a type of experimentation, that is selecting and applying a set of different
parameters to train a different model on the training dataset in search of better performance. Running
experiments in this way was less common in the notebooks than training different algorithms, and included
for example selecting features with the highest importance: “Now we look for the features with higher
importance, to run a new Random Forest using only some of the most important ones” (Notebook_005).

Stage 7: Testing and Validating the Model Under Performance Unknowability

Action aimed at testing the built model on the test dataset and verifying its performance to confirm its
predictive capacity takes place in stage seven, and is a result of performance unknowability, that is the fact
that the actual results and performance of the models built and trained cannot be known in advance. In
response, various action takes place. Predicting on unseen data relies on applying the trained model to the
test dataset that was retained earlier to obtain predictions as to the target, dependent variable. This is
customarily done in one line of code, e.g. ypred = model_1.predict(X_test) (Notebook_017), whereby the
trained model model_1 is applied to X_test dataset to yield predictions saved in ypred. The results of this
prediction are then used to assess the performance of the model by comparing the predicted values of the
target, dependent variable y stored in ypred with actual values of y that were retained and not used in
training or testing.

Evaluating model performance involves calculating performance measures according to selected criteria to
obtain a measure of the model performance. All notebooks contain a way to evaluate model performance.
This is usually done both for the training and test dataset, albeit it is commonly accepted to use the
performance results on the test dataset as final. The most common measure of model performance in the
notebooks is accuracy, that is how many times the model predicted the correct classification of the
dependent variable in comparison to the known but withheld labels in the test dataset. The second common

 Enablers of Bias in Algorithmic Development

 Forty-Second International Conference on Information Systems, Austin 2021
 12

measure in this dataset is recall, that is how often the model correctly identified churning customers – this
measure is particularly relevant to the problem set in the dataset. Sometimes models are evaluated on the
time it took to train them. Evaluating model performance is done using pre-packaged functions, most often
imported from sklearn. In some notebooks, this scene has some narrative: “Then using accuracy_score
and the confusion matrix to evaluate the models performance” (Notebook_004). Comparing model
performance, that is comparing the calculated performance measure between alternative models trained to
identify the best performing model, is an action taking place where various models were trained. In some
notebooks, this comparison is conducted across a number of metrics. Also optionally, this action may
contain visualizing results, where visual representations of the model(s) performance are displayed, often
to select the best performing model: “Before that making any decisions let’s make one more graph, but for
another metric: recall (which is important for us)” (Notebook_029) for the comparison of multiple
notebooks. In some notebooks, we identified one final action: indicating the best performing model, where
the narrative included a clear statement of the model identified as best performing, e.g. “We can see that
combining the features generated with PCA with the others is what gives the better results, this can be due
to higher degrees of freedom for the model” (Notebook_028). A large number of notebooks do not make
any comments on the best performing model, either because there is only one model trained or because the
numerical results are considered as self-explanatory.

The Modes of Responses to Unknowability

As discussed above, we identified various sources of algorithmic unknowability in developing algorithmic
solutions: resource, problem, dataset, analytical, model, and performance unknowability. Various actions
take place in response to this unknowability, as summarized in Table 3 below. In response to unknowability,
action is characterized by modes of data scientists reacting to it: unknowability is inherently present in
algorithmic design, yet design action needs to proceed to develop an algorithmic solution, and thus a way
of reasoning through, accepting or minimizing unknowability needs to be deployed. We call these data
scientists’ modes of responses, and we identified three modes: interpreting, optionalizing, and
experimenting. The deployment of these modes of response is required for AD to continue, as only this way
current action can take place, and thus enable the conditions of possibility for the following action.

Interpreting is a mode of dealing with unknowability by reasoning through it, and it is deployed to tackle
problem, dataset, analytical, and performance unknowability. When engaging in interpreting, data
scientists rely on and draw from their own judgment and understanding to interpret outputs, which informs
the next action. This is evident in computational narratives that allow data scientists to explain their
thinking: “In my personal opinion, this variable shows the maximum number of consecutive months of
inactivity and a customer is classified as churned after 6 or 7 months of inactivity” (Notebook_032), or
“A key assumption made at this point is that any column relative to a time (e.g. months inactive), for
leavers, is reflective of their tenure rather than a fixed point. If the latter is true, differences in these
columns may be due to timing (for instance, if months inactive counts the last twelve months, and a
customer left 8 months ago,their inactivity would be high by default)” (Notebook_028). In these two cases,
in response to dataset unknowability, data scientists analyzed code execution, reasoned through what was
unknowable, and interpreted the variables based on their own judgment when inspecting data and
analyzing independent variables, respectively.

Optionalizing as a mode of dealing with output unknowability rests on accepting algorithmic unknowability
and taking decisions regarding AD from optional choices – since resource, dataset, and model
unknowability cannot be ever fully eliminated, decisions regarding AD are made from a variety of choices.
In this mode, various decisions and choices are often explicated in computational narratives, and their
subjectivity is either left without a comment: “These are the categorical variables, we will now either do
encoding or make dummy so as to make them all numerical so that we can plot out heatmap and proceed
further” (Notebook_003) when transforming data types, or acknowledged as such: “The main reason I
enjoy using this library is because it given me a starting point as to where I should start my data analysis”
(Notebook_007), when importing libraries. Optionalizing is also present in how the notebooks differed with
respect to actions being deployed, namely we found scaling data only in 15 notebooks, resampling data in
10 notebooks, and removing outliers in 2 notebooks.

 Enablers of Bias in Algorithmic Development

 Forty-Second International Conference on Information Systems, Austin 2021
 13

We identified experimenting as a mode of responding to model unknowability. The goal of developing an
algorithmic solution in the case we studied was to design the most accurate classification model. Since the
exact model to be built, that is the algorithm, weights, parameters and features used, that would yield the
best performance was unknown in advance, data scientists responded to this unknowability by minimizing
it through trying out various approaches to modeling. In all but one notebook, after the first model was
trained, attempts have been made to achieve a better outcome through running experiments that involve
selecting other algorithms, selecting features, or parameter tuning and training other models on the same
dataset: “After fitting the train data, we can see the results of using the different combinations of
parameters” (Notebook_004). In notebooks that we investigated, it was not uncommon for up to 7
experiments to be conducted.

Stage and type of
unknowability

Action in response to unknowability Mode of response

Stage 1: Preparing the
environment
Resource unknowability:
computational resources needed to
develop the algorithmic solution
are unknown before the work
begins
Problem unknowability: the
formulation of the problem the
algorithmic solution is supposed to
tackle in programming terms is
unknown up front

- Setting up the environment: deploying the default
computational resources in the cloud environment

- Selecting the programming language: choosing a flexible
programming language to accommodate potential future needs

- Identifying the problem: restating and clarifying the problem
to be tackled to ensure the appropriate dependent variable is
identified

- Importing libraries: importing a variety of software packages
that may be useful

Optionalizing: taking
decisions regarding
the steps in the
algorithmic
development process
from optional
choices
Interpreting: relying
on own judgment
and understanding
to interpret
algorithmic inputs
informing further
work

Stage 2: Reading in data
Dataset unknowability: the
exact contents and specific
characteristics of the dataset are
unknown in advance

- Loading in data: attaching data to the notebook
- Inspecting data: familiarizing with the variables and values in

the first few rows of the dataset to confirm the shape of the
dataset

- Checking data types: identifying what data types variables are
stored in to inform the need for data cleaning

- Obtaining descriptive statistics: familiarizing with the basic
statistics summarizing the dataset to inform the need of data
cleaning

Interpreting: relying
on own judgment
and understanding
to interpret
algorithmic inputs
informing further
work

Stage 3: Cleaning data
Dataset unknowability: the
exact contents and specific
characteristics of the dataset are
unknown in advance

- Dealing with missing values: checking for and potentially
removing missing values in the dataset to enable modelling

- Renaming variables: changing the default names of variables to
different names to ease referring to variables

- Removing outliers: checking for and potentially removing rows
from the dataset that are too far from the mean to eliminate the
risk of skewing the model

- Transforming data types: changing data types to those that can
be used in model building

Optionalizing: taking
decisions regarding
the algorithmic
development process
from optional
choices

Stage 4: Exploratory data
analysis
Analytical unknowability: the
lack of prior knowability of the
relationships between variables
and their usefulness in developing
the algorithmic solution

- Analyzing the dependent variable: numerically familiarizing
with the target variable that the model should predict to
uncover independent variables may be predictive

- Analyzing independent variables: numerically familiarizing
with variables that can possibly help predict the target variable
to know which should be included in the model

- Identifying correlations: identifying which variables correlate
with the dependent variable and thus may be predictive to
include them in the mode

- Visualizing data: producing visual representations of variables
to learn which may be relevant and need to be included in the
model

Interpreting: relying
on own judgment
and understanding
to interpret
algorithmic inputs
informing further
work

Stage 5: Pre-processing the
dataset
Model unknowability: the exact
model to be built, including the
algorithm, weights, parameters
and features, is unknown in
advance

- Scaling data: changing the scale of variables to ensure that
none of them has an undue bearing on the model

- Resampling data: increasing or decreasing the number of
observations to ensure the dataset is balanced in terms of
observations

- Formatting the dataset: adding or removing variables to
prepare the final dataset for model building

- Splitting the dataset: dividing the dataset into training and test
dataset to enable model building

Optionalizing: taking
decisions regarding
the steps in the
algorithmic
development process
from optional
choices

 Enablers of Bias in Algorithmic Development

 Forty-Second International Conference on Information Systems, Austin 2021
 14

Stage 6: Building and training
the model
Model unknowability: the exact
model to be built, including the
algorithm, weights, parameters
and features, is unknown in
advance

- Creating the pipeline: coding a sequence of steps that are
executed repeatedly for different models

- Selecting the algorithm: choosing the algorithm to be used in
the model to be trained

- Setting parameters: selecting the desired algorithm parameters
for the model(s) to be trained

- Model training: applying the selected algorithm to the training
dataset to build a model of relationships between independent
variables and the dependent variable

- Running experiments: selecting and applying different
parameters to the algorithms to build alternative models in
search of better performance

- Selecting features: identifying the features that the model(s)
base their predictions on most strongly and excluding the less
predictive ones to improve predictive powers

- Parameter tuning: changing the algorithm parameters for
alternative model(s) to be trained to improve prediction results

Experimenting:
trying out various
approaches to
modeling to
experiment with
obtaining the best
result

Stage 7: Testing and
validating the model
Performance unknowability:
actual results and performance of
the models built and trained
cannot be known in advance

- Predicting on unseen data: applying the trained model to the
test dataset to obtain predictions

- Evaluating model performance: calculating performance
according to the selected criteria to obtain a statement of
model performance

- Comparing model performance: comparing the calculated
performance between alternative models trained to identify the
best performing model

- Visualizing results: producing visual representations of
alternative models’ performance to select the best performing
model

- Indicating the best performing model: identifying the model
that is characterized by the best performance for use in later
prediction on new datasets

Interpreting: relying
on own judgment
and understanding
to interpret
algorithmic inputs
informing further
work

Table 3. Types of unknowability, actions deployed in response and their modes

Discussion

This paper was motivated by the need to uncover the sources of unknowability in developing algorithmic
solutions and data scientists’ responses to this unknowability. We identified six types of unknowability
present in AD: resource, problem, dataset, analytical, model, and performance unknowability. We were able
to focus on algorithmic unknowability drawing from the flow-oriented approach that emphasizes
contingencies, unpredictability and the role of seemingly insignificant actions in how various phenomena
emerge. Consequently, we identified actions that take place during development and investigated how these
actions present a response to unknowability. Since human actors and technology artifacts interact to
produce cognitive outcomes (Zhang et al. 2021) in algorithmic development, we isolated data scientists’
modes of response to unknowability from the actions: reasoning through unknowability by interpreting,
accepting its presence by optionalizing, and minimizing it by experimenting.

The modes of response allow us to explain how bias can make its way into AD. While none of the actions
themselves are inherently biased, the modes of response to algorithmic unknowability can be bias-
enabling, that is they open up the possibility to introduce data scientist’s bias into the process. Bias-
enabling interpreting, that is relying on own judgment and understanding to interpret algorithmic outputs
informing further work, makes it possible to introduce own bias into, for example, analyzing independent
variables to select which ones may be predictive of the outcome, or evaluating model performance, where
bias towards certain criteria over others (e.g. speed versus accuracy) may influence the final indication of
the best performing model. Bias-enabling optionalizing, taking decisions regarding AD from a range of
optional choices, enables the possibility to introduce bias for example by opting in or out of removing
outliers, deciding for or against transforming certain data types so that they can be taken into account in
modelling, or in resampling data to artificially increase or decrease the number of certain observations.
Bias-enabling experimenting, whereby data scientists try out various approaches to modeling aiming at

 Enablers of Bias in Algorithmic Development

 Forty-Second International Conference on Information Systems, Austin 2021
 15

obtaining the bet result, opens up scope for introducing bias in what algorithms are selected, what
parameters are set, and what features are selected.

Our findings offer three theoretical contributions. First, we build on literature that analyses the enablers of
algorithmic bias (Barocas and Selbst 2016; Favaretto et al. 2019; Kordzadeh and Ghasemaghaei 2021).
Focusing on algorithmic design as a potential source of bias (Barocas and Selbst 2016; Favaretto et al. 2019;
Kordzadeh and Ghasemaghaei 2021), we extend this literature by providing a comprehensive overview of
AD and identifying 32 discrete actions where bias may be enabled through data scientists’ modes of
responding to unknowability. We show that bias may enter AD not only through previously acknowledged
bias-enabling choices of features or weights, but in seemingly trivial actions, such as removing outliers,
resampling data, or evaluating model performance. Similarly, we extend current IS literature shedding light
on the role of data scientists in shaping the outputs of algorithmic solutions by supplementing it with a
more technical perspective. Not only social or organizational factors, such as struggles over access to
knowledge, deploying various cognitive frames, or the mechanisms of producing organizational knowledge
(van den Broek et al. 2021; Ghasemaghaei et al. 2018; Ghasemaghaei and Turel 2021; Joshi 2020) influence
how data scientists develop algorithmic solutions, but it is also their prior unknowability as a technical
aspect that shapes data scientists’ engagement in AD, thus influencing outputs. Further research is needed
to understand how the social, organizational, and technical factors interact in shaping data scientists’
decisions in the course of AD, and in consequence what kind of bias may be enabled. Since our work was
conducted outside of organizational boundaries, our findings should be tested and refined within an
organizational setting.

We argued that algorithmic unknowability, the ex ante and ex post unknowability of the input-output
relationship in algorithmic solutions (Zhang et al. 2021), is not only evident in run-time, where users
engaging such solutions have to cope with their variability and unpredictability, but also in design-time.
Data scientists developing algorithmic solutions need to deal with unknowability during AD. We contribute
to this line of reasoning by identifying six types of algorithmic unknowability present in design-time:
resource, problem, dataset, analytical, model, and performance unknowability. We hypothesize that these
types of unknowability may also apply to run-time, but further research is needed to confirm this and thus
contribute further to the understanding of the sources and consequences of algorithmic unknowability.

Finally, we drew on the concept of exploratory programming which captures how, in general, data scientists
engage in AD where specific programming goals and tasks are not defined a priori but rather discovered
while writing code (Kery et al. 2017; Kery and Myers 2017). We extend this literature by showing that as
part of thus conceived exploratory programming, data scientists deploy bias-enabling interpreting,
optionalizing, and experimenting as modes of response to algorithmic unknowability. By doing so, we
provide a better understanding of the characteristics of exploratory programming, and we help delineate it
as a different type of IS development where the unknowability of the system to be developed defies some
commonly held assumptions about development (Hirschheim and Klein 1989; Ralph 2018). More work is
needed to understand AD as a distinct form of information systems development.

Our work also offers contributions to practice. The actions we identified as taking place during AD provide
managers with a better understanding of what is happening when such solutions are developed, and make
visible the level of subjectivity that enters such actions through the data scientists’ modes of bias-enabling
responses. As a result, those responsible for AD have a better understanding of discrete actions where bias
may enter, and in consequence can take steps to prevent it. Both managers and developers themselves,
when conscious of bias-enabling interpreting, optionalizing, and experimenting, can become more aware
of how these modes, when deployed, may channel implicit or explicit bias into AD.

Conclusions

In this work, we focused on algorithmic unknowability in design-time as a catalyst for action during the
development of algorithmic solutions. We identified specific types of such unknowability, and outlined the
role of data scientists’ modes of response to unknowability as they develop solutions. Action that we traced
in each Jupyter notebook containing an algorithmic solution was heavily influenced by these modes of
response affecting the individual, subjective decisions taken by data scientists. In fact, all notebooks and
algorithmic solutions developed that we studied followed different flows and yielded different results. This
reflects our main argument that bias-enabling interpreting, optionalizing, and experimenting opens up

 Enablers of Bias in Algorithmic Development

 Forty-Second International Conference on Information Systems, Austin 2021
 16

possibilities to introduce subjective, individual perspectives which may reflect individual biases of data
scientists. Each instance of dealing with algorithmic unknowability by interpreting outputs, selecting some
actions but not others, and experimenting with various features and parameters potentially enables bias.

References

Barocas, S., and Selbst, A. 2016. “Big Data’s Disparate Impact,” California Law Review (104:1), pp. 671–
729.

Baum, J. A. C., and Haveman, H. A. 2020. “Editors’ Comments: The Future of Organizational Theory,”
Academy of Management Review (45:2), pp. 268–272.

Baygi Mousavi, R., Introna, L., and Hultin, L. 2021. “Everything Flows: Studying Continuous Socio-
Technological Transformation in a Fluid and Dynamic Digital World,” MIS Quarterly (45:1), pp. 1–62.

van den Broek, E., Sergeeva, A., and Huysman, M. 2021. “When the Machine Meets the Expert: An
Ethnography of Developing AI for Hiring,” MIS Quarterly, pp. 1–50.

Davenport, T. H., and Harris, J. 2017. Competing on Analytics: Updated, with a New Introduction: The
New Science of Winning, Harvard Business Press.

Dissanayake, I., Zhang, J., and Gu, B. 2015. “Task Division for Team Success in Crowdsourcing Contests:
Resource Allocation and Alignment Effects,” Journal of Management Information Systems (32:2), pp.
8–39.

Favaretto, M., De Clercq, E., and Elger, B. S. 2019. “Big Data and Discrimination: Perils, Promises and
Solutions. A Systematic Review,” Journal of Big Data (6:12), Springer International Publishing, pp. 1–
27.

Gal, U., Jensen, T. B., and Stein, M. K. 2018. “People Analytics in the Age of Big Data: An Agenda for IS
Research,” ICIS 2017: Transforming Society with Digital Innovation, pp. 0–11.

Ghasemaghaei, M., Ebrahimi, S., and Hassanein, K. 2018. “Data Analytics Competency for Improving Firm
Decision Making Performance,” Journal of Strategic Information Systems (27:1), Elsevier, pp. 101–
113.

Ghasemaghaei, M., and Turel, O. 2021. “Possible Negative Effects of Big Data on Decision Quality in Firms:
The Role of Knowledge Hiding Behaviours,” Information Systems Journal (31:2), pp. 268–293.

Hill, C., Bellamy, R., Erickson, T., and Burnett, M. 2016. “Trials and Tribulations of Developers of Intelligent
Systems: A Field Study,” Proceedings of IEEE Symposium on Visual Languages and Human-Centric
Computing, VL/HCC (2016-Novem), pp. 162–170.

Hirschheim, R., and Klein, H. K. 1989. “Four Paradigms of Information Systems Development,”
Communications of the ACM (32:10), pp. 1199–1216.

Joshi, M. P. 2020. “Custodians of Rationality: Data Science Professionals and the Process of Information
Production in Organizations,” AMCIS 2020 Proceedings, pp. 0–1.

“Kaggle.Com.” 2021. Kaggle.Com. Available at: www.kaggle.com. Accessed on: 15 March 2021.
Kery, M. B., Horvath, A., and Myers, B. 2017. “Variolite: Supporting Exploratory Programming by Data

Scientists,” Conference on Human Factors in Computing Systems - Proceedings (2017-May), pp.
1265–1276.

Kery, M. B., and Myers, B. A. 2017. “Exploring Exploratory Programming,” Proceedings of IEEE
Symposium on Visual Languages and Human-Centric Computing, VL/HCC (2017-Octob), pp. 25–29.

Kery, M. B., Radensky, M., Arya, M., John, B. E., and Myers, B. A. 2018. “The Story in the Notebook:
Exploratory Data Science Using a Literate Programming Tool,” Conference on Human Factors in
Computing Systems - Proceedings (2018-April).

Kim, M., Zimmermann, T., DeLine, R., and Begel, A. 2016. “The Emerging Role of Data Scientists on
Software Development Teams,” Proceedings - International Conference on Software Engineering (14-
22-May-), pp. 96–107.

Kordzadeh, N., and Ghasemaghaei, M. 2021. “Algorithmic Bias: Review, Synthesis, and Future Research
Directions,” European Journal of Information Systems (00:00), Taylor & Francis, pp. 1–22.

Kurgan, L. A., and Musilek, P. 2006. “A Survey of Knowledge Discovery and Data Mining Process Models,”
Knowledge Engineering Review (21:1), pp. 1–24.

Mangal, A., and Kumar, N. 2016. “Using Big Data to Enhance the Bosch Production Line Performance: A
Kaggle Challenge,” Proceedings of 2016 IEEE International Conference on Big Data.

Patel, K., Fogarty, J., Landay, J. A., and Harrison, B. 2008. “Investigating Statistical Machine Learning as
a Tool for Software Development,” Conference on Human Factors in Computing Systems -

 Enablers of Bias in Algorithmic Development

 Forty-Second International Conference on Information Systems, Austin 2021
 17

Proceedings, pp. 667–676.
Ralph, P. 2018. “The Two Paradigms of Software Development Research,” Science of Computer

Programming (156), Elsevier B.V., pp. 68–89. (https://doi.org/10.1016/j.scico.2018.01.002).
Ransbotham, S., Fichman, R. G., Gopal, R., and Gupta, A. 2016. “Special Section Introduction: Ubiquitous

IT and Digital Vulnerabilities,” Information Systems Research (27:4), pp. 834–847.
Rule, A., Tabard, A., and Hollan, J. D. 2018. “Exploration and Explanation in Computational Notebooks,”

Conference on Human Factors in Computing Systems - Proceedings (2018-April), pp. 1–12.
Seidel, S., Berente, N., Lindberg, A., Lyytinen, K., and Nickerson, J. V. 2018. “AutonomousTools and

Design: A Triple-Loop Approach to Human-Machine Learning,” in Communications of the ACM, pp.
50–57.

Silva, S., and Kenney, M. 2019. “Algorithms, Platforms, and Ethnic Bias,” Communications of the ACM
(62:11), pp. 37–39.

Subramanian, K., Völker, S., Zubarev, I., and Borchers, J. 2019. “Supporting Data Workers to Perform
Exploratory Programming,” Conference on Human Factors in Computing Systems - Proceedings, pp.
1–6.

Tarafdar, M., Teodorescu, M., Tanriverdi, H., Robert Jr., L. P., and Morse, L. 2020. “Seeking Ethical Use of
AI Algorithms: Challenges and Mitigations,” Proceedings of the 41th International Conference on
Information Systems, December 13-16, India., pp. 0–7.

Vaast, E., and Pinsonneault, A. 2021. “When Digital Technologies Enable and Threaten Occupational
Identity: The Delicate Balancing Act of Data Scientists,” MIS Quarterly, pp. 1–55.

Yoo, Y. 2010. “Computing in Everyday Life: A Call for Research on Experiential Computing,” MIS Quarterly
(34:2), pp. 213–231.

Zhang, Z., Lindberg, A., Lyytinen, K., and Yoo, Y. 2021. “The Unknowability of Autonomous Tools and the
Liminal Experience of Their Use,” Information Systems Research, pp. 1–58.

	How To Train Your Algo: Investigating the Enablers of Bias in Algorithmic Development
	Let us know how access to this document benefits you.
	Citation Details

	Introduction
	Background Literature
	Introducing Bias into Algorithmic Solutions
	Algorithmic Unknowability in Development
	The Impact of Unknowability on Development

	Theoretical Framework
	Research Design
	Data Collection
	Data Analysis

	Algorithmic Development Under Unknowability
	Stage 1: Preparing the Environment Under Resource and Problem Unknowability
	Stage 2: Reading in Data Under Dataset Unknowability
	Stage 3: Cleaning Data Under Dataset Unknowability
	Stage 4: Exploratory Data Analysis Under Analytical Unknowability
	Stage 5: Pre-processing the dataset under model unknowability
	Stage 6: Building and Training the Model Under Model Unknowability
	Stage 7: Testing and Validating the Model Under Performance Unknowability
	The Modes of Responses to Unknowability

	Discussion
	Conclusions
	References

