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Moving beyond alpha: A primer on alternative sources of single-
administration reliability evidence for quantitative chemistry 
education research 
Regis Komperda1, Thomas C. Pentecost2, Jack Barbera1* 

1Chemistry Department, Portland State University, Portland, OR. 5 

2Chemistry Department, Grand Valley State University, Allendale, MI. 

ABSTRACT 
This methodological paper examines current 

conceptions of reliability in chemistry education 

research (CER) and provides recommendations 10 

for moving beyond the current reliance on 

reporting coefficient alpha (𝛼) as reliability 

evidence without regard to its appropriateness 

for the research context. To help foster a better 

understanding of reliability and the 15 

assumptions that underlie reliability 

coefficients, reliability is first described from a conceptual framework, drawing on examples from 

measurement in the physical sciences; then classical test theory is used to frame a discussion of how 

reliability evidence for psychometric measurements is commonly examined in CER, primarily in the 

form of single-administration reliability coefficients. Following this more conceptual introduction to 20 

reliability, the paper transitions to a more mathematical treatment of reliability using a factor analysis 

framework with emphasis on the assumptions underlying coefficient alpha and other single-

administration reliability coefficients, such as omega (𝜔) and coefficient H, which are recommended as 

successors to alpha in CER due to their more broad applicability to a variety of factor models. The 

factor analysis-based reliability discussion is accompanied by R code that demonstrates the 25 

mathematical relations underlying single-administration reliability coefficients and provides interested 

readers the opportunity to compute coefficients beyond alpha for their own data.   
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INTRODUCTION 
Conducting any type of research relies on having high quality instrumentation available to 

measure the system under investigation. In quantitative chemistry education research (CER), the 

instrument is often something completed by research subjects to provide information about 

individuals or groups on one or more variables of interest, e.g. motivation, attitude, content 40 

knowledge, or misconceptions.1,2 These variables are often used in CER to gauge the impact of a 

pedagogical reform or innovation. Development and evaluation of these instruments, also called tests, 

assessments, scales, surveys, inventories, or questionnaires, is the primary focus of the field of 

psychometrics. Determining whether or not an instrument provides high quality measurements relies 

on the collection and interpretation of psychometric evidence. 45 

When describing the type of psychometric evidence reported in the Journal of Chemical Education, 

Arjoon, Xu and Lewis1 used the Standards for Educational and Psychological Testing3 as a framework 

to explore evidence reported for two key aspects of measurement quality, validity and reliability. 

Validity and reliability are interrelated aspects of psychometric measurement quality that have analogs 

in physical measurements: reliability describes the precision of a measurement, validity describes its 50 

accuracy. Arjoon et al. found that validity evidence was more widely reported within CER than 

reliability evidence. Despite the variety of ways to assess reliability given in the Standards, Arjoon et 

al. found only reliability coefficients were reported in the reviewed CER literature, specifically test-

retest and Cronbach’s alpha (𝛼). For the 20 instruments reviewed by Arjoon et al., alpha was reported 

for 13 instruments while test-retest was reported for seven instruments and the intra-class correlation 55 

coefficient was reported for two instruments.  

The prevalence of reporting alpha for instruments published in the Journal of Chemical Education 

from 2002–2011, as documented by Arjoon, Xu and Lewis,1 persists in a current review conducted of 

59 research articles in the Journal from 2012–2017 that used either a cognitive or affective 

instrument, shown in Table 1. The values in Table 1 sum to more than 59 because some articles 60 

reported multiple reliability measures. Of the 59 articles reviewed in which a psychometric instrument 

was used, roughly half (31) reported a value of alpha calculated from their own data and an additional 

three articles provided literature alpha values from previous uses of the instrument. After alpha, the 
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next most commonly reported reliability measure was test-retest, though this was only used in five 

studies. A separate study demonstrated an alternative to traditional test-retest approaches, the zeta-65 

range estimator.4 And a single study used the Kuder-Richardson KR 21 formula for dichotomously 

scored items.  

Other measures of reliability reported included interrater reliability (not listed in Table 1) and 

values obtained from applying the Rasch measurement model. Reliability values from the Rasch 

model, a form of item response theory, are related to measures of reliability from classical test theory, 70 

including coefficient alpha, although the relation is complex.5,6 Because interrater forms of reliability 

are derived from comparing coding done by raters,7,8 not an individuals’ instrument scores, they will 

not be further addressed in this discussion. It is concerning to note that in this review, over a quarter 

of the examined research articles (18) did not report any measure of reliability for their chosen 

instrument. It is unclear if this is a result of not conducting an examination of reliability or choosing 75 

not to report reliability information. 

 

 

 

 80 

 

 

 

Digging more specifically into how alpha is described within CER literature, an examination of the 

previously described 31 studies in the Journal reporting alpha revealed that half of the studies 85 

described alpha as providing a measure of internal consistency, a finding echoed in the broader 

science education literature9 and consistent with the way that alpha is described in the Standards3 

and much of the psychometric literature.10–12 This leads to the question of what exactly is meant by 

internal consistency and why it is a desirable property. One interpretation seen in both the Journal 

articles and other education and psychology literature is that internal consistency indicates that all of 90 

the items are measuring the same underlying variable, sometimes referred to as unidimensionality or 

Table 1. Reliability Measures of Psychometric 
Instruments in JCE Research Articles 2012-2017 

Reliability measure Number of articles reporting 

Coefficient alpha: Calculated 31 

None 18 

Test-retest 5 

Rasch-derived 5 

Coefficient alpha: From literature 3 

Zeta-range estimator 1 

Kuder–Richardson: KR 21 1 
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homogeneity, although the equivalence of these terms is contentious.13–17 While it may be beneficial to 

know an instrument is measuring a single variable of interest, that is, that the instrument is 

unidimensional, it has been demonstrated that alpha does not provide this information13,17–19 and it is 

also not straightforward to see how internal consistency aligns with the idea of reliability as describing 95 

the precision of a measurement. 

Confusion over the information provided by alpha, and an even more basic lack of familiarity with 

the term itself, were also apparent in a national survey of 1,436 chemistry faculty conducted in 2009–

2010.20,21 The study found that faculty felt fairly familiar with the term “Assessment Reliability,” 

providing a median rating of 4 on a 5-point scale, corresponding to “I have heard this term before and 100 

have a sense of what it means.” Yet, when assessing their familiarity with “Cronbach Alpha,” the only 

term specific to reliability that was listed, the overall median rating dropped to 1 indicating “I have 

never heard this term before.” The chemistry education subgroup of responses, representing 10% of 

the faculty, gave a median rating of 2 corresponding to “I have heard this term before but do not know 

what it means.” This low level of understanding is puzzling given the high prevalence of alpha in CER 105 

literature.  

What the study of faculty familiarity with assessment terminology and recent Journal literature 

review may indicate is that researchers and reviewers are aware that reliability evidence should be 

reported when collecting data from an instrument and also recognize that alpha is the most commonly 

reported type of reliability evidence.9 Yet, there may be limited understanding of what the reported 110 

value of alpha is actually saying about the quality of the data obtained9 or limited awareness of other 

alternatives to reporting alpha.11,14,22 The confusion about what alpha represents is not limited to 

CER,22,23 and the continued use of alpha is the subject of vigorous debate amongst 

psychometricians.16,24,25 Even Cronbach had misgivings about the ubiquitous use of alpha saying, “I 

doubt whether coefficient alpha is the best way of judging the reliability of the instrument to which it 115 

is applied” (p. 393) and was embarrassed by alpha’s association with his name given the formula’s 

previous establishment in the psychometric literature.26 Though Cronbach disliked both the label 

alpha26 and its association with his own name, that is how the formula is commonly known 
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throughout the literature and therefore for the remainder of this paper it will be referred to as 

coefficient alpha, or simply alpha. 120 

GOALS OF THIS RELIABILITY PRIMER 
Given the ongoing discussions of reliability within the psychometric community, it is not the 

intention of this paper to attempt to resolve any of the debates over what alpha represents or whether 

it should ever be used. Instead, the current level of interest in alpha will be used as a starting point 

from which to provide an accessible overview of reliability and the assumptions underlying various 125 

methods of computing reliability coefficients for an audience more familiar with measurements of 

physical systems than the mathematical underpinnings of classical test theory and factor analysis. 

The first section begins by framing reliability in the context of physical measurements in order to 

demonstrate where the analogy between measuring physical systems and psychological variables 

begins to break down. Presentation of specific reliability formulas are avoided in this section in favor of 130 

focusing on the conceptual meaning of reliability. Interested readers are encouraged to consult any of 

the excellent sources available for a more mathematical treatment of reliability.10,18,27–30  

Capitalizing on CER’s embrace of factor analysis methods for examining the internal structure of 

instruments as a form of validity evidence,1 a factor analysis approach to reliability is presented in the 

second section, along with alternatives to alpha based in factor analysis.22,27,31–34 The factor analysis 135 

section is more technical and, though an overview of terms and notation is provided, some readers 

may find it helpful to consult other sources for an introduction to this methodology.35–37 The intention 

of these presentations is to highlight the different ways reliability can be addressed, both conceptually 

and mathematically, and the limitations associated with each approach so that researchers have the 

information necessary to make an informed decision on how best to report and describe reliability in 140 

the context of their own research. 

RELIABILITY: TRANSLATING PHYSICAL SCIENCE MEASUREMENTS TO PSYCHOMETRICS 
Sources of Measurement Error 

A critical component of making quality measurements in both the physical sciences and 

psychometrics is to identify and minimize the amount of error present. Due to the presence of error, 145 



  

Journal of Chemical Education 1/2/21 Page 7 of 41 

an observed measurement value represents an obscured version of the true value. In psychometrics, 

this is often stated formally with the expression 

True value = Observed value−Error  (1) 

All measurements have error associated with them; in those instances where the amount of error can 

be quantified, the true value of the measurement can be determined. 150 

A frequent analogy used to bridge physical science and psychometrics, as mentioned previously, is 

that the accuracy of a measurement describes its validity while the precision of a measurement 

describes its reliability.3,38 In the context of measurement error, validity is related to the amount of 

systematic error present while reliability is related to the amount of random error. To illustrate the 

difference between systematic and random error, consider the process of calibrating a thermometer 155 

using a known standard. In Figure 1, the known standard could represent the normal boiling point of 

water (99.974 °C).39 

  

Figure 1. Calibration of thermometer with known standard to quantify systematic error 
 160 

The difference between the true value of the known standard (99.974 °C) and the observed value 

(99.517 °C) can be entered into Equation 1, thereby giving the amount of error (0.457 °C), which can 

be used calibrate the thermometer. In this example, the error term represents systematic error.  

While calibration of an instrument is often possible when making measurements of physical 

samples, there are more limitations when making measurements of psychological variables such as 165 

interest, motivation, or understanding. The primary issue is that it is never possible to measure a 

psychological variable directly and as a result, a true value can never be known and a known standard 

can never be established. Instead, response to a stimulus, such as an item on a test or survey, is 

measured and that measurement is used to draw conclusions about the underlying psychological 
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construct while the true amount of interest, motivation, or understanding is never knowable. In the 170 

context of Equation 1, this means that most psychological measurements provide only the observed 

value but no true value and therefore no way to identify the exact amount of systematic error present. 

However, even without calibration to a true value there are other types of evidence that can be 

obtained to help assess the validity of a psychological measurement.1–3 

Though calibration addresses the amount of systematic measurement error present, it does not 175 

address random error. Consider using the calibrated thermometer from Figure 1 to measure the 

known standard multiple times under the same conditions; it is unlikely that the exact same values 

would be obtained each time (Figure 2). Instead, the spread in the resulting values provides 

information about the reliability of the thermometer data. A smaller spread in values indicates less 

random error and therefore greater reliability. 180 

  
Figure 2. Multiple measurements with single thermometer to quantify random error 

 

With multiple measurements of the same sample, shown in Figure 2, it becomes possible to 

calculate the standard deviation of the measurements (0.247) or the standard error of the mean 185 

(0.143), calculated as the standard deviation divided by the square root of the number of 

measurements, which can also be used to determine a 95% confidence interval for the mean [99.096; 

100.323]. These three computations – standard deviation, standard error, and confidence interval – 

describe the consistency of the measurement, and are the typical types of precision used in physical 

measurements. This idea of consistency is echoed in psychometric descriptions of reliability. The 190 

Standards describe reliability as “the consistency of such measurements when the testing procedure is 

repeated on a population of individuals or groups” (p. 25).3 This is analogous to the repeated measures 

depicted in Figure 2.    
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Limitations of Repeated Measures Reliability in Psychometric Research 
In comparison to physical samples, like those shown in Figure 2, the difficulty in measuring the same 195 

sample multiple times for psychometric research arises from limitations associated with having access 

to the same people on multiple occasions as well as the difficulty of identifying an appropriate interval 

for repeated measurements that does not result in test fatigue, recall of prior responses, or a change in 

the underlying variable being measured. In spite of these difficulties, a repeated measures design with 

two time points is sometimes undertaken and the resulting correlation between two sets of 200 

measurements is known as test-retest reliability. This process is illustrated in Figure 3 where the 

same thermometer is used to measure multiple samples at two time points. The samples measured in 

each trial in Figure 3 are no longer assumed to be at the same temperature, since there is no 

expectation that all samples within a population would have the same measured value. However, the 

measurement of each sample is assumed to be stable over time. If the measurements at both time 205 

points are very similar, the value of the correlation will be larger (closer to 1) and therefore test-retest 

reliability is said to be high. The correlation for the two sets of samples shown in Figure 3 is very high, 

0.987, and this consistency can be seen in the plot of temperatures for each trial where all points are 

clustered near the line defining identical temperatures for each trial. Due to the temporal nature of 

these data, test-retest reliability has also been called the coefficient of stability.7,40,41  210 
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Figure 3. Measurement of multiple samples with differing temperatures at multiple time points with the same thermometer (a) plotted to show 
the similarity between sets of measurements taken at each time point relative to the line y = x as an analogy for test-retest reliability (b) 

 215 

The main assumption underlying test-retest reliability is that a high correlation between the two 

sets of measurements is a result of consistency in the underlying true values. It is therefore important 

to consider if the time interval between measurements supports this assumption. Considering the 

thermometer example, the time interval should not be so long that the set of samples has equilibrated 

to the ambient laboratory temperature thereby changing the true temperature value. In the same way 220 

for psychological measurements, the time interval should not be so long that learning or change in 

attitude has occurred. Additionally, while a shortened time interval is not typically a concern in a 

laboratory environment, for psychological measurements using too short a time interval may cause the 

person to remember his or her previous response, which could result in a strong relation between the 

measurements at the different time points that is not entirely due to the precision of the 225 

measurement. Details about factors to consider when using test-retest and stability coefficients to 

provide reliability evidence for psychometric measurements may be found elsewhwere.42 



  

Journal of Chemical Education 1/2/21 Page 11 of 41 

Reliability in Single-Administration Contexts 
Given the difficulty associated with finding an appropriate interval for test-retest reliability, it is 

often easier to make measurements with multiple instruments simultaneously. In a laboratory 230 

context, this would be equivalent to measuring the same set of samples with multiple thermometers 

(Figure 4). Clearly, both instruments must be measuring the same variable so that comparison of the 

measurements is meaningful. In other words, it would not make sense to use a pH probe for a 

temperature measurement in the same way that it wouldn’t make sense to include survey items about 

satisfaction with laboratory equipment when measuring test-taking anxiety.9 235 

 

 
Figure 4. Measurement of multiple samples with differing temperatures using different thermometers simultaneously (a) plotted to show the 
similarity between sets of measurements taken with each thermometer relative to the line y = x as an analogy for parallel-forms reliability (b) 

 240 

As with test-retest reliability, a reliability value can be determined by finding the correlation 

between the data collected from the first thermometer and the data collected from the second 

thermometer (0.975). However, strength of this association no longer indicates consistency over time, 
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but rather consistency between the two thermometers. In psychometrics, this type of consistency is 

known as parallel- or alternate-forms reliability and is sometimes called the coefficient of 245 

equivalence.7,40,41 If the two sets of measurements are taken on different days, this is known as the 

coefficient of stability and equivalence as it also incorporates aspects of test-retest reliability.7,40,41 As 

with test-retest reliability there are some assumptions that must be met in order to conclude that a 

high correlation demonstrates high consistency of measurement. These assumptions primarily focus 

on ensuring the two instruments are making equivalent measurements, described as being parallel in 250 

a psychometric context. For the thermometers, each must use the same scale (e.g., Celsius, 

Fahrenheit, or Kelvin), they must produce the same average observed values with the same standard 

deviations,7 and they must have the same amount of error. 

To a chemist working in a laboratory setting, the situation described in Figure 4 is improbable in 

the context of making physical measurements as there are unlikely to be many situations where 255 

measurement of the same samples with two thermometers is preferable to repeated measurements by 

the same thermometer. However, for a chemistry education researcher in the context of conducting 

psychometric measurements, a single-administration approach to determining a reliability value is 

very often preferable to the logistics of setting up a test-retest condition. This preference for a single-

administration approach to reliability in psychometric settings resulted in development of many well-260 

known reliability coefficients, including coefficient alpha.  

The reliability coefficients developed for single-administration contexts are generally known as 

internal consistency reliability, though concern exists over the usage and meaning of that 

label.13,15,16,25 Using the analogy from Figure 4, this would involve using many thermometers (items) 

simultaneously on multiple samples (people). These single-administration reliability methods measure 265 

the strength of the relation between item responses and responses to the entire test or survey.43 

One of the earliest single-administration reliability approaches, developed by Spearman and 

Brown,44,45 was to take a test and divide it into two equivalent halves consisting of the same number of 

items. Then, reliability could be computed using formulas incorporating the correlations between each 

half of the test, referred to as split-halves reliability.46,47 While the split-halves method alleviated 270 

concerns regarding the logistics of administering a test twice, there were other concerns with this 
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method. First, the parallel assumption, listed previously for the thermometers, must also hold for the 

two halves of the test. That is, the items must use the same measurement scale, they must result in 

the same average observed values and standard deviations,7 and the amount of measurement error 

associated with each item must be the same and not related to the measurement error of the other 275 

items.28 As with the thermometers, it can be difficult to identify sets of items that meet these strict 

assumptions. Second, it was unclear exactly how a test should be divided into halves. Different 

divisions of the test (e.g., even items vs. odd items, first half vs. second half) could result in different 

reliability values.7 

To address these difficulties, additional single-administration reliability coefficients were developed 280 

that relaxed the parallel assumption and also allowed for computation methods beyond simply 

splitting the test in half. Guttman developed a series of six different single-administration reliability 

coefficients,48 one of which (coefficient L3) is mathematically equivalent to coefficient alpha.27 Guttman 

first described these in 1945, which is the source of Cronbach’s embarrassment that alpha came to be 

associated with him on the basis of his 1951 article.26,49 Coefficient alpha is one such single-285 

administration reliability estimate that relaxes the assumption of equal means and equal 

measurement errors for all items. However, the measurements for each item must be related to each 

other by an additive amount. In the thermometer context, this would be equivalent to using one 

Celsius thermometer and one Kelvin thermometer, but not a Fahrenheit thermometer because the size 

of each degree is different. Alpha also removes the debate over the possible ways to split a test and 290 

instead looks at the correlation between individual items and the overall test score. In this way, it 

represents the combination of all possible split-halves of the test.7 Similarly, the Kuder Richardson 

(KR) 20 formula is mathematically equivalent to coefficient alpha in the case where items are 

dichotomously scored and KR 21 provides a simplification for dichotomously scored items of equal 

difficulties.43,50 295 

Summary of Psychometric Reliability Coefficients  
There are many types of reliability coefficients that can be calculated from data obtained using 

psychometric instruments. In light of the numerous options available, the selection of a reliability 

coefficient should be chosen to align with the goals of the research and the characteristics of the data 
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obtained from the instrument. For example, in situations where temporal stability is important, test-300 

retest reliability may provide better information about reliability than a single-administration reliability 

estimate. In considering the characteristics of the data, alpha has some underlying mathematical 

assumptions about the relation between each item on the instrument (observed value) and the 

underlying variable being measured (true value). If these assumptions are not met, alpha provides a 

biased estimate of reliability.24 Unfortunately, the most commonly used statistical software for 305 

computing alpha does not test to see if these assumptions have been met. On the other hand, 

adopting a factor analysis based approach to reliability will not automate the testing of these 

assumptions, but it does provide an opportunity to use the structure of the instrument to determine 

the appropriate approach for evaluating reliability from a single administration. A point to emphasize 

is that it is impossible to determine beforehand if a set of data will satisfy the assumptions necessary 310 

for the use of alpha. The following section describes how to test the assumptions in a factor analysis 

framework and depicts the relation between factor analysis and the previously described conceptions 

of reliability. A factor analysis approach to reliability is recommended both because CER is moving 

toward doing instrument development and testing in a factor analysis framework1 and because factor 

analysis approaches take advantage of the more sophisticated computational methods available while 315 

relaxing some of the restrictive assumptions underlying coefficient alpha.  

A FACTOR ANALYSIS APPROACH TO RELIABLITY 
Visualizing Reliability as the Relation Between True and Observed Variance 

Factor analysis methods such as exploratory factor analysis (EFA), confirmatory factor analysis 

(CFA), and structural equation modeling (SEM) are frequently used in CER to examine the internal 320 

structure of instruments as one method of providing validity evidence1,51–54 and also provide a 

methodology for understanding relations among variables,55–59 and examining group differences on 

variables of interest.60,61 This section provides a brief overview of the notation conventions and 

conceptual underpinnings of factor analysis as they relate to reliability.13,16,24,28,62 A more 

comprehensive introduction to factor analysis terminology and methodologies, including EFA, CFA, 325 

SEM, can be found in other sources.35–37 In addition to the functionality of factor analysis as a tool for 

establishing validity,1,3 it also provides a useful lens for understanding various aspects of single-
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administration measures of reliability, including selection of which coefficient is most appropriate to 

report.51,52 Though the transition to a factor analysis framework involves more complexity than the 

conceptual discussions of reliability used in the previous sections, factor analysis provides a concrete 330 

and tangible way to express and understand the underlying mathematical assumptions of alpha and 

other single-administration reliability coefficients. This section uses a theoretical and mathematical 

description of reliability framed in the context of single-factor models to illustrate how the different 

single-administration reliability coefficients are related, while each utilizing slightly different 

assumptions about the underlying structure of the data. 335 

Though many software packages are available to conduct factor analysis, the statistical software 

R63 is a free alternative that can perform factor analysis and other common instrument analyses, 

including computation of reliability coefficients.64 The scenarios discussed in this section highlight 

mathematical relations that are critical for understanding the information provided by reliability 

coefficients. R code is provided in the Supporting Information to accompany each scenario. By 340 

providing the code necessary for readers to test these scenarios with simulated data, it is hoped that 

reliability coefficients become more tangible rather than feeling like a result of algorithms acting inside 

a mysterious black box. In addition, the R code provided can be modified to explore the scenarios 

presented here with other datasets and also used to calculate reliability coefficients for different 

datasets, including the readers' own. 345 

In a broad sense, one goal of factor analysis techniques is to use observed relations among 

measured variables (i.e., correlations and covariances) to identify and model relations among 

underlying unobserved variables. These unobserved variables of interest are commonly known as 

factors or latent variables and are generally aligned with specific constructs that are being measured 

such as attitudes or motivation. One critical component is that the models partition the common 350 

variance of the factor, representing the true value, from the unique error variance associated with the 

observed variables. In this way, an analogy can be made between factor analysis and the formal 

statement of measurement error described previously in Equation 1.  

In visual notations of factor analysis, measured variables are conventionally represented by 

squares while unobserved variables are represented by circles or ovals. Considering the three variables 355 
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in Equation 1, only the observed value is measured directly while both the true value and the error are 

not directly observable in situations where calibration with a known standard is impossible, which 

includes most psychological measurements. Figure 5 shows the variables in Equation 1 in factor 

analysis notation.   

 360 

Figure 5. True value equation variables in factor analysis notation 
 

 

Another important aspect of factor analysis is that relations among variables are depicted using an 

arrow notation where a single-headed arrow represents a causal relation between two variables. In the 365 

case of the three variables represented in Figure 5, the causal relation between the true value, 

observed value, and error is more apparent after rearranging Equation 1 to solve for the observed 

value. 

Observed value = True value+Error  (2) 

Rearranged as Equation 2, it is clear that the observed value of a measurement is the aggregate of 370 

some amount of true value along with some amount of error. This mathematical relation can be 

depicted in a factor analysis model with the addition of two arrows pointing toward the observed value, 

one from the true value and one from the error. Figure 6 describes a situation where a single item is 

used as a measurement. The values of 1 over each arrow are implicit weights for the true value and 

error in Equation 2, meaning that the true value and error each contribute their full amount into the 375 

observed value and also that the units of the true value and error are the same as the observed value. 

Additionally, the lack of direct connection (i.e., an arrow) between the true value and error in Figure 6 

indicates their independence from one another. 
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Figure 6. True value equation in factor analysis notation with causal arrows 380 
 

 

When measurements of multiple subjects are made with that single item, there is now variance 

associated with the observed value. Factor analysis can be used to model how much of the observed 

variance is error variance and how much is variance of the true value. Using s2 to denote variance, 385 

Equation 2 can be rewritten using the variance of each term: 

σO"=	σT"+σE"  (3) 

Considering the earlier description of reliability as the precision of a measurement, having more of the 

observed variance (σ%" ) be due to true variance (σT") than error variance (σE") would indicate a more 

reliable measurement. This leads to one of the most common mathematical descriptions of the 390 

reliability coefficient, the ratio of true variance to observed variance, shown in Equation 4, which can 

be algebraically rearranged using the equality from Equation 3.18,43 Note that Equation 4 uses the 

correlation symbol for reliability (ρr), in line with how reliability can be described as the correlation 

between sets of values, or more specifically, the squared correlation between observed and true 

values.27,30 This reliability coefficient, ρr, represents a theoretical conception of reliability, not any 395 

specific type of reliability coefficient. Its relation to coefficient alpha, also referred to simply as alpha, 

will be described shortly. 

ρr =
σT
2

σO
2 =

σT
2

σT
2+	σE

2=
σO
2 	*	σE

2

σO
2 =ρOT2   (4) 

Defined in this way, as the amount of true variance (σT")  increases, and therefore the amount of error 

variance (σE") decreases, the reliability value increases. The reliability value ranges from 0 to 1, where a 400 

value of 1 indicates all of the observed score variance is true score variance.  
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Though this mathematical definition of reliability may be conceptually helpful, the practical 

difficulty is that in the context of psychological measurements, the true value, and therefore true 

variance, is never knowable. Alpha and other reliability coefficients offer some methods to circumvent 

this problem, but they come at the cost of requiring strong assumptions. In a factor analysis driven 405 

approach, these assumptions can be tested, and in some cases, avoided. 

Visualizing Assumptions Underlying Alpha 
In situations where more than three items are used to measure a single underlying latent variable, 

factor analysis provides an estimation of how much of the observed variance is due to the variance of a 

common construct of interest that influences true values and how much is due to the error variance of 410 

the items. Figure 7a shows a simplified factor model for a four-item instrument where the true values 

for all four items (A-D) are influenced by the common construct the items are intended to measure,32 

such as self-efficacy. The true values also have some amount of residual variance unexplained by the 

common construct, omitted from the model for simplicity. The model in Figure 7a can be simplified 

further to the model in Figure 7b where the true values are no longer explicitly shown and the error 415 

terms now represent a combination of both individual item error as well as the residual unexplained 

variance of the true value. More detailed explanation of these simplified models can be found in the 

interactive online tutorial module65 and accompanying article32 by Hancock and An. These models can 

be used to consider a wide variety of possible relations between the common construct and the 

observed responses to the items, assuming the common construct has been standardized by setting its 420 

variance to one.  
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Figure 7. Factor model for four-item instrument showing true values for each item, omitting residual unexplained true value variance terms (a), 
and simplified to show only the common construct with standardized variance assumed (b) 

 425 

In the following sections, some of these possible relations, and their factor models, will be used to 

illustrate methods for testing assumptions that underlie alpha. For each case, the appropriateness of 

coefficient alpha as a measure of reliability will be described. A factor model will also be used to 

illustrate alternatives to alpha for situations when the assumptions that underlie alpha are not met. R 

code in the Supporting Information is provided for readers who wish take a hands-on approach to 430 

exploring the relationship between different factor models and alpha using the provided simulated 

data or by importing their own data into R. 

The Parallel Model: Identical Item Properties 
Considering the four-item model in Figure 7, one possible relation between each observed value 

and the common construct is that the common construct is related to all of the items to the same 435 

degree. In the model, this would be equivalent to setting the value of all relations between the common 

construct and the observed items, known as loadings, equal.13,28,32 In Figure 8, this equality is 

indicated by assigning the same value, denoted as l, to each loading. This is the same restriction 

described previously in the discussion of parallel-forms reliability, now focused on parallel items. The 

same underlying assumptions apply here, such that the items must be measured on the same scale, 440 

the items must have same relation with the common construct, the error term of one item must not be 

related to the error term of any other item, and the items must have the same amount of error. This 

last assumption is described as having equal error variances in a factor analysis framework. In Figure 
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8 this assumption is indicated by assigning the same name to each error term, though this is a 

simplified depiction that is described more fully elsewhere.32  445 

  

Figure 8. Parallel four-item model assuming a standardized common construct 
 

When the conditions of the parallel model in Figure 8 are met, the value of alpha is equal to the 

squared correlation between the common construct and a composite score computed by summing 450 

responses to the four items.22,27 According to this relation, larger alpha values indicate a stronger 

association between the common construct and the composite score, and therefore less error in the 

composite score. Though the value of the common construct is never known when working with real 

data, simulated data can be used to demonstrate this mathematical relation. The Supporting 

Information provides R code that can be used to generate simulated data following the model in Figure 455 

8. These data can then be used to confirm the mathematical relation between alpha and the 

correlation between the common construct and composite score.  

The Tau Equivalent and Essentially Tau Equivalent Models: Unequal Item Errors 
The parallel model represents a highly restrictive set of conditions for the observed items unlikely 

to be met in most research settings. A less restrictive model, known as the tau equivalent model 460 

relaxes the restriction of having equal amounts of error associated with each item. This model is 

shown in Figure 9, where each item now has its own unique error term. As with the parallel model, 

simulated data can be used to show that under these conditions, alpha is still equal to the squared 

correlation between the common construct and the composite score. 
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 465 

Figure 9. Tau equivalent four-item model assuming a standardized common construct 
 

The restrictions of the tau equivalent model can be relaxed even further by allowing the relation 

between the common construct and the observed values to differ by an additive constant while 

maintaining the restriction of equal loadings. This model is known as the essentially tau equivalent 470 

model. In the thermometer analogy, this was described as using thermometers in both Celsius and 

Kelvin where the degree size is the same, but the scales differ by an additive constant. The equivalent 

degree size is what allows the relation between the observed and common construct to maintain the 

same linear relation describe in the factor analysis context by the loading values. Visually, the factor 

model for the essentially tau equivalent model is identical to the tau equivalent model shown in Figure 475 

9. As with the parallel and tau equivalent models, simulated data can be used to show that under 

essentially tau equivalent conditions, alpha is still equal to the squared correlation between the 

common construct and the computed composite score.  

The Congeneric Model: Unequal Item Errors and Unequal Relations with the Common Construct 
Relaxing the restriction of equal loadings describes a congeneric model, represented in Figure 10 480 

by assigning a unique value to each loading.  
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Figure 10. Congeneric four-item model assuming a standardized common construct 
 

Under these conditions, each item is no longer restricted to have the same degree of association with 485 

the common construct. The congeneric model represents a typical situation encountered in 

psychometric research, including within CER as can be seen when researchers publish their loading 

values for factor models.53–55,57,59–61 In the context of the thermometer example, this would allow 

thermometers of any scale to be used. However, under congeneric conditions, alpha is no longer equal 

to the squared correlation between the common construct and the computed composite score. When 490 

each item no longer has the same degree of association with the common construct, alpha is actually 

less than the squared correlation between the common construct and the computed composite score. 

This lowering of alpha relative to the squared correlation is where descriptions of alpha as the lower 

bound of reliability are derived from,16 though if the item errors are not independent alpha can also 

overestimate reliability.66 Again, the simulated data in the Supporting Information can be used to 495 

confirm this relation. 

Relation Between Alpha and Factor Model Features 
The different factor model conditions presented in Figures 8 through 10 demonstrate that alpha is 

only equal to the conceptual idea of reliability as a correlation between common construct and 

composite scores when the loadings are equal as in the parallel, tau equivalent, and essentially tau 500 

equivalent models. Additionally, all models have assumed no relation between the errors associated 

with each item. The presence of these types of correlated errors is known to bias alpha.66,67 Therefore, 

before reporting a value of alpha, it would be appropriate to consider whether or not the data meet the 

assumptions of parallel, tau equivalent, or essentially tau equivalent models. If these assumptions are 
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not met, other alternatives for determining reliability are available and these alternatives will be 505 

discussed in the following sections.  

Relation Between Unidimensionality and Reliability 
The previously described relations between the common construct influencing the true values for 

each item and composite scores only hold for single-factor models like the ones shown in Figures 7 

through 10. As numerous studies have demonstrated, alpha is not an index of 510 

unidimensionality;13,18,19 unidimensionality is a requirement for the value of alpha to be 

meaningful.9,22 If a multifactor model exists, it is more appropriate to report alpha for each individual 

subscale. In the words of Cronbach, “tests divisible into distinct subtests should be so divided before 

using the formula” (p. 297).49 As will be briefly discussed later, other reliability coefficients exist that 

are more applicable to multifactor situations.13 515 

Testing the fit between the data and the different single-factor model features to determine if the 

assumptions for reporting alpha have been met can be done through the use of confirmatory factor 

analysis (CFA). Numerous resources exist to explain how to conduct and evaluate the results of 

CFA,35,37,68 and some sample R code for conducting CFA is provided in the Supporting Information. 

While performing CFA, it is necessary to be aware of important considerations such as sample size 520 

requirements,69 and data characteristics, including missing data and whether data are continuous 

and normally distributed,68 though methods exist for dealing with these situations.70,71  

Alternatives to Alpha: McDonald’s Omega for Composite Scores and Coefficient H for Weighted Composite 
Scores 

If CFA indicates good data-model fit to parallel, tau equivalent, or essentially tau equivalent single-525 

factor models, alpha may make sense as a way to report reliability. Even beyond demonstration of 

meeting the assumptions underlying alpha, reporting CFA results is helpful to the broader CER 

community since the information provided by CFA also support aspects of validity.1,3,9 If CFA 

demonstrates that the data do not fit the more restrictive parallel, tau equivalent, and essentially tau 

equivalent models with equal loadings but instead show good fit to a congeneric model, there are other 530 

reliability coefficients that can be used instead of alpha. Of these, McDonald’s omega (𝜔) is the most 

conceptually similar to alpha.22,27,31,32 As shown in Equation 5, McDonald’s omega is analogous to 

Equation 4 in defining reliability as the ratio of common construct variance to total variance. In 
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Equation 5, assuming a standardized common construct, the squared sum of the item loadings 

(∑ 𝜆)"	describes the common construct variance as the amount of observed variance explained by the 535 

underlying common construct, and total variance is the combination of the squared sum of the item 

loadings and the sum of the error variances, represented as ∑𝜃. Omega, like alpha, ranges from 0 to 1 

where 1 indicates that all of observed variance is the common factor variance.  

𝜔 = (∑ .)%

(∑ .)%0	∑1	
 (5) 

Under congeneric model conditions, omega will be greater than alpha. When the omega formula is 540 

applied to models meeting the parallel, tau equivalent, or essentially tau equivalent assumptions, 

omega is equivalent to alpha.22,27 This property of omega can be confirmed using the R code provided 

in the Supporting Information to calculate omega for the previously described scenarios. The fact that 

omega and alpha are identical when the assumptions for alpha are met means that it may be prudent 

simply to report omega when instrument data show good fit to a single-factor model. However, some 545 

examples exist in the CER literature of providing alpha when the assumption of equal loadings is met, 

but otherwise reporting omega for single-factor models showing good data-model fit.51,52  

Alpha and omega are designed to address reliability of composite scale scores calculated as simple 

sums or averages of individual items, however in some situations it may make more sense to calculate 

an optimally weighted scale score. Weighted scale scores are particularly appropriate when items have 550 

a wide range of values for loadings on a single factor. When computing optimally weighted scale 

scores, items with stronger relations to the factor are weighted more heavily in the composite score 

than items with lower loadings.22 In these situations, coefficient H33,34 may provide a more meaningful 

indicator of reliability. Coefficient H also ranges from 0 to 1 and is computed using the values of the 

item loadings where a larger value of coefficient H indicates larger average loadings of the items. 555 

Because it provides an index of how strongly the measured items are related to the latent construct of 

interest, coefficient H has also been described as construct reliability,34 as well as construct 

replicability and maximal reliability.72 Like omega, coefficient H is equal to alpha when the 

assumptions of a parallel, tau equivalent, or essentially tau equivalent model are met. 
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Computing Alternatives to Alpha in R 560 
Both omega and coefficient H can be calculated by hand after conducting CFA and obtaining 

values for loadings and error variances; methods also exist for using Mplus to compute omega,32 and 

functions exist within R to automatically calculate omega and coefficient H from raw data. Within R, 

multiple packages provide functions for computing reliability coefficients, including 

userfriendlyscience,73 MBESS,74 semTools,75 and coefficientalpha.76 The function scaleStructure()23,77 565 

found in the package userfriendlyscience is recommended both for ease of use and for the variety of 

single-administration reliability coefficients it provides. The R code in the Supporting Information 

describes how to download and install this package and use the function scaleStructure() to compute 

single-administration reliability coefficients from raw data.  

Figure 11 shows partial output from the scaleStructure() function which includes alpha, omega, 570 

coefficient H, and other reliability coefficients that are described briefly here and more fully by 

McNeish.22 The scaleStructure() output also provides bootstrapped confidence intervals for alpha and 

omega78 as well as estimates of ordinal alpha and ordinal omega when the function detects that the 

raw data are categorical.79 Examination of the output of scaleStructure() shows three different 

reliability values named omega.  575 

 

Figure 11. Partial output from function scaleStructure() for data fitting a parallel (a) and congeneric (b) model 
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McDonald’s omega is the first line of the reliability coefficient output, called Omega (total). The next 

value, Omega (hierarchical)31 is more applicable to models with general factors as well as specific 580 

factors within a multidimensional factor model. Since this situation describes a model not commonly 

used for instruments in CER, it will not be discussed further. More similar to McDonald’s omega total 

is Revelle’s omega (total)18 which uses a more complex mathematical process for generating the factor 

solution, but also considers more complicated factor structures than unidimensional models. Again, 

this complexity is likely unnecessary for most typical CER. Finally, the Greatest Lower Bound 585 

(GLB)19,80 refers to a suite of methods examining the covariance matrix for the items, but it tends to be 

biased for smaller samples sizes and currently cannot be computed for ordinal data.22 For this reason, 

GLB is unlikely to be a useful option for most CER. 

Though not all of the reliability coefficients provided by scaleStructure() are likely to be relevant for 

most CER, it is illustrative to see how different methods of defining and computing reliability can 590 

result in different calculated values depending on which factor model the data fit. A natural next 

question might be to wonder whether there is a specific numeric value that should be obtained in 

order to declare the data derived from an instrument or scale as reliable. Higher values of reliability 

are preferable; however the idea of a universally standard “acceptable”9 reliability value, such as the 

commonly cited cutoff of 0.70, is a myth stemming from the incorrect interpretation of Nunnally.10,81,82 595 

Rather than worrying about meeting an arbitrary threshold for a reliability value, it is more important 

to consider which type of reliability value is most appropriate to report given the stakes of the 

assessment, the context of the measurements, the structure of the instrument, and characteristics of 

the data. Then, interpretation of the reliability value can be used to explain whether or not it is 

acceptable in that context for that intended use.3 As summarized by Bandalos, “there is no substitute 600 

for thoroughly thinking through the context of testing and purposes to which the test will be put and 

for using these to guide decisions about values of reliability coefficients” (p. 184).42 

Summary of Reliability in a Factor Analysis Framework 
Though alpha, omega, and coefficient H can be calculated directly from raw data using R packages, 

it is strongly recommended that the assumptions for each reliability coefficient are checked with CFA 605 

before undertaking the reliability calculation. While internal factor structure can be examined with 
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exploratory factor analysis (EFA), EFA is not appropriate for analysis of an instrument that has a 

theoretical rationale for a specific factor structure.83 Additionally, the validity evidence from EFA is 

weaker than CFA because EFA does not provide the data-model fit indices that allow for testing how 

well the data fit the proposed theoretical model, thereby limiting the ability to determine whether or 610 

not a single-factor model is appropriate for the data. The additional steps required to conduct CFA are 

worthwhile since the CFA results can be used to provide evidence for the validity of the measurement 

while simultaneously evaluating assumptions underlying the reliability evidence. 

In some situations the calculated values of alpha, omega, and coefficient H may be very similar, 

but it would be incorrect to assume that this makes their use interchangeable.84 Just as assumptions 615 

are checked and reported before using and reporting outcomes from other statistical methods such as 

ANOVA, similar rigor should be standard for reliability. Without first demonstrating that the data have 

good fit to a single-factor model, reporting of either alpha or omega is meaningless. The mathematical 

examples provided in the supporting R code and other sources13,17–19 have demonstrated that alpha 

does not provide as good an estimate of reliability if the data do not fit a unidimensional model with 620 

uncorrelated errors and equal item loadings as in the parallel, tau equivalent, or essentially tau 

equivalent models. Similarly, it does not make sense to report a value of coefficient H for a latent 

variable if data do not show good fit to a factor model. In situations where an instrument is known to 

be composed of multiple scales where scores will be reported separately, each scale should be 

evaluated to determine if it fits a single-factor model, and a reliability value should be provided for 625 

each set of scale data.  

Limitations of Reliability in a Factor Analysis Framework 
While there are many benefits of using a factor analysis approach to psychometric data analysis, 

such as obtaining validity evidence in addition to reliability evidence, there are also difficulties 

associated with moving to this approach. First, it is likely that some of the popularity of alpha in CER 630 

has arisen due to the ease of obtaining it in software, like SSPS, frequently used for data analysis.64,85 

Even with the increasing user-friendliness of R and the availability of functions for computing 

additional reliability coefficients beyond alpha, moving away from alpha still represents an additional 

layer of difficulty for most researchers.  
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Paradoxically, in some ways reducing the activation energy required to compute additional 635 

reliability coefficients from raw data has the potential to create new issues with reporting of reliability 

coefficients, such as omega and coefficient H, in contexts where they are not applicable due to not 

meeting underlying statistical assumptions. For this reason, it is also important to recognize what 

information single-administration reliability coefficients do and do not provide. Omega and alpha only 

provide appropriate reliability measurements if the goal of reporting a reliability value is to say 640 

something about the relative proportion of common construct variance to total variance with data that 

fit a single-factor model. That is, when statistical assumptions are met alpha and omega can be used 

to estimate the amount of error present in the measurement, specifically when using an equally 

weighted composite score. The interpretation of coefficient H is different in that H can be interpreted 

as providing information about the quality of a construct, as defined by having stronger relations 645 

between the construct and its indicator variables. As coefficient H represents the reliability of a 

composite score obtained from an optimally weighted set of items it is also the maximum the reliability 

can be within a given sample. For all reliability coefficients discussed, there is no set target value at 

which reliability crosses a threshold to become acceptable. Instead, it is necessary to justify why 

values may be appropriate for a particular research context given properties of the instrument, the 650 

subjects, and the setting.  

Another concern with the ease of computing single-administration reliability coefficients, including 

alpha, is that functions such as scaleStructure() do not evaluate the underlying assumptions of 

unidimensionality or show data-model fit as would be obtained from performing CFA. This means that 

acceptable values for reliability coefficients may be obtained even if data do not show good fit to a 655 

single-factor model. No single-administration reliability coefficient is a substitute for the data-model fit 

information provided by CFA; conversely good data-model fit is not a substitute for acceptable 

reliability values.86 While there are many benefits to using a factor analysis framework to approach 

reliability, there are also limitations, primarily related to the larger sample size requirements and 

additional analysis steps required as well as a stronger emphasis on the theoretical framework 660 

underlying the instrument. However, the CER community has made great strides in embracing a more 
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rigorous approach to evaluating measurement quality,1 and it is anticipated that these types of 

analyses will soon become standard procedure.  

RECOMMENDATIONS FOR REPORTING RELIABLITY OF PSYCHOMETRIC MEASUREMENTS 
Choosing the Appropriate Reliability Estimate 665 

Reliability provides information about the precision associated with a measurement. In a 

psychometric context, this is often defined as the relative proportion of common construct value to the 

total observed value. Alpha is only one of many mathematical methods for computing this proportion 

in situations where the value of the common construct that influences true values for each item is 

unknown, as is the case with psychometric measurements. When choosing how to address the 670 

reliability of measurements made using psychometric instruments, it is important to remember that, 

similar to validity, there are a variety of types of reliability that can be reported. The type of reliability 

reported should be aligned with the research goals and type of data collected. 

• Test-retest reliability provides information about variability over time 

• Parallel- or alternate-forms reliability provides information about variability across items 675 

• Single-administration reliability values, including alpha, McDonald’s omega, and coefficient 

H, provide information about the relations between individual items and a composite score 

Checking Assumptions and Prerequisites 
Each type of reliability has its own benefits and limitations as well as underlying assumptions that 

should be met before the value is reported, just like any other statistical test. When the assumptions 680 

are not met, reliability values no longer provide accurate estimations of the amount of random 

measurement error present. Some of these assumptions, such as the mathematical relation between 

the observed value of each item and the value of the common construct of interest that underlies 

single-administration reliability coefficients, are best examined in a factor analysis framework. The 

single-administration reliability coefficients themselves do not provide information about 685 

unidimensionality or demonstrate that the items are measuring a single construct, only factor analysis 

can test for these characteristics of the data. The information provided by factor analysis is a 

necessary prerequisite for moving forward with reporting alpha, omega or coefficient H. The factors to 
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consider when deciding whether to report alpha, omega or coefficient H are summarized below and in 

Table 2. 690 

• Alpha should only be reported for instruments or scales showing good data-model fit to a 

single-factor model where each item is associated with the common construct to the same 

degree (i.e., a parallel, tau equivalent, or essentially tau equivalent model) 

• Omega relaxes the restrictions of alpha by allowing the items in the single-factor model to 

be associated with the common construct to different degrees (i.e., a congeneric model) 695 

o When the mathematical assumptions for alpha are met, alpha and omega are 

equivalent, making omega a more universally appropriate single-administration 

reliability value for most contexts 

o Both reliability coefficients are appropriate for situations where data will be used to 

calculate a simple composite score 700 

• Coefficient H has no structural assumptions other than demonstrating that the instrument 

or scale has good data-model fit to any proposed model 

o When assumptions for the parallel, tau equivalent, or essentially tau equivalent 

model are met, coefficient H is equal to alpha and omega 

o Because coefficient H provides a summary of the strength of the relation between 705 

the items and the common construct, it is more appropriate for situations where 

data will be used to calculate a weighted composite score 

 

Table 2. Data characteristics and appropriate reliability coefficients for each model  

 Model Name 

Data Characteristics Parallel Tau Equivalent or 
Essentially Tau Equivalent Congeneric 

Unidimensional Yes Yes Yes 
Equal item loadings Yes Yes No 

Equal item error values Yes No No 

Reporting Reliability Parallel Tau Equivalent or 
Essentially Tau Equivalent Congeneric 

Appropriate single-
administration 

reliability coefficient(s) 

alpha (⍺ ) 
omega (⍵ ) 

coefficient H 

alpha (⍺ )  
omega (⍵ ) 

coefficient H 

omega (⍵ ) 
coefficient H 

 710 
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Though examining the internal structure of an instrument with factor analysis is a necessary step 

in the process of reporting a single-administration reliability coefficient, the internal structure of the 

instrument provides validity evidence, not reliability evidence. In situations where conducting factor 

analysis is not feasible due to small sample sizes, researchers are encouraged identify and use 

instruments that have strong evidence for single-administration reliability with populations similar to 715 

those in the small-sample research project. In those situations, it is also appropriate to report 

literature reliability values. In all other situations, both literature reliability values and reliability 

values for data from the current research sample should be reported. Additionally, researchers should 

remember that single-administration reliability values are not the only methods for addressing 

reliability and should design their studies to address reliability in a test-retest framework if that is 720 

more appropriate for the research context. Regardless of the context, both reliability and validity 

should be addressed when providing information about data quality to support analyses and 

interpretations.  

Reporting Evidence for Measurement Quality 
When reporting evidence for measurement quality, it is important to be very clear about what 725 

reliability and validity are properties of. Reliability and validity are not solely properties of the 

instrument making the measurements, they are properties of the data obtained when using the 

instrument. Therefore, an instrument itself is never reliable, never valid, and can never be universally 

validated; those terms should instead be used to describe properties of data obtained from using an 

instrument in a specific context. In some instances, over time and with a preponderance of reliability 730 

and validity evidence, an instrument can become known as a high-quality measurement standard for 

specific contexts, but that does not mean the instrument is validated for all uses and contexts.   

CONCLUSIONS 
It can be tempting to interpret the ubiquity of coefficient alpha in both the CER literature and the 

broader psychology literature22,23 as evidence that it must be the standard and therefore optimal 735 

method for reporting the reliability of psychometric measurements. Unfortunately, this ubiquity 

results in a vicious cycle where the expectation is that alpha will be reported, even if few reporting or 

reading the value truly understand what it represents.9,21 This is especially frustrating given the large 
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number of studies showing that the mathematical assumptions underlying alpha mean that it 

frequently is not the most appropriate method for determining single-administration 740 

reliability11,13,15,22,28 and suffers from other flaws such as increasing in value as test length 

increases.16,82  

Overreliance on alpha also obscures the fact that alpha is only one of many methods for examining 

evidence for the reliability of measurements. The analogy between reliability and precision highlights 

that the ways in which precision is typically expressed in the physical sciences often do not make 745 

sense for psychometric measurements because data are rarely obtained from multiple measurements 

of the same person. However, in situations where two measurements are made using the same 

instrument, test-retest reliability provides a meaningful summary of the temporal consistency 

associated with the measurements. Even administering two repeated measures can present logistical 

and theoretical difficulties for many psychometric variables. The difficulties associated with repeated 750 

measures reliability led to the development of alpha and other single-administration reliability 

coefficients which may be logistically simpler, but come with the tradeoff of stricter underlying 

assumptions about the measurements.  

Of the numerous types of single-administration reliability coefficients that have been developed, 

alpha is conceptually simple in that it provides information about the proportion of the common 755 

construct influencing the true value in an observed measurement relative to the amount of error and 

also computationally simple26 in that it can be computed by hand. However, the need for 

computationally simple reliability coefficients is not nearly as critical as it was in the era before 

personal computers. As the sophistication of data analysis methodologies have grown, it is worth 

considering why the choice of a single-administration reliability coefficient has not similarly improved 760 

in sophistication. For all its surface simplicity, the utility of alpha is undercut by the rigorous 

underlying mathematical assumptions, specifically the need for each item to be associated with the 

common construct to the same degree. Testing for this relation can be done in a factor analysis 

framework with parallel, tau equivalent, and essentially tau equivalent models. This type of latent 

variable analysis is becoming more common in CER and opens the door for considering reliability in a 765 

factor analysis framework.  
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McDonald’s omega is the most conceptually similar to alpha in that it also provides information 

about the proportion of common construct value in a measurement relative to the amount of error but, 

unlike alpha, omega allows each item to be associated with the common construct influencing the true 

value of each item to a different degree, known as a congeneric model. It is likely that most 770 

psychometric instruments best fit a congeneric model, and since omega is mathematically equivalent 

to alpha if the more restrictive models hold, omega is recommended as a more appropriate single-

administration reliability coefficient than alpha for most psychometric measurements. Coefficient H is 

a factor analysis based approach to reliability that provides a single value to summarize how strongly 

the items are associated with the common construct, and is applicable to all factor models with good 775 

data-model fit, particularly when item responses will be used to calculate weighted scale averages.     

Though single-administration reliability coefficients such as alpha, omega, or coefficient H have the 

advantage of requiring data from only one instrument administration, this does not mean they provide 

the best information about reliability for every situation. In addition to the types of reliability described 

in this paper there are other methods for reporting reliability associated with measurements from 780 

psychometric instruments including item response theory (IRT) and generalizability theory, the latter 

of which, also known as G theory, was developed by Cronbach and colleagues.87 These methods are 

beginning to gain traction in CER, but further discussion of their benefits and limitations is beyond 

the scope of this paper, interested readers are encouraged to consult any of the excellent descriptions 

of these methods.5,7,26,88–90 785 

As described in the Standards,3 “there is no single, preferred approach to quantification of 

reliability/precision. No single index adequately conveys all of the relevant information. No one method 

of investigation is optimal in all situations” (p. 41). The idea of providing multiple types of evidence to 

support an argument for measurement quality aligns with the way the CER community has embraced 

the idea of the multifaceted nature of validity.1,91 Rather than seeking to provide a single quantification 790 

of validity, researchers frequently present many types of validity evidence to provide information about 

the quality of the data obtained by an instrument. Similarly, reporting of reliability evidence should be 

considered as one part of a larger set of information, along with validity evidence, that should be 

reported to provide support for the quality of data obtained from an instrument. Though alpha has 
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long filled a prominent role in addressing reliability in CER, as best said by Cronbach himself,26 “I no 795 

longer regard the alpha formula as the most appropriate way to examine most data” (p. 403). It is time 

for CER to consider other options for addressing reliability that are more appropriate for different 

research contexts and data characteristics.  
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