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A B S T R A C T

Fire regimes are now recognized as the product of social processes whereby fire on any landscape is the product
of human-generated drivers: climate change, historical patterns of vegetation manipulation, invasive species,
active fire suppression, ongoing fuel management efforts, prescribed burning, and accidental ignitions. We
developed a new fire model (Social-Climate Related Pyrogenic Processes and their Landscape Effects: SCRPPLE)
that emphasizes the social dimensions of fire and enables simulation of fuel-treatment effects, fire suppression,
and prescribed fires. Fire behavior was parameterized with daily fire weather, ignition, and fire-boundary data.
SCRPPLE was initially parameterized and developed for the Lake Tahoe Basin (LTB) in California and Nevada,
USA although its behavior is general and could be applied worldwide. We demonstrate the behavior and utility
of our model via four simple scenarios that emphasize the social dimensions of fire regimes: a) Recent Historical:
simulated recent historical patterns of lightning and accidental fires and current patterns of fire suppression, b)
Natural-Fire-Regime: simulated wildfire without suppression, accidental fires, or prescribed fires, holding all
other factors the same as Recent Historical, c) Enhanced Suppression: simulated a doubling of the effectiveness
of suppression, holding all other factors the same as Recent Historical, and d) Reduced Accidental Ignitions:
within which the number of accidental fires was reduced by half, holding all other factors the same as Recent
Historical. Results indicate that SCRPPLE can recreate past fire regimes, including size, intensity, and locations.
Furthermore, our results indicate that the ‘Enhanced Suppression’ and ‘Reduced Accidental Ignitions’ scenarios
had similar capacity to reduce fire and related tree mortality over time, suggesting that within the broad outlines
of the scenarios, reducing accidental fires can be as effective as substantially increasing resources for suppres-
sion.

1. Introduction

Fire regimes are now recognized as the product of social processes
(Abatzoglou and Williams, 2016; Balch et al., 2017; Bowman et al.,
2011; Moritz et al., 2014; Nagy et al., 2018; Syphard et al., 2017; Spies
et al., 2018) whereby fire on any landscape is the product of human-
generated drivers: climate change (Westerling, 2016), historical pat-
terns of vegetation manipulation (e.g., through logging)(Taylor et al.,
2016; Marlon et al., 2012), invasive species (Balch et al., 2013), active
fire suppression (Baker, 1992), ongoing fuel management efforts
(Loudermilk et al., 2014, Krofcheck 2017), prescribed burning
(Stephens and Finney, 2002), and accidental ignitions (e.g., careless
campers; Balch et al., 2017). In many areas and times, the social di-
mensions of fire may be as or more important than the purely ecological
(e.g., fuel accumulation through succession, lightning strikes) (e.g.,
Taylor et al., 2016). Consequently, understanding human-driven

changes in fire regimes and the potential impacts of fires on human and
natural systems is critical for shaping policy and management re-
sponses.

Simulating fires and fire regimes is a common approach for eluci-
dating the causes and effects of fire due to the difficulties of experi-
mentation and the societal need for information about risks and man-
agement options. There are a broad range of stand-alone fire models
available, each designed for specific purposes. These include models
that predict ignition type and quantity, fire size, and total area burned
within regions and ecoregions (e.g., Abatzoglou and Williams, 2016;
Balch et al., 2017; Dennison et al., 2014; Stavros et al., 2014), com-
bined statistical models of both number of ignitions and fire-size
(Westerling et al. 2011), or pixel-level environmental suitability for
fires (Hawbaker et al., 2013; Davis et al. 2017; Parisien and Moritz,
2009; Parisien et al., 2011). At finer spatial scales, a range of statistical
methods have been used to predict ignitions in both space and time
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(Syphard et al 2008; Sturtevant and Cleland, 2007; Prestemon et al.,
2012; Yang et al., 2015). Fire spread has been simulated with cellular
automata models (Baker, 1992; Hargrove et al. 2000), empirical and
semi-empirical fire behavior and spread models parameterized from
laboratory experiments or field data (e.g. FARSITE, Finney, 1998), and
physics-based combustion and spread models (e.g. the Wildland Urban
Interface Fire Dynamics Simulator, Mell et al. 2007 or the Coupled
Atmospheric Weather-Fire Experiment, Coen et al., 2013). These ap-
proaches to modeling ignition and fire spread are designed for land-
scape scales and interact with vegetation patterns, fuel loads, topo-
graphy, and weather, but do not directly incorporate vegetation change
or feedbacks among human activities, vegetation, climate, and fire over
time.

In contrast, landscape simulation models can integrate feedbacks
among human actions (e.g., logging), fire, and vegetation, as well as
other dimensions of landscape change that alter vegetation and suc-
cession, including insect outbreaks, and climatic effects on regeneration
and growth. Furthermore, landscape simulation models can represent
direct human modifications to the fire regime. Such modifications in-
clude human effects on ignition rates (Chas-Amil et al., 2015), the
likelihood of suppression success (Ntaimo et al., 2004), and the impact
of fuel treatments that reduce fire spread and/or mortality (e.g.,
Loudermilk et al., 2014; Krofcheck et al., 2017; Ager et al., 2017).
Currently, few landscape simulation models incorporate ignitions,
spread, mortality, and a full suite of human activities in addition to
feedbacks with climate and emergent vegetation; Envision contains
many of these processes although follows a state-and-transition suc-
cession sub-model (Spies et al., 2017).

Parameterization of fire models typically emphasizes calibration to
broad-scale metrics characterizing the recent fire regime (e.g., fire size
distribution, fire rotation period). Less effort has been made to para-
meterize fire models to fine-scale and short-term metrics characterizing
individual fire progression, in part because the data required to do so
are either lacking or difficult to acquire. Daily satellite active fire de-
tections (Giglio et al., 2003) have been demonstrated to track the
progression of large wildfires (Veraverbeke et al., 2014) and used to
update fire spread simulations (Pinto et al., 2016; Coen et al., 2018);
however, limited effort has been made to fully parameterize fire spread
simulations entirely from remote sensing and geospatial data (Duff
et al., 2013; Sá et al., 2017). Consequently, we also sought to create a
fire projection model that could be parameterized from available exo-
genous (e.g., remote sensing, expert opinion) and endogenous (vege-
tation data existing within a modeling framework, e.g., tree species,
ages, biomass) data. Input variables (e.g., those relating daily climate to
probability of ignition) should be tractable with solutions that can be
estimated from remotely sensed data and/or readily resolved using
spatial data and/or derived from local fire expertise.

Therefore, we developed a new fire model (Social-Climate Related
Pyrogenic Processes and their Landscape Effects: SCRPPLE) that em-
phasizes the social dimensions of fire, and captures, 1) human ignitions,
accidental or via prescribed fire; 2) the spatial and temporal patterns of
prescribed fires; 3) fuel-treatment effects; 4) the spatial patterns of fire
suppression. In addition, SCRPPLE captures the effects of topography,
fuels, and climate. We emphasized parameterization using landscape-
scale datasets that have recently become more widely available (see
Table 1). Finally, the approach allows for targeted emphasis on dif-
ferent processes. If suppression is not practiced on the landscape, it can
be readily disabled. The fire model described could be operated without
any information except the relationship between ignitions, spread, and
Fire Weather Index (FWI) (Van Wagner, 1987).

SCRPPLE was initially developed for the Lake Tahoe Basin (LTB) in
California and Nevada (Fig. 1). Even though our model was initially
parameterized for LTB and the initial suite of assumptions reflect the
fire dynamics of this area, our approach and these assumptions are
broadly applicable to landscapes worldwide where fire is driven by
both social and physical processes. Both anthropogenic and non-human

factors drive fire regimes in the LTB. Because of the value and density of
people and structures, fuel treatments (i.e., vegetation management
that reduces surface and mid-story ‘ladder’ fuels) and prescribed fire are
both actively deployed. Accidental ignitions predominate. The ar-
rangement and amount of fuels are a primary concern due to historical
patterns of land use (e.g., a relatively young and even-aged forest age
structure determined by historical logging events, Loudermilk et al.,
2013) and future fire regimes are likely to be substantially shaped by
climate change (Yang et al., 2015). In this paper, we present the
SCRPPLE modeling approach and demonstrate model behavior using
four scenarios for LTB that explicitly integrate multiple types of human
actions and show the utility of our approach for assessing the trade-offs
among approaches for reducing fire on the landscape.

2. Methods

The initial implementation of SCRPPLE is within the LANDIS-II
landscape change framework; LANDIS-II represents vegetation succes-
sion (Scheller et al., 2007), forest harvest and fuel treatments (Syphard
et al., 2011), and insect mortality (Sturtevant et al., 2004). Details
about LANDIS-II implementation, computational requirements, oper-
ating systems, and open-source code can be found at www.landis-ii.org.
LANDIS-II has two existing fire extensions: the Base Fire extension
which does not include climatic effects (He and Mladenoff, 1999) and
the Dynamic Fire extension which does not explicitly include anthro-
pogenic processes (Sturtevant et al., 2009). Here we focus on the details
of the new SCRPPLE fire extension which consists of four primary al-
gorithms: Ignition (including human ignitions), Spread (including the
effects of suppression and fuel treatments), Fire Intensity, and Fire
Mortality. These algorithms simulate three separate types of fires:
Lightning, Human Unintentional (‘accidental’), and Prescribed Fire
(‘RxFire’) allowing each fire type to have its own ignition and sup-
pression and intensity patterns. The extension assumes that if sup-
pression is constant, lightning and accidental fires will behave similarly
in regard to spread and mortality under the same weather and wind
speeds. Prescribed fires may be limited by FWI and wind speed. All
model code is available at: https://github.com/LANDIS-II-Foundation/
Extension-SCRPPLE. Details about input formats, keywords, etc., are
provided in the associated user guide: http://www.landis-ii.org/
extensions/scrapple

2.1. Ignition

Our ignitions follow a “supply and allocation” model whereby the
supply of ignitions is generated from a zero-inflated Poisson model and
then ignitions are allocated across the landscape with an ignition sur-
face. For accidental and lightning fires, the number of ignitions per day
was determined by relating the number of ignitions (by each of three
the fire types: accidental, lightning, prescribed) to Fire Weather Index
(FWI). The Canadian Fire Prediction System (1992) is used to calculate
FWI as a smoothed average that integrates long- and short-term var-
iation in precipitation and temperature. FWI is calculated for each day
of the year and the appropriate number of ignitions are generated for
each day.

The following equation was fit to ignition and FWI data (Table 1):

Number of fires= eβ0 + β1*FWI (1)

This assumes a zero-inflated Poisson distribution (Zuur et al., 2009)
and uses a log link function requiring a fit of β0 and β1 that vary by
ignition type and the estimated non-zero portion of the ignition re-
sponse. For fractional ignitions (e.g., number of ignitions= 1.6),
rounding determines the number of ignitions (e.g., number of igni-
tions= 2).

Prescribed fires (‘RxFire’) are routinely deployed to reduce fine fuels
(Agee and Skinner, 2005) and there are calls to substantially increase

R. Scheller, et al. Ecological Modelling 401 (2019) 85–93

86

http://www.landis-ii.org
https://github.com/LANDIS-II-Foundation/Extension-SCRPPLE
https://github.com/LANDIS-II-Foundation/Extension-SCRPPLE
http://www.landis-ii.org/extensions/scrapple
http://www.landis-ii.org/extensions/scrapple


their use (e.g. State of California Executive Order B-52-18). For RxFire,
a set number of fires are generated per year, based on expert input and/
or scenario design. RxFires are attempted sequentially (by day of year)
until the expected number of fires is successfully ignited. Prescribed fire
is often used under weather conditions different from wildfires.
Therefore, our model allows conditions to be placed on RxFire ignitions
including a minimum FWI (necessary to maintain fire spread) below a
maximum FWI (conditions under which prescribed fire would be
avoided), and a maximum wind speed (again, conditions under which
prescribed fire would be avoided).

A continuous weighted surface of historical ignitions for the entire
landscape is required for each of the three ignition types and used to
allocate ignitions. For regions where the spatial pattern of ignitions is
weak or unknown, this surface can be a constant value or a smoothed
average of ignition rates. For other regions, the spatial pattern of ig-
nitions could be projected based on climate change estimates (e.g.,
Yang et al., 2015). All available sites are then shuffled using an algo-
rithm that biases selection by the ignition probability maps. The list of
ignitions sites is re-shuffled at the beginning of each year. In combi-
nation, the three ignition sources generate the total number of fires per
year per fire type and are dependent upon FWI.

2.2. Fire spread (growth)

From the point of ignition, fire can spread to each adjacent cell (i.e.,
four nearest neighbors) dependent upon a probability of spread
(Pspread). Fire spread is from cell-to-cell and determines fire size. A fire
will continue burning until no more cells are selected for spread.
Probability of fire spread is estimated using a general equation relating

event probability to FWI (Beverly and Wotton, 2007), that creates a 0–1
probability function which is then applied at a daily time step to de-
termine the success of cell-to-cell fire transmission:

Probability of Fire Spread=Pspread=1 / 1 + eβ0 (2)

Where β0 is the probability of spread into a site, given conditions on
that site:

β0 = β0′ + β1*FWI + β2*EffectiveWindSpeed + β3*FineFuels (3)

Where EffectiveWindSpeed is an adjusted wind speed whereby reported
wind speed and direction for the region (from meteorological stations)
is downscaled to individual sites by accounting for slope angle and the
slope azimuth relative to the wind direction (Nelson 2002).
EffectiveWindSpeed also incorporates the intensity of the neighboring
cell from which the fire is spreading (see intensity calculations below).
A high intensity fire burning upslope generates a greater
EffectiveWindSpeed than a moderate or light fire. This in turn feeds
back into the estimate of fire intensity (see below), creating self-sus-
taining high-intensity fires under certain conditions.

During model execution, fire fuels are estimated from endogenous
(internal to the model framework) litter estimates. During model ex-
ecution, fine fuels are spatially and temporally variable and reflect re-
ductions from fuel treatments and fires, and additions from overstory
mortality, e.g., from insect outbreaks (e.g., Sturtevant et al., 2009), as
calculated within an appropriate LANDIS-II succession extension.

A fire will spread until it has reached a maximum area for the day,
or no cell-to-cell spread is predicted to occur due to fuel limitations or
suppression activities (below). Maximum area was determined

Table 1
The following data sources were used to parameterize Lake Tahoe West.

Data Source

Daily fire perimeters GEOMAC from all available years (2000-2016). Data required preprocessing, which included year-to-year attribute name standardization, date
convention standardization, geographic coordinate standardization, removal of blank or missing records, elimination of duplicate record days,
elimination of days with ‘negative’ fire spread, and conversion to raster format. https://rmgsc.cr.usgs.gov/outgoing/GeoMAC/historic_fire_data/

Fire Weather Index (FWI),
Daily

Daily FWI was calculated using equations internal to the Climate Library (Lucash et al. 2017). Climate data used was Mauer daily gridded historical
climate data available through the USGS GeoDataPortal. https://cida.usgs.gov/gdp/. The climate data was produced for EPA level II ecoregions,
which was then resampled into 900m2 pixels to make it consistent with all other input maps.

Fine fuel loads Fine fuel load maps were developed using LANDFIRE cover types and the associated fuel loading information (Reeves et al., 2006) https://www.
landfire.gov/documents/FuelProceedings.pdf

Daily wind speed Daily wind speed data used were summarized by the USGS GeoDataPortal, using the same EPA region mapping approach and resolution resampling
as the FWI data.

Daily wind direction Because a continuous surface of historical daily wind direction is not available, we estimated wind direction as the direction of fire spread; daily fire
polygon centroid-to-centroid azimuth was used as daily wind direction. Wind direction is not a direct input to fire spread, but rather is included in
the effective wind speed calculation.

Burn intensity Forest Service Region 5 GeoSpatial Information Center https://www.fs.usda.gov/detail/r5/landmanagement/gis/?cid=STELPRDB5327833

Fig. 1. Sierra Nevada analysis area for generating fire extension
parameters for the Lake Tahoe Basin, outlined in black. Green
areas in state map represent Forest Service administrative
boundaries. Colors in inset represent wildland-urban interface
zones delineated by Tahoe Basin Management Unit land man-
agers: wildland-urban interface (red), wildland-urban intermix
(orange), wildland (green) (For interpretation of the references to
colour in this figure legend, the reader is referred to the web
version of this article).
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empirically:

Maximum daily spread area = β0 + β1*FWI +
β2*EffectiveWindSpeed (4)

Maximum daily spread is an overall limit to daily area burned and
therefore calculated separately from cell-to-cell fire spread. Maximum
area spread parameters were derived using a fitted generalized linear
model (‘glm’ in the R statistical software). Both cell-to-cell spread and
maximum daily fire spread are updated with daily FWI estimates until
the fire can no longer spread (e.g. disconnected fuels, low FWI, or
suppression is applied).

2.3. Suppression

Suppression is simulated as the capacity to reduce the probability of
fire spread and is unique for each fire type. Our suppression algorithm
was designed in collaboration with fire managers and approximates the
decisions made when deciding whether to suppress and the overall
suppression effort. Suppression was implemented as four zones per fire
type: none, minimal, moderate, maximal suppression. Each zone is as-
signed an integer reflecting suppression effectiveness that reduces
Pspread as a fraction (suppression effectiveness / 100). Zones are input as
unique maps for each fire type. The unique maps allow for different
kinds of suppression dependent upon circumstances. For example,
lightning generated fires may be allowed to spread in remote areas of a
landscape. Accidental fires may be heavily suppressed in all areas.
Prescribed fires are typically suppressed in all areas except where the
fires are intentionally introduced although they can escape. These zones
should be based on current or anticipated management efforts.

Suppression effectiveness can vary as a function of FWI; more re-
sources for suppression are typically allocated during extreme fire
weather (higher FWI). Two FWI breakpoints determine when suppres-
sion efforts (effectiveness) increase. In addition, a maximum daily wind
speed limits suppression to days when resources can be safely deployed;
if daily wind speed exceeds the maximum limit, suppression does not
occur.

2.4. Fire intensity

We developed three classes of fire intensity, Low:< 1.2 m (< 4
feet) flame lengths; Moderate: 1.2–2.4 m (4–8 feet); and High:> 2.4 m
(> 8 feet). These intensity classes correspond to metrics of intensity
commonly used by fire managers. Corresponding mortality classes were
also defined (see below).

Unlike fire ignition and spread, empirical data of fire intensity are
not available at the regional scale. Differenced Normalized Burn Ratio
(dNBR) is a metric of severity and does not readily translate into a
metric of intensity. Therefore, we used a multi-condition risk approach
to determine whether a site burned at low, moderate, or high intensity.
We defined three risk conditions based on fine and ladder fuels
(Schoennagel et al., 2004) and fire spread (Agee et al., 2000):

1 Does the mass (g m−2) of fine fuels exceed a calibrated threshold?
2 Does the mass (g m−2) of ladder fuels exceed a calibrated threshold?

Ladder fuels are assigned via a list of species with maximum ages
that can be regarded as ‘ladder fuels’. For example, Abies concolor
aged 0–25 might be regarded as ladder fuels.

3 Is the fire intensity of the source site (the neighboring site from
where a fire spread) high intensity? A high intensity fire will pro-
mote higher intensity fire as it spreads.

The default is low intensity. If one of these three conditions is true,
the intensity become moderate. If two or more conditions are true, the
fire is high intensity.

2.5. Fire mortality

Fire mortality varies depending on fire intensity and the tree species
and ages present. A low intensity fire, for example, may cause extensive
mortality if the forest is dominated by fire-intolerant tree species. For
each fire intensity class, a fire mortality table is defined that includes
the age ranges and associated probability of mortality for each tree
species. A single random number is generated (a global function within
the LANDIS-II framework) for each burned site (ensuring a consistent
effect on all trees). If Pmortality (from the corresponding fire mortality
table) exceeds the random number, the species-age cohort is killed
(100% mortality).

3. Model parameterization and application

3.1. Study area

We parameterized and applied our fire model to the Lake Tahoe
Basin (LTB; Fig. 1). LTB is a dry conifer forest on the east side of the
Sierra Nevada with a high average snowpack (50–150 cm) and dry
summers. Although LTB is now largely a recreational destination, it was
heavily logged at the end of the 19th century and the forests today
reflect recovery from these past land uses (Loudermilk et al., 2013).
Historically, fires were frequent (occurring every 3–20 years) (Nagel
and Taylor, 2005), but have been actively suppressed since the early
20th century. In addition, fire ignitions have substantially shifted in
frequency and location with about 80% of fires started accidentally by
humans and typically near the lake shore whereas most lightning fires
occur on ridgetops (Short, 2013). Prescribed fire has historically been
limited in scale and located only within the wildland urban interface
(Loudermilk et al., 2013) although recent efforts intend to expand
prescribed fire to the broader watershed. Climate change is expected to
increase annual temperatures, increase fire season duration, and in-
crease the probability of extended droughts (Loudermilk et al., 2013)
and ignition locations (Yang et al., 2015).

3.2. Model parameterization

In order to parameterize ignitions, historical fire data from 1992 to
2013 for the LTB (Short, 2013) were used to estimate the relationship
between daily number of ignitions and FWI; we included only fires that
spread to ≥ 1 ha. Ignitions within the historical data set were separated
by ignition type into lightning (coded as ‘lightning’ within the Short
data) and human accidental (many codes, including ‘campfire’, ‘arson’,
and ‘child’, were combined). Daily historical FWI was calculated from
daily temperature and precipitation data (PRISM) as implemented
within the Climate Library of LANDIS-II (Lucash et al. 2017), which
produced daily FWI values for our period of record. A zero-inflated
Poisson distribution of fire ignitions was then fitted (using the ‘zeroinfl’
function within the ‘pscl’ package in R), producing estimates for β0 and
β1 in Eq. (1). This was done for both lightning ignitions and human
accidental ignitions. The analysis was conducted using the likelihood
package in R (R Core Team 2014). We verified ignition behavior by
testing Eq. (1) using random FWI values produced by a random number
generator within R. To validate fire ignitions, we ran simulations to
assess whether fire ignition parameters recreated the appropriate
number of fires given a particular FWI value. We also validated each
ignition type such that the spatial patterns of fire ignitions provided by
the input maps generally match the spatial patterns of fire ignitions by
type. The Short (2013) data were also used to define an ignition surface
for each fire type. The cumulative number of ignitions by fire type by
cell were used as inputs; the model subsequently translates these data
into weights whereby cells with higher weights are preferentially se-
lected for ignitions.

To parameterize spread within the LTB, we used the Sierra Nevada
boundary defined by the Sierra Nevada Conservancy (see Fig. 1). We
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chose this area as being broadly representative of the conditions found
in the LTB and containing more fires than the LTB alone, providing a
larger sample size for model fitting. Fire perimeters were polyline layers
and each of the fire spread variables were raster datasets (Table 1).
Unsuccessful and successful spread cells were then identified and
tracked throughout the period of record. ‘Unsuccessful’ cells were de-
fined as those that fell on a fire perimeter that did not burn on the
following day. To estimate the fire spread parameters, spatial data are
needed for daily FWI, daily wind speed, daily wind direction, and fine
fuel loading (Table 1) for a set of reference fires. Daily fire perimeters
are then overlain on each of the datasets to extract successful and un-
successful spread areas and assigned to a given day of the fire (both
year and day-of-year). Maximum spread area was drawn from the
GEOMAC fire perimeter data (Table 1) and was defined as the day-to-
day increase in area of fire perimeters.

Suppression zones, intensity, and the FWI breakpoints were de-
termined via consultation with cooperating fire managers. Similarly,
the probability of mortality (given the above intensity calculation) es-
timates were collected using expert opinion, whereby available fire
experts for the LTB provided independent estimates of mortality (pro-
vided via on-line survey) for varying species and age combinations.
These data were collected independently and collated and areas of
disagreement (indicated by a range among experts> 0.35) discussed
and refined.

Our model design utilizes current estimates of fine fuels, coarse
fuels, and ladder fuels. The LANDIS-II framework provides projections
of fuel loads in response to vegetation growth, mortality, and dis-
turbances, eliminating the need to categorize sites into fuel classes,
which, by design, simplifies and averages landscape variation in fuels.
For example, utilizing continuous fuel information will allow differ-
entiation based on intensity and time-since insect defoliation or mor-
tality, rather than a single fuel type for post-insect outbreaks.

3.3. Model calibration and validation

Prior to applying the model to forecasting unique scenarios, we
calibrated and validated the model against historical fire regimes. We
assessed model accuracy by comparing model outputs against historical
fire data from the LTB including fire rotation period (years), the dis-
tribution of fire sizes, and estimates of intensity. Our calibration as-
sumed that suppression in the Sierra Nevada broadly represented fire
suppression in LTB; therefore, fire suppression efforts were para-
meterized via inputs from local fire managers.

To calibrate the relative total area of our three fire intensity classes,
we compared simulated burned area for each intensity class against
empirical estimates of ratio of area burned in three similar severity
classes. Although intensity and severity are not equivalent, empirical
intensity data are not available and so we used severity as the best
available proxy. Historical fire severity data were drawn from the same
broad Sierra Nevada geography as spread parameters, avoiding poten-
tial sampling bias towards small high intensity fires which are most
prominent in the Basin (Table 1).

3.4. Model application

We demonstrated the behavior and utility of our model via four
simple scenarios that emphasize the effects of human activities on fire
regimes. The scenarios were run on the Lake Tahoe Basin (LTB) land-
scape. We simulated a randomized historical climate (1992–2011)
whereby historical climate was randomly arranged (with replacement)
on an annual basis (although note that this approach does not capture
longer-term climatic trends, e.g., Kitzberger et al., 2007). Each scenario
was simulated for 100 years (the duration of available downscaled
climate projections) at a 1 ha resolution with four replicates per sce-
nario; the number of replicates reflected intra-scenario variation and

available computing time.
Fire was simulated using SCRPPLE while other processes were si-

mulated using pre-existing model components within the LANDIS-II
framework. We simulated succession (including seed dispersal, re-
generation, and competition for water, light, and nitrogen) using the
Net Ecosystem Carbon and Nitrogen (NECN) Succession extension v5.0
(Scheller et al., 2011). NECN simulates the regeneration and growth of
tree and shrub species-age cohorts; limitations include sunlight (for
regeneration), mineral Nitrogen, available soil water, and temperature.
NECN tracks above and belowground live C (as woody and non-woody
components for each cohort), detrital C (duff and large woody debris),
and soil organic carbon (SOC which decays and transforms following
the three pool structure of the CENTURY soil model; Parton et al.,
1983). To estimate initial conditions, we used an imputation of in-
ventory data; details of LTB succession parameterization, including
imputation of the initial vegetation conditions, are found in Loudermilk
et al. (2013). Climate data was identical for both NECN and SCRPPLE
(Table 1).

Our scenarios were as follows:

a) Recent Historical: We simulated recent historical patterns of light-
ning and accidental fires and current patterns of fire suppression
(Fig. 1). Ignition data were calculated as described above and using
data described in Table 1. Suppression data were estimated via ex-
tensive interviews with fire managers responsible for LTB. Fuel
treatments and prescribed fires were not included.

b) Natural-Fire-Regime: We simulated wildfire without suppression,
accidental fires, or prescribed fires, holding all other factors the
same as Recent Historical.

c) Enhanced Suppression: In this scenario, the resources devoted to
suppression doubled the effectiveness of suppression, holding all
other factors the same as Recent Historical.

d) Reduced Accidental Ignitions: In this scenario, the number of acci-
dental fires was reduced by half, holding all other factors the same
as Recent Historical, representing an alternative to Enhanced
Suppression whereby resources were allocated to reducing acci-
dental ignitions rather than suppression. Such reductions could be
achieved variously, including education (e.g., Smokey Bear),
camping restrictions, fireworks and firearms restrictions, or other;
the associated human activity is less defined than in the case of fire
suppression or fuel treatments.

4. Results

4.1. Model validation

To validate model behavior, we compared simulated patterns
against historical patterns. Accidental human ignitions accounted for
about 78.7% of recorded ignitions, while lightning ignitions accounted
for 20.3% of recorded ignitions in the LTB during the calibration
period. The spatial distribution of ignitions follows distinct patterns
such that fires started accidentally cluster near the lake shore and most
lightning ignitions occur on ridgetops. The weighted surfaces for

Table 2
Parameters estimated for four SCRPPLE equations. Coefficients for: intercept
(β0), fire weather index (β1), effective wind speed (β2), and fine fuels (β3).

Equation Parameters

β 0 β 1 β 2 β 3

Ignitions (Human accidental) −3.3 0.03 NA NA
Ignitions (Lightning) −4.5 0.03 NA NA
Spread probability −36.0 0.6 0.915 0.022
Maximum spread area −80 2.0 2.6 NA
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ignitions captured patterns that demonstrated human (accidental igni-
tions) and natural influences on the spatial distribution of ignitions.
Ignition parameterization (Table 2) produced the expected distribution
in the number of ignitions within a year given seasonal weather con-
ditions (Fig. 2), with both human accidental and lightning ignitions
increasing with the FWI during the summer. Annual values approxi-
mated historical averages of both lightning and human accidental ig-
nitions, although with reduced variability (Fig. 3). Probability surfaces
allocated a realistic spatial distribution of fire which followed observed
patterns (Short, 2013); simulated burn patterns are directly related to
ignition patterns, with more frequent, smaller fires occurring at lower
elevations where human accidental ignitions are typical (Fig. 4). Fire
intensity was mixed (by total area: 42.8% low intensity, 35.9% mid
intensity, and 24.3% high intensity for business-as-usual scenario) for
most fires with an overall balance of the three intensities matching the
estimates from the Forest Service’s MTBS-derived burn severity maps.

Fig. 2. Predicted human accidental and lightning ignitions per day for a single
year (1993). Fractions are rounded to the nearest integer; number of fires<
=0.5 results in no fires.

Fig. 3. Simulated and observed human and lightning caused ignitions for 20-
year period (1992–2011). Box plots represent interquartile range, while dots
represent individual annual ignitions.

Fig. 4. Burn frequency (number of times a pixel burned) of 100
years of a single replicate of the ‘business-as-usual’ scenario across
the Lake Tahoe Basin. Darker reds indicate pixels that burn more
often, grey areas represent active pixels that experienced no fire
during this particualr replicate. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the
web version of this article).

Fig. 5. An example of a) fire spread and b) fire intensity for a single simulation
year of the ‘business-as-usual’ scenario within the Lake Tahoe Basin. A single
fire is highlighted to demonstrate spread and emergent intensity patterns of
individual large fires. This example fire burned 467 ha in 7 days, and was
caused by an accidental human ignition on July 22nd (Julian day 203). Darker
reds in the spread map (a) indicate later Julian days. Colors in the intensity map
(b) represent three intensity classes (blue= low, green=moderate, red=
high) (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article).
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4.2. Fire size and spread

Our fire spread parameterization (Table 2) produced highly variable
shapes and within patch heterogeneity of intensity (Fig. 5), dependent
on local fuels, topography, and daily fire weather. Fire sizes varied with
daily fire progression matching equation 4 (Table 2), indicating that
physical barriers were not a frequent limit to fire spread in this land-
scape. Most (98%) historical fires in the Sierra Nevada Mountains were
small (i.e.,< 20 ha), but fires larger than 100 ha accounted for most
burned area. Our approach captured this fire-size distribution (Fig. 6).
Additionally, our approach allowed for the creation of unburned islands
within perimeters, which are important ecologically and may cover up
to 37% of the area within a perimeter (Kolden et al., 2012).

4.3. Model performance under different management scenarios

Our four scenarios demonstrate a consistent increase in high in-
tensity fires and a decline in low intensity fires due to succession and
increased fuel loading. Across the four management scenarios,
‘Enhanced Suppression’ had the highest proportion of low-intensity

fires (Fig. 7). In contrast, the area burned was more variable over time;
the ‘Natural’ fire regime scenario burned the least area overall and
‘Recent Historical’ and ‘Reduced Accidental Ignitions’ had the largest
area burned (Fig. 8). The total mortality shows a clear trend of in-
creasing and higher mortality for ‘Recent Historical’ and ‘Enhanced
Education’ (Fig. 9). In summary, ‘Recent Historical’ resulted in the most
active fire regime although the fraction burned as high intensity was
not exceptional. Particularly after year 75, Recent Historical produced
more intense fires, more total area burned, and more biomass killed
than any other scenario. Recent Historical included accidental fires
which account for differences with the ‘Natural’ scenario. The ‘En-
hanced Suppression’ and ‘Reduced Accidental Ignitions’ scenarios were
broadly similar and had the lowest total area burned and lowest mor-
tality after 75 years (Figs. 8 and 9).

5. Discussion

Fire regimes are changing rapidly in response to human actions that
affect ignition and suppression patterns, fuel management, and climate
change. Given the rapid rate of change, there is a great need to expand
our capabilities to simulate, integrate and understand feedbacks among
human actions that will alter vegetation, succession, and disturbances.

Fig. 6. Fire size distributions of recorded fires (Short, 2013) and calibrated
SCRPPLE fire regimes. Historical data was from 20-year reference period,
SCRPPLE outputs were drawn from all 100 years of a single simulation under
Recent Historical scenario.

Fig. 7. Mean percentage of three fire intensities (high indicates> 2.4m flame
length, moderate indicates 1.2–2.4m flame length, low indicates< 1.2m flame
length) for four scenarios (replicated four times) simulated over 100 years for
the Lake Tahoe Basin, binned by decade. With respect to scenarios, ‘RH’ re-
presents Recent Historical, ‘RAI’ represents Reduced Accidental Ignition, ‘ES’
represents Enhanced Suppresion, and ‘NFR’ represents Natural Fire Regime.

Fig. 8. Area burned (ha) for four scenarios simulated over 100 years for the
Lake Tahoe Basin, binned by decade. Individual boxplots represent annual area
burned within a decade across four replicates. Dots above boxplots represent
years which exceeded interquartile range of annual area burned.

Fig. 9. Mortality (g biomass m−2) for four scenarios simulated from 2010 to
2110 for the Lake Tahoe Basin. Lines represent smoothed conditional mean
(loess), grey envelopes represent the standard error of those smoothed means.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article).
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In response to this need, we developed a new approach to simulate
natural, accidental, and prescribed fires in the LANDIS-II landscape
simulation model.

Although SCRPPLE was able to approximate the historical fire size
distribution, individual fire shapes have been notoriously difficult to
estimate (Keane et al., 2004; Duff et al., 2013; Sá et al., 2017),. Ellipses
form the basis for many fire simulations (e.g., Finney, 2002), although
the formation of an actual ellipse would require constant wind direction
and minimal topography. Our simulated fire shapes are neither ellipses
nor circular; rather each is complex with inclusions of unburned pat-
ches and with patchy fire intensity reflecting the complex terrain,
shifting wind directions, and variable fuels. Unburned patches and
within-fire heterogeneity represent critical biological refugia that are
important seed sources for post-fire vegetation recovery (Kolden et al.,
2012; Fornwalt et al., 2018). Our approach simulated fire size dis-
tributions that mirrored the fire size distribution of LTB as well as the
shape of individual fires and within-fire heterogeneity, representing an
advance in the capabilities of fire models to realistically represent the
ecological impacts of fires for testing different management scenarios.

Our design also improved the capacity to utilize expert opinion,
allowing for rapid development of simulation scenarios. For instance,
the intensity classes are flexible and can be modified to suit fire man-
agers’ typology and experience. For this study, fire intensity classes
were based on flame length bins that fire managers use regularly to
make decisions around planning and resource deployment. Manager
familiarity with this metric enabled the efficient utilization of expert
opinion and allowed their input to come from a place of field-based
knowledge. Explicit recognition and interface with manager expertise
facilitates co-production of scenarios and, ultimately, utilization of the
knowledge produced (Gustafson et al., 2006).

In addition, our fire simulation approach has improved capacity to
utilize remotely sensed data and fire databases, where available. Doing
so, we intentionally chose to move away from a Rothermel-style ‘phy-
sics engine’ to a geospatial data-driven ‘landscape engine’ whereby we
focused on capturing landscape-scale determinants of fire behavior
rather than fine-scaled experimentally-derived determinants (see also
Stavros et al., 2018). Our approach is more congruent with the intended
use of landscape-scale modeling: understanding disturbance con-
sequences across many thousands of hectares and over many decades
and fire regimes respond dynamically to climate whereas fire regimes
are prescribed in a top-down manner in many landscape simulation
models (e.g., Keane et al., 2004). This opens some exciting possibilities
to understand how fire regimes may evolve over time and is critical for
understanding the consequences of shifts in fire weather, ignition pat-
terns, management strategies, other disturbances, and feedbacks with
vegetation change. In addition, our approach facilitates sensitivity
testing (i.e., a reduced parameter set), uncertainty analysis, and co-
operative scenario building.

Every model approach has inherent limitations and SCRPPLE is no
exception; it requires substantial spatial and temporal data for sufficient
parameterization. However, these data needs are already being met,
given the large amount of remotely sensed imagery that has been col-
lected over active fires (e.g., Duff et al., 2013; Sá et al. 2017). Specifi-
cally, our application of daily fire perimeters to calibrate spread rates
represents a novel application of remote sensing to inform a fire spread
model. In addition, SCRPPLE does not simulate social processes them-
selves, rather it simulates the actions that result from social or cultural
preferences. Agent-based models are increasingly capable of simulating
learning, networking, and decision-making (Sotnik, 2018) and could in
the future substitute for our suppression and fuel treatment algorithms.

5.1. Implications from the Lake Tahoe Basin

SCRPPLE provides a new framework to simulate interactions among
human activities, vegetation, climate, and fire in a bottom-up fashion.
Although we parameterized and evaluated SCRPPLE for the LTB, as an

extension of the flexible and widely-applied LANDIS-II platform,
SCRPPLE is suitable for application to forest landscapes worldwide.
Importantly, SCRPPLE can make use of geospatial data and expert
opinion to parameterize fire ignition rates, spread, behavior and effects.
Such data requirements can be met in many places with MODIS active
fire data (Giglio et al., 2016; Benali et al., 2016; Veraverbeke et al.,
2014), which tracks fire ignitions and fire spread. Likewise, daily
weather data suitable for calculating FWI are widely available from
NCEP/NCAR Reanalysis daily weather data (https://www.esrl.noaa.
gov/psd/data/gridded/data.ncep.reanalysis.html). By explicitly in-
cluding anthropogenic processes in SCRPPLE and parameterizing with
widely-available metrics of fire behavior, the resulting simulations are
suitable for evaluating the effectiveness of different management stra-
tegies for maintaining ecosystem services and enhancing ecosystem
resilience in the face of climate change and human development.

The simulation results for our different scenarios highlight the po-
tential for LANDIS-II to assess socio-ecological dimensions of fire re-
gimes. Notably, the similar ability of ‘Enhanced Suppression’ and
‘Reduced Accidental Ignitions’ to reduce fire and related tree mortality
over time suggests that within the broad outlines of the scenarios, re-
ducing accidental fires (via education or other social processes, un-
specified) can be as effective as substantially increasing resources for
suppression. Because costs of fire suppression have increased markedly
in recent years (Bladon, 2018), our Reduced Accidental Ignitions sce-
nario implies that considerable cost savings are possible via social
pathways. Consideration of the social dimensions of fire will become
increasingly important as the wildland urban interface expands
(Radeloff et al., 2018) and we move into the era of ‘managed wildfire’.
Explicit consideration of human activity allowed us to untangle mul-
tiple correlated factors, e.g., accidental fires and fire suppression efforts
are highly spatially correlated. Next steps are to consider climate
change effects on LTB fire regimes and the interactions between fuels
management (reducing fuel quantities) and fire regimes.
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