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Abstract: Metal chalcogenides based on the C–M–M–C (C = chalcogen, M = metal) structure possess
several attractive properties that can be utilized in both electrical and optical devices. We have
shown that specular, large area films of γ-InSe and Sb2Se3 can be grown via atomic layer deposition
(ALD) at relatively low temperatures. Optical (absorption, Raman), crystalline (X-ray diffraction),
and composition (XPS) properties of these films have been measured and compared to those reported
for exfoliated films and have been found to be similar. Heterostructures composed of a layer of
γ-InSe (intrinsically n-type) followed by a layer of Sb2Se3 (intrinsically p-type) that display diode
characteristics were also grown.

Keywords: atomic layer deposition; heterostructure; pn diode

1. Introduction

The unique properties of graphene have drawn attention to other 2-dimensional (2D) materials,
in particular metal chalcogenides, which can behave as metals, insulators, or semiconductors [1–3].
These semiconductors are of particular interest for the fabrication of the future generation of field
effect transistors (FETs) and optoelectronic devices. These layered materials can be used as single
or a few atomic layer thick films, absent of dangling bonds which allows for better electrostatic
control of carrier transport; hence, they are ideal for downscaling of FETs. The ability to tune the
direct band gap of many of these materials, by controlling their thickness, allows further flexibility
for the design and fabrication of optoelectronic devices. However, to date, most attention has been
focused on 2D transition metal dichalcogenides of structure C–M–C (C = chalcogen, M = metal),
where one metal atom is sandwiched between two chalcogen atoms [4–7]. There are other forms
of metal chalcogenides that are equally intriguing. Among these is the C–M–M–C family, which
has been drawing more attention [8,9]. These materials have been used to produce photocatalysts,
photo-detectors, image sensors, and transistors with high electron mobility [10–13]. We are currently
investigating 2D semiconductor layers of this family of chalcogenide material that are composed of
two metal and two Se atoms, Se–M–M–Se (M = In, Sb) grown via atomic layer deposition (ALD).
Our objective is to demonstrate the growth of uniform, large area films that may in the future be
utilized for the fabrication of electronic and optical devices. Our objective in this communication is
to demonstrate that uniform and smooth films of InSe and Sb2Se3, both belonging to the C–M–M–C
family of metal chalcogenides, can be grown over large areas using ALD. The properties of thin films
grown using this approach, and their heterostructure are presented below.

InSe has several polytypes, however the β -phase and γ -phase are the two common forms of its
crystal structure [14]. In this work, only the γ-InSe phase is considered which crystallizes into stacked
hexagonal layers. The vertical stacking of this material is composed of Se–In–In–Se sheets, where each
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sheet is weakly bound to its neighboring sheets by the van der Waals force [14]. It is interesting to note
that while bulk InSe has a direct band gap (1.2 eV), reduction of its thickness first leads to a wider
band gap due to quantum confinement, however further reduction of the thickness to a few layers
results in a strong decrease of the photoluminescence. One of the reasons for this attenuation has
been attributed to direct-to-indirect bandgap crossover, while another explanation has been attributed
to the enhancement of non-radiative recombination processes in the thin flakes [15,16]. To date,
InSe films have been produced mostly via chemical vapor deposition (CVD), sputtering, exfoliation,
and electrodeposition [15,17–20]. In these cases, the films are either small, on the order of a few tens of
micrometers per side (exfoliation) or are composed of flakes or platelets.

Unlike InSe, Sb2Se3 is a narrow band gap, layered metal chalcogenide (Se–Sb–Sb–Se) that has
a single phase [21]. It is a direct band gap semiconductor with a layered structure and an orthorhombic
structure [22]. The films consist of staggered, parallel layers of 1D (Sb4Se6)n ribbons that are composed
of strong Sb–Se bonds along the [001] direction. In the [100] and [010] directions, the ribbons are
held in the stack by the weak van der Waals forces [23]. It has received attention as a thermoelectric
material, and recently as a light sensitizer in photovoltaic devices because of its narrow band gap of
about 1.1 eV–1.3 eV, which approaches the ideal Shockley−Queisser value [24–26]. These films have
been produced via a number of methods, including thermal evaporation, chemical bath deposition,
spray pyrolysis, pulsed laser deposition and electrochemical deposition [25,27–30].

2. Materials and Methods

InSe and Sb2Se3 films were grown in a Microchemistry F-120 ALD reactor (Microchemistry,
Helsinki, Finland) that can handle two 50 mm × 50 mm substrates per run. The substrates for these
films consisted of either p-or n-type Si wafers coated with a 320 nm thick film of thermal silicon oxide.
Besides Si, plain glass slides and fluorinated tin oxide (FTO) coated glass plates were also used as
substrates. The precursors for InSe growth were InCl3 and H2Se (8%, balance Ar). The In source
temperature was set at 110 ◦C and the carrier gas was nitrogen. The pulse sequence per cycle was as
follows; InCl3 pulse width of 1 s; N2 purge of 1.0 s; H2Se pulse width of 1.5 s; followed by 1.0 s N2

purge. Uniform film growth occurred over a temperature range of 310 ◦C to 380 ◦C. The films reported
here were grown at 350 ◦C, where the growth rate was 0.05 nm per cycle. The pulse sequence for
Sb2Se3 films was SbCl3 (1 s), N2 (1.5 s), H2Se (1.5 s), and N2 (1.5 s). Uniform films were produced over
a temperature range of 270 ◦C to 320 ◦C. From this range, 300 ◦C was selected to grow the films, where
the growth rate was 0.22 nm/cycle. Optimization of growth conditions was done mostly based on
Raman analysis, which offered a quick turn-around. Besides Raman, the crystalline structure of these
films was examined with X-ray diffraction (XRD) (Rigaku Corp., Tokyo, Japan), their composition
with X-ray photoelectron spectroscopy (XPS) (Northrop-Grumman, Falls Church, VA, USA) and their
band gaps with optical absorption. The surfaces of these films were examined with a scanning electron
microscope (SEM) (FEI Corp, Hillsboro, OR, USA) and found to be featureless. Finally, InSe/Sb2Se3

heterostructures were grown and their current-voltage (I–V) profiles were examined.

3. Results

The surface morphology of the films was first checked with a Nomarski microscope and then
with an SEM. When the growth process was optimized, the surfaces of both InSe and Sb2Se3 were
smooth and featureless, as shown in Figure 1a,b. This is a major difference between films grown via
ALD and other methods. Although we expect there to be grain boundaries, we were unable to detect
them with the SEM. Also, no grain boundaries were visible with the electron backscatter diffraction
(EBSD) method.
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Figure 1. Scanning electron microscope (SEM) view of the surface of (a) InSe and (b) Sb2Se3. 

The crystalline properties of the films were characterized using grazing-angle (0.5°) XRD. The 

XRD spectrum of a 17 nm thick InSe film is shown in Figure 2a. The spectrum is dominated by the 

[006] peak, followed by minor peaks, which are characteristic of the hexagonal structure of γ-InSe 

(JCPDS 40-1407). Also, the deposition of an orange film on the walls of the reactor is indicative of this 

phase of the InSe [31]. 

 

Figure 2. X-ray diffraction (XRD) spectrum of (a) InSe (b) Sb2Se3. 

Figure 1. Scanning electron microscope (SEM) view of the surface of (a) InSe and (b) Sb2Se3.

The crystalline properties of the films were characterized using grazing-angle (0.5◦) XRD. The XRD
spectrum of a 17 nm thick InSe film is shown in Figure 2a. The spectrum is dominated by the [006] peak,
followed by minor peaks, which are characteristic of the hexagonal structure of γ-InSe (JCPDS 40-1407).
Also, the deposition of an orange film on the walls of the reactor is indicative of this phase of the
InSe [31].
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The XRD spectrum of our antimonselite (Sb2Se3) film is shown in Figure 2b, where all of the
diffraction peaks agree well with its orthorhombic crystal structure (JCPDS 15-0861). Major peaks
are indexed to the diffraction planes. The crystal lattice parameters were calculated as a = 1.159 nm,
b = 1.175 nm, and c = 0.3949 nm, that are consistent with the values reported in literature [32]. No peaks
of any other phases were detected, which indicates that these films are of single phase and high purity.

Optical characterization involved Raman spectroscopy and absorption spectra of these films.
The Raman spectrum of a 17 nm thick InSe film is shown in Figure 3a, where the excitation wavelength
was 532 nm. It shows the signature peaks corresponding to both the in-plane (E) and out-of-plane (A)
modes that are consistent with those reported for flakes of γ-InSe [15,18,33,34]. Comparing the InSe
data in Figure 3a with published results for the bulk and thin films, we can identify the peaks at about
117 cm−1, 175 cm−1, and 205 cm−1 with A′1, E′2g, and A′1(LO) Raman modes, respectively. The peak
at 205 cm−1 is strongest in films that are at about 6 nm to 9 nm thick layers and then attenuates with
increase in thickness. The peak at around 155 cm−1 is distinctive for the γ phase of InSe and is related
to the zone center mode of the crystal [35,36].
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Figure 3. Raman spectrograph of (a) γ-InSe (b) Sb2Se3.

The Raman spectrum of the 15 nm thick Sb2Se3 thin film is shown in Figure 3b. It agrees well with
previously reported data, where the main peak at 189 cm−1 (A2

1g) is the characteristic Sb–Se stretching
mode of the SbSe3/2 pyramids. The two other peaks, at about 151 cm−1 (A2

2u) and at about 125 cm−1

(E2g) are associated with the Sb–Sb bonds and Se–Se bonds, respectively [37–39].
Band gaps of these films were determined from their respective absorption spectra obtained from

the films deposited on glass substrates. The absorbance of these films was recorded over a spectral
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range of 300 to 1100 nm. Plots of the wavelength (in terms of energy E in eV) versus the absorbance InSe
and Sb2Se3 films are plotted in Figure 4a,b, respectively. The intercept on the x-axis of the extrapolation
of the linear portion of the slope corresponds to the band gap of the material. For the 17 nm thick
InSe film, the intercept occurs at about 2.35 eV. This value is in good agreement with the band gap of
γ-InSe, which is defined as the transition between the px and py orbital to the bottom of the conduction
band that corresponds to an energy gap of 2.4 eV [15,18]. The band gap of γ-InSe is higher than
the other phases, therefore this parameter can be used to discriminate it from the other phases [35].
From Figure 4b, a band gap value of 1.3 eV was determined for a 15 nm thick Sb2Se3 film. This value is
within the range of 1.1 to 1.3 eV previously reported [21,40].
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Figure 4. Absorbance spectrum of (a) InSe (b) Sb2Se3.

The chemical composition of both of these films was examined by X-ray photoelectron
spectroscopy (XPS). The signature binding energies of In 3d5/2 and In 3d3/2, shown in Figure 5a,
correspond to 452.47 eV and 444.88 eV, respectively. The Se 3d profile is deconvoluted to show the two,
closely spaced binding profiles of the Se d5/2 and d3/2 of binding energies of 53.88 eV and 54.88 eV
(Figure 5b). These values are in agreement with pure In2Se3 films [41]. The dip between the two peaks
is an indication of oxidation of the films, which is not surprising since the samples were exposed to air
for a short period of time before XPS analysis.

The XPS binding energy of Sb2Se3 is shown in Figure 6. The binding energies of Sb 3d5/2 and
3d3/2 are 529.83 eV and 539.03 eV as shown in Figure 6a. Detailed spectral deconvolution of the Se 3d
high resolution XPS spectrum revealed that the binding energy of Se 3d5/2 and 3d3/2 are 54.43 eV and
55.23 eV, respectively, which is in good agreement with the expected binding energy of Sb2Se3 [25].
These binding energies were corrected by referencing the C 1s peak to 284.70 eV.Electronics 2017, 6, 27 6 of 10 
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4. Discussion

In an ALD process, the choice of the precursors and substrates is important in order to produce
a saturated chemisorbed layer of the first species during the initial phase of the growth [42]. Moreover,
the deposition parameters such as the pulse widths and temperature must be optimized to produce
this condition. Then, the growth will proceed layer by layer, which is ideal for growth of a 2D
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film. We have found that organometallic or chloride-based metal precursors (with sufficient vapor
pressure) work well on SiO2 covered substrates, as we have previously demonstrated with other metal
chalcogenides [5,43,44].

The 2D materials, as described above, are composed of individual layers that are held together
by the weak van der Waals force. Within each layer, the atoms are strongly bonded to each other in
2D via either valence or ionic bonds, and in the absence of dangling bonds. This allows stacking of
two different 2D materials with different physical properties, crystalline parameters and crystal
symmetry to grow heterojunctions and superlattices held together by the van der Waals force.
This approach to grow 2D heterojunctions has been referred to as van der Waals epitaxy [45]. We have
grown heterostructures composed of 5 nm–10 nm thick InSe and 5 nm–7 nm thick Sb2Se3 layers by
sequentially growing each layer on Si/SiO2 substrates and FTO-coated glass substrates. While detailed
electrical characterization of these films is underway, Hall effect was used to determine the intrinsic
doping properties of each of these two films. The InSe films were found to be intrinsically n-type and
Sb2Se3 were intrinsically p-type. On the FTO substrates, the first film deposited was InSe, followed
by Sb2Se3, while keeping one part of the FTO surface covered to avoid any deposition. Small Au
contacts were sputtered on top of the Sb2Se3 layer and Al on the FTO portion. The current–voltage
(I–V) profiles of these samples were then examined.

A typical example of one of these samples is shown in Figure 7, which shows the characteristic
profile of a pn diode. The leakage current with a reverse bias is shown (in log scale) in the inset.
A maximum leakage current of 10−7 A was measured at −1 V bias. Since each precursor was
introduced separately into the reactor for a surface reaction for a layer-by-layer growth, and we were
working at a relatively low temperature, we do not expect significant intermixing at the interface.
This heterojunction was grown at 310 ◦C, which overlaps the optimum range of both the materials.
A one minute purge was introduced before starting the Sb2Se3 layer to ensure a sharp interface.
In our previous work on SnS/WS2 heterojunctions that were grown at a slightly higher temperature,
there were no obvious signs of intermixing at the interface [5].
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5. Conclusions

In summary, ALD has been utilized to grow smooth and continuous layers of γ-InSe and Sb2Se3

layered metal chalcogenide on SiO2-coated Si and glass substrates. Crystalline and optical properties,
as well as the composition of these films are comparable to those produced by other means, especially
exfoliation. The InSe and Sb2Se3 films show intrinsic n-type and p-type behaviors, respectively.
A combination of these two films shows pn diode characteristics. These results show that ALD
offers a viable path for producing large area films of metal chalcogenides for future industrial
scale applications.

Author Contributions: Robert Browning, Neal Kuperman, Bill Moon and Raj Solanki all contributed equally.

Conflicts of Interest: The authors declare no conflict of interest.
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