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“black-box” by comparing the performances of a model with that of a rule. The

opposite side of the modeling spectrum would be to replicate the exact behavior

of a 2DCA on a cell level, but that is not the intention of this work either. The

goal of the dynamic modeling in this thesis is to analyze the system on a scale

somewhere in the middle – the scale of the lattice-wide information-carrying struc-

tures. In the future, a dynamic model at this analytical scope might allow better

engineering of CA-like architectures, application of the proposed analysis to other

fields, and design of custom built rules to solve a given problem. The utility of such

analysis would be difficult to realize if a model would not simulate the velocities

and interaction of the highlighted structures.

8.2 BACKGROUND: LEVEL SET THEORY

Level Set Theory (LST) was first introduced by Osher and Sethian [113] as a simple

method used to describe the dynamics between two regions on a two-dimensional

lattice. The interface (Γ) defines a boundary region between two adjacent regions,

which may represent objects in a segmented image [62], a boundary between con-

tracting or expanding gases [33], or various multi-phase compressible and incom-

pressible materials [49]. The purpose of this method is to compute the motion of

the interface between two environments. Each point of the interface is described by

its dynamic properties, interaction rules, and information about the neighboring

regions. Figure 8.2 illustrates the motion of the boundary region (an interface) at

selected points.

Level Set Theory has been successfully used on digital video segmentation [62],

tracking the location of neural stem cell clusters [59], simulation of combustion

principles, growth of crystalloid structures, two-fluid flow mechanics, minimal sur-

face and shape recovery, etching and deposition in the micro-fabrication of semi-

conductor devices [113], and simulation of viscosity and surface tensions in multi-

phase interfaces [49]. The rendered 3D composition of interface time steps was
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Figure 8.2: Illustration of the level set interface evolution in two dimensions. The
interface Γ at time t0 (black) and at time t1 (gray). Each point of the interface is
assigned both velocity and direction. The arrows in the image display the motion
vector for selected points of the interface. The figure shows a GA-evolved CA for
the two-dimensional density classification task in two consecutive time steps with
the regular domains filtered out manually.

used to create special effects in movies such as Terminator III, Star Wars: Episode

III, and Poseidon [33].

8.2.1 Level Set as CA’s Dynamic Model

Rather than updating the next position of the contour that represents a parti-

cle manually, some of the advantages of using the Level Set Method to calculate

position include: the discrete definition of a front, the continuity of the evolving

contour, prevention of the swallowtail effect, proper interface collapse, and the

ability to propagate acute domain edges. The graphics in Figure 8.3 illustrate

these advantages.

The power of Level Set Theory (LST) lies in its flexibility. Each point on the

interface is unique in terms of its spatial location and its dynamic properties. LST’s



120

(a) (b) (c) (d) (e)

Figure 8.3: Illustration of the advantages of LST shows a. discrete definition of
a front, b. proper interface collapse, c. contour continuity, d. prevention of a
swallowtail effect, and e. advancement of a sharp edge. The black arrows mark
the forces acting on the contour, and the black lines represent the initial and the
final position of a contour. The gray lines show the intermediate contour positions
as if the contour would be advanced manually (without the use of LST).

discrete definition of the interface allows the simulation of front advancement with

non-uniform velocity. Figure 8.3 (a) illustrates this concept by showing the initial

contour as a black line and its deformation using black arrows to mark the forces.

The direction and velocity of the evolving front is described by the forces that

cause its deformation; the LST does not have any other constraints.

The CA behavior might show domains that shrink with a non-uniform rate

of deformation. Before a domain disappears, it might split into smaller sections

that will keep decreasing. The LST can simulate such behavior by continuously

shrinking an interface until it eventually splits into separate contours. Figure 8.3

(b) shows such behavior.

If the direction of forces is reversed, a contour representing a domain border will

expand outward. The expansion of a concave contour is illustrated in Figure 8.3

(c). Updating the position of a contour manually would result in a discontinuity

in a place of expansion. The LST guarantees contour continuity as well as proper

scaling of a contour’s shape by increasing the grid resolution in places of contour

expansion (also called adaptive mesh refinement [113]). The same technique is

used to accurately propagate other curve features such as an edge of a domain

with a sharp edge (e).
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Figure 8.4: Illustration of a Narrow Band Level Set evolving a two-dimensional
interface that represents a 2DCA particle. The gray grid lines represent a narrow
band of points surrounding the interface that require their values to be recalculated.
The solid gray circle marks grid points that the contour sections marked A, B, and
C will pass through.

The last example where LST simulation is computationally beneficial is pre-

sented by a shrinking domain with two non-parallel borders moving towards each

other. The reduction of the level set points that represent such a domain border is

needed when two parts of a contour travel towards each other. The swallowtail ef-

fect, shown in Figure 8.3 (d), occurs if each point of a level set is updated manually,

regardless of the contour’s original shape. The LST will automatically reduce the

number of points where a curve contracts, which will prevent the “criss-crossing”

of the contours and creation of a swallow-tail like shape.

8.2.2 Narrow Band Level Set (NBLS)

The above section illustrated the utility of Level Set Theory to simulate evolution

of an interface in two dimensions. It is crucial to notice that the deformation was

done by forces originating in each point of the contour. The forces are independent

of the local properties of the front (such as its curvature and normal direction), as

well as the contour’s global properties (such as its relative position on the lattice).

This means that the forces cannot be inferred from the curve’s shape and location,

but have to be determined from the CA dynamic.
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Furthermore, the deformation forces can be assigned only to the grid points that

represent the contour itself. In other words, the forces cannot be pre-calculated

for the entire lattice. If two points of a contour lie on the same trajectory, the

grid points would have to be assigned two different force values to account for the

velocity of each contour. The solid gray circle in Figure 8.4 marks such a location.

The contour sections A, B, and C will all pass through the grid points in the gray

circle. Each grid point in the gray circle would have to represent at least three

force vectors needed to advance the appropriate contour segment. Since each grid

point can hold only a single vector value, the forces have to be propagated through

the lattice along with the advancing front. This is the main reason why the forces

can be assigned only to a narrow band of grid points around the evolving contour.

After the contour position is updated (at the next time step), the force field has to

be reinitialized for the new contour position. The Narrow Band Level Set (NBLS)

refers to the narrow margin of grid points that are subject to an update. Figure

8.4 shows this set as gray grid lines surrounding the contour.

All GA-evolved rules for the 2D density classification task using the r = 1

Moore neighborhood have black and white domains with the movement velocity

not exceeding three cells per update. The NBLS algorithm has to compute the

force field for a three cells-wide band around each domain contour-line and can

ignore the rest of the lattice.

8.3 MEASURING THE INTERFACE VELOCITIES

Before diving into the problem of measuring the force field that models the particle

deformation, let’s step back and look at the categories of existing LST applications

and compare them with the requirements of an information-processing model for

2DCA. The LST was designed to simulate the propagation of a 2D interface in

a physical system. The numerous applications include modeling of ocean waves,

gas expansion, image segmentation, object disintegration, and flame visualization.
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With only a few exceptions, each application falls into one of two categories. The

applications in the first group use an explicitly defined 3D object while the level

set represents a two-dimensional cut of the object. For example, a gray-scale image

segmentation is performed by LST by embedding the two-dimensional image into

a three dimensional space. The gray value of each pixel is interpreted as the value

in the third dimension. A level set will outline the boundaries of an object in the

image by placing a small initial level set inside of an object, then expand the level

set interface using a constant polar force field originating inside of the set. The

contour will advance until the pixel gradient is too high or the contour’s plasticity

won’t allow its further advancement. The gray pixel value servers as a barrier for

the front’s advancement, while the motion of the level set “climbs” the explicitly

defined 3D surface.

The second category of applications include simulations of well-understood en-

vironments. One such example is the breaking of an object due to an impact.

After initial force is applied to a 3D model of an object, the LST simulates the

energy propagation through the object and updates the bonds between the points

that represent given object. The laws of force propagation and material properties

of the object are well known and understood. The state and velocity of each ob-

ject point is updated using the model’s energy equations. Most importantly, the

environment does not have to be homogeneous, but the behavior of each point of

the model is governed by the same set of principles.

The simulation of a 2DCA’s dynamic properties seems to be in a category of

its own. First, there is no explicit 3D surface to follow. Instead, the velocity

of the contour’s deformation is measured from the observed CA behavior. The

3D “object” is iteratively constructed by advancing a domain’s border using the

measured velocities. The 3D “object” in this case represents a domain’s shape

and interaction with other domains over time. Second, the interface advances in a

non-linear fashion. A configuration of each neighborhood is updated by a lookup
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(a) Forces normal to tan-
gent

(b) Point correspondence
forces

(c) Curve advanced by ei-
ther force

Figure 8.5: Illustration of measuring forces for an advancing front. The black
curve shows a contour’s initial position, while gray depicts the contour’s location
in a later time. (a) Forces are measured as the shortest distance between the
two contours at each point. (b) Forces are measured as the distance between
the corresponding features in the starting contour and the feature location in the
advanced contours. The features mark 1: convex apex, 2: concave apex, 3: flat
section, and 4: convex apex. (c) The dotted contour marks the position if normal
forces were used to advance the initial contour. The solid curve shows the contour
position if the correspondence forces were used; this contour location also marks
the actual location of the domain border in the CA lattice.

in a rule table that is 512 bits long. In terms of the lattice dynamics, let’s think

of the update options as 512 degrees of freedom that are interpreted as the front’s

motion in two-dimensional space. The following sections will explain the non-linear

border dynamics in more detail.

8.3.1 Solving the Correspondence Problem

As described earlier, the forces acting on a contour are independent of local curve

properties such as curvature and the direction normal to the contour, as well as

the global properties, such as the domain’s relative position with respect to the

rest of the lattice. The direction of a contour’s deformation has to be solved for

each point independently.

Figure 8.5 (a) and (b) show two ways of measuring forces that caused a curve’s

deformation from its initial shape to its subsequent shape at time t = t + 1.

Although each measuring method can produce different deformation forces, the

shape of a curve at time t = t + 1 should be identical regardless which set of
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forces was used. How accurately the forces predict the shape of an evolving front

is assessed by further advancing the curve (multiple time-steps) and comparing the

contour’s shape with the shape of the actual domain in the CA lattice (Figure 8.5

(c)).

A point-wise measurement of the closest distance between two curves is an

obvious way to assign the forces that caused the curve’s advancement. At each

point, the distance between two curves can be calculated as a normal distance to

the curve’s tangent or as a Hausdorff distance [91]. Figure 8.5 (a) shows measuring

the deformation forces between two curves as a normal distance. Although the LST

is designed to maintain the curve’s continuity, it will not maintain the curve’s shape

if the measured forces are sparse, as shown in the figure. The resulting curve will

be jagged if the forces are not populated for each point on the destination curve.

Due to a contour’s expansion, additional force interpolation is required to fill in

the concave segments of the curve. For the purpose of a dynamic model, the

forces measured as a normal or a Hausdorff distance will result in low accuracy

of predicting future contour shapes and positions. The subsequent contour shapes

simulated by the LST model will drastically differ from the shape of the original

domain border (Figure 8.5 (c)).

The ideal method of measuring the contour’s advancement would describe the

force on each point as a correspondence between its original location and its new

location on the curve at a later time. This type of measurement is referred to as a

correspondence force, since it aims to match each point on the original curve with

its location on the curve time t + 1 (Figure 8.5 (b)). One way to achieve this is

to measure the distance between pairs of matching features on the initial and the

advanced curve (marked as features 1-4 on Figure 8.5 (b)). The points in-between

the features will have forces approximated with respect to the forces measured for

the neighboring features. This approach is difficult to implement because: (1) the

hybrid filter highlights the domain borders by a narrow band which smooths the
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original features of a domain border, (2) the precise location of features, such as an

apex of a broad concave contour, is unclear, (3) a domain border has no clear edge;

instead a collection of sites is interpreted as a front location (4) a domain border

advances in a non-linear fashion, which makes modeling of the front advancement

by estimating the deformation forces by linear vectors insufficient, and (5) a domain

border can have complex behavior with no apparent features and no velocities,

yet forces will originate in this region and propagate into the rest of the border.

Since the last two points attest to more than just implementation difficulties, the

following sections will discuss these two problems in more detail.

Figure 8.5 (c) shows how the above-described techniques predict the curve’s

shape and position in a subsequent time-step. The dotted line represents the

curve position advanced by the normal forces, while the solid line was rendered

using the correspondence forces. In this example, using the correspondence forces

yields the curve closet to the shape of the actual domain border.

8.3.2 Noise versus Information

Even though solving the correspondence problem will render accurate initial be-

havior of the dynamic model, it will not account for the non-linear advancement

of the domain border. Figure 8.6 shows an example illustrating an abrupt stop

in the velocity of an advancing front and Figure 8.7 compares the contour shapes

simulated by a model using the correspondence forces with the shape of a domain

in the 2DCA lattice.

Chapter 7 discussed various 2DCA filters and their ability to highlight domain

borders. The role of individual sites was not analyzed with respect to the front’s

motion. In other words, the filters abstracted a collection of sites that formed

an advancing front into a domain border. From the perspective of the domain

border’s dynamics, the original observation that the border motion in the GA

evolved rules is linear with noise might have been premature. For example a
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(a) t = 59 (b) t = 64 (c) t = 69

(d) t = 74 (e) t = 79 (f) t = 84

Figure 8.6: Cenek’s rule for the two-dimensional density classification task. Lattice
configurations are shown at times t = 59, 64, 69, 74, 79, and 84. A section of a black
domain has a border marked with a gray line that suddenly stops advancing. The
domain border was outlined manually.
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(a) Original border loca-
tions

(b) Measure forces (c) Advanced border by
forces

Figure 8.7: A comparison of a domain behavior in a CA lattice (Figure 8.6) with
a simulation of the domain border by a model using the correspondence forces.
a. Border locations in the original CA (Figure 8.6) after the border segments
were stacked on top of one another. b. Solving the correspondence problem and
assigning the deformation forces to the border (black arrows). c. Location of the
border by advancing its original location using the correspondence forces. The
subsequent contours were attained by advancing the forces to their next location
(gray arrows). Notice the shape difference between the CA border locations in (a)
and the contours simulated by advancing a model at times t = 74, 79, and 84 (b)
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black site on a white background in the vicinity of a domain border is perceived

as noise. These sites are not left-overs from the random initial configuration;

instead they are being constantly generated (and consumed) by the updates of

sites that make up the noisy domain border. The LC filters will place such a site

into a causal state that represents the domain border; the IS and IT filters will

also highlight such a site as the domain border due to its low statistical count.

Although filters group such sites with the sites of the border region, the CA lattice

updates will use this seemingly noisy site for an update in all of its neighboring

sites (including its own value). The updates that use this noisy site in a vicinity of

the domain border might cause a sudden change in the border’s dynamics. After a

close examination of the CA behavior in Figure 8.6, it appears that the sites that

were originally considered noise around the domain border caused the abrupt stop

of the border’s advancement. This change was not a gradual attenuation of the

front’s advancement, but a sudden stop.

Figure 8.7 shows the difference between the behavior of the domain’s border

in the CA lattice (a) and the behavior of a border contour simulated by a model

(c). The model used the correspondence forces (b) to calculate the contour’s

advancement. The domain border in the CA will unexpectedly stop advancing

at step t = 74, while the correspondence forces in the model keep advancing the

contour in subsequent steps t = 74, 79, and 84 (Figure 8.7 c).

This example illustrates that the abstraction of a domain’s border as a smooth

contour that propagates information is lossy for the purpose of building a dynamic

model. The filters will categorize the site configurations around the domain’s front

as part of its border, but the same sites were used by CA updates and they caused

an unexpected change in the domain’s velocity. Since the dynamic model does not

use the LUT to predict the front’s velocity, it could not predict the sudden stop of

the domain’s advancement.
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8.3.3 Hidden Forces and Complex Regions

The CA behavior during the initial lattice updates is highly complex. The con-

densation time is the first time-step of the CA configuration at which the lattice

behavior can be described by coherently formed domains and particle regions in-

between these structures. It is unclear what exactly happens during the initial

lattice behavior, but the outcome is clear: an “orderly” CA behavior with well-

formed domains that propagate through the lattice. The construction of a model

has assumed that the lattice behavior after the condensation time would not slip

back into “chaotic” behavior. Figure 8.8 shows the occurrence of highly complex

behavior at the domain border which appears much later than the condensation

time. The region with complex behavior did not originate from a collision between

two domains, but appears in a domain border, between two well defined, linear

border segments.

Figure 8.9 (a) shows the CA behavior of an advancing domain border for the

same CA illustrated in Figure 8.8. In the movement from time-step t = 40 to

t = 45, the contour features are clearly visible and the correspondence forces agree

with the direction of front’s movement (shown as the illustration (b)). At time

t = 50, the behavior of the region inside of the circle changes unexpectedly. The

domain border moves in the opposite direction from its original velocity. The left

side of the border region changes its pitch and stops moving in the subsequent

updates. There are no other domain features or interactions with other particles

that caused this change in behavior. This observation supports the hypothesis that

the changes in the border’s behavior were caused by the forces that originated in

the highly dynamic region shown inside of the circle. The previously assessed

correspondence forces could not predict such behavior. Figure 8.9 (c) shows the

shape of the contours as predicted by a model using correspondence forces.

It appears that the border’s complex region caused the stagnation of the bor-

der’s left segment. The size of the complex region continuously decreases between
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(a) t = 40 (b) t = 45 (c) t = 50

(d) t = 55 (e) t = 60 (f) t = 65

Figure 8.8: Cenek’s rule for the two-dimensional density classification task. Lattice
configurations are shown at times t = 40, 45, 50, 55, 60, and 65. A section of a black
domain has a border marked with a gray line that suddenly reverses its direction
of advancement, stops for several steps, and then starts moving again. This border
region is located approximately in the middle of the highlighted domain border.
The domain border was outlined manually.
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(a) Original border locations (b) Measure forces (c) Advanced border by forces

Figure 8.9: A comparison of a domain behavior in the original CA (Figure 8.8)
and the simulation of a domain border by a model using the correspondence forces.
a. Shows the border locations in the original CA (Figure 8.8) after the border
segments were stacked on top of one another. The circle in the middle of the
outlined border points to a region with complex behavior. The domain border
originally moved from left to right, then retracted to its original position, did not
advance for a couple of steps, and resumed its motion in steps t = 60 and 65. b.
Shows how to solve the correspondence problem and how to assign acting forces
to the border (black arrows). c. Shows the location of the border by advancing
its original location using the correspondence forces. The subsequent contours
are attained by advancing the correspondence forces to their next location (gray
arrows).
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time t = 50 and t = 65, because the right side of the domain border keeps ad-

vancing. The complex region disappears when the advancing segment on the right

catches up with the motionless segment on the left. Just before this happens at

time t = 65, the left side of the domain border resumes its original pitch and

velocity. What caused this change of motion? It appears that when the size

of the complex region was the same as the neighborhood diameter (three sites),

the moving contour segment sent a “signal” into the motionless contour segment,

prompting advancement of this otherwise stagnant part of the contour. This can

explain the origin of new forces in the advancing front. More importantly this

force or signal was not present in the originally measured force field and it could

only originate for the actual output bits stored in the rule’s LUT.

8.4 CONCLUSION AND DISCUSSION

Although the Narrow Band Level Set method is a useful tool to simulate evolution

of a two-dimensional interface in many problems, it will not accurately predict the

behavior of a 2DCA lattice. A dynamic model of information processing would

benefit from the NBLS’s utilities (such as resolving interactions between particles,

shrinking and expanding of a front, etc.), but the forces used by the model to

calculate the front’s deformation can not be inferred from the velocities of the

domain boundaries. Finding a solution to the correspondence problem between

two curves would create the most accurate force field to simulate the initial curve

deformation, but the forces can not predict the unexpected border behavior.

In this thesis, the goal of the dynamic modeling is to build a computational me-

chanics framework to describe the mechanism of collective computation in 2DCA.

It is possible that a dynamic model has a wrong definition of curve deformation,

but still gets the same performance as the CA lattice (as Hordijk et al.’s model for

1DCA). I proposed a stricter definition of the dynamic model; one that requires

accurate prediction of the highlighted two-dimensional structures in 2DCA. This
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requirement would allow for a more informative understanding of the information-

carrying patterns in a lattice.

Information modification in a 1DCA model is expected only where two par-

ticles collide. Each particle in one dimension represents a border between two

domains, and a particle collision represents processing of information between two

or more different domains. Although the collisions between domains in 2DCA

have an analogous meaning, the examples in Sections 8.3.2 and 8.3.3 illustrate ad-

ditional information modification in a domain border itself. The non-trivial border

behavior caused a section of the domain border to unexpectedly change velocity

and direction. This behavior cannot be predicted by the correspondence forces

that were inferred from the CA’s space-time behavior after its initial unstructured

phase. The unexpected border behavior can occur at much later updates (times

t = 59 and t = 40), and the phenomenon can be explained only from the observa-

tions of a CA lattice. Although the counterexamples explain why the model could

not predict the curve deformation that represents a domain border, the potential

use of NBLS to simulate CA behavior should not be disregarded. There might

be a different way to calculate the forces to accurately predict a CA’s behavior.

Due to a non-linear motion of the domain borders, the behavior of a dynamic

model that uses the correspondence forces is different from the behavior of the

information-carrying structures highlighted by the filters.

An alternative approach of computing forces for the NBLS-based dynamic

model is to use the lookup table itself. In other words, the velocity and the

direction of the domain border would be inferred from the CA rule. This approach

would have to interpret the meaning of the LUT bits with respect to the border

behavior. Such analysis is very difficult because it relies on bridging two analyti-

cal scopes. The rule table describes the output bits for a cell’s update — a micro

scope, while the dynamic model simulates the behavior of the lattice-wide patterns

— a macro scope. The analysis would use principles from a micro scope to explain
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phenomenon on a macro scope level. This would require solving fundamental is-

sues such as reducing degrees of freedom (from a 512 bit LUT to a two-dimensional

vector space), mapping between different domains (bits in a LUT to a force field

in a dynamic model), and translating the updates of multiple individual sites to

a collective-behavior representative of a border motion. The difficulty of this ap-

proach is comparable to connecting the meaning of alleles to explain the cause of

genetic disease in biology, the principles of molecular self-assembly to explain the

surface properties in material science, and the laws that govern quantum mechanics

to explain the macroscopic system behavior in physics.
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Chapter 9

RELATED WORK

In general, it is unknown how to effectively “program” CAs to perform compu-

tations or what are the best information-processing dynamics in CAs that would

accomplish a task. This chapter gives a brief summary of related work on different

approaches for finding CA rules for given tasks as well as methods for analyzing

rule performance. Previous work on early models of computation in CA can be

found in Section 2.2 while Section 4.2 gives background on different strategies to

evolve CA rules with GA. The following sections summarize Andre et al.’s genetic

programming approach to evolve CA rules, Sipper’s parallel cellular machines as an

alternative definition of CA and his approach to program these systems, resource

sharing technique as an alternative way to preserve genetic diversity in evolving

populations, and Marques-Pita’s re-description of a binary rule representation.

The final section contains brief mention of other related research.

9.1 GENETIC PROGRAMMING

Andre et al. [2] applied genetic programming (GP), a variation of GAs, to the

density classification task. GP methodology also uses a population of evolving

candidate solutions, and the principles of reproduction and survival are the same

for both GP and GAs. The main difference between these two methods is the

encoding of individuals in the population. Unlike the binary strings used in GAs,

individuals in a GP population have tree structures, made up of function and
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Figure 9.1: An example of the encoding of individuals in a GP population, similar
to the one used by Andre et al. [2]. The function set here consists of the logical
operators {and, or, not, nand, nor, and xor}. The terminal set represents the
states of cells in a 1DCA neighborhood, here {Center, East, West, EastOfEast
WestOfWest, EastOfEastOfEast, WestOfWestOfWest.} The figure shows the
reproduction of Parent1 and Parent2 by crossover with subsequent mutation to
produce Child1 and Child2. Reprinted from [15].

terminal nodes. The function nodes (internal nodes) are operators from a pre-

defined function set, and the terminal nodes (leaves) represent operands from a

terminal set. The fitness value is obtained by evaluating the tree on a set of test

initial configurations. The crossover operator is applied to two parents by swapping

randomly selected sub-trees, and the mutation operation is performed on a single

node by creating a new node or by changing its value (Figure 9.1) [64, 65].

The GP algorithm evolved CAs whose performance is comparable to the per-

formance of the best CAs evolved by a traditional GA.

Unlike traditional 1DCAs that use crossover and mutation to evolve fixed length
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genome solutions, GP trees evolve to different sizes or shapes, and the subtrees

can be substituted out and added to the function set as automatically defined

functions. According to Andre et al., this allows GP to better explore the “regu-

larities, symmetries, homogeneities, and modularities of the problem domain” [2].

The best-evolved CAs by GP revealed more complex particles and particle inter-

actions than the CAs found by the EvCA group [24, 51]. It is unclear whether the

improved results were due to the GP representation or to the increased population

sizes and computation time used by Andre et al.

9.2 PARALLEL CELLULAR MACHINES

The field of evolving CAs has grown in several directions. One important area

is evolving non-homogeneous cellular automata [47, 119, 120, 130]. Each cell of

a non-homogeneous CA contains two independently evolving chromosomes. One

represents the LUT for the cell (different cells can have different LUTs), and the

second represents the neighborhood connections for the cell. Both the LUT and

the cell’s connectivity can be evolved at the same time. Since a task is performed

by a collection of cells with different LUTs, there is no single best performing

individual; the fitness is a measure of the collective behavior of the cells’ LUTs

and their neighborhood assignments [118, 120].

One of many tasks studied by Sipper was the global ordering task [119]. Here,

the CA has fixed rather than periodic boundaries, so the “left” and “right” parts

of the CA lattice are defined. The ordering in any given IC pattern will place all

0s on the left, followed by all 1s on the right. The initial density of the IC has

to be preserved in the final configuration. Sipper designed a cellular programming

algorithm to co-evolve multiple LUTs and their neighborhood topologies. Cellular

programming carries out the same steps as the conventional GA (initialization,

evaluation, reproduction, replacement), but each cell reproduces only with its local

neighbors. The LUTs and connectivity chromosomes from the locally connected
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sites are the only potential parents for the reproduction and replacement of cell’s

LUTs and the connectivity tables respectively. The cell’s limited connectivity

results in genetically diverse populations. If a current population has a cell with a

high-fitness LUT, its LUT will not be directly inherited by a given cell unless they

are connected. The connectivity chromosome causes spatial isolation that allows

evolution to explore multiple CA rules as a part of a collective solution [119, 120].

Sipper exhaustively tested all homogeneous CAs with r = 1 on the ordering

task, and found that the best performing rule (rule 232) correctly ordered 71%

of 1000 randomly generated ICs. The cellular programming algorithm evolved a

non-homogeneous CA that outperformed the best homogeneous CA. The evolu-

tionary search identified multiple rules that the non-homogeneous CA used as the

components in the final solution. The rules composing the collective CA solution

were classified as state preserving or repairing the incorrect ordering of the neigh-

borhood bits. The untested hypothesis is that the cellular programming algorithm

can discover multiple important rules (partial traits) that compose more complex

collective behavior.

9.3 RESOURCE SHARING

The spatial extension of evolution and coevolution algorithms, discussed in Sections

4.2.2 and 4.3, is used to maintain higher genetic diversity during evolutionary

search. Resource sharing is another method for preserving diversity in evolving

populations. This method can use a single population view, or be applied on more

than one coevolving populations. The algorithm views training examples as a

“resource” that is shared among the candidate solutions being evolved. Resource

sharing can be applied on most of the algorithms described in this chapter [40, 58,

106, 133, 135].

The resource sharing method defines a host’s fitness based on the number of
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successful evaluations of test cases and on how many other hosts successfully eval-

uated these tests. Fitness(h) =
∑

j=Tests
1
Nj

where Tests are the successfully

evaluated test cases by host h, and Nj is the number of other hosts that correctly

evaluated the tests j. Let’s look at an example: a host successfully evaluated three

ICs out of five. The three test cases were successfully evaluated by five, six, and

two other hosts respectively. The fitness value for this host will be the sum of one-

fifth, one-sixth and one-half (Figure 9.2). The intuition behind resource sharing

is that the hosts that defeat a rarely defeated test case will be awarded by large

fitness fraction. This makes the hosts more viable to reproduce and their scarce

genetic trait will have a better chance of being passed on to offspring generation.

Resource sharing was one of the adaptive fitness strategies used by Oliveira

et al. that found the best-performing rules on density classification and global

synchronization tasks [94]. Their approach also yield large quantity of high per-

forming rules for these tasks, which supports the theory that the resource sharing

helps preserve genetic diversity in evolving populations.

9.4 AITANA

In Section 5.4 we briefly stated a hypothesis that there might be a connection be-

tween the rules’ structure and symmetry and the rules’ behavior and performance.

This observation was based on the ability to reverse some rules that solve the den-

sity classification task and end up with rules that solve the global synchronization

task.

Marques-Pita et al. explored the notion of rule symmetry and was able to re-

describe a binary array representation of a given rule by a compact set of schemas

using the rule’s structure and symmetry [79, 81, 82, 83]. A schema basically refers

to a lookup table entry. It has a size of a neighborhood diameter including the cell

that is being updated, and in addition to the binary states 0, 1 it also uses a wild-

card character. The wild-card character # allows for a single schema to describe
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Test Cases

Candidate Solutions

Figure 9.2: An example of a resource sharing fitness evaluation. The edges between
the test cases and the candidate solutions denote successful evaluations of tests by
candidate solutions.

multiple update patterns where a particular bit value does not influence the update

output. The schemas were further subdivided into two sets: a generation set has

schemas that always update the current site to 1 and an annihilation set has

schemas that always update the current site to 0. An example of a generative

schema {1, 0, 1, 0,#,#,#} for r = 3 1DCA will update the center site to 1 for any

neighborhood where the state of the center site is 0 and the left neighborhood has

values 1, 0, 1. The configuration of states on the right of the current site does not

matter.

Aitana is the name of the program that discovers such schemas. It not only

provides a compact representation of a binary rule table with high symmetry and

structure, it also augments the search space for potentially more efficient search.

Most importantly, it introduces a notion of conceptual structure in a rule that

might reveal a connection between the rule’s behavior and the bits in the lookup

table.
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9.5 OTHER RELATED WORK

All of the related work so far presented CA that were designed to classify particular

lattice configurations. A rule table represents a “program” or a “set of instructions”

while the initial lattice configuration is an input instance to be classified. An

alternative CA definition uses both the lattice configuration and rule(s) to encode

the automata [20, 39].

Ripps used the maximum economy of means to evolve rules for 2DCA [105]. He

co-evolved the initial lattice configuration and an LUT to find CA with as many

periodic regenerating structures on the lattice as possible. The main contribution

of this research is in its novel fitness function used by a GA. An individual’s fitness

is increased every time the individual reuses rules that already exist in a rule-set.

Fitness is decreased for an individual that has to add new rules.

The same CA definition as above was used by Sapin et al. in their approach to

automatically discover lattice structures that simulate the operation of an AND

gate [109, 111]. Genetic algorithms and Tabu search were used to find gliders,

guns, and spatial configurations of these two structures. The local interactions

among the discovered structures represent the operation of an AND gate. The

contribution of this approach is in its progressive refinement of partial results that

evolves the overall lattice configuration towards a desired solution. The broader

impact of this research might lead collision-based computing towards automatic

design of a universal cellular automaton [20, 110, 111].
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Chapter 10

CONCLUSION

10.1 CONTRIBUTIONS

I. I presented evidence that CA are capable of solving proposed prob-

lems by emergent global behavior

In this dissertation I propose several novel tasks that challenge the ability of

2DCA to solve a problem by emergent system behavior. Genetic algorithms evolved

high performing rules that solve these tasks. The rules had complex behavior that

was different for each task. The lattice behavior for the two-dimensional den-

sity classification and global synchronization tasks had a global character with

information-carrying structures propagating through the entire lattice. The re-

maining tasks had much smaller features which resulted in solutions with infor-

mation carrying structures propagating over relatively short distances with shorter

lifespan of actively moving structures than the solutions for the classification tasks.

Although GAs were able to find high-performing rules that solve the proposed

tasks, I cannot conclusively state to what extent CA are capable of emergent global

computation. Without a theoretical framework, proving CA’s computational ca-

pability can be argued only by using experimental methods. The ability of CA to

solve problems must be shown for many more, fundamentally diverse, and globally

challenging tasks.

II. I extended statistically based filters to detect coherent spatio-

temporal structures in 2DCA space-time behavior.

I extended the analysis of information processing from 1DCA into two-dimensions.
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The first step towards understanding the mechanisms of computation in 2DCA was

to identify the spatio-temporal structures in the lattice that were informationally

relevant. The investigation of the statistical based filters proposed by Shalizi et al.

and Lizier et al. led to the definition of filtering techniques for two-dimensional lat-

tices. The implementation of the filters did not produce high quality results. The

filters highlighted the information carrying structures with wide blurry borders

that resulted in loss of detail, failure to accurately of outlining 2D structures, and

no success in highlighting the sections of the domain borders with zero-velocity. I

proposed, implemented and tested a hybrid filtering approach that combines these

two filtering techniques, which yielded superior results in terms of the accuracy

to outline certain 2D structures and the requirements for the computational re-

sources. The hybrid filters identified the domain borders as potential information

carrying structures and highlighted them with a narrow border. The structures

were highlighted with a continuous border even at the places where the domain

border had zero velocity.

III. I showed that construction of a dynamic model of highlighted

structures’ motion is infeasible from the velocities of the domain bound-

aries.

Although the filters highlighted the coherent structures in 2DCA, it is only a

hypothesis that these structures explain the mechanism of computation in 2DCA.

To confirm the meaning of these structures, in Chapter 8 I attempted to build a

model of the structures’ dynamic behavior. The Narrow Band Level Set methods

demonstrated useful properties as a framework for simulating the system’s dy-

namics, but its implementation failed to accurately predict lattice behavior. The

model’s construction incorrectly assumed that the velocity of the information car-

rying structures can be inferred from the CA behavior shortly after the lattice

condensation time and that this velocity can accurately predict the subsequent
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shape and position of these structures in time. The analysis of two counterexam-

ples showed that even if the initial simulation of the domain’s motion is accurate

(by solving the correspondence problem), the model will not accurately predict the

shape of the domain’s border. This is because sections of a domain border can de-

part from their predictable, linear progression through space, and enter into highly

complex, unexpected behavior. Such behavior can not be predicted by a model

that has its dynamics derived from the lattice behavior (as originally thought).

At this point, the hypothesis that the domain borders identified by the 2DCA

filters as the information-carrying structures capture the mechanism of emergent

computation in 2DCA can not be confirmed nor denied. A detailed investigation

of the domain border behavior revealed that these regions not only propagate (or

carry) information through the lattice, but they also process information. The

additional information modification in the domain regions occurs even when they

do not interact with other domain borders. Due to the information modification

by the domain border, the behavior of these structures cannot be predicted by

simply measuring their velocities, as was possible in one dimension. An alternative

approach is needed to predict the advancement of a domain front in two dimensions.

10.2 EVALUATION OF SUCCESS

Along with the list of contributions, let’s briefly examine if the research results

fulfilled the proposed research goals.

The CA’s computational capability of 2DCA was successfully tested on four

benchmark tasks. The GA discovered high-performing rules for classification tasks

with performance comparable to the previously published rules. Interestingly, the

rules’ behavior was unlike previously published rules. This attests to the CA’s

ability to solve problems in “more than one way”. I also evolved CA rules with

very different global behavior that perform the image processing tasks. The rule
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behaviors that perform these tasks has not been previously reported. Success-

fully evolving and analyzing rules that solve proposed problems contributes to the

hypothesis that 2DCA are computationally capable architectures. The analysis

of information processing structures by statistical filtering was previously applied

only to 1DCA. It was unknown if this approach would be applicable to 2DCA,

what quality of results would it yield, and what would be the computational cost

of these filters. I extended the filtering approaches to two-dimensional lattice, and

implemented a hybrid filtering approach that outlined information-carrying struc-

tures in 2DCA with the highest accuracy, least noise, and acceptable computational

cost.

Although I failed to build a model of information processing in 2DCA (the

dynamic model), I attribute this failure to unpredictable rule behavior rather than

the proposed methodology. I detected two counterexamples that clearly identify

reasons why information-carrying structures in 2DCA cannot be modeled from the

rule’s space-time behavior. Although this contribution does not further explain the

mechanism of computation in 2DCA, it points out the non-linear lattice dynamics

that cannot be predicted by a model which uses lattice behavior to initialize its

dynamics.

10.3 FUTURE WORK AND OPEN QUESTIONS

The filtering results do not provide a thorough account of how CA perform col-

lective information processing; it is unknown how to modify the behavior of the

information-carrying structures to design new rules for solving new problems by

collective system behavior. There is a missing link among how these structures

are formed, what causes their motion, and the encoding of the CA look-up tables.

This link is partially characterized by the catalogues of domains and particle in-

teractions obtained with the Computational Mechanics framework, and although

this thesis discussed the basics of the Computational Mechanics framework, that
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framework currently suffers from drawbacks that impede its applicability to CAs in

general. Moreover, no solid connection has been established between the look-up

table bits and formation of the information-carrying structures with desired lattice

dynamics. Therefore, a current challenge is to derive, from filtered diagrams, the

building blocks responsible for computation in the dynamics of CA. These building

blocks should be expressed as mathematical formalisms that capture the essential

features of local interconnected neighborhoods that control the state transitions

of cells in a CA lattice, where the dynamic coupling of these building blocks can

then be used to explain collective computation, and which can be created or mod-

ified to control collective dynamics. Such characterizations of the building blocks

of computation in CAs could be used, for instance, to design models of collective

computation in nature, such as the collective control of stomata apertures on a

plant’s leaf (see [100]).

10.3.1 Rule mechanics

The above described approach to reveal the mechanism of collective computation

in a system is inferred from the space-time dynamics of a lattice. The study of the

CA behavior is empirical in its nature, and can not be generalized as the mech-

anism of computation in 2DCA. This notion is further supported by the analysis

of the GA-evolved CA rules for different tasks proposed in Chapter 3. The CAs

have very different behavior that articulate widely different mechanisms of infor-

mation processing in the lattice. Even the rules evolved for the two-dimensional

density classification task by Cenek, Marques-Pita, and Wolz & de Oliveira have

different behavior from one another, and any conclusions about the nature of the

information processing in the system can not necessarily be generalized from one

rule to another. As long as the approach to analyze the mechanism of collective

computation in the lattice is based on the empirical study of CA behavior, the
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conclusions reached are rule specific. A general Computational Mechanics frame-

work is needed that would analyze the structure of the CA rules with respect to

the lattice dynamics.

Marques-Pita observed that the bits in the GA-evolved rules for the density

classification task form patterns that are repeated throughout the rule table [79,

81, 82, 83]. His symmetry-based rule re-description method uses only the rule table

to analyze the CA behavior. Marques-Pita’s preliminary work proved to be useful

as a rule-based filtering approach to identify the coherent spatiotemporal patterns

in a CA lattice. The meaning of a rule’s symmetry has to be further investigated

in connection to the lattice behavior. An explanation of the structure and pattern

of a rule’s bits and the meaning of the bits’ periodic pattern might identify the

behavioral building blocks of a rule. A drastic reduction of a rule’s search-space

would be achieved by describing the building blocks in terms of their computational

function in the lattice, understanding blocks’ placement within the rule table, and

exploiting the periodic structure of a rule. Constraining the search-space would

aid in designing rule to achieve desired behavior, a fast reconfiguration of a CA

lattice to correct or change its behavior on-the-fly, and achieving a correct solution

for the problems that require multiple rules to solve a problem. In addition to

being able to “program” a CA lattice, the analysis of rule performance would not

have to rely on the rule’s space-time behavior. A rule can be analyzed directly

from the structure of the lookup table.

10.3.2 Towards real-life applications

As a partial motivation for this work, several chapters suggested that the future

generation of devices will consist of inherently parallel, potentially faulty, locally

connected, and decentralized components. The original definition of CA is an

idealized mathematical abstraction to study complex system behavior. As a first

step towards real-life applications of CA-like devices, the original CA definition has
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to be relaxed. Alternative definitions are needed to account for the defects that

occur during engineering and assembly, the lack of component synchronization, and

the system configuration for a given implementation environment. Such alternative

CA definitions can be simulated by an error-prone lattice, non-local component

connectivity, and asynchronous update schemas.

The error-prone lattice can be defined by a subset of cells in the lattice that does

not update, updates incorrectly, or contains faulty connections to the neighboring

sites. Manufacturing systems components that never fail and distributing them

on a perfect two-dimensional grid is not realistic, therefore these experiments are

important for the future manufacturing and configuration of such systems. Special

attention should be paid to how these systems generate faulty information signals,

how these signals propagate though the lattice, and if the solutions are robust

enough to repair the errors automatically.

The non-local connectivity in the lattice can be simulated by a set of cells

having a limited number of neighbors wired to distant sites. It is unknown under

what conditions these non-local connections can improve or hinder the ability of

the system to perform a given task. Rules evolved using non-local connections will

likely show different information processing characteristics than rules evolved on

regular lattices. A small-world network is a theoretical model where the system

components have non-local and irregular connectivity with other network compo-

nents [63, 93]. Tomassini et al. evolved a small-world network to perform the

one-dimensional density classification and the global synchronization tasks. Their

results show that the networks with evolved component connectivity have higher

performance than the networks with the system components connected in a regular

pattern [127, 128]. Additional research shows that the small-world networks are

more robust to the random perturbations of the component inter-connect [26]. A

random boolean network (RBN) is even more relaxed model of a discrete dynam-

ical network where the system components are connected at random and a node’s
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state is updated by a randomly generated logic function [29, 61]. Similar to the

small-world network, a RBN was also shown to be capable of solving global tasks

that require collective computation in a lattice, and that this type of network is

also robust against damage spreading in the system [75, 85].

Finally, the investigation of the asynchronous update schemes would include

updating cells in random order, applying updates to a selected subset of sites, and

using genetic algorithms to evolve timing schemas to combine more than one rule

in a non-homogeneous CA. Using these alternative update configurations might

yield systems with more complex behavior or result in superior performance of

the architecture versus the individual rules. Several research groups showed that

the asynchronous CA are capable of solving tasks that require global cooperation

among system components [92, 121, 124, 129].

The study of these alternative system definitions must address the following

questions: how computationally capable are these systems, how to control and

“program” these systems, and how can their behavior be analyzed? The answers to

these questions will likely create applications that use collective system behavior to

solve real-life problems as well as allow the behavior analysis of existing networks.

10.4 IN A BROADER CONTEXT...

Just imagine being able to take a large number of sensors, nano-scale devices, or

semi-autonomous robots, distribute them in space, and let them evolve or “pro-

gram” them to solve problems. Applications of such architectures has great po-

tential, such as: massive sensor networks to discover earthquakes, tsunami, and

geodetic events; expert architectures to detect features in multidimensional spaces

such as carbon structures in alloys or localizing abnormal biological tissue; and

nano-scale bots to assemble structures with desired shape and topology such as

drug transport agents or device interconnect for future generation electronics. Due
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to the massive number of components, asynchronous and parallel nature, nano-

scale of the target, or unreliable connectivity and components, these systems can

not “compute” desired answers using the traditional von Neumann model of com-

putation. Instead, the system components have to solve the problem collectively

by forming complex behaviors.

The research presented in this work was on the ability of cellular automata to

perform an emergent collective behavior to compute a task. Let’s shift the appli-

cation domain away from 2DCA. Social organizations, hybrid sensor systems, leaf

stomata structure, and CPU architectures are examples of networks that can be

viewed as complex systems — locally connected, potentially faulty, decentralized

networks of simple components with complex interaction dynamics. Their origin

and function might be spontaneous without a job, a task, or an action to perform

(such as social networks) or constructed by design to perform a specific task (such

as CPUs). The emergent system behavior should be viewed as an appearance

of global interaction patterns. Although correct operation of such systems might

not depend on formation of these patterns, instead detecting global interaction

patterns might reveal useful properties or side-effects of a system (such as conges-

tion, collisions, etc.). Discovering the system-wide patterns, modeling the dynamic

properties of these structures, and understanding their role in a system’s behavior

will undoubtedly lead to better design, control, and use of natural and artificial

systems.
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APPENDIX A: GA EVOLVED RULES

A detailed explanation of the bit encoding of the rules listed in this appendix can

be found in Chapter 2.
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2DGKL rule

00000000000000000000000011111111001100110011001100000000111111

11000000000000000000000000111111110011001100110011000000001111

11110000000000000000111111111111111100110011001100111111111111

11111100000000000000001111111111111111001100110011001111111111

11111111000000000000000000000000111111110011001100110011000000

00111111110000000000000000000000001111111100110011001100110000

00001111111100000000000000001111111111111111001100110011001111

11111111111111000000000000000011111111111111110011001100110011

1111111111111111

“Näıve” rule (also called the Local Majority rule)

00000000000000000000000000000001000000000000000100000001000101

11000000000000000100000001000101110000000100010111000101110111

11110000000000000001000000010001011100000001000101110001011101

11111100000001000101110001011101111111000101110111111101111111

11111111000000000000000100000001000101110000000100010111000101

11011111110000000100010111000101110111111100010111011111110111

11111111111100000001000101110001011101111111000101110111111101

11111111111111000101110111111101111111111111110111111111111111

1111111111111111

Table A.1: Human design rules for 2D Density Classification Task (Moore neigh-
borhood)
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Cenek rule

00010000000110000011000100010101000100010110111001000000001100

11010100101001011100010111011010010000011101111001000001010101

01110100000000001000000001010000010100100001010000110000010100

00011100000000010111110000100101010011001011111111111101101111

11110101000000100000010000010100001101110001000101010101000000

11011111111000100110011111010000110111010100010111001111110101

11111101111100000001000001110011001100001111010011010101011101

00001101111111000100011011010101011001001101110111111101111111

0101111111111111

Marques-Pita rule (reported as rule 320 in [80])

00010001000100010000000000000000000100010001000100000000000000

00000100011111111100000000000000000001000111111111000000000000

00000001000111111111000000110000001100010001111111111111111111

11111100010001111111110000001100000011000100011111111111111111

11111111000100010001000100000011000000110001000100010001111111

11111111110001000111111111000000110000001100010001111111111111

11111111111100010001111111110000001100000011000100011111111111

11111111111111000100011111111100000011000000110001000111111111

1111111111111111

Wolz and deOliveira rule (reported as rule 1 in [140])

00000000000000000000000000000001000000000001000100000001010000

01000010110001010100010100000001010000110100101011011101110101

01110000000100000001000100110000011100000011000001010100010101

01011100000000100101010101011111010111000000111001010101111111

11110111000010110001101101000101010101010000010100010011000100

11010001010001011101111111010001110101111100000111011111110111

11110111011111111111010101110100011101011101000111110111111101

10011101100101101111110011111100111111101111111111111111111111

0111111101110111

Table A.2: GA evolved rules for the 2D Density Classification Task (Moore neigh-
borhood)
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Global Synchronization

11111110111010111111110000111111111111101101011011111010011011

11111110011000111011101111011100101011000010111111000010001010

00001111110111000110111110100100111111111010111110101010101010

10000000111100101111011111010010000000111000011101100011100000

11100000111111111111110110100010101010011110111101011010010110

10110000001011101011111011101000101000010011011001100010001101

00000000000010101110101010001100110110110000101110001010010010

00001000001000011010100101100010010000100000000010000001100000

1010000010001000

Table A.3: The best performing GA-evolved rules for the two-dimensional Global
Synchronization task.

Spatial Density Niching

00000000000100000000000000110111001000100100011100100111000101

11000010000000000100010000001100110100001000110001000001011011

10110000001110111110001110000001010000000010000001111011001001

11111101010000101110010111001101110011001111011011100110110011

11110011000100001000100000010011000000010000000110100001011000

10111001010000100010100011010011010001101000100010111100111011

10111110111100011010110101010110110110110111000100111110101111

11111111111111000100000000101000010001110101110000000111111111

1111111111111111

Table A.4: The best performing GA-evolved rules for the two-dimensional Spatial
Density Niching task.
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Rectangle Image Bounding - Default Domain and Dense Variant Rule

00000010001000111010101101000100011100111110010111010111001111

00000110110010011011100010111100111101111011001111000011011001

00110111100010111000111001111110111010000000101110011110011101

11110111100101101111100100100111111101110111001101010011111110

00111001010101001001001111011011011110010000011001111011000101

11001010110001001011111011111000100011000101110100110010000111

01100101001100100110011011100111101111101111011011111101110110

11101101000111011010110100011110100100111101110010001001101011

1100101101110111

Table A.5: The best performing GA-evolved rules for the two-dimensional Rect-
angle Image Bounding task - default domain rule.

Rectangle Image Bounding - Sparse Variant Rule

00000100000000000000000000111011001100000011001101000011110011

11000000000000011000011001000101010000010100000111000001011111

11110100000000000100000010101111000101100000100001110010000100

01001100010000000100100110101001111111010001011110011101110111

11111111000000100001001100010001000101110000010101010111011100

11011000010110010000010001000011100011101110010010010011110110

01111111111101101011010111100011101110111011111101101001111100

10101111111111000000010101111101100111111111110101001111011111

1111111111111111

Table A.6: The best performing GA-evolved rules for the two-dimensional Rect-
angle Image Bounding task - spare variant rule.
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APPENDIX B: MATHEMATICAL DEFINITIONS FOR STATISTICAL

BASED FILTERS

B.1 LOCAL SENSITIVITY: MATH DEFINITIONS

Definition B.1.1 (Future light-cone layer of a site (~η, t)). Let l+(~η, t, δ) be the

sites in a CA space-time diagram, the state of which depends on (~η, t), in the

time-step t + δ. The output of l+(~η, t, δ) is a list of the sites in the CA’s space-

time diagram. These sites are determined according to the topology of the local

neighborhood considered by each specific CA rule, and the value of t + δ. For

typical CA neighborhoods in 1D and 2D with radius r = 1, a depiction of the first

three future light-cone layers is shown in Figure 7.7.

Definition B.1.2 (Number of sites in a future light-cone layer for 1D CA with

radius r). Given a future light-cone layer l+(~η, t, δ) for a one-dimensional CA with

neighborhood radius r, the number of sites in it can be determined from the expres-

sion,

Γ(~η, t, δ, r) = 2δr + 1

Definition B.1.3 (Number of sites in a future light-cone layer for von-Neu-

mann 2D CA with radius r). Given a future light-cone layer l+(~η, t, δ) for a two-

dimensional CA with von-Neumann neighborhood radius r, the number of sites in

it can be determined from the expression,

Γ(~η, t, δ, r) = (δr + 1)2 + (δr)2

Definition B.1.4 (Number of sites in a future light-cone layer for Moore 2D CA

with radius r). Given a future light-cone layer l+(~η, t, δ) for a two-dimensional CA
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with Moore neighborhood radius r, the number of sites in it can be determined from

the expression,

Γ(~η, t, δ, r) = (2δr + 1)2

Definition B.1.5 (Future light-cone of (~η, t) at depth d). Let l+(~η, t) be the set

containing the union of all future light-cone layers l+(~η, t, δ), in the range δ =

{1, ..., d}. 1

Definition B.1.6 (Difference plume between two light-cones). The difference

plume between the original light-cone l+(~η, t) and a perturbed future light-cone

l+(~η′, t), is,

∆
(

l+(~η, t), l+(~η′, t)
)

=
H

(

l+(~η, t), l+(~η′, t)
)

∑d

δ=1 Γ(~η, t, δ, r)

where the function H is the Hamming distance between the two future light-

cones that have the same topology and size, i.e.

Γ(~η, t, δ, r) = Γ(~η′, t, δ, r)

for a fixed radius r and for every value of δ = 1, 2, ..., d.

Definition B.1.7 (Local Sensitivity of site ~ηo, t) with future-depth d and pertur-

bation-range p).

ξpd(~η, t) =

∑|S|
i=1 ∆

(

l+(~η, t), l+(~ηi, t)
)

|S|

where l+(~ηi, t) corresponds to the ith future light-cone resulting from replacing

the original perturbation neighborhood with si ∈ S, and l+(~η, t) to the original

future light-cone for (~η, t).

1A notation for referring to a future light-cone using a subscript (d) that denotes the specific

value of the future depth, i.e. l+(d)(~η, t) could be used as well, but this will be omitted here for

notational simplicity, under the assumption that a light-cone can only exist for a specific finite

value of d.
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B.2 LOCAL STATISTICAL COMPLEXITY: MATH DEFINITIONS

More formally, the computation of the local statistical complexity for a site in a

CA space-time diagram, C(~η, t), requires the following mathematical definitions:

Definition B.2.1 (Observed past and future light-cone configurations for a specific

CA rule). Let the sets L− and L+ denote, respectively, the collection of (randomly

ordered) distinct past light-cone and future light-cone configurations observed in the

space-time diagram. A member of either set L− (or L+) will be denoted by l−i (or

l+i ), where i corresponds to the position of the specific past (or future) light-cone

in the source set.

Definition B.2.2 (Estimated conditional distribution matrix of observed past and

future light-cones). Let matrix M represent the conditional frequency distributions

of the observed past and future light-cone configurations. The row headers represent

a set of all unique past light-cone configurations L−, and the column headers are

all unique future light-cone configurations L+ for a given CA space-time diagram.

A specific matrix element has a value of:

mi,j =
∑

all sites

(l−i |l
+
j )

where mi,j, corresponds to the number of times the past light-cone l−i has been

followed by the future light-cone configuration l+j .

Definition B.2.3 (Estimated conditional distribution vectors). Let the m−
i denote

the ith row vector of matrix M that represents the frequency of observed future light-

cones L+ given a past light-cone l−i . This means that the notation m−
i is simply a

more compact notation of P (L+|l−i ).

Similarly, let the m+
j denote the jth column vector of matrix M representing

the estimated conditional distribution of P (L−|l+j ).
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Definition B.2.4 (Similarity between a pair of conditional distribution vectors).

The similarity function S between two estimated conditional distribution vectors

m−
i and m−

k is defined as:

S(m−
i ,m

−
k , α) =







1 χ2(m−
i ,m

−
k ) < α

0 otherwise

where α is a similarity threshold constant, the value of which is established

empirically. The value of χ2(m−
i ,m

−
k ) is determined by calculating the following:

χ2(m−
i ,m

−
k ) =

|L+|
∑

j=0

(mi,j −mk,j)
2

mk,j

where (mi,j −mk,j) 6= 0, mk,j 6= 0

Definition B.2.5 (Equivalence class ǫm−

i
). The equivalence class, ǫm−

i
, is a set of

all estimated conditional distribution vectors m−
λ that do not belong to any other

equivalence class and the similarity S(m−
i ,m

−
λ , α) = 1 (where m−

i is the conditional

distribution vector representing the equivalence class ǫm−

i
, and m−

λ is the candidate

conditional distribution vector). The equivalence class ǫm−

i
of similar conditional

distribution vectors is defined as following:

ǫm−

i
= {m−

λ : S(m−
i ,m

−
λ , α) = 1}

Definition B.2.6 (Set of equivalence classes ǫM). The set of equivalence classes,

ǫM , for a given estimated conditional distribution matrix M is a set of disjoint

subsets ǫm−

i
∈ M :

ǫM =
⋃

i

ǫm−

i

where ǫm−

i
∩ ǫm−

j
= ∅, ∀(ǫm−

i
, ǫm−

j
) ⊂ ǫM : i 6= j.
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Definition B.2.7 (Probability of an equivalence class ǫm−

i
). The probability that

an arbitrary past light-cone is a member of an equivalence class ǫm−

i
is given by the

formula,

Pr(ǫm−

i
) =

∑

k

|L+|
∑

j=1

mk,j

|L−|
∑

i=1

|L+|
∑

j=1

mi,j

where k : m−
k ∈ ǫm−

i

The numerator is a sum of the frequency counts of the conditional distributions

that belong to the equivalence class ǫm−

i
, and the denominator is the number of all

analyzed sites in the space-time diagram.

Definition B.2.8 (Local Statistical Complexity C(~η, t) ). The Local Statistical

Complexity associated with a site ~η at time t in the space-time diagram of a CA

is −log2 of the probability associated with the equivalence class to which the past

light-cone of the site (~η, t) belongs to:

C(~η, t) = −log2(Pr(ǫm−

i
)) where l−(~η, t) ∈ ǫm−

i
: ǫm−

i
∈ ǫM

B.3 LOCAL INFORMATION STORAGE, INFORMATION TRANS-

FER AND INFORMATION MODIFICATION: MATH DEFINI-

TIONS

Definition B.3.1 (Basic definitions: current site, past configuration, and neigh-

boring sites.). Let the expression xi,n+1 refer to the state of the automaton’s ith site

at time (n+ 1), also called the current site.

The past vector 〈x(k)
i,n〉 denotes k previous states of site i from the time n to

n− k.

〈x
(k)
i,n〉 = 〈xi,n, xi,n−1, xi,n−2, . . . , xi,n−k〉
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The previous configuration of l many left (or right) adjacent cells to the cur-

rent site are denoted by vector 〈x
(l)
i−j,n〉 (or 〈x

(l)
i+j,n〉). In Moore neighborhood two-

dimensional CA, j refers to the eight neighboring sites adjacent to the current site

and four neighbors for van Neumann neighborhood. An abbreviated shorthand for

all neighboring sites is 〈x
(l)
i±j,n〉

Definition B.3.2 (Frequency vectors). The composite pattern is defined as a con-

catenation of one or more structures defined in B.3.1. A frequency vector stores

the occurrence counts of a particular composite pattern. For a two state CA,

each binary composite pattern encountered is encoded as an offset to the frequency

vector where the counter is incremented (the length of the frequency vectors is

2patternlength). The pattern statistics are recorded from “several” space-time dia-

grams with random initial configurations. The frequency vectors and the composite

pattern definitions are listed below:
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Vector

Name

Pattern Definition Pattern

Length

(bits)

Vector Description

P 〈x
(k)
i,n〉 k k previous configurations of the cur-

rent site

C 〈x
(k)
i,n , xi,n+1〉 k + 1 k previous configurations of the cur-

rent site with the state of the current

state

S 〈xi,n+1〉 1 the current site

PL 〈x
(k)
i,n , x

(l)
i−j,n〉 k + l k previous configurations of the cur-

rent site with l left neighboring sites

CL 〈x(k)
i,n , x

(l)
i−j,n, xi,n+1〉 k+ l+1 k previous configurations of the cur-

rent site with l left neighboring sites

with the state of the current site

PR 〈x
(k)
i,n , x

(l)
i+j,n〉 k + l k previous configurations of the cur-

rent site with l right neighboring

sites

CR 〈x
(k)
i,n , x

(l)
i+j,n, xi,n+1〉 k+ l+1 k previous configurations of the cur-

rent site with l right neighboring

sites with the state of the current

site

Definition B.3.3 (Local Information Storage). The Local Information Storage a

in site i at time n+ 1 is defined as:

a (i, n+ 1) = lim
k→∞

log2
p
(

x
(k)
i,n , xi,n+1

)

p(x
(k)
i,n)p (xi,n+1)

= log2(
ci

pi × si
)

Definition B.3.4 (Local Information Transfer). The Left Local Information Trans-

fer is defined as a faction of following conditional probabilities:
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tleft (i, n+ 1) = lim
k→∞

log2
p
(

xi,n+1|x
(k)
i,n , x

(l)
i−j,n

)

p
(

xi,n+1|x
(k)
i,n

) = log2
cli ÷ pli
ci ÷ pi

Right Local Information Transfer is defined analogously as following:

tright (i, n+ 1) = lim
k→∞

log2
p
(

xi,n+1|x
(k)
i,n , x

(l)
i+j,n

)

p
(

xi,n+1|x
(k)
i,n

) = log2
cri ÷ pri
ci ÷ pi

Definition B.3.5 (Local Information Modification). The Local Information Mod-

ification is a sum of Local Information Storage and the Local Information Transfer

from all directions. The equation below calculates the information modification for

one-dimensional CA:

s (i, n+ 1) = a (i, n+ 1) + tleft (i, n+ 1) + tright (i, n+ 1)


