
Portland State University Portland State University 

PDXScholar PDXScholar 

Dissertations and Theses Dissertations and Theses 

1-1-2011 

Information Processing in Two-Dimensional Cellular Information Processing in Two-Dimensional Cellular 

Automata Automata 

Martin Cenek 
Portland State University 

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds 

Let us know how access to this document benefits you. 

Recommended Citation Recommended Citation 
Cenek, Martin, "Information Processing in Two-Dimensional Cellular Automata" (2011). Dissertations and 
Theses. Paper 275. 
https://doi.org/10.15760/etd.275 

This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations 
and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more 
accessible: pdxscholar@pdx.edu. 

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F275&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/275
https://doi.org/10.15760/etd.275
mailto:pdxscholar@pdx.edu


Information Processing in Two-Dimensional Cellular Automata

by

Martin Cenek

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

Dissertation Committee:

Melanie Mitchell, Chair

Bart Massey

Cynthia Brown

James G. Hook

Dan Hammerstrom

Portland State University

c© 2011



i

ABSTRACT

Cellular automata (CA) have been widely used as idealized models of spatially-

extended dynamical systems and as models of massively parallel distributed com-

putation devices. Despite their wide range of applications and the fact that CA are

capable of universal computation (under particular constraints), the full potential

of these models is unrealized to-date. This is for two reasons: (1) the absence of a

programming paradigm to control these models to solve a given problem and (2)

the lack of understanding of how these models compute a given task. This work

addresses the notion of computation in two-dimensional cellular automata.

Solutions using a decentralized parallel model of computation require informa-

tion processing on a global level. CA have been used to solve the so-called density

(or majority) classification task that requires a system-wide coordination of cells.

To better understand and challenge the ability of CA to solve problems, I de-

fine, solve, and analyze novel tasks that require solutions with global information

processing mechanisms.

The ability of CA to perform parallel, collective computation is attributed to

the complex pattern-forming system behavior. I further develop the computa-

tional mechanics framework to study the mechanism of collective computation in

two-dimensional cellular automata. I define several approaches to automatically

identify the spatiotemporal structures with information content. Finally, I demon-

strate why an accurate model of information processing in two-dimensional cellular

automata cannot be constructed from the space-time behavior of these structures.



ii

DEDICATION

TO MY PARENTS, CARRIE, SUE and LARRY.



iii

ACKNOWLEDGMENTS

First of all, I would like to thank my advisor Dr. Melanie Mitchell for everything

she has ever done for me. She has been a great mentor and advisor with overabun-

dance of inspiration, patience, guidance, and encouragement. It is my honor to be

her student. I would also like to thank to everybody who advised along the way;

all of my advisors, for their input and their willingness to listen (to all the good

and the bad). Dr. Bart Massey and Dr. Cynthia Brown always went the extra

mile for me. Dr. Christof Teuscher always had advice and thoughts when I needed

them.

This work has been funded by the Center on Functional Engineered Nano Ar-

chitectonics (FENA), through the Focus Center Research Program of the Semicon-

ductor Industry Association. The remainder of my support was from the Computer

Science Department. Thank you for the generous support.

Working with the Learning and Adaptive Systems group was always a pleasure.

Ralf Juengling is a super-star. Thank you not only for the gift of ’lush’, but for

being a good friend who will never be forgotten. Dr. Manuel Marques-Pita as

a collaborator on this work, and Mick Thomure and Will Landecker who were

always willing listeners. Dr. Alexander Weber of Lawrence Berkeley Labs for his

friendship, and putting my work into perspective. Everyone from CSGCS, but

most of all Dr. Chuan-kai Lin, Rashawn Knapp, Dr. Kathryn Mohror. Finally,

I would like to thank to all of my friends and family who believed in me and

supported me on this journey.



iv

CONTENTS

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Idealized model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 What are Computation and Information? . . . . . . . . . . . . . . 6

1.4 A Model of Information Processing . . . . . . . . . . . . . . . . . . 9

1.5 Dissertation Summary . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 Cellular Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Computation in CA . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Early Models . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Computation in 1DCA via “Particles” . . . . . . . . . . . . 19

2.2.3 Computation in 2DCA . . . . . . . . . . . . . . . . . . . . 22

3 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Desired Attributes of Tasks . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Density Classification . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Global Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Spatial Density Niching . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Rectangle Image Bounding . . . . . . . . . . . . . . . . . . . . . . . 31

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32



v

4 Evolving Cellular Automata with Genetic Algorithms . . . . . . 34

4.1 Rule Performance and Fitness . . . . . . . . . . . . . . . . . . . . . 34

4.2 Evolving Cellular Automata With Genetic Algorithms . . . . . . . 35

4.2.1 Coevolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.2 Spatially Extended GA . . . . . . . . . . . . . . . . . . . . . 38

4.3 Genetic Algorithms Used in This Work . . . . . . . . . . . . . . . . 38

4.3.1 Standard GA . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3.2 Non-Spatial Coevolution . . . . . . . . . . . . . . . . . . . . 41

4.3.3 Spatial Evolution . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.4 Spatial Coevolution . . . . . . . . . . . . . . . . . . . . . . . 42

5 Results of Evolving Cellular Automata with Genetic Algorithms 44

5.1 The best GA evolved rules . . . . . . . . . . . . . . . . . . . . . . . 44

5.2 Rule Behavior and Performance . . . . . . . . . . . . . . . . . . . . 46

5.3 Density Classification . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3.1 Comparison with other rules . . . . . . . . . . . . . . . . . . 50

5.4 Global Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.5 Spatial Density Niching . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.6 Rectangle Image Bounding . . . . . . . . . . . . . . . . . . . . . . . 61

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6 Information Processing via Particles1 . . . . . . . . . . . . . . . . . 68

6.1 Collective Computation in Cellular Automata . . . . . . . . . . . . 68

6.2 Information Processing Structures: Domains and Particles . . . . . 72

6.3 Model of Information Processing in 1DCA . . . . . . . . . . . . . . 76

7 Filters for Identifying Information-Processing Structures in CA2 80

7.1 Filtering by Epsilon-Machine Reconstruction . . . . . . . . . . . . . 81

7.2 Filtering by Local Sensitivity (LS) . . . . . . . . . . . . . . . . . . . 86

7.3 Filtering by Local Statistical Complexity . . . . . . . . . . . . . . . 89

7.4 Filtering by Information Storage, Transfer and Modification . . . . 95

7.4.1 Local Information Storage (IS) . . . . . . . . . . . . . . . . 96

7.4.2 Local Information Transfer (IT) . . . . . . . . . . . . . . . . 98

1Portions of this chapter were adapted from [76]
2Portions of this chapter were adapted from [76]



vi

7.4.3 Local Separable Information (S) and Information Modifica-

tion (IM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.5 Filtering Coherent Structures in Two-Dimensions . . . . . . . . . . 101

7.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.6.1 Computational Requirements . . . . . . . . . . . . . . . . . 106

7.6.2 Results of Filtering . . . . . . . . . . . . . . . . . . . . . . . 107

7.7 Discussion and Summary . . . . . . . . . . . . . . . . . . . . . . . . 110

8 Dynamic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8.1 Model of Information Processing in 2DCA . . . . . . . . . . . . . . 114

8.1.1 Difference of Analytical Scope in 1DCA and 2DCA . . . . . 117

8.2 Background: Level Set Theory . . . . . . . . . . . . . . . . . . . . . 118

8.2.1 Level Set as CA’s Dynamic Model . . . . . . . . . . . . . . . 119

8.2.2 Narrow Band Level Set (NBLS) . . . . . . . . . . . . . . . . 121

8.3 Measuring the Interface Velocities . . . . . . . . . . . . . . . . . . . 122

8.3.1 Solving the Correspondence Problem . . . . . . . . . . . . . 124

8.3.2 Noise versus Information . . . . . . . . . . . . . . . . . . . . 126

8.3.3 Hidden Forces and Complex Regions . . . . . . . . . . . . . 130

8.4 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . 133

9 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

9.1 Genetic Programming . . . . . . . . . . . . . . . . . . . . . . . . . 136

9.2 Parallel Cellular Machines . . . . . . . . . . . . . . . . . . . . . . . 138

9.3 Resource Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

9.4 AITANA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

9.5 Other Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 142

10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

10.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

10.2 Evaluation of success . . . . . . . . . . . . . . . . . . . . . . . . . . 145

10.3 Future work and open questions . . . . . . . . . . . . . . . . . . . . 146

10.3.1 Rule mechanics . . . . . . . . . . . . . . . . . . . . . . . . . 147

10.3.2 Towards real-life applications . . . . . . . . . . . . . . . . . 148

10.4 In A Broader Context... . . . . . . . . . . . . . . . . . . . . . . . . 150

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Appendix A: GA Evolved Rules . . . . . . . . . . . . . . . . . . . . . . 170



vii

Appendix B: Mathematical Definitions for Statistical Based Filters 175

B.1 Local Sensitivity: Math Definitions . . . . . . . . . . . . . . . . . . 175

B.2 Local Statistical Complexity: Math Definitions . . . . . . . . . . . . 177

B.3 Local Information Storage, Information Transfer and Information

modification: Math Definitions . . . . . . . . . . . . . . . . . . . . 179



viii

LIST OF TABLES

5.1 Measured performances of the best GA-evolved rules found for a

given task by a given search algorithm. The performance of the

GA-evolved rules is listed in rows (1-4), while the last two rows list

the performance of the human designed 2DGKL and the the näıve

(local majority) rules. The columns (from left to right) list the rules’

performance on the two-dimensional density classification (2DCT),

global synchronization (GS), spatial density niching (SDN), rectan-

gular pixel bounding – sparse variant (RPB-SV), and rectangular

pixel bounding – dense variant (RPB-DV) tasks. . . . . . . . . . . . 45

5.2 The performance scaling of human-designed LUT (2D GKL), näıve

rule, Cenek’s, Wolz & de Oliveira’s, Marques-Pita’s rules for the 2D

density classification task. The performance was measured as a per-

centage of correctly classified 104 random ICs generated according to

a binomial distribution. (See Appendix A for binary representations

of each of these rules.) . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.1 Catalog of regular domains, particles (domain boundaries), particle

velocities (in parentheses), and particle interactions seen in rule’s

space-time behavior. The notation p ∼ ΛxΛy means that p is the

particle forming the boundary between regular domains Λx and Λy.

(Adapted from [88].) . . . . . . . . . . . . . . . . . . . . . . . . . . 75



ix

LIST OF FIGURES

2.1 Left top: A two-dimensional neighborhood of nine cells (radius

r = 1). Bottom Left: A sample look-up table in which all possible

neighborhood configurations are listed, along with the update state

for the center cell in each neighborhood (Image shows the initial four

and the last four neighborhood configurations. The look-up table is

shown as a vertical vector on the right.). Right: The mechanism of

update (using the rule on the left) in a two dimensional binary CA

of size 9× 9: t0 is the initial configuration, t1 is the configuration at

next time step, and t2 is the configuration at the following time step

using the rule on the left. A cell in state 0 is colored white while a

black cell represents state 1. . . . . . . . . . . . . . . . . . . . . . . 13

2.2 A series of configurations at six time steps, illustrating the behavior

of the “näıve” local majority voting rule on a lattice of size N = 99×

99, and neighborhood radius r = 1. The individual cells are colored

black for state 1 and white for state 0. The initial configuration

is majority white, with density ρ = 45.41%. CA fails to correctly

classify the IC. Note that the final lattice configuration is at a fixed

point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Analysis of GA-evolved CA for the density classification task. Left:

A diagram of the CA’s behavior on a 149 cell lattice over 148 time

steps, starting from a random IC. The regular domains consist of

all white, all black, or checkerboard regions. Right: Space-time

diagram after regular domains are filtered out. Reprinted from

(Crutchfield, Mitchell, & Das, 2003). . . . . . . . . . . . . . . . . . 19



x

2.4 Comparison of CA rule performance (white bars) and the perfor-

mance predicted by a quantitative model (black bars) for a typical

CA rule evolved for 1D density classification task. Five CA rules

(φdens1 to φdens5) are representative of epochs of rule improvement

during GA run – stages of significant improvement in the rule’s fit-

ness. Reprinted from Wim Hordijk’s PhD thesis [50]. . . . . . . . . 21

3.1 An example of a task to detect the darker rectangle in the center

of the image. The neighborhood configurations randomly selected

from the image are showed on either side of the image. Deciding if

these configurations belong to the inside, outside, or the border of

the rectangle is difficult without looking at the whole image. . . . . 26

3.2 Example of a Density Classification task. The top row illustrates

the initial configuration with a majority of cells in state 1 (den-

sity 54.1%) where the bottom row shows the initial configuration

with 47.4% density. The columns on the right represent the correct

solutions to the initial configurations displayed in the left column. . 27

3.3 Example of a Global Synchronization task. (a) Sample IC repre-

senting the initial state of the processors, while (b) - (e) show the

desired output as an alternation of all processors On (all white) and

Off (all black) configuration. . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Example of a Spatial Density Niche task. The top row illustrates the

positive task variant and the bottom row has the negative task vari-

ant. The left column represents random ICs and the right column

has the desired task solution. Top Left: The configuration contains

areas with higher density than the surrounding lattice.Top Right:

The higher density areas turn black and the rest of the lattice is

white. Bottom Left: The configuration contains rectangles with

lower density Bottom Right: The low density areas turn white

and the rest of the lattice is black. . . . . . . . . . . . . . . . . . . . 30

3.5 Example of a Rectangle Image Bounding task. The top row illus-

trates thick image bounding and the lower two images illustrate the

sparse image bounding tasks. Left: Sample ICs with the images to

be bound. Right: The solutions to the task. All image pixels are

bound by an outlying rectangle. . . . . . . . . . . . . . . . . . . . . 31



xi

4.1 Lookup table encoding for 2D CA with neighborhood r = 1. All

permutations of neighborhood values are encoded as an offset to the

LUT. The LUT bit represents a new value for the center cell of the

neighborhood. The binary string (LUT) encodes an individual’s

chromosome used by evolution. The length of the binary string

encoding of the LUT is 2(2r+1)d . . . . . . . . . . . . . . . . . . . . . 36

4.2 Reproduction applied to Parent1 and Parent2 producing Child1
and Child2. The one-point crossover is performed at a randomly

selected crossover point (bit 3) and a mutation is performed on bits

2 and 5 in Child1 and Child2 respectively. . . . . . . . . . . . . . . 37

5.1 A series of space-time diagrams of a density classification rule evolved

by the genetic algorithm on a 99 × 99 lattice with r = 1. (a) The

initial configuration has a majority of 0s. (b) - (f) Left to right

snapshots of CA at evaluation 0, 5, 10, 50, 150, and final configura-

tion at evaluation 286. (g) The initial configuration has a majority

of 1s. (h) - (t) CA at iterations 0, 5, 10, 50, 100, and CA converged

to all 1s configuration at evaluation 161. . . . . . . . . . . . . . . . 48

5.2 Typical lattice configurations produced by rules evolved by genetic

algorithms for the two dimensional density classification task on a

99× 99-cell lattice at time t = 20, for the same random initial con-

figuration. (a) Cenek’s rule. (b) Marques-Pita’s rule. (c) Wolz and

de Oliveira’s rule. Highlighted features illustrate the characteristic

behavior of the rules. Feature 1 represents a domain boundary that

moves in different directions at varied velocities, Feature 2 points

to “noisy” borders where the edge of the boundary is not clearly

defined. Feature 3 illustrates single-cell-wide domains. Feature 4

highlights the borders between multiple domains that have the same

pattern (stripes) but move in different directions. . . . . . . . . . . 52



xii

5.3 A series of space-time diagrams of 99×99 lattice for global synchro-

nization task. The initial configuration is shown at time t = 0, and

the rule converged to the oscillation of all black and all white config-

urations (not shown for brevity). Behavior of the same GA-evolved

rule applied on three different ICs with density (i.) 49.83%, (ii.)

30.25%, and (iii.) 69.22%. The lattices converged to oscillating

configurations of all black and white at time-step (i.) 228, (ii.), 12,

and (iii.) 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4 A typical behavior of rules for the global synchronization task shown

on an initial configuration with density 49.83% at time t = 0. Two

consecutive lattice configurations are shown at time-steps (a) t = 5

and (b) t = 6. The circles 1 and 2 show transformation of an

all black region to an all white region and vice versa. Rectangle

3 highlights a border between white and black regions that moves

from one time step to another. . . . . . . . . . . . . . . . . . . . . . 56

5.5 A series of space-time diagrams of a spatial density niching rule

evolved by the genetic algorithm on a 99×99 lattice with r = 1. (i.)

Initial configuration for a positive task variant with a 67.87% density

rectangle on a 38.11% background. (ii.) A negative task variant

configuration with a 33.09% density rectangle in a foreground and

a 68.06% density background. (iii.) Mixed niche variant with two

rectangles of different densities. The top left quadrant of the lattice

has a 19× 32 rectangle with density 49.51% and a 35× 22 rectangle

with density 19.92% in the bottom right. (iv.) A solution for a

non-trivial polygon. The ‘A’ shape foreground has a density 42.87%

placed on the background with 65.46% density. . . . . . . . . . . . 58

5.6 Typical behavior of rule on positive density niching task. The higher

density rectangle of 67.87% is embedded in a 38.11% background. a.

The overlay of black rectangles on the initial configuration represents

small domains that remain in the final lattice configuration (shown

in c.). The average starting density inside the outlined rectangles

is 55.56%. The images in b. and c. show slow, noisy shrinking and

growing of domains. Feature 1 represents erosion while Feature 2

points to domains that grew. . . . . . . . . . . . . . . . . . . . . . . 60



xiii

5.7 A series of space-time diagrams of a 99 × 99 lattice for the sparse

and dense image bounding task. The initial configuration is shown

at time t = 0, and the final configuration is captured as the final

image in each of the series. i. A commonly found rule for the

dense image bounding task with a default domain behavior. The

initial configuration has a rectangle with 61.46% pixel density. This

rule failed on the sparse image bounding task. ii. A sparse image

bounding task variant with 3.20% pixel density. iii. A dense image

bounding task variant with 72.26% pixel density. The same rule was

used for sparse and dense bounding task configurations in ii. and iii.. 62

5.8 A typical behavior of rules for the sparse rectangular bounding task.

The bounding box of the black pixels has 4.87% density. a. The

circles in the initial configuration show the seed locations for ex-

panding domains. Gray pixels mark the initial configuration, while

black represents newly generated pixels at time t = 1. b. Time

step t = 40 with Feature 1 highlighting examples of active fronts.

Feature 2 points to the constant domain walls. The pixels from the

initial configuration that were not reached are marked as feature 3.

c.) The lattice configurations at time t = 40 is represented by gray

pixels while black pixels mark time t = 50. . . . . . . . . . . . . . . 64

6.1 Space-time behavior of a CA evolved by the GA for the density

classification task [28]. The left diagram shows the CA iterating

from a high-density initial configuration (i.e., with a majority of

cells in state 1 (black)) and the right diagram shows the CA iterating

from a low-density initial configuration (i.e., with a majority of cells

in state 0 (white)). In each case the CAs give a correct classification

of the initial configuration. This CA correctly classifies about 80%

of random initial configurations on 149-cell lattices. . . . . . . . . . 70

6.2 Space-time behavior of the highest-performing known CA evolved

by the GA for the density classification task [140]. The left diagram

shows the CA iterating from a high-density initial configuration and

the right diagram shows the CA iterating from a low-density initial

configuration. In each case the CAs give a correct classification of

the initial configuration. This CA correctly classifies about 89% of

random initial configurations on 149-cell lattices. . . . . . . . . . . . 71



xiv

6.3 Behavior of elementary CA 110 starting from a random initial con-

figuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.4 (Left) The left-hand spacetime diagram of figure 6.1. (Right) The

same diagram with the regular domains filtered out, leaving only the

particles (some of which are labeled by here by the Greek letter code

of table 6.1). Note that particle α (unlike other the other particles)

lasts for only one time step, after which it decays to particles γ and µ. 76

6.5 (Left) Space-time behavior of elementary CA 18, iterated from a

random initial configuration. (Right) The same diagram with the

regular domain filtered out, leaving only the particles. (Reprinted

from [87].) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.6 GA evolved rules for one-dimensional density classification task for

CA with neighborhood radius r = 3. The rules were found by Das et

al. (left)[28], Marques-Pita (center)[79, 83] and Wolz & de Oliveira

(right)[140]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.1 Two-state epsilon-machine encoding the “every other site is a zero”

regular domain of elementary CA 18. . . . . . . . . . . . . . . . . . 81

7.2 Creation of subwords from CA configurations. Adapted from [42]. . 82

7.3 Creation of tree from subwords. Adapted from [42]. Note that the

first subword from Figure 7.2 has been highlighted in the tree using

darker nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.4 Different (L = 2) morphs contained in tree of Figure 7.3. Adapted

from [42]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.5 Left: The tree of Figure 7.3, labeled with morph labels. Right: The

resulting epsilon machine. Adapted from [42]. . . . . . . . . . . . . 84



xv

7.6 Example of the calculation of ξ12(4, 0). The top-left corner shows the

original initial configuration and two updates using elementary CA

110. The local sensitivity is calculated for the fourth site at time

t = 0 (highlighted with a circle). The perturbation range is p = 1,

which determines the perturbation neighborhood P =< 0, 1, 0 >,

and the future depth is set to d = 2. The sites that depend on the

information stored in site (4, 0) (for a 1D radius r = 1 CA, within

future-depth 2) are marked with grey squares. They determine the

future light-cone for (4, 0). The perturbation neighborhood P gen-

erates |S| = 7 “words” of length three. Diagrams (A)–(G) show the

behavior of the CA when each of these words replaces the original

configuration in the perturbation range, and the CA is run for d = 2

time steps. The cells in each future light-cone that differ from the

corresponding cells in the original future light-cone are marked with

an X. The Hamming distance ∆, i.e., the fraction of differing cells

between the original future light-cone and the one resulting from

each perturbation is shown above the top-right of each diagram in

(A)–(G). These seven ∆’s are averaged, resulting in a local sensitiv-

ity ξ12(4, 0) = 0.4285. . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.7 The first part of the procedure to compute Shalizi’s Local Statistical

Complexity consists of traversing a space-time diagram to gather

statistics about the set of unique past and future light-cones ob-

served. Each unique past (future) light-cone is assigned an index, i

(j). The set of all past (future) light-cones is denoted by Pc (Fc).

For every site that has a past and future light-cone, first identify

past and future light-cones i and j. Then in a matrix M|Pc|×|Fc|

(where initially mij = 0,∀i, j), increment the value of mij by one.

In the figure there are nine and thirteen abstract past and future

light-cones respectively. All the elements of this figure are only sim-

plified illustrations of the concepts introduced. Note that a row mi

in M represents the frequency distribution of past light-cone i over

all the future light-cones. Finally, after the M has been updated

upon traversal of the space-time diagram, the ordering of its rows

is randomized (see justification for this in the text). . . . . . . . . . 93



xvi

7.8 The procedure for computing LSC continues with a traversal of all

the rows in M , with the goal of assigning each row, mi, to a causal

state. Before the traversal, start with an empty set of causal states

ǫ, and mark every row in M as unassigned. In this example, the

procedure finds the first unassigned row m7 in M , and makes it its

first causal state, ǫ7; then it computes the similarity between m7,

and every other unassigned row: If the similarity S(m7,mj) = 1,

then the row is added to the same causal state as m7, if not, the

row remains unassigned. Here, rows m3, m2, and m9 are statisti-

cally similar to the ǫ7 representative row m7. The next unassigned

row m1 is chosen to represent new causal state ǫ1. The similarity

calculation adds rows m5 and m6 to the causal state ǫ1 (column

2). The same procedure is repeated for the reminding unassigned

row m8. After this part of the procedure is complete, it is then

necessary to calculate the probability that a past/future light-cone

pair is in a specific causal state. In the figure, the total number

of observations is the city-block norm of ||M ||, ||M || =
∑

i,j mij.

Similarly, the total number of observations associated to a causal

state ǫi is ||ǫi|| =
∑

i,j|mij∈ǫi
mij. The probability that a past/future

light-cone pair is in causal state ǫi is therefore, Pr(ǫi) = ||ǫi||/||M ||.

This calculation for causal states ǫ7, ǫ1, and ǫ8 is shown in the far

right column. Finally, the statistical complexity of a site c is given

by C(c) = log2(Pr(ǫi)), where ǫi is the causal state to which the

combination of past and future light-cones associated with site c

belongs to. Note that the assignments made in the figure are only

an abstract illustration of the procedure. . . . . . . . . . . . . . . . 94

7.9 Pictorial description of the procedure to compute Lizier et al.’s local

information storage a(site), in this case, with k = 3. The site for

which a is being computed is outlined and marked with a circle.

The three sites forming the site’s “history” are outlined in light

gray. The actual computation is described in the text. . . . . . . . . 96



xvii

7.10 Pictorial Description of the procedure to compute Lizier et al.’s

right and left information transfer. The site for which information-

transfer is being calculated is marked with a gray circle. Its three-

site history is outlined in light gray, as are the left and right neigh-

bors at t = 6. Note that, due to the circular boundary conditions,

the “right neighbor” is actually the leftmost site at t = 6. Details of

the calculation of Left and Right Information transfer are described

in the text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.11 Space-time patterns used for gathering statistics in (a) Shalizi et al.’s

local sensitivity and local statistical complexity filters (b) Lizier et

al.’s information theoretic filters, and (c) our hybrid filters. The

patterns here have two spatial dimensions (corresponding to the

CA lattice) and one temporal dimension. Filters proposed by Shal-

izi et al. use light-cones with depth d with cone width marked as

footprint. Lizier et al.’s IS filter uses site’s past configurations k

tall, and the IT filters use additional information from 3 × 3 sites

in a given site’s neighborhood. The hybrid filter uses Lizier et al.’s

past and future light-cone configurations. . . . . . . . . . . . . . . 102

7.12 The results of the filters for (a) Cenek’s rule, (b) Marques-Pita’s rule,

and (c) Wolz and de Oliveira’s rule, each on a 39× 39-cell lattice at

time steps t = 10 and t = 20. The first column shows the original

space-time diagrams, followed by the idealized domain-boundary

outline (hand-constructed), filter results for local sensitivity (column

3), local statistical complexity (column 4), cumulative information-

transfer (column 5), and the hybrid filter (column 6). The gray-

scale in the images corresponds roughly to the likelihood that a

given site belongs to a domain boundary—dark colors mean high

certainty while light-gray sites are less likely to form a boundary.

For additional results see [14]. . . . . . . . . . . . . . . . . . . . . . 105

7.13 Cenek’s rule for the density classification task on a 39×39-cell lattice

at time step t=10. (a) The original CA, (b) the results of the local

sensitivity filter, (c) the local complexity filter, (d) the cumulative

information-transfer filter, and (e) the hybrid filter. Highlighted

features represent the various filters’ results on (1) a noisy border,

(2) a small feature, (3) a zero-velocity border, and (4) a region with

complex border dynamics (4). . . . . . . . . . . . . . . . . . . . . . 106



xviii

7.14 A two-dimensional cut of a 3D space-time diagram along the time

axis shows a current site as a black circle, along with the time-slice of

its past and future light-cones. A black domain is shown on the right

side of the illustration. The gray colored sites show an intersection

between the future light-cone and the black domain. The gray arrow

shows the range of sites that the LS and LC filters highlight as a

wide blurry border between the white and black domains. . . . . . . 108

8.1 Illustration of steps required to build a model of information pro-

cessing in 2DCA. From left to right: (a) original space-time diagram

after lattice settles into black and white domains, (b) the lattice

configuration is analyzed by filters to highlight information-carrying

structures, (c) domain borders are simplified as single-cell wide lines,

(d) the velocity of the domain borders is measured from two space-

time diagrams δt time steps apart (showed as gray areas), (e) initial

border location and border forces are used to build a model, (f) the

domain borders are iteratively advanced using measured forces, and

(g) these iterated borders are compared to the borders found when

the CA lattice uses the LUT to update its configuration. . . . . . . 115

8.2 Illustration of the level set interface evolution in two dimensions.

The interface Γ at time t0 (black) and at time t1 (gray). Each

point of the interface is assigned both velocity and direction. The

arrows in the image display the motion vector for selected points

of the interface. The figure shows a GA-evolved CA for the two-

dimensional density classification task in two consecutive time steps

with the regular domains filtered out manually. . . . . . . . . . . . 119

8.3 Illustration of the advantages of LST shows a. discrete definition

of a front, b. proper interface collapse, c. contour continuity, d.

prevention of a swallowtail effect, and e. advancement of a sharp

edge. The black arrows mark the forces acting on the contour,

and the black lines represent the initial and the final position of a

contour. The gray lines show the intermediate contour positions as

if the contour would be advanced manually (without the use of LST).120



xix

8.4 Illustration of a Narrow Band Level Set evolving a two-dimensional

interface that represents a 2DCA particle. The gray grid lines rep-

resent a narrow band of points surrounding the interface that re-

quire their values to be recalculated. The solid gray circle marks

grid points that the contour sections marked A, B, and C will pass

through. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

8.5 Illustration of measuring forces for an advancing front. The black

curve shows a contour’s initial position, while gray depicts the con-

tour’s location in a later time. (a) Forces are measured as the short-

est distance between the two contours at each point. (b) Forces are

measured as the distance between the corresponding features in the

starting contour and the feature location in the advanced contours.

The features mark 1: convex apex, 2: concave apex, 3: flat section,

and 4: convex apex. (c) The dotted contour marks the position if

normal forces were used to advance the initial contour. The solid

curve shows the contour position if the correspondence forces were

used; this contour location also marks the actual location of the

domain border in the CA lattice. . . . . . . . . . . . . . . . . . . . 124

8.6 Cenek’s rule for the two-dimensional density classification task. Lat-

tice configurations are shown at times t = 59, 64, 69, 74, 79, and 84.

A section of a black domain has a border marked with a gray line

that suddenly stops advancing. The domain border was outlined

manually. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.7 A comparison of a domain behavior in a CA lattice (Figure 8.6) with

a simulation of the domain border by a model using the correspon-

dence forces. a. Border locations in the original CA (Figure 8.6)

after the border segments were stacked on top of one another. b.

Solving the correspondence problem and assigning the deformation

forces to the border (black arrows). c. Location of the border by

advancing its original location using the correspondence forces. The

subsequent contours were attained by advancing the forces to their

next location (gray arrows). Notice the shape difference between the

CA border locations in (a) and the contours simulated by advancing

a model at times t = 74, 79, and 84 (b) . . . . . . . . . . . . . . . . 128



xx

8.8 Cenek’s rule for the two-dimensional density classification task. Lat-

tice configurations are shown at times t = 40, 45, 50, 55, 60, and 65.

A section of a black domain has a border marked with a gray line

that suddenly reverses its direction of advancement, stops for several

steps, and then starts moving again. This border region is located

approximately in the middle of the highlighted domain border. The

domain border was outlined manually. . . . . . . . . . . . . . . . . 131

8.9 A comparison of a domain behavior in the original CA (Figure 8.8)

and the simulation of a domain border by a model using the corre-

spondence forces. a. Shows the border locations in the original CA

(Figure 8.8) after the border segments were stacked on top of one

another. The circle in the middle of the outlined border points to a

region with complex behavior. The domain border originally moved

from left to right, then retracted to its original position, did not ad-

vance for a couple of steps, and resumed its motion in steps t = 60

and 65. b. Shows how to solve the correspondence problem and

how to assign acting forces to the border (black arrows). c. Shows

the location of the border by advancing its original location using

the correspondence forces. The subsequent contours are attained

by advancing the correspondence forces to their next location (gray

arrows). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

9.1 An example of the encoding of individuals in a GP population, sim-

ilar to the one used by Andre et al. [2]. The function set here con-

sists of the logical operators {and, or, not, nand, nor, and xor}.

The terminal set represents the states of cells in a 1DCA neigh-

borhood, here {Center, East, West, EastOfEast WestOfWest,

EastOfEastOfEast, WestOfWestOfWest.} The figure shows the

reproduction of Parent1 and Parent2 by crossover with subsequent

mutation to produce Child1 and Child2. Reprinted from [15]. . . . 137

9.2 An example of a resource sharing fitness evaluation. The edges

between the test cases and the candidate solutions denote successful

evaluations of tests by candidate solutions. . . . . . . . . . . . . . . 141



1

CONTENTS



2

Chapter 1

INTRODUCTION

In recent years, the study of complex systems, self-organized living organisms,

real-world networks and adaptive systems have attracted an increasing amount of

research interest. These systems, though vastly different, also display important

commonalities. Each system is decentralized and composed of simple, locally con-

nected components. However, these systems are capable of demonstrating complex

system-wide behavior. The capacity to perform complex behavior could be due

to information being communicated through the network by a signal propagating

mechanism and the occurrence of some form of information processing among these

signals.

It is difficult to understand how these complex systems process information.

In order to understand how these systems perform tasks that require collective

cooperation, we need to both study the individual components and investigate

the system as a whole. Simplifying these systems and introducing constraints will

yield a model that is easier to study, manipulate and apply to real-life systems. A

cellular automaton (CA) could be considered one such model.

The spatio-temporal behavior of a CA performing a computation shows com-

plex, non-linear, and non-intuitive behavior. The analysis of a system’s global

collective behavior cannot be easily inferred from the interactions among locally

connected components. In order to understand how these systems perform a given

task, first we need to identify the information carrying signals, second we need to

capture how the location of these information carrying channels changes over time,

and finally combine these analyses into a model that captures the mechanisms of



3

information processing.

Chapter 2 introduces the reader to the background topics of cellular automata,

the early models of information processing in CA, and the computation in one-

and two-dimensional CA. The computational tasks for CA are defined in Chapter

3 along with their potential applications. The methods used to solve these tasks

are described in Chapter 4. Chapter 5 presents the results and analysis of GA

evolved rules for various tasks that require a system-wide cooperation of the cells in

two-dimensional cellular automata (2DCA). Chapter 7 introduces methods for the

automatic identification of information carrying structures in 2DCA. Preliminary

work on modeling the dynamic properties of the information carrying structures

identified by these methods is presented in Chapter 8. Related research areas are

summarized in Chapter 9 while Chapter 10 contains the final remarks and the

outline of future research.

1.1 MOTIVATION

In 1965, Intel co-founder Gordon Moore predicted that the number of transistors

on a processor would double every 18 months. This trend, also known as Moore’s

law, still holds true today; in 2010 Intel’s Tukwila processor consisted of over

2 billion transistors [117]. However, the miniaturization of silicon-based devices

is nearing its physical limits. In order to sustain the rate of innovation, we need

smaller, faster, and more energy-efficient architectures. To address these demands,

new research fields such as molecular electronics, spintronics, nano-robotics, and

computational nano-fabrics were established.

The decreasing component size and increasing clock frequencies create new

challenges for the semiconductor industry. For example, a computer’s central pro-

cessing unit (CPU) has many units that serve different computational functions

(the Arithmetic Logic Unit consists of add, subtract, shift, rotate, divide, multiply,

flag blocks). The microprocessor components are a product of a divide and conquer



4

design approach where the component’s function is sub-divided into smaller tasks

that are then solved independently. Although the reductionistic design approach

will result in a component design according to desired specifications, it might not

guarantee the desired performance of a system after the components are integrated.

The inter-operation of the functional blocks depends on the exchange of data, in-

structions, and signals. The high frequency clock rate does not guarantee that

the information will arrive from the source to the destination module in a single

clock cycle. Since multiple clock cycles might be needed for information to reach

its destination, the timing and ordering of tasks in the destination module might

be different than in a single clock cycle scenario. Although the system integration

aims to avoid race conditions, unforeseen CPU design side-effects will arise from

the complex CPU behavior.

One way of troubleshooting unwanted system behavior is to view the design

and operation of a CPU as a dynamic complex system. This view of a proposed

architecture will allow for behavior analysis beyond the component level. The

flow of information, the changes of the thermal signature, the occurrence of signal

interactions, and the development of noise can be viewed as system-wide patterns.

Understanding where these patterns occur, how their location changes in time, and

what happens when these patterns interact will help with the design, integration

and enhancement of system performance.

The microprocessor design field is one example where wider view of design and

analysis could prove beneficial. Mobile device processing is another area that has

not yet harnessed the power of collaborative (emergent) behavior among the sys-

tem components. A hybrid decentralized network of peer-to-peer mobile devices,

such as cell phones in cars, could use built-in accelerometers to “sense” impending

traffic congestion. Similarly, a massive network of sensors could be used to spon-

taneously discover environmental changes such as tsunamis or geodetic events.

Finally, advances in the field of nano-technology will result in a new generation of



5

electronic devices. These architectures will consist of inherently parallel, poten-

tially faulty, locally connected, and decentralized components. Devices consisting

of peta-order nano-switches and higher are feasible due to advances in hardware

nano-fabrications.

So, what is stopping us from manufacturing nano-scale devices and building

applications that solve problems by global, collaborative behavior among its com-

ponents? Two reasons: we don’t know in general how to control these devices

to solve a problem, and we don’t fully understand how this system-wide behavior

solves a problem.

Designing computations for such platforms cannot be done using a conventional

programming model. A new computational model that would efficiently utilize the

information processing capabilities of these devices is missing. Genetic Algorithms

(GA) are an alternative approach for “programming” such devices to perform de-

sired computations. The system learns desired behavior using the principles of

evolutionary adaptation. Computation emerges as a collective system behavior

while each of the components communicates only with its locally connected neigh-

bors.

The ultimate goal is to develop a programming-language-like environment to

design a computation in CA and similar decentralized architectures. One way to do

this is to connect the elements of the CA behavior to the parts of a code that cause

this behavior. (This approach is similar to making a connection between a genetic

disorder and the abnormalities in a genetic makeup that caused the disease.) This

approach would identify the building blocks of the CA’s behavior. Programming

a CA would be equivalent to assembling these blocks in right sequence.

1.2 IDEALIZED MODEL

Systems biology, neuroscience, computational sociology, system ecology, and sys-

tems science are examples of fields of studies that analyze the behavior of a system



6

as whole. Due to physical nature of these systems, research in many of these

fields is limited to analysis of an observed phenomenon and the experimentation

with a few configuration options. An idealized artificial system is free of tempo-

ral, physical, financial, and other constraints, which makes it a potentially useful

framework for research purposes. In addition to being easily reconfigurable, an

idealized model can serve as a template for physical implementation.

In recent years, the theory and application of cellular automata has experienced

a renaissance. CA share characteristics with many physical systems. Examples

include many electronic devices, such as field programmable gate arrays, sensor

networks, and molecular devices. This makes CA, as a mathematical abstraction

of physical systems, well suited for the study of information processing, robustness

of computation, and the system’s ability to perform computation. The application

of CA is especially relevant for nanoscale computing, since proposed nanoscale ar-

chitectures rely on the same key principles: a large number of identical, simple,

and locally connected components that are arranged on a regular two-dimensional

lattice [7, 46]. CA are easily reconfigurable to simulate the effect of the environ-

mental artifacts that include various boundary conditions, a noisy environment, a

faulty component interconnect, and different update schemas. (Formal definitions

are given in Chapter 2.)

1.3 WHAT ARE COMPUTATION AND INFORMATION?

The nature of computation in a system and the definition of what constitutes

information in a complex system are concepts that are not well-defined. Short of

saying that the meaning of computation is in the eye of the beholder, the definitions

of “a computation in a complex system” are wide ranging. For example, Peak et

al. suggest that a plant’s mechanism of opening and closing its leaves’ stomata

to maintain optimal water content is similar to cellular automata that perform

computational tasks [100]. Many researchers are inspired by the human brain



7

as the ultimate computer and try to replicate its principles to solve problems in

computer vision, signal processing, and other fields of cognitive science [18, 36].

Similarly, what is understood by the word “information” depends on the domain,

the scale at which a system is examined, and the investigative perspective on a

system. Information in silicon-based devices can be interpreted as a spin of an

electron, a presence or a lack of electric charge in a wire, a binary readout from a

bus on a circuit board, or a state of a chip’s registers.

The meaning of computation in the context of a cellular automaton will refer

here to the collective behavior of the cells that facilitates the convergence of the

lattice towards a task solution, where the task is human-defined. Since such be-

havior can be interpreted as a “principle” that caused the initial input to converge

to the final configuration, this behavior can be interpreted as a general informa-

tion processing mechanism, or a method of computation. An explanation of such

behavior in terms of its function in a lattice would include: a description of the

propagation of information-carrying signals through the lattice; a definition of the

outcome of interactions among these signals; and a demonstration that the be-

havior results in a solution for a given task. It should be noted that seemingly

chaotic behavior in an automaton does not mean a lack of computation. A lattice

might be performing a computation, but the computation’s meaning may not be

apparent nor understood by a human.

This research focuses on CA with a structured behavior — a pattern of behavior

that is clearly visible when we look at the entire lattice. This structured behavior

is apparent after the initial chaotic period, when the lattice settles into arranged,

organized, almost geometric configurations (resembling rectilinear and curvilinear

shapes). A task completion by cooperative global behavior of a lattice is attributed

to the assembly and the deformation of these structures over time.

If the collective behavior is synonymous with the mechanism of computation

in a system, then the word information is analogous to the structures that form in



8

the lattice. Information will refer to the system-wide patterns that change shape

and location in space-time, interact with one another, and are modified when they

interact with one another. These patterns can be interpreted as the information-

carrying structures in the lattice. Finally, the phrase information processing simply

summarizes the process of formation, transmission, and interaction of these struc-

tures in space and time.

The above defined terms for information, information processing, and collective

behavior are many times also referred to as an emergent system behavior. The

meaning of this term goes beyond Aristotle’s simple phrase “the whole is more

than the sum of its parts”. It refers to the occurrence of a structured, system-wide

behavior that causes lattice convergence.

An allegorical explanation of these terms can be demonstrated by a popular

behavior of soccer fans in a stadium. The Mexican wave or the wave is a visual

effect achieved when a successive group of fans sitting next to each other stand

up, raise their hands, and sit down. Each participant rises immediately after their

neighbor rose and sits down right after the next neighbor stands up. The result

is a wave like pattern that propagates though the stadium. The meaning of the

wave is irrelevant; what matters is that it is global scale pattern of behavior that

is being transmitted through a crowd. A single spectator who remains standing

or sitting down will not disturb the wave; what matters is that a global scale

pattern of behavior emerges as a carrier of information (or excitement). This

spatio-temporal structure with dynamic properties constitutes information. Now,

let’s presume that the stadium is an oval with two waves traveling in opposite

directions. At some point, the two waves will collide. What happens at the time

of collision is analogous to what happens when two information-carrying structures

collide in time and space.



9

1.4 A MODEL OF INFORMATION PROCESSING

There are no automated tools for 2DCA that will answer how collective system

behavior emerges in such systems, what are the global behavior patterns that solve

a given task, or how to analyze errors if a system fails to find solution to a given

problem. Fundamental questions of the nature of information and the mechanisms

of information processing lack explanation in such systems.

The first step towards understanding the nature of emergent computation in

a two-dimensional cellular automaton is to identify the sites in a lattice with in-

formation content. These sites can be distinguished by their function of stor-

ing, transferring and modifying information [71, 72, 73]. Statistically-based and

regular-language-based filters can be used to identify these sites.

Once the information carrying sites are identified, the next step towards char-

acterizing how CA process information is to build a model that captures the dy-

namic properties of these sites — also referred to as a dynamic model. The sites

highlighted in the previous step form system-wide patterns. The dynamic model

simplifies these patterns, measures how each pattern changes shape and location

over time, and describes the interactions among different information carrying

patterns. As soon as the CA lattice settles into organized behavior, the dynamic

model is instantiated. From this point on, such a model can, in principle, simulate

the behavior of the CA lattice without using the lattice updates—such a model is

based purely on abstract “informational” structures.

Up to this point, it is only a hypothesis that a dynamic model can be con-

structed that accurately describes the mechanisms of computation in a lattice. The

assumptions that the structures highlighted as informationally significant carry in-

formation and that the dynamic model captures the kinematic properties of these

structures must be validated. In order to confirm these hypotheses, the behavior

of a dynamic model must be compared with the behavior of the corresponding CA



10

lattice. If the behavior of the model correctly predicts the information-processing

behavior of the CA on a large number of randomly initialized configurations, then

we have strong evidence that the model captures the mechanism of information

processing in the CA [50, 51, 52, 53].

1.5 DISSERTATION SUMMARY

In this dissertation I investigate the ability of 2DCA as a computational platform.

I study this by proposing several problems that require global cooperation among

lattice cells to solve given tasks. Subsequently, I attempt to answer how 2DCA

solved these tasks. I analyze the complex, emergent, system-wide behavior that

was demonstrated by the two-dimensional lattice in order to understand how the

lattice computes a solution to a given problem

Chapter 3 introduces several novel tasks for two-dimensional lattices inspired

by problems in computer vision, sensor networks, and nano-technology. All the

proposed tasks require global cooperation among cells in 2DCA to find solutions.

Along with the definition of the tasks, I also illustrate their potential applications,

present solutions that show global emergent behavior, and describe the mechanism

of computation used by each of the solutions (see Chapter 5 for more details). The

results attest to CA’s ability to solve various problems using emergent system

behavior.

In Chapter 6 I outline the computational mechanics framework to describe

the mechanism of collective computation in 2DCA. I describe several approaches

for the automatic detection of coherent spatiotemporal structures with informa-

tion content in Chapter 7. Chapter 8 describes the final step needed to build a

model of information processing in 2DCA. I illustrate why the dynamic proper-

ties of previously highlighted structures cannot be accurately modeled from the

CA’s space-time behavior. I present two examples where CA behavior cannot be

predicted due to complex (non-linear) lattice behavior.



11

Chapter 9 will describe related research, and Chapter 10 will summarize the

contributions of this work, describe future research directions, and put this work

into wider context.



12

Chapter 2

BACKGROUND

2.1 CELLULAR AUTOMATA

A cellular automaton (CA) is a spatially-extended lattice of locally-connected sim-

ple processors (cells). CA can be used both to model physical systems and to

perform parallel distributed computations.

In a CA, each cell maintains a discrete state and a transition function that

maps the cell’s current state to its next state. This function is often represented as

a lookup table (LUT). The LUT stores all possible configurations of a cell’s local

neighborhood, which consists of its own current state and the state of its neigh-

boring cells. Each cell updates its state in discrete time steps and the entire lattice

is updated synchronously. There are many possible definitions of a neighborhood,

but here we will define a neighborhood as the cell to be updated along with the

cells adjacent to it at a distance of radius r. The number of entries in the LUT

will be sN , where s is the number of possible states and N is the total number of

cells in the neighborhood: (2r + 1)d for a square shaped neighborhood with radius

r in a d-dimensional lattice, also known as a Moore neighborhood. CA typically

are given periodic boundary conditions, which treat the lattice as a torus.

To transform a cell’s state, the value of the cell’s state and those of its neighbors

are encoded as a lookup index to the LUT that stores a value representing the

cell’s new state (Figure 2.1 Left) [11, 32, 138]. In this dissertation I focus on

homogeneous binary CA, which means that all cells in the CA have the same

LUT and each cell has one of two possible states, s ∈ {0, 1}. Figure 2.1 shows



13

Figure 2.1: Left top: A two-dimensional neighborhood of nine cells (radius r = 1).
Bottom Left: A sample look-up table in which all possible neighborhood config-
urations are listed, along with the update state for the center cell in each neighbor-
hood (Image shows the initial four and the last four neighborhood configurations.
The look-up table is shown as a vertical vector on the right.). Right: The mecha-
nism of update (using the rule on the left) in a two dimensional binary CA of size
9× 9: t0 is the initial configuration, t1 is the configuration at next time step, and
t2 is the configuration at the following time step using the rule on the left. A cell
in state 0 is colored white while a black cell represents state 1.

the mechanism of updates in a homogeneous two-dimensional binary CA with a

neighborhood radius r = 1.

CA were invented in the 1940s by Stanislaw Ulam and John von Neumann.

Ulam used CA as a mathematical abstraction to study the growth of crystals,

while von Neumann used them as an abstraction of a physical system. In order to

study the logic of self-reproducing systems, von Neumann introduced the concepts

of a cell, state and transition function [11, 19, 131].



14

Von Neumann’s theoretical work on CA had great significance. After the in-

dustrial revolution, science was primarily concerned with energy, force and motion,

but the concept of self-reproducing systems illustrated how the focus had shifted to

information processing, organization, programming, and most importantly, control

[11]. The universal computational ability of certain CA was known early on, but

harnessing this power continues to intrigue scientists [11, 19, 67, 131, 136].

The best-known example of a CA that supports universal computation is John

Conway’s Game of Life, introduced in the 1970’s [39]. The Game of Life automaton

was used as a framework to study emergent behavior and generation of complex

patterns in decentralized systems. The ability of CA to generate complex behaviors

and patterns attracted not just computer scientists, but game theorists, biologists,

physicists, economists, mathematicians and philosophers.

A decade later, StephenWolfram conducted an exhaustive study of one-dimensional,

binary state, nearest neighbor cellular automata [136, 138, 139]. Such CA were

defined by initial input and by rules governing the cell updates. Wolfram defined

the simplest of cellular automata as the elementary cellular automata (ECA) fol-

lowed by a number that encodes the rule-table’s output bits as a decimal value.

For example, rule ECA 109 represents a binary-state cellular automata with neigh-

borhood radius r = 1 and the rule’s look-up table 0, 1, 1, 0, 1, 1, 0, 1. The table’s

bits, in left-to-right ordered, correspond to the output values for the neighborhood

configurations from < 1, 1, 1 >, < 1, 1, 0 > to < 0, 0, 1 >, < 0, 0, 0 >. Wolfram

proposed the use of one- and two-dimensional cellular automata with neighbor-

hood radius r = 1 for the simulation of complex behavior in many fields, including

fluid dynamics, materials science, biology, and financial markets.

In order to design CA with desired behavior, the lookup table has to be assigned

an output value for each neighborhood configuration. CA rules can be designed by

a human or an automated tool. Many attempts have been made to use evolutionary

computation techniques to automatically evolve rules for a given task [2, 17, 27, 28,



15

74, 104, 119, 126]. The tasks described in these works, although simple, require

system-wide coordination of information processing. Even though it has been

shown that no perfect solution exists for the density classification task, which is

described in Section 2.2.1 and 3, it has become a popular benchmark to test how

well evolutionary algorithms can design CA rules to perform a desired computation

[66].

Since early studies of CA, scientists have observed the ability of CA to exhibit

complex behavior, but did not have a way of describing, at a fundamental or al-

gorithmic level, how systems with a lattice-wide cooperative behavior accomplish

information processing. A major problem is the difficulty of quantifying computa-

tional capability in CAs beyond the general (and not very practical) capability of

universal computation. Langton and Packard attempted to correlate a CA’s ability

for information processing with its generic dynamics [67, 95]. Additional research

on information processing in one-dimensional CA followed [27, 42, 43, 51, 89].

Various alternative definitions of CA exist. An architecture worth mentioning

is Sipper’s non-homogeneous CA with irregular non-local connectivity [119] (See

Chapter 9 for more details). In this model, each cell is governed by its own inde-

pendent set of rules and the connectivity of each cell evolves over time. Sipper’s

cellular programming algorithm found high performing rules for two-dimensional

density classification, synchronization, rectangle image bounding, and image thin-

ning tasks. Even though the algorithm found rather high performing CA rules for

given tasks, the non-uniform cell architecture with irregular cell interconnects is

likely impractical to fabricate as a computational nano-architecture. Nano-scale

devices will likely rely on a massive number of identical components distributed on

a regular lattice with components connected only to spatially adjacent neighbors

[12, 141].



16

2.2 COMPUTATION IN CA

Understanding information processing in CA is a first step toward using CA as

a practical computational apparatus. In the same manner that fourth and fifth-

generation programming languages are used to program von Neumann based ma-

chines, the ultimate goal of understanding computation in cellular automata would

be the creation of declarative or constraint based programming tools for program-

ming CA.

2.2.1 Early Models

In the early 1970s John Horton Conway published a description of his deceptively

simple Game of Life CA [39]. Conway proved that the Game of Life, like von Neu-

mann’s self-reproducing automaton, has the power of a universal Turing machine:

any program that can be run on a Turing machine can be simulated by the Game

of Life with the appropriate initial configuration of states. This initial configura-

tion (IC) encodes both the input and the program to be run on that input. It

is interesting that so simple a CA as the Game of Life (as well as even simpler

CA—see [139]) has the power of a universal computer. However, the actual appli-

cation of CA as universal computers is, in general, impractical due to the difficulty

of encoding a given program and input as an IC, as well as very long simulation

times. Since Conway’s work there have been several other demonstrations that

certain CA are capable of performing universal computation by either embedding

a Turing machine into the CA or by simulating a universal circuit [20, 21, 70, 122].

An alternative use of CA as computers is to design a CA to perform a partic-

ular computational task. In such a CA, the initial configuration is the input to

the program, the transition function corresponds to the program performing the

specific task, and some set of final configurations is interpreted as the output of the

computation. The intermediate configurations comprise the actual computation



17

being done.

Examples of tasks for which CA have been designed include location manage-

ment in mobile computing networks [125], classification of initial configuration den-

sities [89], pseudo-random number generation [126], multi-agent synchronization

[119], image processing [54], simulation of growth patterns of material microstruc-

tures [6], chemical reactions [77], and pedestrian dynamics [112].

The challenge of designing a CA to perform a task includes both the defining

of a cell’s local neighborhood and boundary conditions, and the construction of a

transition function for cells that will produce the desired input-output mapping.

Given the CA’s state alphabet, neighborhood radius, boundary conditions, and

initial configuration, it is the look-up table values that must be set by the “pro-

grammer” so that the computation will be performed correctly over all inputs.

In order to study the application of genetic algorithms to designing CA, sub-

stantial experimentation has been done using the binary density classification (or

majority classification) task in a one-dimensional lattice. Here, “density” refers to

the fraction of 1s in the initial configuration. In this task, a binary-state CA must

iterate, after some number of finite steps, to an all-1s configuration if the initial

configuration has a majority of cells in state 1, and iterate to an all-0s configura-

tion otherwise. The maximum time allowed for completing this computation is a

function of the lattice size.

One “näıve” solution for designing the LUT for this task would be local majority

voting: set the output bit to 1 for all neighborhood configurations with a majority

of 1s, and 0 otherwise. Figure 2.2 gives a time series of lattice configurations

illustrating the behavior of this LUT in a two-dimensional binary CA with N =

99 × 99, and r = 1, where N denotes the number of cells in the lattice, and r is

the neighborhood radius.

Each image is a configuration of 99 × 99 cells at time steps t = 0, 1, 3, 5, 7, 25.

The lattice configuration at iteration 25 is at a fixed point.



18

(a) t = 0 (b) t = 1 (c) t = 3

(d) t = 5 (e) t = 6 (f) t = 25

Figure 2.2: A series of configurations at six time steps, illustrating the behavior
of the “näıve” local majority voting rule on a lattice of size N = 99 × 99, and
neighborhood radius r = 1. The individual cells are colored black for state 1
and white for state 0. The initial configuration is majority white, with density
ρ = 45.41%. CA fails to correctly classify the IC. Note that the final lattice
configuration is at a fixed point.

In general, this “näıve” CA does not produce the correct global behavior for

either class of initial configurations: a final all-1s configuration when the initial

density of 1s is greater than 50% or a final all 0s for configurations with initial

density less than 50%. This illustrates the general trend that human intuition

often fails when trying to capture emergent collective behavior by manipulating

individual bits in the lookup table.

Packard [95] was the first to use genetic algorithms to evolve CA look-up ta-

bles to perform the density classification task. Langton had shown that generic

CA behavior seemed to undergo a sequence of phase transitions—from simple to

“complex” to chaotic as the fraction of the lookup table ones is increased from 0

to 0.5 [68]. Correlations between “complex” regions and computational capability



19

in CAs have been hinted at in further work, but have not been definitively estab-

lished. A new approach to analyze computation in one and two-dimensional CA

was needed: a model that would identify the computationally relevant structures

in a CA’s space-time diagram and identify sites of information storage, transfer,

and modification.

2.2.2 Computation in 1DCA via “Particles”

In order to analyze computation in 1DCA, the information-carrying sites must be

identified first, then a model describing the dynamics of information transfer has

to be developed, and finally the analysis of information modification completes the

view of computation in the CA.

Figure 2.3: Analysis of GA-evolved CA for the density classification task. Left:
A diagram of the CA’s behavior on a 149 cell lattice over 148 time steps, starting
from a random IC. The regular domains consist of all white, all black, or checker-
board regions. Right: Space-time diagram after regular domains are filtered out.
Reprinted from (Crutchfield, Mitchell, & Das, 2003).

Figure 2.3 displays typical space-time behavior of a one-dimensional binary-

state CA with toroidal boundary conditions that was evolved by a GA to perform



20

the density classification task. In the left diagram, the CA is shown starting from

a random IC with the one-dimensional lattice displayed horizontally and with time

going down the page. In the first few time-steps the CA creates uniform regions

of black, white, and checkerboard patterns. The cells inside of these regions only

store information; in other words, no change of information needs to be recorded.

The information storing sites retain the same information, and a space-time dia-

gram shows these sites as a regular pattern. The sites that unexpectedly change

their state were prompted to do so by a signal. The sites that carry information

that causes a change of stored state are called information transfer sites. In order

to uncover the information transfer sites in these diagrams, we filter out the infor-

mation storing cells; the remaining cells represent the sites involved in the transfer

of information in the lattice [42, 43]. The identification of such cells is the key to

understanding information processing in the CA.

When the sites at which information is transfered are identified at each time

step, the spatial pattern of these sites represents the dynamic properties of informa-

tion propagating through the lattice. Using earlier work by Hanson and Crutchfield

on characterizing computation in CA [42, 43], Das, Mitchell and Crutchfield gave

an information-processing interpretation of the dynamics exhibited by the evolved

CA in terms of regular domains and particles [43]. This work was extended by

Das, Crutchfield, Mitchell, and Hanson [27] and Hordijk, Crutchfield and Mitchell

[51]. In particular these groups showed that when regular domains—patterns de-

scribed by simple regular languages—are filtered out of 1DCA space-time behavior,

the boundaries between these domains become apparent and can be interpreted as

information-carrying “particles.” These particles can characterize the computation

carried out by a particular CA [28, 43].

Hordijk et al. developed quantitative models to analyze the emergent behav-

ior in CA. The models captured only the kinematics of particle movement and

interactions. These models accurately predicted the computational performance



21

of evolved CA [50, 51]. The models explained computation in CA by linking the

notion of the emergent global behavior to a model, and the model to a performance

measure. Figure 2.4 compares the accuracy of CA rule performance (white bars)

and the performance predicted by the model (black bars) for a CA rule evolved for

one-dimensional density classification task. The plot shows five rules that represent

typical behavior for each epoch of improvement observed during the GA execution.

Since the CA’s performance (white bars) corresponds to the model’s performance

(black bars), these results support Hordijk et al.’s hypothesis that the particle–

level model of the CA’s dynamic structures correctly captures the mechanism of

the CA’s emergent computation necessary to perform a given task [50].

Figure 2.4: Comparison of CA rule performance (white bars) and the performance
predicted by a quantitative model (black bars) for a typical CA rule evolved for
1D density classification task. Five CA rules (φdens1 to φdens5) are representative
of epochs of rule improvement during GA run – stages of significant improvement
in the rule’s fitness. Reprinted from Wim Hordijk’s PhD thesis [50].

Land and Belew [66] proved that no two-state CA lattice with identically de-

fined cells distributed on a regular grid can perform the density classification task

perfectly. However, the maximum possible performance for CA on this task is not



22

known.

The density classification task remains a popular benchmark for studying the

evolution of CA with GAs, since the task requires collective behavior: the decision

about the global density of the IC is based on information only from each local

neighborhood. A second benchmark task is global synchronization. This task

requires a CA with any initial configuration to synchronize all of its cells to the

same state (all 1s or 0s) while in the next time step all cells will change state to

the opposite one. Again, this behavior requires global coordination based on local

communication. Das et al. showed that an analysis in terms of particles and their

interactions was also possible for this task [28, 103].

2.2.3 Computation in 2DCA

A lot of work has been done to analyze the mechanism of information processing

in 1DCA, but the principles of computation in 2DCA have received little atten-

tion [73, 114]. The lack of interest might be due to the following reasons. First,

very few problems are defined and solved by emergent system behavior in two

dimensions. Tasks for decentralized systems, such as for mobile computing and

sensor networks, might benefit from emergent collective computation. Instead,

well-understood network algorithms, such as graph search algorithms by Dijkstra,

Tarjan, Kruskal, and Prim [22], are used to solve many network problems. Second,

there are no suitable tools to analyze the emergent behavior in two dimensions.

The analytical tools lack both the filtering methods to identify coherent spatio-

temporal patterns with information content and the kinematic model to accurately

describe the evolution of these patterns over time.

This dissertation addresses all three problems by proposing novel tasks that

require system-wide cooperation, extending statistically based filtering methods

to highlight informationally significant sites, and laying groundwork for a dynamic

model to describe the mechanism of information processing in 2DCA (see Chapters



23

3, 7, and 8 respectively).



24

Chapter 3

TASKS

This dissertation explores a general hypothesis about 2DCA: that these structures

are capable of solving non-trivial computational tasks that require system-wide

cooperative behavior. The density classification and global synchronization tasks

are two well-known problems used by researchers to test the ability of two-state CA

to perform global computation. In addition to these tasks, this chapter introduces

spatial density niching and rectangular image bounding tasks to gauge the ability

of CA to perform information processing in two-dimensional cellular automata.

Since the last two tasks were inspired by potential image processing applications,

I will refer to these tasks as the image processing tasks. Even though the global

synchronization task does not perform classification, the task solutions have a

“binary” meaning of correctness. I will loosely use the term classification tasks to

refer to the density classification and the global synchronization tasks.

In this chapter, each task is described in terms of input and desired output

that represents the ideal CA configuration without noise. Along with the task

definitions, I also outline potential applications of these tasks.

3.1 DESIRED ATTRIBUTES OF TASKS

First, let’s look at what makes the tasks proposed in this chapter so difficult.

Figure 3.1 illustrates a sample problem in an initial configuration presented to a

2DCA. The CA’s task is to locate the dark rectangle in the middle of the image

(see Section 3.4 for more details). A human observer can immediately tell that the



25

image has an area with higher and lower pixel densities, and that the higher density

region in the center of the image forms a darker color rectangle. This is because

the image is viewed from a distance. It is evaluated by its overall appearance – a

global scope.

The very definition of a CA as a distributed and decentralized network of

simple, locally connected processors contradicts the notion that a CA has a built-

in mechanism capable of making observations about a global state of the lattice (or

a feature larger than the neighborhood radius). No single cell or small collection of

cells has the global information that the sample initial configuration contains areas

with different densities nor that the dark block has a shape of a rectangle. The

lack of knowledge at the local level about the attributes of the initial configuration

is what makes the problem so difficult for a CA to solve. All that a CA “sees”, at

each site of the lattice, is a configuration of the local neighborhood. This concept

is illustrated by the neighborhood configurations along the image sides (Figure

3.1). Even for a human with the knowledge of the task, it is difficult to decide if

these patches belong to the inside or the outside of the darker rectangle, or if the

neighborhood configuration forms the rectangle’s edge.

Although CA have successfully solved numerous problems [6, 54, 77, 89, 119,

125, 126], not all tasks require global collective behavior. Tasks such as image thin-

ning [108] and pixel filling [102] need only information about local neighborhood

configurations.

This research focuses on tasks that require collective system behavior. To

achieve this requirement, the features to recognize or to reason about must be

larger than the neighborhood radius.

3.2 DENSITY CLASSIFICATION

The definition of the density classification task, also known as a majority classifi-

cation, is to decide if the fraction of 1s in the initial configurations is greater than



26

Figure 3.1: An example of a task to detect the darker rectangle in the center of
the image. The neighborhood configurations randomly selected from the image
are showed on either side of the image. Deciding if these configurations belong to
the inside, outside, or the border of the rectangle is difficult without looking at the
whole image.

the 50% threshold. The lattice should converge into an all black configuration if

the lattice started with the majority of cells in state 1 (black), and settle into all

white if the initial configuration had density less than 50%. An initial configura-

tion is misclassified if a lattice converges to a wrong configuration, or after a fixed

number of updates a lattice has both black and white regions. (The number of CA

updates is a parameter of the lattice size).

This task has a wide range of potential applications. Well-suited problems for

this task include decision making about an environment where the occurrence of

observed events cannot exceed a predefined threshold. Examples include deciding

air safety if the density of airborne particulates exceed an allowed threshold and

emergent detection of an earthquake from an array of noisy vibration sensitive

sensors.

The hardest instances of the density classification problem are the initial con-

figurations with the density close to 50%. Although the task definition can be

modified to classify the lattice with other threshold densities (such as 20%, 30%,



27

Figure 3.2: Example of a Density Classification task. The top row illustrates the
initial configuration with a majority of cells in state 1 (density 54.1%) where the
bottom row shows the initial configuration with 47.4% density. The columns on
the right represent the correct solutions to the initial configurations displayed in
the left column.

70%, or 90%) these tasks are not any easier if the IC density is close to the thresh-

old value. GA-evolved rules must have sophisticated methods of communicating

information through the lattice to decide which density dominates the lattice on a

global scale.

3.3 GLOBAL SYNCHRONIZATION

Imagine that each cell of the lattice represents a simple processor. The processor is

On (active) if its state is 1, and the processor is Off (idle) if its state 0. The global

Synchronization task requires coordination of all processors to arrive in the same

state. After such agreement is reached, in the next update all processors change

their state to the opposite one. These two lattice configurations will alternate

indefinitely. Figure 3.3 shows the task’s input as a randomly initialized lattice

that after a series of updates converges to an alternating configurations of all 1s



28

and all 0s (configurations of all white and all black).

(a) Initial configuration (b) Final (t = n) (c) Final (t = n+ 1)

(d) Final (t = n+ 2) (e) Final (t = n+ 3)

Figure 3.3: Example of a Global Synchronization task. (a) Sample IC representing
the initial state of the processors, while (b) - (e) show the desired output as an
alternation of all processors On (all white) and Off (all black) configuration.

One of the primary design principles of a modern computer architecture is its

central clock. This simple synchronization mechanism provides common phase for

communication among the computer’s components, which is the fundamental re-

quirement for its operation. A common clock design has been used in the following

fields: distributed computing, sensor networks, and parallel computing, to name a

few. In some applications, providing a centralized common clock synchronization

might not be feasible due to location (devices are too far apart for synchroniza-

tion broadcast), device connectivity (not all devices are directly connected to the

central controller), asynchronous design (some devices might idle or sleep during

broadcast), and high clock frequency (devices located far from the central clock

will experience clock skew).



29

In the absence of a central controller, global synchronization of spatially dis-

tributed processors is equally difficult. Although the interactions among processors

within the neighborhood radius can provide regions of local synchrony, spatially

distant regions might settle into regions with the opposite state. In order to achieve

global synchronization, the differences between adjacent regions must be resolved.

Such a mechanism requires information communication on a global level.

Applications of global synchronization apply to any distributed architecture

that requires data-consistency during read and write operations and correctness

of algorithms designed to provide network functionality [31]. Networks utiliz-

ing global synchronization include sensor networks to detect earthquakes despite

varying sensor proximity, multi-core computer architectures to exchange informa-

tion between individual cores despite high core frequency causing clock-skew, and

power-aware controllers that schedule devices to turn off and on to save energy

despite the network’s asynchronous design.

3.4 SPATIAL DENSITY NICHING

The definition of this task is to identify a non-uniform density locale (a niche) in an

otherwise uniformly distributed random IC. Three versions of the Spatial Density

Niching task are (1) positive: one or more local areas have greater density than

the rest of the lattice (Figure 3.4 Top) (2) negative: the image contains areas with

lower density than the rest of the lattice (Figure 3.4 Bottom) and (3) mixed: the

lattice contains both negative and positive local niches.

These problems require a CA to “highlight” the niche regions with distribution

higher (or lower) than the rest of the lattice. If the foreground artifact has higher

density than the background distribution, the desired solution should turn the

foreground niche all black and turn the background all white (Figure 3.4 Top).

Figure 3.4 Bottom shows the opposite setup, where the low density foreground

turns all white while the high density background turns all black. The CA is not



30

Figure 3.4: Example of a Spatial Density Niche task. The top row illustrates
the positive task variant and the bottom row has the negative task variant. The
left column represents random ICs and the right column has the desired task
solution. Top Left: The configuration contains areas with higher density than
the surrounding lattice.Top Right: The higher density areas turn black and the
rest of the lattice is white. Bottom Left: The configuration contains rectangles
with lower density Bottom Right: The low density areas turn white and the rest
of the lattice is black.

given either the background or the foreground distribution values, and it has to

recognize the areas with different densities via the collective actions of the cells.

The change of local density in real-life applications might represent different fea-

ture characteristics such as defects in material, abnormal tissue growth in biomedi-

cal images, hairline fractures in tooth enamel visible in X-Rays, and holes in sensor

networks that represent obstructions or non-functional devices. Examples of sys-

tems for solving local density niching tasks include engineered nano-architectures

for metallurgical detection of crystal structures in alloys and automated detection

of material fatigue and fractures.



31

3.5 RECTANGLE IMAGE BOUNDING

This task will box all outlying pixels into a black rectangle (image pixels are

represented by CA cells). Two variants of this task are: (1) thick image bounding,

where areas with high pixel density are turned into a black rectangle and (2) sparse

image bounding, where only a few pixels appear on the image but the goal is the

same. Figure 3.5 illustrates these tasks with sample initial configuration on the

left and the task solution on the right.

Figure 3.5: Example of a Rectangle Image Bounding task. The top row illustrates
thick image bounding and the lower two images illustrate the sparse image bound-
ing tasks. Left: Sample ICs with the images to be bound. Right: The solutions
to the task. All image pixels are bound by an outlying rectangle.

The difficulty of this task is similar to that of the spatial density niching task.

Let’s consider an IC with only four black pixels and any two black pixels are at

least ten cells apart in both the horizontal and vertical directions. Each black

pixel marks the location of the bounding box edge, which outlines a rectangle

several times greater than a cell’s neighborhood. Although these perimeter pixels

are outside of most cells’ neighborhoods, the CA rule has to form precise lines for

the sides of the rectangle, define corners where the sides meet, and decide if the



32

cell is inside or outside of the bounding box. To successfully accomplish this task,

a CA’s global behavior has to communicate the location of these bounding pixels

through the lattice.

The only difference between the dense and the sparse image bounding variants

is their difficulty. The dense image bounding is simply filling in the rectangle’s

white pixels. The decision to fill in the pixel or not can be easily inferred from the

neighborhood density. The sparse image bounding is much harder, as described

in the example above, because information about the location of the bounding

rectangle is outside of the cells’ neighborhood.

Examples of applications of this task might include: start cooling a circuit

board if the bounding box area of heat triggered sensors exceeds a threshold surface

value, locate and repair corrupted image pixels inside of a bounding box, bound

pixels making up a star into a rectangle for image tracking in astronomy, and

create a bounding box around an image feature such as typed characters for optical

character recognition or the license plates in a given image.

3.6 SUMMARY

The tasks proposed in this chapter have simple definitions. In order to evolve high-

accuracy solutions for real-world problems, the tasks and the structure of the CA

must be defined as accurately as possible to represent the actual application the

solution is built for. Some tasks might require only approximate solutions, in which

case rules with lower accuracy are acceptable. Finding solutions with high accuracy

might require using domain-specific search approaches. Different approaches have

been used to find solutions for problems in 1D and 2D [2, 35, 94, 120, 140]. Further

investigation should follow to explore which technique(s) yield the best-quality

solutions for the above described problems and why. (See Chapter 9 for a summary

of several related topics.)

Although each task definition is accompanied by a list of potential applications,



33

a CA solution for a real-world problem is yet to be found. The task definitions and

the results presented in Chapter 5 attest to the versatility and power of a CA with

synchronous updates, wraparound boundaries, regular component interconnect,

and fully functional cells. To account for the defects during manufacturing and

failures while operating a potential CA-like device, the original CA definition has

to be relaxed. Different boundary conditions, asynchronous timing of updates,

faulty components, and imperfect component connectivity are a few alternatives

for CA-like architectures. A detailed investigation has to be conducted on how the

changes in the CA architecture affects its ability to solve computational problems.



34

Chapter 4

EVOLVING CELLULAR AUTOMATA WITH GENETIC ALGORITHMS

Most research using GAs to evolve CA to perform complex global tasks has focused

on one-dimensional CA. Jimènez-Morales, Crutchfield, and Mitchell [55] performed

a preliminary study of extending the density classification task from one dimension

to two dimensions. Unfortunately, they did not extend the analysis of informa-

tion processing from 1DCA to 2DCA. This chapter describes several evolutionary

techniques that I used to evolve rules for the proposed tasks.

4.1 RULE PERFORMANCE AND FITNESS

In order to assess the accuracy of the GA-evolved solutions, each of the rules

is executed on 104 randomly initialized starting configurations (test cases). The

rule performance of the density classification and global synchronization tasks is

the fraction of correctly classified test cases on 104 randomly generated initial

configurations. If a lattice converges to the correct configuration, the classification

is correct, otherwise no partial credit is awarded and the classification is incorrect.

The rule performance for spatial density niching and rectangular image bounding

is defined as the average fitness value of the lattice at its final configuration over

all 104 randomly initialized starting configurations.

The density classification and global synchronization tasks have a binary defini-

tion of a rule’s fitness, while the spatial density niching and the rectangular image

bounding tasks use a decimal value to express this concept. For these latter two

tasks, the fitness of a lattice is the inverse of a weighted sum of all misclassified



35

pixels with respect to the ideal output. The weight of a misclassified pixel is its

shortest distance from the edge of a feature. For example, if the idealized output

is a black rectangle on a white background, then take all the white pixels that

are located inside of the ideal black rectangle, calculate the distance of each such

pixel from the ideal rectangle’s closest edge, and add up all these distances. Next,

repeat this process for all black pixels that appear on what ideally should be the

white background; here, the distances to be summed are the distances from these

black pixels to the ideal rectangle’s closest edge. The lattice’s fitness is an inverse

of the sum of all distances for all such pixels with incorrect final state.

4.2 EVOLVING CELLULAR AUTOMATA WITH GENETIC ALGO-

RITHMS

Genetic Algorithms (GAs) are a group of stochastic search algorithms, inspired

by the Darwinian model of evolution, that have been proven successful for solving

various difficult problems [3, 4, 86].

A GA works as follows: (1) A population of individuals (“chromosomes”) rep-

resenting candidate solutions to a given problem is initially generated at random.

(2) The fitness of each individual is calculated as a function of its quality as a

solution. (3) The fittest individuals are then selected to be the parents of a new

generation of candidate solutions. Offspring are created from parents via copying,

random mutation, and crossover. Once a new generation of individuals is created,

the process returns to step two. This entire process is iterated for some number

of generations with a goal of creating one or more highly fit individuals that are

good solutions to the given problem.

GAs have been used by a number of groups to evolve LUTs for binary CA

[2, 17, 27, 28, 74, 104, 119, 126]. The individuals in the GA population are LUTs,

typically encoded as binary strings. Figure 4.1 shows a mechanism of encoding

LUTs as binary strings. For example, the decimal value for the neighborhood



36

111111011 is 507. The value stored in the look-up table’s 507th position represents

the new value for the neighborhood’s center cell. Using the sample LUT from

Figure 4.1, the CA would then update the value of the neighborhood’s center cell

111111011 to 0.

Figure 4.1: Lookup table encoding for 2D CA with neighborhood r = 1. All
permutations of neighborhood values are encoded as an offset to the LUT. The
LUT bit represents a new value for the center cell of the neighborhood. The binary
string (LUT) encodes an individual’s chromosome used by evolution. The length
of the binary string encoding of the LUT is 2(2r+1)d .

The fitness of a LUT is a measure of how well the corresponding CA performs

a given task after a fixed number of time steps, starting from a number of train-

ing initial configurations. For example, given the density classification task, the

fitness of a LUT is calculated by running the corresponding CA on some number

k of random initial configurations, and returning the fraction of those k on which

the CA produces the correct final configuration (all 1s for initial configurations

with majority 1s, all 0s otherwise). The set of random training ICs is typically

regenerated at each generation.

For LUTs represented as bit strings, crossover is applied to two parents by

randomly selecting a crossover point, so that each child inherits one segment of bits

from each parent. Next, each child is subject to a mutation, where the genome’s

individual bits are subject to a bit complement with a low probability. An example

of the reproduction process is illustrated in Figure 4.2 for sample binary strings of

8 bits long. Here, one of two children is chosen for survival at random and placed



37

in an offspring population. This process is repeated until the offspring population

is filled. Before a new evolutionary cycle begins, the newly created population of

offspring replaces the previous population of parents.

Figure 4.2: Reproduction applied to Parent1 and Parent2 producing Child1 and
Child2. The one-point crossover is performed at a randomly selected crossover
point (bit 3) and a mutation is performed on bits 2 and 5 in Child1 and Child2
respectively.

4.2.1 Coevolution

Coevolution is an extension of the GA which was inspired by host-parasite co-

evolution in nature and first introduced by Hillis [48]. The main idea, in the

context of evolving CA, is that randomly generated training ICs will not contin-

ually challenge evolving candidate solutions; this lack of continual challenge can

cause evolution to stagnate. Coevolution addresses this problem by evolving two

populations simultaneously—candidate solutions and training ICs—also referred

to respectively as hosts and parasites. The hosts obtain high fitness by performing

well on many of the parasites, whereas the parasites obtain high fitness by being

challenging to the hosts. Coevolving both populations engages hosts and parasites

in a mutual competition to achieve increasingly better results [10, 37, 134].

Successful applications of coevolutionary learning include discovery of minimal

sorting networks, training artificial neural networks for robotics, function induction

from data, and evolving game strategies [13, 48, 96, 107, 134, 135]. Coevolution



38

also improved upon GA results on evolving CA rules for density classification [56].

In the context of evolving CA, the LUT candidate solutions are hosts, and the

ICs are parasites. The fitness of a host is the fraction of correctly evaluated ICs

from the parasite population. The fitness of a parasite is a function of the number

of hosts that failed to correctly classify it.

4.2.2 Spatially Extended GA

Pagie et al. [96, 97, 98] and Mitchell et al. [90, 135], among others, have found that

embedding the host and parasite populations into a spatial grid, in which hosts

and parasites compete and evolve locally, significantly improves the performance

of coevolution on evolving CA.

This extension of coevolutionary learning distributes populations into a two

dimensional grid where each location contains one host and one parasite. The

algorithm requires a much smaller number of fitness evaluations per evolutionary

run, since the fitness of each individual is evaluated against individuals only in

its local neighborhood. The results show that spatially confined reproduction and

selection helps to sustain a higher genetic diversity of evolving populations. At

this time, the observed results are considered circumstantial evidence that evolv-

ing spatially extended populations leads to high efficiency of finding high quality

solutions, as the exact role of space in coevolutionary learning is still unknown.

4.3 GENETIC ALGORITHMS USED IN THIS WORK

All genetic algorithms represented the rule’s lookup table as a binary array of 512

bits for a binary state CA where each cell is connected to the spatially adjacent

cells in a 3× 3 Moore neighborhood. Each genome was randomly initialized at the

beginning of each execution of the genetic algorithm using a 0.5 binomial distribu-

tion. This discrete probability distribution of genomes’ densities was achieved by



39

setting each bit in each genome to 0 if a randomly generated value from interval

< 0, 1 > for given bit was less than 0.5 and set to 1 otherwise.

The test cases for the density classification and global synchronization tasks

were represented by 361-bit arrays which corresponds to a 19×19 cell lattice. The

initial population of the training cases was randomly initialized with the uniform

distribution. First, a random density value was generated for each genome from

the interval < 0, 1 >, then each bit in a given genome was initialized to 0 if a

randomly generated value for a given bit (from interval < 0, 1 >) was less than

genome’s density, otherwise the given bit was set to 1. Evaluating the fitness of

a candidate solution on a training CA lattice was performed by updating the CA

lattice until it converged to a desired configuration or for no more than M = 300

iterations.

The training and tests used for the image processing tasks were represented

by 2401-bit arrays (49 × 49 cell lattices). A considerably larger lattice size com-

pared with the classification tasks was used to better distinguish the foreground

feature(s) from the background. The initial training cases were initialized ran-

domly using a uniform distribution with the foreground and background densities

varying by at least 15%. The initialization was very similar to the process of in-

stantiating the population of training cases for the classification tasks, with the

exception of generating two random densities (corresponding to the foreground

and the background) that vary by at least 15%. Each bit was initialized randomly

with a uniform distribution. The process of initialization is the same as described

in the previous paragraph: a new random value is generated for each bit in the

interval < 0, 1 >; a bit is set to 0, if its random value is less than the density

associated with its location (foreground vs. background), otherwise the bit is set

to 1. Due to the larger lattice size, the lattice was updated for M = 900 time

steps. The weighted sum of misclassified pixels was calculated from the lattice’s

final time-step configuration.



40

All genetic algorithms used populations of 400 candidate solutions and 400

training cases. The algorithms were executed for a maximum of 4000 evolutionary

steps, unless a high quality solution was discovered. Such solutions correspond to

the density classification and the global synchronization rules with the respective

performances of 70% and 90% or better. The early stopping criteria for the spatial

density niching and rectangular image bounding rules was performance of 0.002 or

better (calculated as an inverse of 5% of misclassified lattice pixels with 5 pixels

average distance from the ideal rectangle’s closest edge).

One-point crossover followed by a bitwise mutation were used as the reproduc-

tion operators for evolving candidate solutions in all algorithms. The crossover

point in the parents’ genome was selected at random from the interval < 0, 512 >

with uniform distribution. Each bit of the resulting offspring arrays was sub-

ject to mutation with probability 2 × 10−3, which corresponds to one mutation

per genome. One of the resulting offspring was selected at random and placed

into the offspring population. Below I describe four versions of the GA used in

this research: the Standard GA, Non-spatial Coevolution, Spatial Evolution, and

Spatial Coevolution.

4.3.1 Standard GA

In the standard GA, the fitness of each candidate solution was assessed using 20

randomly selected training cases with replacement. The training cases were re-

sampled for each candidate solution, and all training cases were re-generated at

the end of each generation.

Tournament selection was used to select two parent genomes for reproduction.

The tournament group size of 9 was populated by randomly selected genomes with-

out bias from the population of candidate solutions. First, the tournament group

was sorted in descending order of individual’s fitness. Next, individual genomes

were assigned ranks in range 1–9 in order of fitness. Finally, the first parent for



41

reproduction was selected from the group at random with bias of 0.5Individual
′s rank.

(Note: the last two ranked individuals had the same bias to make the sum of nine

bias values equal to 1.) For generating offspring by one-point crossover, the second

parent was selected from the tournament group at random without bias. (See [98]

for more details)

4.3.2 Non-Spatial Coevolution

Non-spatial coevolution used the same assessment of fitness for each candidate

solution as in the standard GA. The training cases were not regenerated at the end

of each generation. Instead, at each generation a population of offspring training

cases was created by evolving the densities of each training case.

The classification task training cases were first assigned a fitness value. Each

training case had a fitness calculated as a normalized value of the total number

of candidate solutions that misclassified this particular training case (number of

candidate solution defeats). A cumulative count was kept for each training case

during the assessment of the fitness of the entire population of candidate solutions.

Next, an offspring was generated by varying the parent density by a random value

from the interval < −0.1, 0.1 >. The offspring training case was regenerated with

a new density.

For the image processing tasks, a training case’s fitness value is calculated

similarly to the classification tasks. Instead of a cumulative count of candidate

defeats, the sum is calculated using the fitness values of a lattice at the final

configuration. Since there is no notion of misclassification, the fitness values are

used from all candidate solutions that used this particular training case for fitness

evaluation. An offspring is generated the same way as in evolving solutions for the

classification tasks. The reproduction operators perform a variation of one of the

densities – either a foreground feature’s or the background’s density.

Tournament selection was used (as in the Standard GA) to select genomes for



42

reproduction during evolution of candidate solution and training case populations.

4.3.3 Spatial Evolution

The spatial evolution algorithm arranged the populations of candidate solutions

and training cases on a 20 × 20 grid. Each grid site contained one candidate

solution and one training case. The only changes to the algorithms were done

when assigning fitness values and selecting genomes for reproduction. Instead of

using randomly selected genomes from the entire population, the genome’s fitness

was assessed against 9 training cases from a local neighborhood. Generating an

offspring was done at each grid site. When evolving the population of candidate

solutions, each genome was replaced by an offspring. Instead of randomly selecting

individuals for reproduction from the entire population, the tournament group

consisted of genomes from a local neighborhood.

4.3.4 Spatial Coevolution

Spatial co-evolution works the same as spatial evolution with the exception that

the population of training cases is evolved at the same time as the population

of the candidate solutions. The fitness of a candidate solution is assessed with

respect to the spatially adjacent training cases; and vice-versa, the fitness of a

training case is evaluated with respect to the adjacent candidate solutions. The

fitness value of a test case is the number of its “unsuccessful” evaluations by the

spatially adjacent candidate solutions. The density classification and the global

synchronization define an unsuccessful evaluation as a lattice configuration other

than the tasks’ ideal output. For the image processing tasks an unsuccessful eval-

uation is when the fitness of a lattice configuration at the final time-step is above

a threshold value of 600. This value corresponds to 5% of misclassified pixels with

5 pixels minimum average-distance from the ideal rectangle’s closes edge.



43

Similarly to the spatial evolution, the reproduction was executed at each pop-

ulation grid-site. The parents for reproduction were chosen by the tournament

selection that used only genomes from the local neighborhood. Each genome in

the parent populations was replaced by an offspring that was generated the same

way (for both populations of candidate solutions and training cases) as in the

non-spatial coevolution with the additional constraint of populations’ spatial dis-

tribution.



44

Chapter 5

RESULTS OF EVOLVING CELLULAR AUTOMATA WITH GENETIC

ALGORITHMS

Here I present the GA-evolved rules for the tasks defined in Chapter 3. The rules

are described in terms of the behavior that appears to be the mechanism used to

solve a given problem.

Unless otherwise stated, the solutions to the proposed problems were found

using the standard genetic algorithm. Although evolution, coevolution, and spatial

evolution and coevolution were used to find solutions for the tasks, the standard

GA outperformed the rest of the algorithms, and found the rules with the highest

performance. The discussion of the best-performing results focuses only on the

rules with the highest performance found by the standard GA.

5.1 THE BEST GA EVOLVED RULES

The standard GA evolved the highest performing rules for all tasks with the ex-

ception of the dense variant of the rectangle pixel bounding task. Table 5.1 shows

higher measured performance of the GA-evolved rules for the two-dimensional den-

sity classification, the global synchronization and the spatial density niching tasks

than the performance of the human designed rules. The evolved rules for the spare

variant of the rectangle pixel bounding task have comparable performance to the

human designed rules, while the näıve rule outperforms the GA-evolved rules on

the dense variant of the same task. Although the search algorithms found rules

with similar behavior to the näıve rule for the dense variant of the rectangle pixel



45

bounding task, the performance of these rules is slightly worse than the perfor-

mance of the human designed rule.

Spatially extended versions of GA found the next best set of results (Table 5.1

rows 3-4). The final population of candidate solutions had multiple genomes with

high performance, but sometimes different behavior. This observation suggests

that the spatially distributed populations maintain higher genetic diversity during

evolution. There might be several reasons why the highest performing rules were

found by the Standard GA; these include: small sampling size (tournament size)

for fitness evaluation and reproduction, undesired evolutionary dynamics during

search [13, 132], and inaccurate fitness definition for the evolving test cases for the

image processing tasks.

2DCT GS SDN RPB-SV RPB-DV
(%) (%) (10−3) (10−3) (10−3)

Standard GA 83.29 95.51 60.00 0.77 1.75
NonSpatial CoEv 52.79 79.72 2.10 0.09 0.93
Spatial GA 72.61 88.55 35.14 0.64 0.80
Spatial CoEv 72.17 91.35 22.48 0.59 0.82
2DGKL Rule 58.71 0 4.60 0.75 0.75
Näıve Rule 0 0 3.70 0.75 6.80

Table 5.1: Measured performances of the best GA-evolved rules found for a given
task by a given search algorithm. The performance of the GA-evolved rules is
listed in rows (1-4), while the last two rows list the performance of the human
designed 2DGKL and the the näıve (local majority) rules. The columns (from left
to right) list the rules’ performance on the two-dimensional density classification
(2DCT), global synchronization (GS), spatial density niching (SDN), rectangular
pixel bounding – sparse variant (RPB-SV), and rectangular pixel bounding – dense
variant (RPB-DV) tasks.

The performance values in Table 5.1 were measured on a randomly initialized

104 ICs with the size of 29 × 29 cells for 600 iterations. The test cases for the

classification tasks were generated at random with the binomially distributed IC

density of 0.5. The tests for the spatial density niching used randomly generated



46

foreground and background densities that varied by at least 30%. The sparse vari-

ant of the rectangle pixel bounding had test cases generated with density around

10%, while the task’s dense variant used test cases with 65% density. The perfor-

mance values for the classification tasks are given as a percentage value, while the

rules’ performance on the image processing tasks is in a pixel distance matric –

(pixel distance)−1 × 10−3. (See Section 4.3 for the rule’s fitness and performance

definitions as well as the details of the experimental setup).

5.2 RULE BEHAVIOR AND PERFORMANCE

Each task section in this chapter contains an analysis of a rule’s behavior that is

entirely based on the exhibited space-time dynamics. Since all rules solve tasks

by global collective behavior, explaining this behavior by analyzing individual bits

in the LUT would be difficult, if not impossible. Instead, the discussion of the

lattice dynamics should provide an intuitive understanding of the rule’s operation.

It should not be mistaken for a formal nor final explanation of the information

processing in the lattice. It is marely provided as a commentary on what seems

to be happening in the lattice. The description of the characteristic behavior

summarizes the pattern of behavior that was observed over many CA runs with

different random initial configurations.

Land and Belew showed that there is no perfect solution to a density classifica-

tion task using only one rule, with arbitrary neighborhood radius, in any dimension

[66]. Similarly, there is no evidence that any of the remaining tasks have a perfect

one rule solution. Despite this fact, the genetic algorithm found multiple high

quality rules that solve the proposed tasks.

A task solution is represented by the final lattice configurations. Deciding if

a solution is correct is trivial for the classification tasks. A solution is correct if

the lattice converged to a desired configuration, otherwise a solution is incorrect

(no partial credit is given). On the other hand, the image-processing tasks do not



47

have a binary notion of correctness. Instead, a solution is considered correct if the

final configuration “strongly resembles” a desired output.

5.3 DENSITY CLASSIFICATION

For the density classification task, the GA evolved rules with high classification

accuracy, and the rule’s performance correlates with its behavior. The high per-

forming rules have clearly defined information carrying structures, and the outcome

of interactions among the domains is easily predictable. The behavior of rules with

low performance has less structure and the interactions are ambiguous.



48

(a) t = 0 (b) t = 5 (c) t = 10

(d) t = 50 (e) t = 150 (f) t = 286
top:

(g) t = 0 (h) t = 5 (i) t = 10

(j) t = 50 (k) t = 100 (l) t = 161

bottom:

Figure 5.1: A series of space-time diagrams of a density classification rule evolved
by the genetic algorithm on a 99× 99 lattice with r = 1. (a) The initial configu-
ration has a majority of 0s. (b) - (f) Left to right snapshots of CA at evaluation
0, 5, 10, 50, 150, and final configuration at evaluation 286. (g) The initial config-
uration has a majority of 1s. (h) - (t) CA at iterations 0, 5, 10, 50, 100, and CA
converged to all 1s configuration at evaluation 161.



49

Figure 5.1 shows the behavior of a 2DCA rule evolved for the two-dimensional

density classification task using the Moore neighborhood with r = 1 on two ini-

tial configurations (top two rows: majority of cells are white; bottom two rows:

majority of cells are black). The space-time behavior of the 2DCA shows the cre-

ation of black and white domains and their movement. The regions appear to

be well defined by their boundaries, and a region’s motion can be described as

an advancement of its boundary. The observation that a domain’s movement can

be characterized as an advancement of its bounders may suggest that the domain

boundary regions capture the mechanism of information processing in 2DCAs. The

results of the filtering methods presented in Chapter 7 highlight the sites that form

the domain borders as the sites that are “informationally relevant”. These results

strengthens the hypothesis that the domain borders are the information-carrying

structures in 2DCA.

The best rule was evolved using the standard GA with a performance of 76.6%.

The performance was evaluated on 104 ICs of 19×19 cells wide that were randomly

generated with 0.5 binomial distribution. Based on the observations of the rules’

behavior, the rules can be categorized into four performance classes. Both the rule

performance categories and the corresponding performance values with the rule

classification are similar in one and two-dimensional lattices [27, 51].

The following are the performance class categories:

• Random rule (performance is between 0% and 35%): Rule does not con-

verge to the desired configuration, and has unstructured random behavior.

• Default rule (performance is between 35% and 50%): Regardless of the

initial density, the initial lattice always converges to the same configuration

of all white or all black.

• Domain Expanding rule (performance is between 50% and 70%): A lattice

area of all white or all black, that is larger than the neighborhood radius,



50

expands until it overtakes the lattice.

• High Performance rule (performance is between 70% and ∼ 90%): The

behavior is similar to the domain expanding rule, but the rules have higher

performance. The higher performance value is mainly due to the rule’s so-

phisticated interactions between colliding regions. A detail analysis and ad-

ditional details are given in the following section.

5.3.1 Comparison with other rules

Table 5.2 compares the performance of the best rules evolved by the GA (columns

4-6) with the performance measured using the human-designed rules (columns 2,

3). The GA-evolved rules outperform both the human-designed 2D GKL and the

“näıve” rules. Researches Gacs, Kurdyumov, and Levin (GKL) [38] designed the

original 1DCA rule for the density classification task, and the definition of 2D

GKL rule is derived for the two-dimensional variant of the density classification

task as following: if a cell’s state is 0, then change its state to the majority state

among its neighborhood’s Central, North, and East cells; if cell’s state is 1, then

change its state to the majority of neighborhood’s Central, South, and West cells

[55]. I defined the “näıve” rule as a simple majority rule as following: update the

cell’s state to the majority of a neighborhood’s configuration. The performance

of all tested rules gradually decreases with the increasing lattice size, since the

imperfect rules make more errors on larger lattices. Even though the GA used

relatively small lattices (around 20 × 20) to evolve CA rules, the performance of

these rules decreases with increasing lattice size at the comparable rate to the

performance decrease in human-designed rules.

Although Cenek’s rules evolved by the standard GA has lower performance

(Table 5.2 column 4) in comparison to the best rule found by Wolz & de Oliveira

(column 5) and Marques-Pita (column 6) [14, 140], they are the simplest. The



51

CA size 2D GKL Näıve Rule Cenek Wolz & de Oliveira Marques-Pita

9× 9 65.37 51.01 80.21 85.99 87.37
19× 19 61.63 49.87 76.60 82.56 85.50
29× 29 59.48 50.45 72.71 79.95 83.57
39× 39 58.93 50.30 70.87 75.89 82.00
99× 99 53.88 50.22 60.05 52.32 76.49

Table 5.2: The performance scaling of human-designed LUT (2D GKL), näıve rule,
Cenek’s, Wolz & de Oliveira’s, Marques-Pita’s rules for the 2D density classification
task. The performance was measured as a percentage of correctly classified 104

random ICs generated according to a binomial distribution. (See Appendix A for
binary representations of each of these rules.)

simplicity of a rule is in its symmetry and in its behavior.

The definition of a rule’s symmetry is the presence of a pattern of the output

bits in the LUT that is repeated through the rest of the table. The longer the

pattern of repeated bits, the higher the rule symmetry, and vice versa. Marques-

Pita found the rule with the highest classification accuracy. The structure of this

rule has low symmetry, in comparison to Wolz & de Oliveira’s rule or Cenek’s rule.

The tradeoff between the gain in the computational performance and the rule’s

structure should be considered if the CA is implemented as a circuit. Rules with

less symmetry will result in devices with more gates and wiring, which might or

might not be worth the gain in the computational performance.

Figure 5.2 shows typical behavior of Cenek’s [14], Marques-Pita’s [14], and

Wolz and de Oliveira’s CA update rules [14, 140] for the two-dimensional density

classification task. The CA rules were applied on the same random initial config-

uration with the majority state 1 (50.86% initial density). After the initial 5− 15

updates, the CA lattice settles into regions of black, white, checkerboard, and

striped patterns, also referred to as “domains.” The domains, with their simple

repetitive patterns, can be thought of as storing information [44, 45, 52, 71, 115].

The domain borders can be thought of as information-carrying “particles,” which



52

move in space and time. (The text will refer to the interface between two domains

as a “particle” to be consistent with the 1DCA terminology). The particles become

apparent after the domains are subtracted from a CA’s spatio-temporal behavior

[52].

(a) Cenek [14] (b) Marques-Pita [14] (c) Wolz and de Oliveira
[14, 140]

Figure 5.2: Typical lattice configurations produced by rules evolved by genetic al-
gorithms for the two dimensional density classification task on a 99×99-cell lattice
at time t = 20, for the same random initial configuration. (a) Cenek’s rule. (b)
Marques-Pita’s rule. (c) Wolz and de Oliveira’s rule. Highlighted features illustrate
the characteristic behavior of the rules. Feature 1 represents a domain boundary
that moves in different directions at varied velocities, Feature 2 points to “noisy”
borders where the edge of the boundary is not clearly defined. Feature 3 illus-
trates single-cell-wide domains. Feature 4 highlights the borders between multiple
domains that have the same pattern (stripes) but move in different directions.

Each of the rules has very different behavior in terms of the structure of do-

mains, interactions among domains, and border dynamics. In particular, the do-

main structures are fairly complex; the different sections of a domain’s edge can

move in various directions at non-uniform speed (Figure 5.2, feature 1); the do-

main borders are “noisy” and not clearly defined (Figure 5.2, feature 2); a domain

can be only one cell wide (Figure 5.2, feature 3); and an edge will be present be-

tween two identical and adjacent domains when they move in opposite directions

(Figure 5.2, feature 4). Moreover, possible outcomes of collisions among domains

include one domain overtaking the other domain (absorption), the creation of a

domain with unique structure (generation), or pairs of domains moving through



53

each other (permeation). A domain absorption is best illustrated by a collision

between a single-cell-wide (“single-wall”) domain of black cells (Feature 3) and a

black domain where the single-wall domain is dissolved on impact. A new domain

is generated, for example, when a single-wall domain of white cells collides with

a striped domain and creates a new domain of all white cells. Finally, a perme-

ation is best visible in a collision between a striped domain and a black domain.

The black domain travels through and is surrounded by the striped domain. The

domain interactions are not clearly defined (which makes it hard to distinguish

the domains involved in a collision from the noise generated by the interaction)

when single-wall domains are too small and infrequent (which makes them difficult

to differentiate them from noise), and when the domain pattern is not different

enough to recognize domain borders (e.g., when two neighboring domains with the

same pattern definition share an edge because they move in opposite directions).

5.4 GLOBAL SYNCHRONIZATION

Figure 5.3 shows typical behavior of a rule that solves a global synchronization

task on three instances with the initial configurations density around (i.) 50%,

(ii.) 30%, and (iii.) 70%. Although the GA-evolved rules for this task have very

similar behavior to the rules that solve the two-dimensional density classification

task, the performance of many rules exceeds 90%. An intuitive explanation for

such high performance is that while the rules for the global synchronization task

process information in similar fashion to the rules for the density classification

task, unlike the density classification task, the global synchronization task does

not have a “wrong” configuration to converge to with respect to the IC’s starting

density. In other words, as long as the rules converge to the oscillation of black and

white configurations, the solution is correct. The only time that the rules failed

to solve the global synchronization task was when the lattice consisted of partially

black and white regions with zero velocity borders (stagnating regions that failed



54

to converge by the maximum time M = 900).

Recently published results by Oliveira et al. present global synchronization

rules with 100% performance for some lattice sizes. The authors make a conjecture

that the non-convergent rules fail to settle into the desired configuration because

there exists another cyclic state that attracts the converging lattice and will not

allow for further synchronization [94].

(a) t = 0 (b) t = 5 (c) t = 6 (d) t = 15 (e) t = 20 (f) t = 50

i. Global Synchronization task on IC with initial density 49.83%.

(g) t = 0 (h) t = 1 (i) t = 2 (j) t = 5 (k) t = 6 (l) t = 9

ii. Global Synchronization task on IC with initial density 30.25%.

(m) t = 0 (n) t = 1 (o) t = 2 (p) t = 5 (q) t = 6 (r) t = 9

iii. Global Synchronization task on IC with initial density 69.22%.

Figure 5.3: A series of space-time diagrams of 99×99 lattice for global synchroniza-
tion task. The initial configuration is shown at time t = 0, and the rule converged
to the oscillation of all black and all white configurations (not shown for brevity).
Behavior of the same GA-evolved rule applied on three different ICs with density
(i.) 49.83%, (ii.) 30.25%, and (iii.) 69.22%. The lattices converged to oscillating
configurations of all black and white at time-step (i.) 228, (ii.), 12, and (iii.) 13.

Similarities between the rules evolved for the global synchronization task and



55

the two-dimensional density classification task are as follows: both lattices settle

into small regions of black and white, these regions expand and contract over

time, the regions interact with each other at the place of contact, and finally the

lattice settles into the final configuration(s). The only difference is that the desired

oscillation between all black and white is assumed early on. The lattice settles in to

small regions of black and white, and, in the next time-step, these regions reverse

their color (black changes to white and vice versa). This behavior is illustrated

by the regions marked 1 and 2 shown in Figure 5.4. Despite the regions assuming

the opposite state, the regions’ boundary continue to advance though the lattice.

Feature 3 in Figure 5.4 points out the motion of a domain border by one cell in

the south-east direction.

From the observations of lattice behavior, it appears that the explanation of

the task’s difficulty stated in the previous section also captures the mechanism by

which rules solve this task. First, the rules synchronize the local neighborhoods

to all black or white, then they propagate these regions through the lattice by

enlarging or shrinking their area. The motion of these regions serves as a signalling

mechanism to synchronize all, non-adjacent, regions in the lattice to a common

phase.

As a side-note and a basis for further discussion in Chapter 10, an apparent

symmetry and structure of the LUT has to be further explored. This initiative

originates from an unplanned scientific experiment, that resulted from using an

existing rule for the two-dimensional density classification task in reverse, and

realizing that it also solves the global synchronization task. Closer examination

of the LUTs for both tasks revealed that the rules are assembled from repeating

motifs of bits. Similar observations about rule symmetry were reported by Oliveira

et al. and Marques-Pita [81, 94].

Complementing the n most significant bit(s) and the n least significant bits

in the rules for 2D density classification task was not enough to create rules that



56

(a) t = 5 (b) t = 6

Figure 5.4: A typical behavior of rules for the global synchronization task shown
on an initial configuration with density 49.83% at time t = 0. Two consecutive
lattice configurations are shown at time-steps (a) t = 5 and (b) t = 6. The circles
1 and 2 show transformation of an all black region to an all white region and vice
versa. Rectangle 3 highlights a border between white and black regions that moves
from one time step to another.

solve the global synchronization task. Instead, each motif (repeated pattern of

lookup table bits) had to be reversed to create a rule with a desired effect. This

observation leads me to believe that a rule’s structure and symmetry could be

related to its functionality and performance.

5.5 SPATIAL DENSITY NICHING

Although the GA used CA with a wrap-around boundary condition, the behavior

of the evolved rules for the spatial density niching task does not have structures

propagating through the lattice over large distances. The rules do not have a global

or a lattice-wide collective behavior. Instead, the information-carrying structures

propagate information over short distances. Since the “density niches” in this task

do not take up the entire lattice, local behavior is sufficient to solve the problems.

This being said, the completion of the tasks still required cooperation of cells

beyond the neighborhood radius.

The cells cooperate on a lot smaller scale. After the domains are formed they



57

expand or contract for around 20 time-steps (also referred to as erosion and depo-

sition). The total number of cells that eroded or were deposited over time exceeds

the neighborhood diameter. This signifies the transfer of information beyond a

cell’s connectivity radius.



58

(a) t = 0 (b) t = 3 (c) t = 5 (d) t = 7 (e) t = 10 (f) t = 20

i. Positive task variant.

(g) t = 0 (h) t = 3 (i) t = 5 (j) t = 7 (k) t = 10 (l) t = 20

ii. Negative task variant.

(m) t = 0 (n) t = 3 (o) t = 5 (p) t = 7 (q) t = 10 (r) t = 20

iii. Mixed task variant.

(s) t = 0 (t) t = 3 (u) t = 5 (v) t = 7 (w) t = 10 (x) t = 20

iv. Non-trivial polygon.

Figure 5.5: A series of space-time diagrams of a spatial density niching rule evolved
by the genetic algorithm on a 99× 99 lattice with r = 1. (i.) Initial configuration
for a positive task variant with a 67.87% density rectangle on a 38.11% background.
(ii.) A negative task variant configuration with a 33.09% density rectangle in a
foreground and a 68.06% density background. (iii.) Mixed niche variant with two
rectangles of different densities. The top left quadrant of the lattice has a 19× 32
rectangle with density 49.51% and a 35× 22 rectangle with density 19.92% in the
bottom right. (iv.) A solution for a non-trivial polygon. The ‘A’ shape foreground
has a density 42.87% placed on the background with 65.46% density.



59

Figure 5.5 shows how the same rule solved all three variants of this task. For

each variant, during the first three steps, the CA lattice settles into small regions

of black and white. The rest of the CA iterations shrink or enlarge the black

and white domains based on their location. In each case the final configuration

is reached around t = 20. Although not a fixed point, the convergence times are

similar and only vary when a lattice size changes. Figure 5.5 (i.) shows results on

the task’s positive variant. The domains formed by rules evolved for the density

classification task shrink or grow by advancing a clearly defined domain border in

space and time. The domains in the density niching task alter their shape and size

in a chaotic, disorganized, or noisy fashion. The edge of the domain slowly erodes

by a seemingly random subtraction of black pixels. The growth of a domain is

equally noisy, and looks like a deposition of black pixels on a surface.

The reason that the final lattice configurations look like Swiss cheese is because

the process of shrinking or expanding is done on the small domains that formed

early on. The erosion and deposition of pixels happens for a short period of time

(usually 5-15 steps), which means that not all undesired rectangles disappear from

the final configuration. The process of shrinking and growing domains can be seen

in Figure 5.6 (b.) and (c.) Ten lattice updates separate these two images, where

feature 1 represents slow erosion and feature 2 points to pixel deposition.

It is worth noticing that the shapes of the remaining structures in the final

configuration also resemble rectangles. Figure 5.6 a. shows the outline of the

rectangles from the final configuration at the initial configuration. The average

starting density inside of these rectangles is 55.56%, considerably higher than the

background density of 38.11%. This might explain why the CA also highlighted

these secondary niches in the final configuration.

Although GA found rules that work on all positive, negative, and mixed defi-

nitions of this task (Figure 5.5 i., ii., iii. respectively), they fail to find the density

niche if the difference between the background and foreground is less than 20%.



60

(a) t = 0 (b) t = 10 (c) t = 20

Figure 5.6: Typical behavior of rule on positive density niching task. The higher
density rectangle of 67.87% is embedded in a 38.11% background. a. The overlay of
black rectangles on the initial configuration represents small domains that remain
in the final lattice configuration (shown in c.). The average starting density inside
the outlined rectangles is 55.56%. The images in b. and c. show slow, noisy
shrinking and growing of domains. Feature 1 represents erosion while Feature 2
points to domains that grew.

The GA evolved rules used IC training configurations with a minimum of 30%

density difference; the search failed to evolve rules for any of the task variants if

the density difference in the training ICs was less than 30%. Finally, Figure 5.5

iv. shows the results on an initial configuration with a non-trivial polygon. The

CA outlined the desired shape, despite the fact that the rules were evolved using

only training ICs with simple rectangles.

The mixed task variant can be solved only if the background is the lightest or

the darkest out of the three densities in the IC. In other words, the CA fails to

detect both the light and dark rectangle if the background density is somewhere in

the middle. An example of such an IC would have a background with 50% density,

and one rectangle with 30% density and a second rectangle with 70% density.

Figure 5.5 iii. shows the result of the rule applied on an IC with two rectangles

with densities of 19.92% and 49.51% on a background with 79.98% density.



61

5.6 RECTANGLE IMAGE BOUNDING

When evolving rules for the rectangle image bounding task, the GA found many

rules with a similar behavior to the rules for the density classification task. These

rules achieved good quality results on the dense image bounding task, but images

with very sparse initial configurations were turned all white. The typical behavior

of these rules can be described as a default domain rule — a region with majority

black converges to all black, while regions with few pixels turn all white. Figure 5.7

i. shows the behavior of such a rule. The rules that solve the sparse variant of this

task had to be evolved separately using images with sparse pixels as training cases.

Typical behavior of rules for sparse image bounding can be seen in Figure 5.7 ii..

Figure 5.7 iii. shows the behavior of a rule evolved for sparse image bounding

applied to a dense IC.



62

(a) t = 0 (b) t = 3 (c) t = 5 (d) t = 7 (e) t = 10 (f) t = 20

i. Dense image bounding - Default domain rule.

(g) t = 0 (h) t = 10 (i) t = 20 (j) t = 50 (k) t = 100 (l) t = 200

ii. Sparse image bounding.

(m) t = 0 (n) t = 10 (o) t = 20 (p) t = 50 (q) t = 100 (r) t = 200

iii. Dense image bounding.

Figure 5.7: A series of space-time diagrams of a 99× 99 lattice for the sparse and
dense image bounding task. The initial configuration is shown at time t = 0, and
the final configuration is captured as the final image in each of the series. i. A
commonly found rule for the dense image bounding task with a default domain
behavior. The initial configuration has a rectangle with 61.46% pixel density. This
rule failed on the sparse image bounding task. ii. A sparse image bounding task
variant with 3.20% pixel density. iii. A dense image bounding task variant with
72.26% pixel density. The same rule was used for sparse and dense bounding task
configurations in ii. and iii..



63

The rules that were able to solve both problem variants have the most compli-

cated dynamics out of all evolved rules for any of the tasks defined in this chapter

(Figure 5.7 ii. and iii.). Even though the final lattice configuration is not a per-

fect polygon, a coherent black domain is formed containing the IC pixels. The

dense image bounding task variant is best solved by the default domain rule, since

the sparse image bounding rule misclassifies large number of the IC pixels (Figure

5.7(i.) and (ii.) respectively.). The term “to solve a task” has a less strict meaning

for the rectangular image bounding solutions than for the rest of the tasks.

Although the overall behavior of these rules can be described as domain ex-

panding, it is not clear what the exact mechanism of domain expansion is. The

domain expanding rules that solve the density classification task show structured

domains that travel though space and interact with other domains. The rules for

the spatial density niching task, although noisy, clearly form black and white re-

gions and the mechanism of domain shrinking and growing is also visible. The

behavior of the rules for the sparse rectangular image bounding task has the least

structured domains, and the mechanism of expansion has no obvious pattern.

In comparison to the GA-evolved rules, the local majority rule will also converge

a lattice to a configuration that is similar to the ideal output for the dense image

bounding task. Its overall behavior is very similar to the default domain rule

(Figure 5.7 (i).). The rule fails to converge on the sparse image bounding task and

it turns all black pixels in the IC white.

The behavior of the rules that solve sparse image bounding is as follows: If a

local neighborhood configuration contains at least two black pixels, they act as a

seed for the domain expansion (Figure 5.8 a). The domain starts expanding in a

North-South or East-West direction. The length of expansion is short, typically

only 5-10 time-steps. If the growing domain intersects another domain, the two

domains merge and keep expanding as one cluster. If a domain fails to merge with

another domain, the domain stops growing and becomes constant (motionless).



64

(a) t = 0 (gray), t = 1
(black)

(b) t = 40 (c) t = 40 (gray), t = 50
(black)

Figure 5.8: A typical behavior of rules for the sparse rectangular bounding task.
The bounding box of the black pixels has 4.87% density. a. The circles in the
initial configuration show the seed locations for expanding domains. Gray pixels
mark the initial configuration, while black represents newly generated pixels at
time t = 1. b. Time step t = 40 with Feature 1 highlighting examples of
active fronts. Feature 2 points to the constant domain walls. The pixels from the
initial configuration that were not reached are marked as feature 3. c.) The lattice
configurations at time t = 40 is represented by gray pixels while black pixels mark
time t = 50.

The only way for a domain to start growing again is if it merges with another

actively expanding or contracting domain. The merger ‘fuels’ the domain’s growth.

The domain expansion period is short if the growing front is only a few cells wide.

A domain with a wide expansion front stays active for longer periods of time than

the front in narrower domains (Figure 5.8 feature 1).

The velocity of domain expansion is extremely slow. The speed of the do-

main borders in rules evolved for density classification was between 0.5 and 2

sites per update (estimated from observations). The rules evolved for the sparse

image bounding task variant have domains that expand at half the rate. This

phenomenon is possible because the domains expand by a noisy front (Figure 5.8

features 1). This front with non-trivial structure advances with low velocity, and

unless it recombines with another domain, the front will slowly turn to all black

and stops advancing. The slow domain expansion is shown as a difference between

time step t = 40 and t = 50 in Figure 5.8 c.



65

Since domains expand in orthogonal directions, the sides of the domain per-

pendicular to the direction of growth do not expand. The examples of constant

domain walls are highlighted as feature 2 in Figure 5.8. This growth behavior lim-

its the width of a domain. If the horizontal spacing between the domains growing

in the North-South direction is less than the neighborhood radius, the domains

will never merge and cause a gap in the final configuration (Figure 5.7 ii. (l) and

5.8 c).

5.7 SUMMARY

All the proposed tasks challenge the ability of CA to exhibit cooperative behav-

ior among the lattice cells. Although the rules for the two-dimensional density

classification, the global synchronization and the rectangle image bounding have

different characteristic behavior, they all have structures with size exceeding the

neighborhood radius. The propagation of these structures through the lattice acts

as a signalling mechanism that communicates the information about local con-

figuration beyond a cell’s connectivity radius. Since a solution to a given task

is determined by the convergence of the entire lattice to a desired state, the in-

teractions among multiple information signals function as a mechanism of lattice

convergence. Since the rules for the image processing tasks rarely (if ever) converge

to the ideal output configuration, the notion of a “solution” was relaxed to convey

a strong similarity between a final lattice configuration and the ideal output. The

statement that the GA-evolved rules “solve” the image processing tasks is more

accurate using this less strict definition of success.

The GA-evolved rules for the spatial density niching task are the only rules that

do not show a behavior where the global cooperation among cells creates a lattice-

wide patterns. Over time, the process of domain erosion or deposition causes the

lattice to converge into a final configuration. Although the rules’ behavior does not

have lattice-wide patterns, the lattice communicates the information about a local



66

neighborhood beyond the cell’s neighborhood radius. Even though no lattice-wide

patterns are formed, the cells have to cooperate past their local connectivity to

ensure convergence.

The focus of this research is not to find the best performing rules to solve these

tasks, but to test if the CA is capable of performing collective computation on

tasks other than the two-dimensional density classification task. The GA evolved

high performance rules for the two-dimensional density classification task as well

as rules that solve the other proposed tasks. Although no perfect solutions were

found for the image processing problems, the chapter’s previous sections presented

the GA-evolved rules that converge to final lattice configurations that strongly

resemble the tasks’ ideal output.

The behavior of the evaluated rules ranges from simple, such as rules for the

density classification task, to rules with complicated behavior where even a human

observer has a hard time pinpointing the mechanism of lattice convergence. The

solutions for the rectangular image bounding task represent such rules with non-

trivial signalling behavior. The information carrying domains in rules for the

density classification task travel through the lattice until they interact with another

domain wall or until they cease to exist. The length of the information carrying

signals is much shorter in the rules evolved for the rectangular image bounding

task. This is mainly because the feature size does not take up the entire lattice, so

the information processing signals in the rules have much shorter activity period

(lifespan) and move for a limited distance (range).

In this chapter the behavior of the evolved rules is explained in colloquial and

intuitive terms. Such imprecise language is used because the CA behavior can

be described only informally, since no link has been established that connects the

occurrence of the lattice-wide patterns and the CA’s computational mechanics.

Even if a model of computation in 2DCA would confirm such connection, any such

model that abstracts and generalizes the mechanism of collective computation



67

in the lattice from the space-time diagrams should take into consideration the

empirical nature of underlying analysis. This is the main reason for the vague

description of a rule’s behavior, and is a restraint to explaining CA behavior as

the mechanism of computation in 2DCA.



68

Chapter 6

INFORMATION PROCESSING VIA PARTICLES1

Although Chapters 1, 2, and 3 intuitively defined terms such as information, pro-

cessing, CA behavior, and information carrying structures, this chapter provides a

more formal discussion of information processing in CA. In addition to providing

background information, the following sections set up a contextual framework for

Chapters 7 and 8.

Since the topic of collective computation is one of the main topics of this thesis,

the first section provides more details on this topic. The second half of this chapter

examines the concept of domains and particles as the mechanism of computation

in 1DCA. One way of verifying the conjecture that the statistically based filters

correctly identified the information carrying structures is to build a model that

detects particles and uses them to predict the lattice execution without using the

rule-table updates. A detailed explanation of such model for 1DCA is provided at

the end of this chapter. Although the construction of a 2DCA model of information

processing is analogous to the 1D case, the details of the 2D model are deferred

until Chapter 8.

6.1 COLLECTIVE COMPUTATION IN CELLULAR AUTOMATA

A CA capable of universal computation, such as the game of Life and elementary

CA 110, can in principle carry out any computation. To actually do a computation

using such a CA, one needs to provide in the initial configuration bits that encode

1PORTIONS OF THIS CHAPTER WERE ADAPTED FROM [76]



69

both a “program” and the program’s input. Such CAs compute by simulating a

Turing machine or similar computing model, running the program on the input by,

for example, creating logic gates out of CA configurations such as blinkers, gliders,

and glider guns.

Such a simulation is typically a slow process in which a massively parallel

machine is used to simulate a serial machine in a highly inefficient and impractical

way. While universal computation in simple CAs is a theoretically interesting

result, this is not a particularly useful notion of computation if one’s goals are to

design computation in complex decentralized spatially extended architectures or

to understand how natural systems compute.

Given such goals, an alternative approach to computation in CAs is to use the

complex dynamics and pattern formation behavior of CAs to perform collective,

genuinely parallel computations. This approach has been exemplified in work on

applying evolutionary computing methods to design CAs to perform computations

[5, 6, 17, 88, 126]. In this work, the CA rule plays the role of “program”, the initial

configuration plays the role of “input”, and a later configuration or configurations

play the role of “output”.

Designing an algorithm to solve problems (such as the tasks proposed in Chap-

ter 3) is comparatively trivial for a system with a central controller, or central

storage of some kind, such as a standard computer with a counter register or

a neural network in which all input units are connected to one or more hidden

units. However, the tasks are nontrivial for a small-radius (r ≪ N) CA, since a

small-radius CA relies only on local interactions.

Let’s look at the density classification task as one such task in more detail. It

was proved that no finite-radius, two-state CA with periodic boundary conditions

can perform this task perfectly across all lattice sizes [66]. Even to perform this

task well for a fixed lattice size requires more powerful computation than can be

performed by a single cell or any linear combination of cells. Since the 1s can be



70

Figure 6.1: Space-time behavior of a CA evolved by the GA for the density clas-
sification task [28]. The left diagram shows the CA iterating from a high-density
initial configuration (i.e., with a majority of cells in state 1 (black)) and the right
diagram shows the CA iterating from a low-density initial configuration (i.e., with
a majority of cells in state 0 (white)). In each case the CAs give a correct clas-
sification of the initial configuration. This CA correctly classifies about 80% of
random initial configurations on 149-cell lattices.

distributed throughout the CA lattice, the CA must transfer information over large

distances. To do this requires the global coordination of cells that are separated

by large distances and that cannot communicate directly.

Several groups have used genetic algorithms and related evolutionary methods

to automatically search the enormous space of binary, radius-3 CA rules to find

rules with high degree of accuracy for problems such as density classification (e.g.,

[2, 57, 88, 140], also see Chapter 3 for more details). A major challenge is to

understand the CAs resulting from these searches—that is, to characterize exactly

how the resulting collective computation is being done by the CAs.

Figure 6.1 illustrates the typical behavior of a CA that was evolved by the GA

for the one-dimensional density classification task. The two space-time diagrams

each plot the one-dimensional lattice configuration versus time for a high-density

initial configuration (left) and for a low-density initial configuration (right). Both

configurations are correctly classified by the CA’s behavior.



71

Figure 6.2: Space-time behavior of the highest-performing known CA evolved by
the GA for the density classification task [140]. The left diagram shows the CA
iterating from a high-density initial configuration and the right diagram shows the
CA iterating from a low-density initial configuration. In each case the CAs give a
correct classification of the initial configuration. This CA correctly classifies about
89% of random initial configurations on 149-cell lattices.

The CA illustrated in Figure 6.1 has a performance close to 80% on one-

dimensional lattices of size 149—that is, when given randomly generated initial

configurations of the 149 cells, the CA arrives at a correct classification approxi-

mately 80% of the time. The highest-performing known one-dimensional CA for

this task, also evolved by a GA (see Figure 6.2) has a performance of approximately

89% on 149-cell lattices [140].

Figures 6.1 and 6.2 raise some interesting questions. What are the “algorithms”

by which these CAs are achieving their relatively high performance? What gives

rise to the higher performance of the CA shown in Figure 6.2? Simply examining

the CA look-up tables or even the collection of bits in the space-time diagrams

above does not easily shed light on these questions. In fact, traditional computer

science, with its assumptions of von Neumann-style architectures, does not provide

the necessary tools for understanding the mechanisms of information processing

in spatially extended dynamical systems created by evolution, be it natural or, as

in our case, artificial. We are left with Stephen Wolfram’s final question in his



72

Figure 6.3: Behavior of elementary CA 110 starting from a random initial config-
uration.

“Twenty Problems in the Theory of Cellular Automata” [137], “What higher-level

descriptions of information processing in cellular automata can be given?”

6.2 INFORMATION PROCESSING STRUCTURES: DOMAINS AND

PARTICLES

A number of research groups have used the notion of propagating structures called

particles to characterize the dynamics, computational ability, or mathematical

properties of CAs (e.g., [1, 8, 9, 21, 30, 41, 78, 84, 101, 139]), to model natu-

ral particle-forming systems (e.g., [16, 99]), as well as to “program” such systems

(e.g., [24, 119, 123]). In analogy with the notion of particles in physics, in cellular

automata particles are localized patterns that retain their coherence while propa-

gating in space and time. A simple two-dimensional example is the so-called glider

in the Game of Life [8]. In one dimension, examples of particles can be seen in

the behavior of elementary CA rule 110 (Figure 6.3); here particles are relatively

linear patterns that travel in space and time at various slopes (velocities) against

a relatively simple periodic background pattern—a regular domain.

Crutchfield and Young [25] introduced the computational mechanics framework



73

for understanding computation in complex systems. Computational mechanics is

a set of methods for identifying the “intrinsic computation” in physical systems—

that is, how the underlying mechanisms of a physical system support memory and

information dynamics, which are the building blocks of “useful computation” that

is engineered by humans or by evolution to perform useful functions.

Hanson and Crutchfield applied the computational mechanics framework to

the problem of characterizing intrinsic computation in one-dimensional cellular

automata. They informally characterized a regular domain as “a spatially and

temporally homogeneous pattern describable by a finite automaton—where ‘ho-

mogeneous’ is understood in the sense of having the same regularities” [45]. More

formally, they define regular domains in one-dimensional cellular-automata space-

time patterns as two-dimensional regions consisting of one-dimensional “words”

in simple regular languages—those languages that can be represented by strongly

connected finite-state automata.

The space-time diagrams given in Figure 6.1 provide simple examples of this

notion. The two space-time diagrams show the three regular domains that can

be produced by this CA: all black (i.e., all 1s), all white (i.e., all 0s), and a

checkerboard-like domain of alternating black and white states. The three cor-

responding regular languages are (1)∗, (0)∗, and (01)∗ or (10)∗ . The particles of

this system are the spatially localized boundaries separating each pair of adjacent

regular domains.

Das et al. [28] pointed out that the density-classification task is equivalent to

the recognition of a non-regular language (the equivalent of a counter register is

required to track the excess of 1s, so the minimum amount of memory required

is proportional to log(N)). Thus the computation required to perform the task is

not being done in the simple regular domains; it is being done via the boundaries

between those domains—that is, by the particles.

Intuitively, here is how the CA illustrated in Figure 6.1 performs the density



74

classification task. Over short times, local high-density regions are mapped to all

1s, local low-density regions are mapped to all 0s, with a vertical boundary in

between them. This is what happens when a region of 1s on the left meets a region

of 0s on the right. However, when a region of 0s on the left meets a region of 1s

on the right, rather than a vertical boundary being formed, a checkerboard region

(alternating 1s and 0s) is propagated. When the propagating checkerboard region

collides with the black-white boundary, the inner region (e.g., each of the white

regions in the left-hand diagram of figure 6.1) is cut off and the outer region is

allowed to propagate. In this way, the CA uses local interactions to determine

the relative sizes of adjacent large low and high density regions. For example, in

the left-hand space-time diagram, the large inner white region is smaller than the

large outer black region—thus the propagating checkerboard pattern reaches the

black-white boundary on the white side before it reaches it on the black side; the

former is cut off, and the latter is allowed to propagate and eventually takes over

the lattice.

As was discussed in Chapter 2, the black-white boundary and the checkerboard

region can be thought of as “signals” indicating “ambiguous” regions. The creation

and interactions of these signals can be interpreted as the locus of the computation

being performed by the CA—they form its emergent “algorithm” [24].

Figure 6.4 gives the left-hand space-time diagram of Figure 6.1 with the regular

domains filtered out, leaving only the particles. Table 6.1 lists the types of regular

domains, particles, and particle interactions that appear in all space-time behavior

of this CA rule. Hordijk et al. [52] describe how to predict the collective behavior

of CAs using their particle catalogs to build a dynamic model based on equations,

and show that the model’s predicted performances (i.e., classification accuracies

on the density classification task) and the observed performances are very close.

On that basis, Hordijk et al. conclude that the particle-level descriptions of CAs

provided by particle catalogs characterize the intrinsic computational capability of



75

Regular Domains
Λ0 = 0∗ Λ1 = 1∗ Λ2 = (01)∗

Particles (Velocities)
α ∼ Λ0Λ1 (0) β ∼ Λ101Λ0 (0)
γ ∼ Λ0Λ2 (-1) δ ∼ Λ2Λ0 (-3)
η ∼ Λ1Λ2 (3) µ ∼ Λ2Λ1 (1)

Interactions
decay α → γ + µ
react β + γ → η, µ+ β → δ, η + δ → β

annihilate η + µ → Ø1, γ + δ → Ø0

Table 6.1: Catalog of regular domains, particles (domain boundaries), particle
velocities (in parentheses), and particle interactions seen in rule’s space-time be-
havior. The notation p ∼ ΛxΛy means that p is the particle forming the boundary
between regular domains Λx and Λy. (Adapted from [88].)

the modeled CAs.

It should be pointed out that particles in CA behavior, in the sense we have

described above, are not always obvious by visual inspection. One example is

elementary CA rule 18, illustrated in Figure 6.5 (left). This CA has a single reg-

ular domain, (0Σ)∗, where Σ represents either 0 or 1 [44]. In other words, in

this regular domain, every other site is a zero; the remaining sites can be either

0 or 1. Figure 6.5 (right) gives the same diagram with this regular domain fil-

tered out, revealing the “embedded” particles, which have been shown by Hanson

and Crutchfield to perform a random walk in space-time [44]. Thus Hanson and

Crutchfield’s analysis of ECA 18 shows that the CA’s “intrinsic computation” is a

random walk implemented by embedded particles.

In the examples above we have seen several types of CA particles—those explic-

itly designed (e.g., Life gliders), those in elementary CAs not designed for anything

in particular (e.g., ECAs 110 and 18), and those in CAs evolved by the GA to per-

form density classification. We have sketched how regular domains and particles



76

Figure 6.4: (Left) The left-hand spacetime diagram of figure 6.1. (Right) The same
diagram with the regular domains filtered out, leaving only the particles (some of
which are labeled by here by the Greek letter code of table 6.1). Note that particle
α (unlike other the other particles) lasts for only one time step, after which it
decays to particles γ and µ.

can provide a highly compressed and useful account of the CA’s behavior in com-

putational terms. In general, we would like to find methods that automatically

discover such information-processing structures in spatially extended systems, ei-

ther by appropriately filtering space-time data from these systems or by directly

analyzing the governing equations or look-up-table descriptions of such systems.

In the rest of this chapter we survey four filtering methods proposed by different

groups for achieving this automatic discovery, and we assess how far these efforts

take us in our goal to understand and design computation in spatially extended

dynamical systems such as cellular automata.

6.3 MODEL OF INFORMATION PROCESSING IN 1DCA

Hordijk et al. were the first to successfully analyze the mechanism of computation

in the rules for density classification and synchronization tasks [50, 51, 53].

Figure 6.6 (left) shows one of the CAs evolved for the density classification task



77

Figure 6.5: (Left) Space-time behavior of elementary CA 18, iterated from a ran-
dom initial configuration. (Right) The same diagram with the regular domain
filtered out, leaving only the particles. (Reprinted from [87].)

similar to the ones analyzed by Hordijk et al.’s dynamic model. The rule forms

black, white, and checkerboard domains. The structure of the regular domains can

be detected by Hanson and Crutchfield’s epsilon machine reconstruction algorithm

[23, 25, 43, 45]. After the domains are identified and filtered out, the particles are

simplified by straight lines. The intersections of the lines represent the particle

collisions. A lookup in the particle interaction catalogue (shown in Table 6.1)

describes which particles are substituted as a result in a place of collision (see

Chapter 7 for more details). Since, in a model, a particle is represented by a line,

a simple vector physics framework is used to simulate particle motion and predict

the site and time when an interaction between particles will occur. Hordijk et al.’s

model predicted CA behavior with an accuracy of 95% and greater [50, 52].

Recent CA that perform the one-dimensional density classification task are

shown in Figure 6.6 (center and right). The rules found by Marques-Pita [79, 83]

and Wolz & de Oliveira [140] have higher performance than the rules found by

Das et al. [28]. The high-performing rules have more complicated behavior than

the lower-performing ones. It is unclear if something like Hordijk et al.’s simplified



78

Figure 6.6: GA evolved rules for one-dimensional density classification task for CA
with neighborhood radius r = 3. The rules were found by Das et al. (left)[28],
Marques-Pita (center)[79, 83] and Wolz & de Oliveira (right)[140].

dynamic models is adequate enough to explain the mechanism of information pro-

cessing in these rules. The model might fail due to the following reasons: A regular

language based filtering approach might not be powerful enough to recognize the

non-trivial domain structure such as the domain pattern in Figure 6.6 (right). The

complicated domain structure might have an additional role of processing infor-

mation, rather than simply storing information. Simplifying and abstracting the

domain borders as line shaped particles might not be correct either. Finally, a vec-

tor physics model might have to be reformulated to account for more complicated

particle interactions.

To summarize, the dynamic model of Hordijk et al. correctly predicted CA

behavior because the CA formed well defined domains, the particles had (roughly)

the shape of a straight lines, the particle collisions were easily predicted, and the

interactions among particles had clear outcomes. The description of domains, par-

ticles, and particle interactions were similar when a rule was executed on different

randomly initialized starting configurations. Since the model was built for a specific

task and a group of rules with the same behavior, it is unknown how the predictive



79

power of a model would change for rules with different behavior and rules evolved

for tasks other than the density classification and global synchronization.



80

Chapter 7

FILTERS FOR IDENTIFYING INFORMATION-PROCESSING

STRUCTURES IN CA1

The first step towards understanding the mechanism of collective computation in

a two-dimensional cellular automaton is to identify the sites in the lattice that

store, modify, and transfer information. Due to the complex behavior of these sys-

tems, building filters to detect such sites by hand is impractical in general. This

chapter describes several approaches for automatically identifying the structures

underlying information processing in the spatio-temporal patterns formed by cel-

lular automata. In particular, I review the computational mechanics methods of

Crutchfield et al. [25, 44], the local sensitivity and local statistical complexity filters

proposed by Shalizi et al. [115], and the information-theoretic filters proposed by

Lizier et al. [71].

The methods described in this chapter were originally designed for automatic

identification of information-processing structures in one-dimensional cellular au-

tomata. On a fundamental level, the mechanisms of computation in one-dimensional

cellular automata are the same as in two dimensions. The CA behavior settles into

domains with well-defined structure, these regions propagate through space, and

the interactions among these structures represent processing of information. This

chapter first analyzes the behavior and defines the filtering methods for 1DCA,

since it is easier to visualize and explain the details in one dimension. My two-

dimensional extension of the filters and the filter results on the two-dimensional

1PORTIONS OF THIS CHAPTER WERE ADAPTED FROM [76]



81

Figure 7.1: Two-state epsilon-machine encoding the “every other site is a zero”
regular domain of elementary CA 18.

density classification task are covered in the chapter’s second half.

The filtering methods are compared in terms of their computational require-

ments and their ability to detect spatio-temporal structures in 2D lattices. Finally,

a hybrid filtering approach is introduced as a combination of Shalizi et al.’s algo-

rithmic approach with Lizier et al.’s spatial structuring of information flow. The

results show that this combination produced the most accurate filtering results

while being computationally feasible.

7.1 FILTERING BY EPSILON-MACHINE RECONSTRUCTION

In order to automatically discover regular domains (and thus particles), Crutchfield

and Hanson [23, 44] apply the epsilon-machine reconstruction algorithm (originally

developed by Crutchfield and Young [25]). The result is an epsilon machine—

a finite-state machine that recognizes regular domains. Epsilon machines differ

from deterministic finite state machines in that their transitions are labeled with

conditional probabilities (they are essentially equivalent to hidden Markov models

[34].)

Figure 7.1 gives an epsilon machine that recognizes the regular domain of ele-

mentary CA 18, “every other site is a zero” (cf. Figure 6.5).

An extended version of this epsilon machine—a transducer that both inputs

and outputs symbols—can be used to filter space-time diagrams containing this



82

1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0

D

1 0 0 0 1

0 0 0 1 0

0 0 1 0 1

0 1 0 1 0

1 0 1 0 0

0 1 0 0 0

.

.

.

S

u

b

w

o

r

d

s

. . . . . .

1 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

Figure 7.2: Creation of subwords from CA configurations. Adapted from [42].

domain. Such a transducer was used to create Figure 6.5b; details are described

in [42].

Hanson [42] gives the following steps for reconstructing an epsilon machine from

space-time data generated by a one-dimensional CA.

1. Generate data: Run the CA several times starting from a number of ran-

dom initial configurations. On each run, let the CA iterate for a large number

of time steps t to allow short-lived transient behavior to die out. Then collect

a set of input configurations from t + 1 to some later time step T . Create

a set of “subwords” of length D (a parameter of the algorithm) from these

configurations. Each subword consists of the symbols inside a sliding window

of size D (see Figure 7.2).

2. Construct tree: Once a set of subwords is created, they are used to build

a tree of depth D, as is illustrated in Figure 7.3. Start with the root node.

For each subword, iterate left-to-right through each symbol s. If s is a 0,



83

Figure 7.3: Creation of tree from subwords. Adapted from [42]. Note that the first
subword from Figure 7.2 has been highlighted in the tree using darker nodes.

follow (or create if necessary) a branch to the left. If s is a 1, branch to

the right. Continue similarly with the next symbol s in the subword. After

branching is done on the final symbol in the subword, return to the root with

the next subword. Thus, each path in the tree from root to leaf corresponds

to a unique subword that has been seen so far.

3. Build machine: Find sets of “future-equivalent” nodes in the tree; these

correspond to nodes in the reconstructed machine. Two nodes in the tree are

future-equivalent if the branching structure of the subtrees rooted at those

nodes are identical. Following Crutchfield and Young [25], Hanson defines

an L-morph as a depth-L branching structure. Figure 7.4 shows the four

distinct morphs present in the tree of Figure 7.3 (each labeled by a letter).

As more data is obtained and the tree “fills out”, the number of distinct

morphs typically decreases.

Each morph corresponds to a state of the epsilon machine. Each state thus

represents sets of future-equivalent nodes. After the tree is labeled with

the morph labels, transitions between states in the machine can be read off



84

Figure 7.4: Different (L = 2) morphs contained in tree of Figure 7.3. Adapted
from [42].

Figure 7.5: Left: The tree of Figure 7.3, labeled with morph labels. Right: The
resulting epsilon machine. Adapted from [42].

the tree, as illustrated in Figure 7.5. The resulting epsilon machine can

be tested to see if the regular language it recognizes fits the definition of a

regular domain [42].

In [42], Hanson describes how to best choose the D and L parameters.

Given sufficient statistics, the epsilon machine resulting from this method can

be said to capture the “intrinsic computation” being performed by the cellular au-

tomaton (or any system producing symbolic temporal dynamics). Such a machine

can easily be used to create a regular-domain filter, like the ones used to produce

Figures 6.4 and 6.5(b).

Shalizi [114] showed that epsilon-machines, if reconstructed accurately, are

unique minimal representations of regular domains. Of course the reconstruction



85

method sketched above can reconstruct epsilon machines accurately only if given

sufficient data. In [114] Shalizi discusses limitations of various epsilon-machine

reconstruction methods, including the one sketched above.

The determination of regular domains (and thus particles) in cellular automata

via the reconstruction of epsilon machines has some significant limitations. First,

the accurate reconstruction of epsilon machines in order to determine regular

domains can be highly computationally expensive, and can require significant

amounts of data and correct determination of the parameters D and L. Second, it

is not clear if all domain patterns of interest can be represented as regular domains

(such as the complex domains pictured in Figure 6.2). Third, there are currently

no general methods for representing higher-dimensional “domains” in terms of reg-

ular languages (Shalizi [114] discusses some ways in which such methods might be

developed).

Other groups have proposed alternative methods for automatic discovery of

computational structures in cellular automata (and in discrete space-time data in

general) that address these limitations. That is, these methods do not assume any

particular model (such as finite state automata) for representing patterns; they

are easily extensible to two and higher dimensions, are less sensitive to particular

parameter settings, and are computationally tractable. In the remainder of this

paper we explore three such approaches: filtering by local sensitivity [115], filtering

by local statistical complexity [115], and filtering by information storage, transfer,

and modification [71]. First we will informally describe these methods, then we

will qualitatively evaluate performance of the filters on one- and two-dimensional

cellular automata. The filters are evaluated on their accuracy to outline the domain

borders, and the computational requirements to do so. The formal definitions for

each of the methods are included in the Appendix B, while the following sections

describe these concepts in more intuitive terms.



86

7.2 FILTERING BY LOCAL SENSITIVITY (LS)

According to Das et al. [28], the computation of the density classification task is

carried out by the particles. That means, the sites inside of the regular domains

have different function than the ones forming particles. The local sensitivity (LS)

filter has been proposed by Shalizi et al. to test if a site belongs to a structure2

that will significantly influence future CA behavior [115]. This filter assigns to

each cell c at each time-step of the CA space-time diagram a measure of cell c’s

sensitivity to perturbations. The larger the local sensitivity, the more likely it is

that perturbations in or close to c will result in significantly different dynamics in

sites that depend on the information stored in c. Conversely, when local sensitivity

is small, it means that perturbations will often be “self-healed” by the dynamics of

the CA, often leading to the stable behavior in the observed sites. Local sensitivity

is inspired by the Lyapunov exponent of a dynamical system, which measures the

rate of divergence between the trajectories starting from two infinitesimally close

configurations of the system [60].

More concretely, let ~η denote the spatial coordinates of cell c and let t denote

the time step at which a measurement is made. The pair (~η, t) locates a specific

site in a space-time diagram. Let p denote a perturbation radius around site (~η, t)

(where p is not necessarily equal to the CA rule radius r), and let P denote the set

of sites contained within that perturbation radius, including the site (~η, t) itself.

The local sensitivity ξ(~η, t) is calculated as follows:

1. Generate the set S that contains all the possible perturbations of sites in

p. For example, for a binary-state CA with P = 1, suppose the states

of cell c and its two nearest neighbors are (from left to right) 000. Then

2The semantic meaning of the structures and the particles is the same. The structures detected
by the LS filter are the same as the particles found by the regular language filters.



87

S = 001, 010, 011, 100, 101, 110, 111. In general, the size of S is

|S| = k|p| − 1,

where k is the number of cell states allowed by the CA.

2. Replace the states in the sites that correspond to the perturbation neigh-

borhood in the current lattice with each s ∈ S (keeping all the other sites

in the lattice unchanged), and run the CA for d time-steps, where d is a

future-depth parameter.

3. For each run of the CA for d time steps, record the states of each of the sites

in the lattice, at each time t′ ∈ {t+ 1, t+ 2, ..., t+ d}, that depend on (~η, t),

and calculate the fraction of these that are different from the sites at the

same positions within the original space-time diagram.

4. The local sensitivity ξpd(~η, t) is equal to the average of these fractions for a

specific permutation range p and future depth d.

Determining the local sensitivity of some site ~η at some time t requires the

choice of two parameter values, (1) the perturbation range p, and (2) the future-

depth parameter d. As Shalizi et al. point out, the choice of these parameters

is like adjusting a microscope, in order to make certain features of the observed

object or phenomenon more salient at the expense of blurring others [115]. There

is no clear heuristic to determine optimal values for these parameters.

Figure 7.6 illustrates the process of calculating the local sensitivity, ξpd(~η, t),

using elementary CA 110 as an example. The original initial configuration is

shown in the top-left corner, and the CA has been iterated for d = 2 time steps.

The goal is to calculate the local sensitivity of the fourth site from the left, at time

t = 0, i.e. ξ12(4, 0). This site is marked with a circle. The perturbation range is set

to p = 1. In parts (A)–(G) of the figure, each perturbation s replaces the original



88

states of the three sites in P , and for each perturbation, the CA is iterated for

d = 2 time steps.

Figure 7.6: Example of the calculation of ξ12(4, 0). The top-left corner shows
the original initial configuration and two updates using elementary CA 110. The
local sensitivity is calculated for the fourth site at time t = 0 (highlighted with
a circle). The perturbation range is p = 1, which determines the perturbation
neighborhood P =< 0, 1, 0 >, and the future depth is set to d = 2. The sites
that depend on the information stored in site (4, 0) (for a 1D radius r = 1 CA,
within future-depth 2) are marked with grey squares. They determine the future
light-cone for (4, 0). The perturbation neighborhood P generates |S| = 7 “words”
of length three. Diagrams (A)–(G) show the behavior of the CA when each of
these words replaces the original configuration in the perturbation range, and the
CA is run for d = 2 time steps. The cells in each future light-cone that differ from
the corresponding cells in the original future light-cone are marked with an X.
The Hamming distance ∆, i.e., the fraction of differing cells between the original
future light-cone and the one resulting from each perturbation is shown above the
top-right of each diagram in (A)–(G). These seven ∆’s are averaged, resulting in
a local sensitivity ξ12(4, 0) = 0.4285.



89

In each diagram in Figure 7.6, the future light-cone3 l+(d=2) (4, 0) of the site (4,0)

is highlighted with gray outline. The future light cone of a site (~η, t) (to depth d)

is the set of sites in the next d time steps that are influenced by information stored

in site (~η, t). Clearly a perturbation of a state in site (~η, t) can affect the states of

sites only within that site’s future light-cone.

Note that the future light-cone of a site is determined by the topology and

radius of the CA rule, not by the perturbation neighborhood P . In the example

illustrated in Figure 7.6, the rule’s local neighborhood and perturbation neighbor-

hood radii are the same, i.e. p = r = 1; however, the choice of the perturbation

range is not constrained by the radius of the CA rule.

For each future light-cone resulting from a perturbed configuration, each of the

light-cone’s sites is compared with the corresponding site in the original l+(4, 0).

The fractional Hamming distance4 between the original and perturbed light-cones

is the fraction of sites that differ (i.e., those marked by Xs in Figure 7.6). The local

sensitivity5 ξ12(4, 0) is simply the average of these fractional Hamming distances.

In the example shown in Figure 7.6,

ξ12(4, 0) = 0.4285.

7.3 FILTERING BY LOCAL STATISTICAL COMPLEXITY

The local statistical complexity (LSC) filter was also proposed by Shalizi et al.

[115] as a computationally cheaper filtering alternative. The execution times of

the LS filter are high because at each site the LS computes and analyzes the future

light-cones for all possible permutations of the initial configuration of sites with a

given radius. The LSC on the other hand, needs only two passes through a single

3see Appendix, Definition B.1.1 - B.1.5
4see Appendix, Definition B.1.6
5see Appendix, Definition B.1.7



90

space-time diagram. First, it collects statistics about past and future behavior at

each site; during the second pass it assigns the complexity values.

Like local sensitivity, LSC is a value computed at each site in a space-time

diagram. Figures 7.7 and 7.8 illustrate the process of computing the LSC value at

a given site. The site under consideration is marked with a circle, and its past and

future light cones6, each to depth d = 2, are outlined in gray. Denote the depth-

d past light-cone associated with a site c as l−d (c) and the corresponding future

light-cone as l+d (c). Note that the same past-future-light-cone pair might appear

elsewhere in the space-time diagram, and also that a pair (l−d (c), l
+
d (c)) does not

include the cell c itself.

In computing LSC, we will count the number of times each possible past/future

pair appears in the diagram. In general, assuming a binary-state CA and depth 2

light cones, there are 216 possible pairs (28 for each 8-cell past light-cone and 28

for each 8-cell future light-cone ).

Each site’s past and future light-cones are extracted, and added into a condi-

tional distribution matrix7 M as follows: If the past light-cone l− or the future

light-cone l+ has not been seen before, add a new row or column to M , the index

of which, i (for past) or j (for future) represents the newly observed light-cone,

and assign mi,j = 1, that is, the past light-cone configuration i has been seen once

leading to the future light-cone j. If the past (or future) light-cones have been

seen before, then the value of mi,j is increased by one. This yields a matrix that

contains the conditional frequency distributions of every distinct past history over

the future light-cones that have been seen in the specific CA space-time diagram.

The notation ~m+
i will be used to denote a row8 in M , corresponding to the

conditional distribution of futures given the past light-cone represented by the ith

6see Appendix, Definition B.2.1
7see Appendix, Definition B.2.2
8see Appendix, Definition B.2.3



91

row of M , i.e. P (l+|l−i ). Shalizi et al. point out that if two rows ~m+
a and ~m+

b are

equal, then the two past light-cones are equivalent [115]. The equivalence classes

that result from clustering the observed past light-cone configurations are called

causal states9, where each of these contains a number of equivalent past light-cones:

those that predict the same possible futures with the same probabilities10. Each

site of the space-time diagram is assigned the local statistical complexity11 value

of the corresponding casual state that the site’s past light-cone belongs to.

Before discussing more specifically how LSC is computed for each site, the

following point is important to note. For the LSC filter, since it is possible to

gather only finite samples, and due to the practical necessity of limiting the depth

of recorded past and future light-cones, the statistics that are used to estimate

causal states will always have an error margin; that is, the conditional distribu-

tions just described have to be estimated from data. Using the estimated condi-

tional distributions P (l−|l+j ) computed from at least one space-time diagram using

a past/future depth parameter d, it is often possible to produce reasonable approx-

imations to the true set of causal states. These approximations of causal states

are computed by clustering past light-cone configurations that have a statistically

similar12. distribution over future light-cones.

The procedure for computing LSC for each site is as follows. Once M has been

filled in, the next step is a traversal of all the rows in M, with the goal of assigning

each row, mi, to a causal state. Before the traversal, the procedure starts with

an empty set of causal states ǫ, and marks every row in M as unassigned. The

procedure then (1) finds the next unassigned row mi in M, and makes it its own

causal state, ǫi; (2) computes the similarity between mi and every other unassigned

row mj. If the similarity is above a threshold, then mj is added to the same causal

9see Appendix, Definition B.2.5
10see Appendix, Definition B.2.7
11see Appendix, Definition B.2.8
12See Appendix, Definition B.2.4



92

state asmi; if not, mj remains unassigned. The procedure uses a χ2 test to measure

whether frequency distributions mi and mj are significantly similar (above a given

threshold). This process is repeated until all rows are assigned to a causal state.

After this part of the procedure is complete, it is then necessary to calcu-

late the probability that a past/future light-cone pair is in a specific causal state.

Note that the total number of observations of l−, l+ pairs is ||M || =
∑

i,j mij

. Similarly the total number of observations associated with causal state ǫi is

||ǫi|| =
∑

i,j|mij∈ǫi
mij. The probability that a past/future light-cone pair is in

causal state ǫi is therefore, Pr(ǫi) = ||ǫi||/||M ||. Finally, the statistical complexity

of a site c is given by C(c) = log2(Pr(ǫi)), where ǫi is the causal state to which

belongs the combination of past and future light-cones associated with site c



93

Figure 7.7: The first part of the procedure to compute Shalizi’s Local Statistical
Complexity consists of traversing a space-time diagram to gather statistics about
the set of unique past and future light-cones observed. Each unique past (future)
light-cone is assigned an index, i (j). The set of all past (future) light-cones is
denoted by Pc (Fc). For every site that has a past and future light-cone, first
identify past and future light-cones i and j. Then in a matrix M|Pc|×|Fc| (where
initially mij = 0,∀i, j), increment the value of mij by one. In the figure there are
nine and thirteen abstract past and future light-cones respectively. All the elements
of this figure are only simplified illustrations of the concepts introduced. Note that
a row mi in M represents the frequency distribution of past light-cone i over all
the future light-cones. Finally, after the M has been updated upon traversal of
the space-time diagram, the ordering of its rows is randomized (see justification
for this in the text).



94

Figure 7.8: The procedure for computing LSC continues with a traversal of all the
rows in M , with the goal of assigning each row, mi, to a causal state. Before the
traversal, start with an empty set of causal states ǫ, and mark every row in M as
unassigned. In this example, the procedure finds the first unassigned row m7 in
M , and makes it its first causal state, ǫ7; then it computes the similarity between
m7, and every other unassigned row: If the similarity S(m7,mj) = 1, then the
row is added to the same causal state as m7, if not, the row remains unassigned.
Here, rows m3, m2, and m9 are statistically similar to the ǫ7 representative row
m7. The next unassigned row m1 is chosen to represent new causal state ǫ1. The
similarity calculation adds rows m5 and m6 to the causal state ǫ1 (column 2).
The same procedure is repeated for the reminding unassigned row m8. After this
part of the procedure is complete, it is then necessary to calculate the probability
that a past/future light-cone pair is in a specific causal state. In the figure, the
total number of observations is the city-block norm of ||M ||, ||M || =

∑

i,j mij.
Similarly, the total number of observations associated to a causal state ǫi is ||ǫi|| =
∑

i,j|mij∈ǫi
mij. The probability that a past/future light-cone pair is in causal state

ǫi is therefore, Pr(ǫi) = ||ǫi||/||M ||. This calculation for causal states ǫ7, ǫ1,
and ǫ8 is shown in the far right column. Finally, the statistical complexity of a
site c is given by C(c) = log2(Pr(ǫi)), where ǫi is the causal state to which the
combination of past and future light-cones associated with site c belongs to. Note
that the assignments made in the figure are only an abstract illustration of the
procedure.



95

The exact number of causal states, and which matrix row best represents each

causal state, could easily be determined from an M matrix in which the condi-

tional probabilities had converged (given an infinite number of encountered con-

figurations). In practice, only a finite set of sites is analyzed, which causes the

number and definition of a causal state to depend on the order in which rows are

retrieved from M. To remedy this bias, the matrix rows are retrieved from M at

random [116]. Each retrieved row is either assigned to an existing causal state, or

such row represents a newly created causal state.

Although the underlying mechanics of the LSC filter are different from the

computational mechanics framework introduced in §7.1, the L-morphs used in the

former and the causal states just introduced are conceptually equivalent: both

these characterizations represent sets of past histories of a dynamical system that

predict the same futures, with the same probability distributions. This makes it

possible to cluster potentially large numbers of a system’s histories as one of a few

causal states, and thus reveal the higher-level coherent structures formed in its

dynamics, as well as the interactions among such structures.

7.4 FILTERING BY INFORMATION STORAGE, TRANSFER AND

MODIFICATION

The LS and LSC filters described above use the entire past and future light-cones

of a given site to measure the degree of “information processing” occurring at

the given site. Lizier, Prokopenko, and Zomaya [71] proposed an alternate set of

filters for detecting information processing at a given site, which use only a limited

range of past site configurations. Their three proposed filters are meant to measure

three aspects of information processing at a given site: local information storage,

transfer, and modification.



96

7.4.1 Local Information Storage (IS)

Figure 7.9: Pictorial description of the procedure to compute Lizier et al.’s local
information storage a(site), in this case, with k = 3. The site for which a is being
computed is outlined and marked with a circle. The three sites forming the site’s
“history” are outlined in light gray. The actual computation is described in the
text.

Lizier et al.’s local information storage filter (referred to in their paper [71] as

“local active information storage”) measures the degree to which the state at a

given site s, at a given time t, is predictable from previous states at that same site.

In other words, it measures the degree to which the current state “remembers”

(has mutual information with) its direct history.

Consider the simple example of a site s that is in the black state for k time steps,

but at time step t changes to the white state. If such a change is seen only rarely

over the CA lattice, the site at time t would be considered to have low information

storage, since the statistics of past consecutive black states would “misinform” us

about the current state. In contrast, consider a CA which continually alternates

between all black and all white states. Every site would have high information

storage—the statistics of past states give us perfect information about the current

state. Thus, sites inside regular domains, as described in previous sections, would

have relatively high information storage.



97

Define x
(k)
i,n as the vector of the past13 k states of site i ending with time step

n, and define xi,n+1 as the state of site i at time step n + 1. For example, let

k = 3 and consider the (small) space-time diagram of Figure 7.9. Let i = 7 (i.e.,

the rightmost site in the lattice) and n = 6 (i.e., we are calculating information

storage for the site at time step n+1 = 7. Then xi,n+1 is white (the site is marked

with a circle), and x
(k)
i,n is (white, white, black).

The local information storage14 of site i at time step n+1 is defined by Lizier et

al. as the base-2 logarithm of the probability that history15 x
(k)
i,n will be followed by

state xi,n+1 at site i. This is computed by examining, over N space-time diagrams,

all single-site histories of length k + 1, and over these counting the number of

times the particular history x
(k)
i,n is followed by the particular state xi,n+1, as well

as counting their independent occurrences. (To be precise, information storage is

defined by Lizier et al. as the limit as k approaches infinity of this logarithm; see

Appendix, Definition B.3.3. In practice, information storage is estimated with a

finite value of k.)

In the very simple example given in Figure 7.9, we first ask how many three-site

histories there are in the diagram, where a three-site history is a vertical line of

three sites, followed by a fourth site. We can see that such histories occur starting

only in the first four rows, since the sites in the fifth, sixth, and seventh rows don’t

have enough (vertical) data to start such histories. Thus there are 4× 7 = 28 such

histories. Of these, we count six histories with the pattern “white, white, black”.

Similarly, there are 28 individual sites that follow (in a vertical column) a three-

site history—i.e., the sites in the fourth through seventh rows—and of these, 15

are white. Finally, we ask, how many of the three-site histories of “white, white,

black” are followed by a white site? Here we count 2—i.e., two of the “white,

13See Appendix, Definition B.3.1.
14See Appendix, Definition B.3.3.
15See Appendix, Definition B.3.2.



98

white, black” histories are followed by a white site. Thus, the information storage

a of the given site is:

a(site) = log2

(

Pr(history and site)

Pr(history)Pr(site)

)

=
2/28

(6/28)(15/28)
= −0.68

This negative value indicates that the site in question has low information

storage, in that its white state is not well-predicted by its “white, white, black”

history, since most of the “white, white, black” histories in the diagram are followed

by a black state.

In practice, when calculating this statistic, much larger space-time diagrams

and larger values of k would be used, to get better statistics. Intuitively, as k → ∞,

the statistics about a site’s history are more complete and the filter’s accuracy

increases. The calculation would involve sites that occur only after initial transients

have died out.

7.4.2 Local Information Transfer (IT)

The IS filter takes into account how well the configuration of a site’s history predicts

the state of that site, but it does not take into account values from any other spatial

locations. However, a site’s next state is directly affected by the site’s r adjacent

neighbors. The local information transfer (IT) filter takes these neighbors into

account in order to measure the information transfered into a given site.

The left information transfer tleft and the right information transfer tright filters

measure how much information was contributed —i.e., transferred in space—by

the left or the right neighbors to the predictability of the current site’s value. The

tleft filter is defined as the base-2 logarithm of the conditional probability of the

site’s state with respect to both the site’s length-k history and its left neighbors (as

defined by the CA’s radius r), divided by the conditional probability of the site with

respect to its history alone. Intuitively, this filter gives the amount of information



99

Figure 7.10: Pictorial Description of the procedure to compute Lizier et al.’s right
and left information transfer. The site for which information-transfer is being
calculated is marked with a gray circle. Its three-site history is outlined in light
gray, as are the left and right neighbors at t = 6. Note that, due to the circular
boundary conditions, the “right neighbor” is actually the leftmost site at t = 6.
Details of the calculation of Left and Right Information transfer are described in
the text.

about the site in question that is provided by the transfer of information from its

left-neighbor in the previous time step, apart from any information about the site

already contained in its history. The tright filter is defined analogously. Thus, sites

that are part of left-moving particles would have high left-information transfer

values, and sites that are part of right-moving particles would have high right-

information transfer values.

Figure 7.10 gives a pictorial illustration of how these values are calculated.

As in Figure 7.9, the site in question is marked with a circle, and k = 3. Here

the neighborhood radius r is equal to 1. To calculate tleft, we count the fraction

of occurrences of the “white, white, black” history alone (6/28) and followed by

a white site (2/28), the fraction of joint occurrences of the“white, white, black”

history and black left-neighbor at t = n (2/28), and the fraction of joint occurrences

of the “white, black, black” history, the black left-neighbor, and the white site itself



100

(2/28). We thus have

tleft(site) = log2

(

Pr(site|history and left neighbors)

Pr(site|history)

)

= log2

(

(2/28)/(2/28)

(2/28)/(6/28)

)

= 1.6. (7.1)

This positive value for tleft makes sense since in this example the site’s state is

well predicted by the state of its left-neighbor at the previous time step. In other

words, positive information about the state of the left neighbor at the previous

time step can be said to have been transferred to the site in question.

Noting that that due to the circular boundary conditions, the “right neighbor”

of the site in question is actually the leftmost site, tright is calculated as follows:

tright(site) = log2

(

Pr(site|history and right neighbors)

Pr(site|history)

)

= log2

(

(2/28)/(4/28)

(2/28)/(6/28)

)

= 0.58. (7.2)

This value is positive, meaning that the right neighbor’s state has some pre-

dictive information for the site in question, though it is not as predictive as the

left neighbor. Thus one can say that positive information was transferred from the

right, though not as much as was transferred from the left.

As was the case for information storage, the precise definition of information

transfer requires taking the limit as k approaches infinity of the base-2 log of the

conditional probabilities. However, in practice it is estimated with finite values of

k.



101

7.4.3 Local Separable Information (S) and Information Modification

(IM)

The local separable information filter (S) measures, at a given site, the extent to

which the site’s state is predicted well by its history and/or neighboring states.

That is, the sites at which both information storage and information transfer are

low are said to have high local information separation s16. A site with negative

local information separation is said to be a site at which information (from the

site’s history and/or neighbors) has been modified. Lizier et al. interpret such

sites as the loci of information processing—e.g., where two particles collide and

create a new particle.

Lizier et al. defined local separable information s as the sum of information

storage and information transfer from all directions:

s (i, n) = [a (i, n) + tleft (i, n) + tright (i, n)] (7.3)

For the site illustrated in Figures 7.9 and 7.10, the value of s is calculated as:

s = −0.68 + 1.6 + 0.58 = 1.5. This positive value indicates that the information

at this site is “separable” (i.e., can be understood in terms of the history and/or

neighbors) and is thus not a locus of “information modification”.

7.5 FILTERING COHERENT STRUCTURES IN TWO-DIMENSIONS

Crutchfield and Hanson’s method (see Section 7.1) relies on processing the sub-

words that make up the pattern of domains in 1DCA in order to build an epsilon

machine [23, 25, 44]. The resulting finite-state automaton is then used to filter

out the input patterns that belong to domains. Unfortunately, the authors did

not extend their filtering approach or grammatical inference techniques into two

16See Appendix, Definition B.3.5.



102

(a) Shalizi et al. (b) Lizier et al. (c) Hybrid

Figure 7.11: Space-time patterns used for gathering statistics in (a) Shalizi et al.’s
local sensitivity and local statistical complexity filters (b) Lizier et al.’s information
theoretic filters, and (c) our hybrid filters. The patterns here have two spatial
dimensions (corresponding to the CA lattice) and one temporal dimension. Filters
proposed by Shalizi et al. use light-cones with depth d with cone width marked as
footprint. Lizier et al.’s IS filter uses site’s past configurations k tall, and the IT
filters use additional information from 3 × 3 sites in a given site’s neighborhood.
The hybrid filter uses Lizier et al.’s past and future light-cone configurations.

dimensions. Doing so would present a number of difficulties, including extending

the notion of regular language to two dimensions [69] and significantly extending

the epsilon-machine reconstruction method to overcome the structural and combi-

natorial differences between one- and two-dimensional pattern analysis.

The shortfalls of regular-language-based filters can be overcome by statistically-

based filters. As one of the contributions of this thesis, I extended the Shalizi et

al. and Lizier et al. one-dimensional filters into two-dimensions and I defined a

novel two-dimensional hybrid filter that combines the two-dimensional filters into

one.

Extending the LS and LC filters into two-dimensions requires collecting statis-

tics about site configurations in three dimensions. The past and future light-cone

configurations for Shalizi’s 2D filters have a 3D pyramid shape (Figure 7.11 a). The

LS algorithm is adapted to calculate Hamming distances on 2D slices of the 3D

future cones, and the LC filter records the frequency distributions of the 3D cones

for each site in the CA space-time diagram. Similarly, extending the IS, IT, and



103

IM filters for 2DCA requires recording structures in three dimensions (Figure 7.11

b). The information transfer for Moore neighborhood 2DCA is defined in eight

directions, and a Cumulative Information Transfer (CIT) measure is defined as a

sum of all directional IT filters. Other than accounting for 3D shapes of recorded

structures and making minor algorithmic changes to account for these shapes, the

methodology of calculating filter values remains the same.

The hybrid filtering approach combines Shalizi et al.’s algorithmic approach

with Lizier et al.’s structures as following: the hybrid filter used the LC algorithm

to record the frequency statistics of past and future configurations, to cluster fre-

quency distributions with similar future behavior, and to calculate a site’s com-

plexity according to its cluster membership. Unlike the pyramid-shaped light-cones

used by the original LC algorithm, however, the hybrid filter uses a cross-like 3D

configuration proposed by Lizier et al. (Figure 7.11 (c)). This approach combines

the strength of the LC filter to group frequency distributions with similar future

configurations into behavioral classes which abstract common patterns as domains,

and the narrow structures used by Lizier et al. which make the number of patterns

tractable and outlines the domain borders with narrow lines. Small number of

unique past and future 3D configurations made the hybrid filter scalable to large

lattice sizes (up to 99× 99).

7.6 RESULTS

The goal of filtering is to identify the coherent patterns that define domains, sub-

tract these patterns from the space-time diagram, and highlight the borders be-

tween the domains. Accurate identification of the domain borders is crucial for

building a model that captures the dynamics of the domain borders in space and

time. If the model, whose primitive elements are particles rather than detailed CA

configurations, accurately predicts a CA’s performance on a task, we know that the

filters have correctly identified the information-carrying sites. This demonstration



104

has been carried out for the one-dimensional density classification task [52] but

such a model has not yet been constructed for the two-dimensional version.

In the absence, as yet, of such a model, here we present a qualitative evaluation

of filtering methods. To evaluate each filters’ performance we measure the accuracy

with which the filter’s output matches an “ideal” set of hand-constructed domain

borders, the filter’s capacity to identify small structures (single cell wide domains),

and the filter’s computational requirements and scalability to large lattices.

The two-dimensional versions of the Local Sensitivity, Local Complexity, Infor-

mation Storage, Information Transfer, Information Modification, and Hybrid filters

were applied on the space-time diagrams of the two-dimensional density classifica-

tion task (Figure 7.12). The tested CA rules were evolved by genetic algorithms

by Cenek [14], Marques-Pita [14], and Wolz and de Oliveira [14, 140] (see Chapter

3 for more details and Appendix A for bit-string representations of these rules).

The experimental setup used a randomly initialized CA lattice of 39×39 cells that

was updated 55 times. All three rules used the same random initial configuration,

and the algorithms described above were implemented sequentially without any

parallelization.

As a side note, Figure 7.12 presents the results of IT filter instead of the IS or

IM filter results. This is because the quality of the cumulative information-transfer

filter results could not be improved by the addition of the IS filter results. The

shortcomings of the IS filter are discussed in Section 7.6.2.



105

Original Ideal LS filter LC filter IT filter Hybrid
a) Cenek

t=
10

t=
20

b) Marques-Pita

t=
10

t=
20

c) Wolz and de Oliveira

t=
10

t=
20

Figure 7.12: The results of the filters for (a) Cenek’s rule, (b) Marques-Pita’s rule,
and (c) Wolz and de Oliveira’s rule, each on a 39×39-cell lattice at time steps t = 10
and t = 20. The first column shows the original space-time diagrams, followed
by the idealized domain-boundary outline (hand-constructed), filter results for
local sensitivity (column 3), local statistical complexity (column 4), cumulative
information-transfer (column 5), and the hybrid filter (column 6). The gray-scale
in the images corresponds roughly to the likelihood that a given site belongs to a
domain boundary—dark colors mean high certainty while light-gray sites are less
likely to form a boundary. For additional results see [14].



106

(a) original CA (b) LS filter (c) LC filter (d) IT filter (e) hybrid filter

Figure 7.13: Cenek’s rule for the density classification task on a 39×39-cell lattice
at time step t=10. (a) The original CA, (b) the results of the local sensitivity
filter, (c) the local complexity filter, (d) the cumulative information-transfer filter,
and (e) the hybrid filter. Highlighted features represent the various filters’ results
on (1) a noisy border, (2) a small feature, (3) a zero-velocity border, and (4) a
region with complex border dynamics (4).

7.6.1 Computational Requirements

The filters’ computational requirements were evaluated in terms of run time and

memory requirements. All experiments were run on Intel(R) Xeon(R) E5410

2.33GHz CPU with 4GB RAM. The algorithms were implemented sequentially

without parallelism.

At each site of the space-time diagram, the LS filter analyzed future light-cones

with depth d = 5 for all possible permutations of the initial configuration within

the site’s perturbation radius. A deeper light-cone depth caused an exponential

increase in execution time and a decrease in accuracy to outline domain borders

(discussed later in this chapter), while a shallower light-cone depth was insufficient

for the LS filter to distinguish between sites with high and low local sensitivity.

The light-cone depth of d = 5 was chosen as a compromise between the quality

of the outlined domain borders and the algorithm’s computational requirements.

The execution time of the filter was approximately 14 hours.

The LC filter logs the occurrences of all unique past and future light-cones

into a frequency matrix M . The GA-evolved 2DCA rules can produce ambiguous

domain borders and make the domain collisions appear “noisy”. The noise and



107

complex domain interactions caused the number of unique light-cone configurations

to reach 19, 000× 19, 000 for light-cone depth d = 2. The light-cone depth greater

than d = 2 caused number of unique light-cone configuration to grow so large that

the algorithm’s execution become infeasible. The number of unique light-cones did

not asymptotically decrease with time, and new configurations were recorded even

at time t = 55. Given these characteristics, the time and space complexity of the

LC filter became prohibitive.

Although the IT filter collects statistics from multiple randomly initialized CA

lattices before analyzing a given CA, this filter is computationally less expensive.

The execution time of a hybrid filter was approximately 20 minutes, and 2, 000

unique 3D cross-like configurations (Figure 7.11b) were detected.

The hybrid filter uses the same 3D configurations as proposed by Lizier et al.

which limits the number of unique past and future configurations. The hybrid filter

uses the original LC algorithm, as proposed by Shalizi et al., to record frequencies of

3D cross-like configurations into matrixM , perform clustering of the past frequency

distributions, calculate the clusters’ complexity, and assign an LC value to each

site. The execution time of the hybrid filter was approximately 2 hours and the

number of unique past and future configurations was around 2, 000.

7.6.2 Results of Filtering

Figure 7.12 presents a side-by-side qualitative comparison of filtering results. The

second column shows the output of an ideal filter, obtained by hand-segmenting

the original space-time diagram to determine the exact location of the domain

borders. In general it is not trivial or definite to decide on the location of the

domain borders. For an automated approach to achieve a comparable quality of

results to the ideal filter, it must take the binary image created by a CA and

outline the domain border by a continuous, single-cell wide edge, disregarding the

noise around the borders, and making a clean, single-cell wide border where two



108

Figure 7.14: A two-dimensional cut of a 3D space-time diagram along the time
axis shows a current site as a black circle, along with the time-slice of its past and
future light-cones. A black domain is shown on the right side of the illustration.
The gray colored sites show an intersection between the future light-cone and the
black domain. The gray arrow shows the range of sites that the LS and LC filters
highlight as a wide blurry border between the white and black domains.

or more domains collide. It must also highlight small and single-cell wide domains

with a narrow edge.

We compared the output quality of the LC, LS, IT and Hybrid filters with

respect to the ideal segmentation. The LS and LC filters highlight domain borders

as wide and blurry bands (Figure 7.14). This is because both filters use pyramid

shaped structures with a wide footprint at depth d. For example, consider a

site near a zero-velocity domain border. The LS filter will perturb the initial

configuration within the perturbation radius and update the sites affected by this

perturbation—a pyramid shape structure. The current site is assigned a non-

zero LS value, despite the fact that neither the original site nor the sites in its

perturbation radius form the domain border, because the light-cone of the affected

sites intersect with the neighboring domain. Analogously, the LC filter will also

assign the current site a non-zero value. This is because the site’s future light-

cone crosses over to the neighboring domain, so the site’s future configuration



109

is that of a border region rather than belonging to a domain. The width of the

border increases for the domains with non-zero velocity. Features 2 and 4 in Figure

7.13 (b,c) illustrate the filters’ failure to detect a small domain and a region with

complex dynamics. The output of the LS and LC filters lacks detail because the

domain borders are highlighted as wide and blurry bands.

The IT filter proposed by Lizier et al. outlines the domain borders with a

narrow line, but fails to detect vertical particles that in 2DCA are represented as

domain borders that do not move (Figure 7.13, feature 3). At such places, the

filter’s output results in boundary discontinuities. Using the IT filter, the location

of a border is also unclear around regions with noisy and complex behavior (Figure

7.13, features 1 and 4, respectively).

Qualitatively, the best filtering results were achieved when the approaches of

Shalizi et al. and Lizier et al. were combined. Figure 7.12, column 6 shows the

results of the hybrid filter. The domain borders produced by the filter are rela-

tively narrow in comparison to LS and LC filters; for example, features 2 and 4 in

Figure 7.13 (e) were highlighted without loss of detail. The filter also accurately

highlighted a section of a domain border with zero-velocity shown as feature 3 in

Figure 7.13e.

The proposed goals for filtering methods (to identify coherent patterns as do-

mains, to outline them with narrow and accurate borders, and to compute the re-

sults in minimal time and memory) were best met by the hybrid filtering method.

The filters proposed by Lizier et al. have qualitatively weaker results, and need

to collect statistics from multiple space-time diagrams. Finally, Shalizi et al.’s LS

and LC filters were computationally the most expensive, and the quality of results

was the worst.



110

7.7 DISCUSSION AND SUMMARY

To start the discussion, let’s pose several questions first: Do the statistical filters

reveal anything about the nature of collective computation in the CAs? What

did we gain by using statistical-based filters? Is there an alternative approach to

statistical data-driven filters that would characterize the collective computation in

the CA lattice?

First, let’s examine how Crutchfield et al. built and validated the computa-

tional mechanics framework for 1DCA [23, 25, 44]. The framework can be sum-

marized as a two step process. First, Section 7.1 describes the process of epsilon

machine reconstruction – a regular-grammar-based filtering technique – to high-

light sites in the CA lattice that seem to be of importance to characterize the

computation in the lattice. At this point, it is only a hypothesis that the high-

lighted regions (later referred to as particles) are responsible for the mechanism of

computation in the lattice. The second step requires building a model that captures

the movement and interaction of particles over time (also called a dynamic model).

After the first several time-steps, the state of a lattice can be described by the reg-

ular domains and the particles that separate these regions. At this point, instead

of using the look-up table to calculate the next time-step, the previously detected

particles are substituted into the lattice as vectors. Each particle is described by

velocity, direction, a position in the lattice, and the interaction outcomes with

other particles. The time and location of the first particle collision is calculated

using vector physics. The particles at the collision site are updated based on the

particles’ interaction table. The position of the remaining non-collision particles

is updated for the current time-step. The process of calculating the next particle

interaction is repeated until the lattice contains no more particles or no further

collisions can be calculated (parallel particles) [50]. Hordijk et al. confirmed that

such a particle-level description of a CA’s dynamics captures the mechanism of



111

collective computation in the 1DCA [52]. The model was validated by comparing

the behavior of several evolved CA rules each on 10, 000 randomly initialized ICs,

with the behavior of each rule’s computational model. Since the model correctly

predicted the CA behavior, the original hypothesis that the patterns of highlighted

sites (particles) capture the mechanism of collective computation in the evolved

CAs was confirmed (for more details see [50, 52]).

This chapter compared the ability of several filtering methods to detect the

domains and highlight the sites that seem to be of importance for the mechanism

of collective computation in 1DCA and 2DCA. As of yet, there is no model to

simulate particle interactions in two dimensions, so it is currently impossible to

validate that the patterns and the dynamics of these sites predict the performance

of the CA lattice.

The claim by Lizier et al. that “the local transfer entropy provided the first

quantitative support for the long-held conjecture that particles are the information

transfer agents in CAs” [71] is unfounded. The filters’ output serves only as an

interpretation of the local site’s “informational significance.” The filters’ output

alone cannot predict the long-term behavior of a non-linear system; the dynamics

of lattice-wide patterns (beyond a site’s neighborhood radius) highlighted by the

filters is what gives rise to the emergent computation in the lattice. This is the rea-

son why a conclusion is premature, and we can only hypothesize if the highlighted

sites correctly characterize the mechanism of collective computation.

It appears that the statistically based filters applied to a one-dimensional den-

sity classification task on Das et al.’s rule φpar detect the same particles as the par-

ticles detected by the regular grammar based filters [76]. Although these particles

were validated by Hordijk el. al.’s dynamic model as information carrying struc-

tures, the similarity between the particles highlighted by the statistically based and

lambda reconstruction filters does not imply that the statistically based filters cor-

rectly detect the structures that capture the mechanism of collective computation



112

in the CAs.

Using the statistically based filters allows for the detection of coherent spatio-

temporal patterns in higher dimensions, the abstraction of domains that consist

of non-trivial patterns undetectable by a regular grammar, and the conceptualiza-

tion of domains and domain borders for rules with noise. The filters proposed by

Shalizi et al. and Lizier et al. suffer from several drawbacks. These include Shalizi

et al.’s poor resolution of highlighted border regions, and infeasible computational

requirements due to the large number of unique light-cone configurations. In ad-

dition, Lizier et al.’s filters are unable to detect zero-velocity domain borders or

small domains. The best results in terms of the accuracy in highlighting domain

borders and of the computational requirements were achieved by combining these

two filtering methods, creating a hybrid filter.



113

Chapter 8

DYNAMIC MODEL

The previous Chapter defined and tested statistically based filtering techniques

as the first step towards understanding the nature of emergent computation in

a two-dimensional cellular automaton. The filters identified the coherent spatio-

temporal structures with information content. The coherent domain patterns were

identified by the filters as information storing or having low information complexity.

The domains were “subtracted” from the lattice, and the domain borders were

revealed as the information carrying structures. The hypotheses that the structures

highlighted by the filters accurately describe the mechanisms of computation must

be confirmed.

One way to validate this hypothesis is to build a dynamic model that simulates

CA behavior from the structures outlined by the filters and their kinematic prop-

erties. At the earliest time-step at which the domain borders are clearly visible in

a CA lattice, a dynamic model measures the velocities of the domain borders and

capture the outcome of interactions among domains. Next, the model simulates

the evolution of the domain borders for the subsequent steps using the measured

domain velocities. The model does not use the CA lattice updates—the model

simulates only the velocities and interactions properties of the domain boundaries

(also referred to as an information-theoretic model). If the behavior of the dy-

namic model correctly predicts the computational performance of the CA on a

large number of randomly initialized configurations, then the evidence supports

the hypothesis that the structures highlighted by the filters are the information

carrying structures in the lattice.



114

First, this Chapter will extend Hordijk et al.’s model of information processing

from 1DCA (see Chapter 6 for more details) into two dimensions. The results

of the filtering methods will be reviewed as the basis for the dynamic model in

two dimensions. Level Set and Narrow Band Level Set methods are popular tools

for modeling the evolution of two-dimensional interfaces. The hypothesis to be

tested here is that Level Set Theory is a good framework for developing a model

of particles (contours) in two-dimensions. Section 8.2.1 explores the arguments

for why I chose to explore this hypothesis. The second half of this Chapter will

introduce these methods, define them in terms of a dynamic model for 2DCA,

and outline the issues with their implementation. Finally, Sections 8.3.3 and 8.3.2

show why the hypothesis was determined to be false. I show why it is impossible to

predict CA behavior from space-time diagrams using Level Sets or Narrow Band

Level Set methods.

8.1 MODEL OF INFORMATION PROCESSING IN 2DCA

The overall approach to characterize the mechanism of computation in 2DCA is

the same as Hordijk et al.’s analysis of 1DCA behavior (see Chapter 6 for more

details). Such a 2DCA model would simulate the time evolution of the information

carrying structures that were identified by the filters. Such an effort requires

describing the velocity and deformation of the structures, defining the mechanism

of domain interactions, and characterizing the outcome of domain collisions. Figure

8.1 illustrates the necessary steps to build a model of computation for 2DCA. The

first two steps demonstrate the application of filtering methods, while the rest of

the illustration describes the details of a dynamic model.

Chapter 3 analyzed the behavior of GA evolved rules for 2DCT. The behavior of

the rules found by myself, Marques-Pita, and Wolz & de Oliveira shows the lattice

settling into domains with well-defined structures (see Appendix A for bit-string

representations of these rules). The domains change their shape and location in



115

(a) CA behavior (b) Apply filter (c) Simplify (d) Measure forces

(e) Build model (f) Advance model (g)Compare with CA

Repeat

Figure 8.1: Illustration of steps required to build a model of information processing
in 2DCA. From left to right: (a) original space-time diagram after lattice settles
into black and white domains, (b) the lattice configuration is analyzed by filters
to highlight information-carrying structures, (c) domain borders are simplified as
single-cell wide lines, (d) the velocity of the domain borders is measured from two
space-time diagrams δt time steps apart (showed as gray areas), (e) initial border
location and border forces are used to build a model, (f) the domain borders
are iteratively advanced using measured forces, and (g) these iterated borders are
compared to the borders found when the CA lattice uses the LUT to update its
configuration.



116

space and time. A domain dynamic might result in its annihilation or interaction

with another domain (or itself). The domain interactions can be described as

fusion, absorption, diffusion, and permeation. The first step in Figure 8.1 shows

the CA lattice at the time when the domains are clearly identifiable and their

motion is apparent as well—also referred to as the time of measurement. The time

of measurement is established empirically, and might come later in time than the

condensation time. The condensation time is the first time-step when the lattice

can be described by the coherent spatio-temporal patterns and border regions in

between adjacent patterns (or domains and particles). The difference between the

condensation time and time of measurement is the ability to measure the domain’s

kinematic properties, which might not be visible at the condensation time.

The second step in the process is to identify the coherent spatio-temporal struc-

tures in the lattice. The statistically based filters are one way to highlight these

structures, since the regular language based filters were not extended to analyze

two-dimensional domain patterns. The hybrid filtering method described in Chap-

ter 7 most accurately identified the sites with high versus low information content.

In the next step, the lattice sites with low-information content (sites that sim-

ply store information) are subtracted from the lattice. This reveals the sites that

propagate information through the lattice — the particles. The hybrid filter high-

lighted particles as a narrow band, and the simplification step in Figure 8.1 shows

particles being simplified by a single-cell wide contour line. A third-degree spline

technique can be used to approximate the contour’s location.

So far, the model describes the simplified particles and their location in space

and time. The next step is to measure the kinematic properties of the contours, so

a model can simulate the contour’s evolution over time. The kinematic properties

are described as a force field that causes the curve’s deformation from the current

step to the curve’s shape and position in the next time step. The acting forces on

the curve’s surface are marked as the gray areas in the model’s sketch. Although



117

the model definition is incomplete, the space-time diagrams are no longer needed

as the model’s input. At this time, the model’s dependence on the lookup table

updates of the CA lattice is severed. See Section 8.3 for a detailed discussion on

how to construct the curve deformation force field.

Finally, the Narrow Band Level Set (also known as the Fast Marching Methods)

implementation of the Level Set Theory can be used to simulate the evolution

and the interaction dynamics of a two-dimensional interface [113]. This robust

mathematical model will calculate the contour’s next position in space and time by

applying the force field to the curve, causing its deformation. This step completes

the model’s construction. (See Section 8.2 for more details.)

The model will simulate the particle motion and its interactions by updating

the curves’ location, and advancing the force field along with the curve. The

model’s accuracy is assessed by comparing the shape and location of the model’s

contours with the location of actual domains in the CA lattice. If the behavior of

the model coincides with the behavior of a CA lattice, then the model describes a

mechanism of computation in 2DCA.

8.1.1 Difference of Analytical Scope in 1DCA and 2DCA

It is important to remark that the approach of Hordijk et al. predicts the behavior

of a CA rule only at the coarsest analytical level. Specifically, the model was

considered predictive of CA behavior if the number of correctly classified ICs was

similar. While this measure indicates whether the model would be a good high-

level simplification of the CA rule, it does not consider whether it provides the

same expressiveness of a given IC, nor whether the expressiveness is true to the

system itself.

The motivation for this thesis is to understand how the 2DCA solves a given

task, at the scope of the lattice-wide information-carrying structures. A dynamic

model based on Hordijk et al.’s analytical scope would have treated 2DCA as a



118

“black-box” by comparing the performances of a model with that of a rule. The

opposite side of the modeling spectrum would be to replicate the exact behavior

of a 2DCA on a cell level, but that is not the intention of this work either. The

goal of the dynamic modeling in this thesis is to analyze the system on a scale

somewhere in the middle – the scale of the lattice-wide information-carrying struc-

tures. In the future, a dynamic model at this analytical scope might allow better

engineering of CA-like architectures, application of the proposed analysis to other

fields, and design of custom built rules to solve a given problem. The utility of such

analysis would be difficult to realize if a model would not simulate the velocities

and interaction of the highlighted structures.

8.2 BACKGROUND: LEVEL SET THEORY

Level Set Theory (LST) was first introduced by Osher and Sethian [113] as a simple

method used to describe the dynamics between two regions on a two-dimensional

lattice. The interface (Γ) defines a boundary region between two adjacent regions,

which may represent objects in a segmented image [62], a boundary between con-

tracting or expanding gases [33], or various multi-phase compressible and incom-

pressible materials [49]. The purpose of this method is to compute the motion of

the interface between two environments. Each point of the interface is described by

its dynamic properties, interaction rules, and information about the neighboring

regions. Figure 8.2 illustrates the motion of the boundary region (an interface) at

selected points.

Level Set Theory has been successfully used on digital video segmentation [62],

tracking the location of neural stem cell clusters [59], simulation of combustion

principles, growth of crystalloid structures, two-fluid flow mechanics, minimal sur-

face and shape recovery, etching and deposition in the micro-fabrication of semi-

conductor devices [113], and simulation of viscosity and surface tensions in multi-

phase interfaces [49]. The rendered 3D composition of interface time steps was



119

Figure 8.2: Illustration of the level set interface evolution in two dimensions. The
interface Γ at time t0 (black) and at time t1 (gray). Each point of the interface is
assigned both velocity and direction. The arrows in the image display the motion
vector for selected points of the interface. The figure shows a GA-evolved CA for
the two-dimensional density classification task in two consecutive time steps with
the regular domains filtered out manually.

used to create special effects in movies such as Terminator III, Star Wars: Episode

III, and Poseidon [33].

8.2.1 Level Set as CA’s Dynamic Model

Rather than updating the next position of the contour that represents a parti-

cle manually, some of the advantages of using the Level Set Method to calculate

position include: the discrete definition of a front, the continuity of the evolving

contour, prevention of the swallowtail effect, proper interface collapse, and the

ability to propagate acute domain edges. The graphics in Figure 8.3 illustrate

these advantages.

The power of Level Set Theory (LST) lies in its flexibility. Each point on the

interface is unique in terms of its spatial location and its dynamic properties. LST’s



120

(a) (b) (c) (d) (e)

Figure 8.3: Illustration of the advantages of LST shows a. discrete definition of
a front, b. proper interface collapse, c. contour continuity, d. prevention of a
swallowtail effect, and e. advancement of a sharp edge. The black arrows mark
the forces acting on the contour, and the black lines represent the initial and the
final position of a contour. The gray lines show the intermediate contour positions
as if the contour would be advanced manually (without the use of LST).

discrete definition of the interface allows the simulation of front advancement with

non-uniform velocity. Figure 8.3 (a) illustrates this concept by showing the initial

contour as a black line and its deformation using black arrows to mark the forces.

The direction and velocity of the evolving front is described by the forces that

cause its deformation; the LST does not have any other constraints.

The CA behavior might show domains that shrink with a non-uniform rate

of deformation. Before a domain disappears, it might split into smaller sections

that will keep decreasing. The LST can simulate such behavior by continuously

shrinking an interface until it eventually splits into separate contours. Figure 8.3

(b) shows such behavior.

If the direction of forces is reversed, a contour representing a domain border will

expand outward. The expansion of a concave contour is illustrated in Figure 8.3

(c). Updating the position of a contour manually would result in a discontinuity

in a place of expansion. The LST guarantees contour continuity as well as proper

scaling of a contour’s shape by increasing the grid resolution in places of contour

expansion (also called adaptive mesh refinement [113]). The same technique is

used to accurately propagate other curve features such as an edge of a domain

with a sharp edge (e).



121

Figure 8.4: Illustration of a Narrow Band Level Set evolving a two-dimensional
interface that represents a 2DCA particle. The gray grid lines represent a narrow
band of points surrounding the interface that require their values to be recalculated.
The solid gray circle marks grid points that the contour sections marked A, B, and
C will pass through.

The last example where LST simulation is computationally beneficial is pre-

sented by a shrinking domain with two non-parallel borders moving towards each

other. The reduction of the level set points that represent such a domain border is

needed when two parts of a contour travel towards each other. The swallowtail ef-

fect, shown in Figure 8.3 (d), occurs if each point of a level set is updated manually,

regardless of the contour’s original shape. The LST will automatically reduce the

number of points where a curve contracts, which will prevent the “criss-crossing”

of the contours and creation of a swallow-tail like shape.

8.2.2 Narrow Band Level Set (NBLS)

The above section illustrated the utility of Level Set Theory to simulate evolution

of an interface in two dimensions. It is crucial to notice that the deformation was

done by forces originating in each point of the contour. The forces are independent

of the local properties of the front (such as its curvature and normal direction), as

well as the contour’s global properties (such as its relative position on the lattice).

This means that the forces cannot be inferred from the curve’s shape and location,

but have to be determined from the CA dynamic.



122

Furthermore, the deformation forces can be assigned only to the grid points that

represent the contour itself. In other words, the forces cannot be pre-calculated

for the entire lattice. If two points of a contour lie on the same trajectory, the

grid points would have to be assigned two different force values to account for the

velocity of each contour. The solid gray circle in Figure 8.4 marks such a location.

The contour sections A, B, and C will all pass through the grid points in the gray

circle. Each grid point in the gray circle would have to represent at least three

force vectors needed to advance the appropriate contour segment. Since each grid

point can hold only a single vector value, the forces have to be propagated through

the lattice along with the advancing front. This is the main reason why the forces

can be assigned only to a narrow band of grid points around the evolving contour.

After the contour position is updated (at the next time step), the force field has to

be reinitialized for the new contour position. The Narrow Band Level Set (NBLS)

refers to the narrow margin of grid points that are subject to an update. Figure

8.4 shows this set as gray grid lines surrounding the contour.

All GA-evolved rules for the 2D density classification task using the r = 1

Moore neighborhood have black and white domains with the movement velocity

not exceeding three cells per update. The NBLS algorithm has to compute the

force field for a three cells-wide band around each domain contour-line and can

ignore the rest of the lattice.

8.3 MEASURING THE INTERFACE VELOCITIES

Before diving into the problem of measuring the force field that models the particle

deformation, let’s step back and look at the categories of existing LST applications

and compare them with the requirements of an information-processing model for

2DCA. The LST was designed to simulate the propagation of a 2D interface in

a physical system. The numerous applications include modeling of ocean waves,

gas expansion, image segmentation, object disintegration, and flame visualization.



123

With only a few exceptions, each application falls into one of two categories. The

applications in the first group use an explicitly defined 3D object while the level

set represents a two-dimensional cut of the object. For example, a gray-scale image

segmentation is performed by LST by embedding the two-dimensional image into

a three dimensional space. The gray value of each pixel is interpreted as the value

in the third dimension. A level set will outline the boundaries of an object in the

image by placing a small initial level set inside of an object, then expand the level

set interface using a constant polar force field originating inside of the set. The

contour will advance until the pixel gradient is too high or the contour’s plasticity

won’t allow its further advancement. The gray pixel value servers as a barrier for

the front’s advancement, while the motion of the level set “climbs” the explicitly

defined 3D surface.

The second category of applications include simulations of well-understood en-

vironments. One such example is the breaking of an object due to an impact.

After initial force is applied to a 3D model of an object, the LST simulates the

energy propagation through the object and updates the bonds between the points

that represent given object. The laws of force propagation and material properties

of the object are well known and understood. The state and velocity of each ob-

ject point is updated using the model’s energy equations. Most importantly, the

environment does not have to be homogeneous, but the behavior of each point of

the model is governed by the same set of principles.

The simulation of a 2DCA’s dynamic properties seems to be in a category of

its own. First, there is no explicit 3D surface to follow. Instead, the velocity

of the contour’s deformation is measured from the observed CA behavior. The

3D “object” is iteratively constructed by advancing a domain’s border using the

measured velocities. The 3D “object” in this case represents a domain’s shape

and interaction with other domains over time. Second, the interface advances in a

non-linear fashion. A configuration of each neighborhood is updated by a lookup



124

(a) Forces normal to tan-
gent

(b) Point correspondence
forces

(c) Curve advanced by ei-
ther force

Figure 8.5: Illustration of measuring forces for an advancing front. The black
curve shows a contour’s initial position, while gray depicts the contour’s location
in a later time. (a) Forces are measured as the shortest distance between the
two contours at each point. (b) Forces are measured as the distance between
the corresponding features in the starting contour and the feature location in the
advanced contours. The features mark 1: convex apex, 2: concave apex, 3: flat
section, and 4: convex apex. (c) The dotted contour marks the position if normal
forces were used to advance the initial contour. The solid curve shows the contour
position if the correspondence forces were used; this contour location also marks
the actual location of the domain border in the CA lattice.

in a rule table that is 512 bits long. In terms of the lattice dynamics, let’s think

of the update options as 512 degrees of freedom that are interpreted as the front’s

motion in two-dimensional space. The following sections will explain the non-linear

border dynamics in more detail.

8.3.1 Solving the Correspondence Problem

As described earlier, the forces acting on a contour are independent of local curve

properties such as curvature and the direction normal to the contour, as well as

the global properties, such as the domain’s relative position with respect to the

rest of the lattice. The direction of a contour’s deformation has to be solved for

each point independently.

Figure 8.5 (a) and (b) show two ways of measuring forces that caused a curve’s

deformation from its initial shape to its subsequent shape at time t = t + 1.

Although each measuring method can produce different deformation forces, the

shape of a curve at time t = t + 1 should be identical regardless which set of



125

forces was used. How accurately the forces predict the shape of an evolving front

is assessed by further advancing the curve (multiple time-steps) and comparing the

contour’s shape with the shape of the actual domain in the CA lattice (Figure 8.5

(c)).

A point-wise measurement of the closest distance between two curves is an

obvious way to assign the forces that caused the curve’s advancement. At each

point, the distance between two curves can be calculated as a normal distance to

the curve’s tangent or as a Hausdorff distance [91]. Figure 8.5 (a) shows measuring

the deformation forces between two curves as a normal distance. Although the LST

is designed to maintain the curve’s continuity, it will not maintain the curve’s shape

if the measured forces are sparse, as shown in the figure. The resulting curve will

be jagged if the forces are not populated for each point on the destination curve.

Due to a contour’s expansion, additional force interpolation is required to fill in

the concave segments of the curve. For the purpose of a dynamic model, the

forces measured as a normal or a Hausdorff distance will result in low accuracy

of predicting future contour shapes and positions. The subsequent contour shapes

simulated by the LST model will drastically differ from the shape of the original

domain border (Figure 8.5 (c)).

The ideal method of measuring the contour’s advancement would describe the

force on each point as a correspondence between its original location and its new

location on the curve at a later time. This type of measurement is referred to as a

correspondence force, since it aims to match each point on the original curve with

its location on the curve time t + 1 (Figure 8.5 (b)). One way to achieve this is

to measure the distance between pairs of matching features on the initial and the

advanced curve (marked as features 1-4 on Figure 8.5 (b)). The points in-between

the features will have forces approximated with respect to the forces measured for

the neighboring features. This approach is difficult to implement because: (1) the

hybrid filter highlights the domain borders by a narrow band which smooths the



126

original features of a domain border, (2) the precise location of features, such as an

apex of a broad concave contour, is unclear, (3) a domain border has no clear edge;

instead a collection of sites is interpreted as a front location (4) a domain border

advances in a non-linear fashion, which makes modeling of the front advancement

by estimating the deformation forces by linear vectors insufficient, and (5) a domain

border can have complex behavior with no apparent features and no velocities,

yet forces will originate in this region and propagate into the rest of the border.

Since the last two points attest to more than just implementation difficulties, the

following sections will discuss these two problems in more detail.

Figure 8.5 (c) shows how the above-described techniques predict the curve’s

shape and position in a subsequent time-step. The dotted line represents the

curve position advanced by the normal forces, while the solid line was rendered

using the correspondence forces. In this example, using the correspondence forces

yields the curve closet to the shape of the actual domain border.

8.3.2 Noise versus Information

Even though solving the correspondence problem will render accurate initial be-

havior of the dynamic model, it will not account for the non-linear advancement

of the domain border. Figure 8.6 shows an example illustrating an abrupt stop

in the velocity of an advancing front and Figure 8.7 compares the contour shapes

simulated by a model using the correspondence forces with the shape of a domain

in the 2DCA lattice.

Chapter 7 discussed various 2DCA filters and their ability to highlight domain

borders. The role of individual sites was not analyzed with respect to the front’s

motion. In other words, the filters abstracted a collection of sites that formed

an advancing front into a domain border. From the perspective of the domain

border’s dynamics, the original observation that the border motion in the GA

evolved rules is linear with noise might have been premature. For example a



127

(a) t = 59 (b) t = 64 (c) t = 69

(d) t = 74 (e) t = 79 (f) t = 84

Figure 8.6: Cenek’s rule for the two-dimensional density classification task. Lattice
configurations are shown at times t = 59, 64, 69, 74, 79, and 84. A section of a black
domain has a border marked with a gray line that suddenly stops advancing. The
domain border was outlined manually.



128

(a) Original border loca-
tions

(b) Measure forces (c) Advanced border by
forces

Figure 8.7: A comparison of a domain behavior in a CA lattice (Figure 8.6) with
a simulation of the domain border by a model using the correspondence forces.
a. Border locations in the original CA (Figure 8.6) after the border segments
were stacked on top of one another. b. Solving the correspondence problem and
assigning the deformation forces to the border (black arrows). c. Location of the
border by advancing its original location using the correspondence forces. The
subsequent contours were attained by advancing the forces to their next location
(gray arrows). Notice the shape difference between the CA border locations in (a)
and the contours simulated by advancing a model at times t = 74, 79, and 84 (b)



129

black site on a white background in the vicinity of a domain border is perceived

as noise. These sites are not left-overs from the random initial configuration;

instead they are being constantly generated (and consumed) by the updates of

sites that make up the noisy domain border. The LC filters will place such a site

into a causal state that represents the domain border; the IS and IT filters will

also highlight such a site as the domain border due to its low statistical count.

Although filters group such sites with the sites of the border region, the CA lattice

updates will use this seemingly noisy site for an update in all of its neighboring

sites (including its own value). The updates that use this noisy site in a vicinity of

the domain border might cause a sudden change in the border’s dynamics. After a

close examination of the CA behavior in Figure 8.6, it appears that the sites that

were originally considered noise around the domain border caused the abrupt stop

of the border’s advancement. This change was not a gradual attenuation of the

front’s advancement, but a sudden stop.

Figure 8.7 shows the difference between the behavior of the domain’s border

in the CA lattice (a) and the behavior of a border contour simulated by a model

(c). The model used the correspondence forces (b) to calculate the contour’s

advancement. The domain border in the CA will unexpectedly stop advancing

at step t = 74, while the correspondence forces in the model keep advancing the

contour in subsequent steps t = 74, 79, and 84 (Figure 8.7 c).

This example illustrates that the abstraction of a domain’s border as a smooth

contour that propagates information is lossy for the purpose of building a dynamic

model. The filters will categorize the site configurations around the domain’s front

as part of its border, but the same sites were used by CA updates and they caused

an unexpected change in the domain’s velocity. Since the dynamic model does not

use the LUT to predict the front’s velocity, it could not predict the sudden stop of

the domain’s advancement.



130

8.3.3 Hidden Forces and Complex Regions

The CA behavior during the initial lattice updates is highly complex. The con-

densation time is the first time-step of the CA configuration at which the lattice

behavior can be described by coherently formed domains and particle regions in-

between these structures. It is unclear what exactly happens during the initial

lattice behavior, but the outcome is clear: an “orderly” CA behavior with well-

formed domains that propagate through the lattice. The construction of a model

has assumed that the lattice behavior after the condensation time would not slip

back into “chaotic” behavior. Figure 8.8 shows the occurrence of highly complex

behavior at the domain border which appears much later than the condensation

time. The region with complex behavior did not originate from a collision between

two domains, but appears in a domain border, between two well defined, linear

border segments.

Figure 8.9 (a) shows the CA behavior of an advancing domain border for the

same CA illustrated in Figure 8.8. In the movement from time-step t = 40 to

t = 45, the contour features are clearly visible and the correspondence forces agree

with the direction of front’s movement (shown as the illustration (b)). At time

t = 50, the behavior of the region inside of the circle changes unexpectedly. The

domain border moves in the opposite direction from its original velocity. The left

side of the border region changes its pitch and stops moving in the subsequent

updates. There are no other domain features or interactions with other particles

that caused this change in behavior. This observation supports the hypothesis that

the changes in the border’s behavior were caused by the forces that originated in

the highly dynamic region shown inside of the circle. The previously assessed

correspondence forces could not predict such behavior. Figure 8.9 (c) shows the

shape of the contours as predicted by a model using correspondence forces.

It appears that the border’s complex region caused the stagnation of the bor-

der’s left segment. The size of the complex region continuously decreases between



131

(a) t = 40 (b) t = 45 (c) t = 50

(d) t = 55 (e) t = 60 (f) t = 65

Figure 8.8: Cenek’s rule for the two-dimensional density classification task. Lattice
configurations are shown at times t = 40, 45, 50, 55, 60, and 65. A section of a black
domain has a border marked with a gray line that suddenly reverses its direction
of advancement, stops for several steps, and then starts moving again. This border
region is located approximately in the middle of the highlighted domain border.
The domain border was outlined manually.



132

t=40
t=45t=45

t=50
t=55

t=60
t=65

t=40

t=50

t=45
t=65

t=55
t=60

t=40

t=40
t=45
t=50

t=55
t=60

t=65

t=40
t=45
t=50
t=55
t=60
t=65

(a) Original border locations (b) Measure forces (c) Advanced border by forces

Figure 8.9: A comparison of a domain behavior in the original CA (Figure 8.8)
and the simulation of a domain border by a model using the correspondence forces.
a. Shows the border locations in the original CA (Figure 8.8) after the border
segments were stacked on top of one another. The circle in the middle of the
outlined border points to a region with complex behavior. The domain border
originally moved from left to right, then retracted to its original position, did not
advance for a couple of steps, and resumed its motion in steps t = 60 and 65. b.
Shows how to solve the correspondence problem and how to assign acting forces
to the border (black arrows). c. Shows the location of the border by advancing
its original location using the correspondence forces. The subsequent contours
are attained by advancing the correspondence forces to their next location (gray
arrows).



133

time t = 50 and t = 65, because the right side of the domain border keeps ad-

vancing. The complex region disappears when the advancing segment on the right

catches up with the motionless segment on the left. Just before this happens at

time t = 65, the left side of the domain border resumes its original pitch and

velocity. What caused this change of motion? It appears that when the size

of the complex region was the same as the neighborhood diameter (three sites),

the moving contour segment sent a “signal” into the motionless contour segment,

prompting advancement of this otherwise stagnant part of the contour. This can

explain the origin of new forces in the advancing front. More importantly this

force or signal was not present in the originally measured force field and it could

only originate for the actual output bits stored in the rule’s LUT.

8.4 CONCLUSION AND DISCUSSION

Although the Narrow Band Level Set method is a useful tool to simulate evolution

of a two-dimensional interface in many problems, it will not accurately predict the

behavior of a 2DCA lattice. A dynamic model of information processing would

benefit from the NBLS’s utilities (such as resolving interactions between particles,

shrinking and expanding of a front, etc.), but the forces used by the model to

calculate the front’s deformation can not be inferred from the velocities of the

domain boundaries. Finding a solution to the correspondence problem between

two curves would create the most accurate force field to simulate the initial curve

deformation, but the forces can not predict the unexpected border behavior.

In this thesis, the goal of the dynamic modeling is to build a computational me-

chanics framework to describe the mechanism of collective computation in 2DCA.

It is possible that a dynamic model has a wrong definition of curve deformation,

but still gets the same performance as the CA lattice (as Hordijk et al.’s model for

1DCA). I proposed a stricter definition of the dynamic model; one that requires

accurate prediction of the highlighted two-dimensional structures in 2DCA. This



134

requirement would allow for a more informative understanding of the information-

carrying patterns in a lattice.

Information modification in a 1DCA model is expected only where two par-

ticles collide. Each particle in one dimension represents a border between two

domains, and a particle collision represents processing of information between two

or more different domains. Although the collisions between domains in 2DCA

have an analogous meaning, the examples in Sections 8.3.2 and 8.3.3 illustrate ad-

ditional information modification in a domain border itself. The non-trivial border

behavior caused a section of the domain border to unexpectedly change velocity

and direction. This behavior cannot be predicted by the correspondence forces

that were inferred from the CA’s space-time behavior after its initial unstructured

phase. The unexpected border behavior can occur at much later updates (times

t = 59 and t = 40), and the phenomenon can be explained only from the observa-

tions of a CA lattice. Although the counterexamples explain why the model could

not predict the curve deformation that represents a domain border, the potential

use of NBLS to simulate CA behavior should not be disregarded. There might

be a different way to calculate the forces to accurately predict a CA’s behavior.

Due to a non-linear motion of the domain borders, the behavior of a dynamic

model that uses the correspondence forces is different from the behavior of the

information-carrying structures highlighted by the filters.

An alternative approach of computing forces for the NBLS-based dynamic

model is to use the lookup table itself. In other words, the velocity and the

direction of the domain border would be inferred from the CA rule. This approach

would have to interpret the meaning of the LUT bits with respect to the border

behavior. Such analysis is very difficult because it relies on bridging two analyti-

cal scopes. The rule table describes the output bits for a cell’s update — a micro

scope, while the dynamic model simulates the behavior of the lattice-wide patterns

— a macro scope. The analysis would use principles from a micro scope to explain



135

phenomenon on a macro scope level. This would require solving fundamental is-

sues such as reducing degrees of freedom (from a 512 bit LUT to a two-dimensional

vector space), mapping between different domains (bits in a LUT to a force field

in a dynamic model), and translating the updates of multiple individual sites to

a collective-behavior representative of a border motion. The difficulty of this ap-

proach is comparable to connecting the meaning of alleles to explain the cause of

genetic disease in biology, the principles of molecular self-assembly to explain the

surface properties in material science, and the laws that govern quantum mechanics

to explain the macroscopic system behavior in physics.



136

Chapter 9

RELATED WORK

In general, it is unknown how to effectively “program” CAs to perform compu-

tations or what are the best information-processing dynamics in CAs that would

accomplish a task. This chapter gives a brief summary of related work on different

approaches for finding CA rules for given tasks as well as methods for analyzing

rule performance. Previous work on early models of computation in CA can be

found in Section 2.2 while Section 4.2 gives background on different strategies to

evolve CA rules with GA. The following sections summarize Andre et al.’s genetic

programming approach to evolve CA rules, Sipper’s parallel cellular machines as an

alternative definition of CA and his approach to program these systems, resource

sharing technique as an alternative way to preserve genetic diversity in evolving

populations, and Marques-Pita’s re-description of a binary rule representation.

The final section contains brief mention of other related research.

9.1 GENETIC PROGRAMMING

Andre et al. [2] applied genetic programming (GP), a variation of GAs, to the

density classification task. GP methodology also uses a population of evolving

candidate solutions, and the principles of reproduction and survival are the same

for both GP and GAs. The main difference between these two methods is the

encoding of individuals in the population. Unlike the binary strings used in GAs,

individuals in a GP population have tree structures, made up of function and



137

or

xor not

and

xor

EE C

W C

E WWW

nor

and

not

xor

WW E

W Cnot

nand

EEE W

not

and

xor

xor not

xor

EE C

E WWW

nor

and

not

xor

WW E

EE C

not

nand

EEE W

not

and

W C

WWW WW W C E EE EEE

CA neighborhood r=3

TerminalSet={WWW, WW, W, C, E EE, EEE}

FunctionSet={and, or, nand, nor, xor, not}

Crossover:

Mutation:

Parents

Offspring

and

Figure 9.1: An example of the encoding of individuals in a GP population, similar
to the one used by Andre et al. [2]. The function set here consists of the logical
operators {and, or, not, nand, nor, and xor}. The terminal set represents the
states of cells in a 1DCA neighborhood, here {Center, East, West, EastOfEast
WestOfWest, EastOfEastOfEast, WestOfWestOfWest.} The figure shows the
reproduction of Parent1 and Parent2 by crossover with subsequent mutation to
produce Child1 and Child2. Reprinted from [15].

terminal nodes. The function nodes (internal nodes) are operators from a pre-

defined function set, and the terminal nodes (leaves) represent operands from a

terminal set. The fitness value is obtained by evaluating the tree on a set of test

initial configurations. The crossover operator is applied to two parents by swapping

randomly selected sub-trees, and the mutation operation is performed on a single

node by creating a new node or by changing its value (Figure 9.1) [64, 65].

The GP algorithm evolved CAs whose performance is comparable to the per-

formance of the best CAs evolved by a traditional GA.

Unlike traditional 1DCAs that use crossover and mutation to evolve fixed length



138

genome solutions, GP trees evolve to different sizes or shapes, and the subtrees

can be substituted out and added to the function set as automatically defined

functions. According to Andre et al., this allows GP to better explore the “regu-

larities, symmetries, homogeneities, and modularities of the problem domain” [2].

The best-evolved CAs by GP revealed more complex particles and particle inter-

actions than the CAs found by the EvCA group [24, 51]. It is unclear whether the

improved results were due to the GP representation or to the increased population

sizes and computation time used by Andre et al.

9.2 PARALLEL CELLULAR MACHINES

The field of evolving CAs has grown in several directions. One important area

is evolving non-homogeneous cellular automata [47, 119, 120, 130]. Each cell of

a non-homogeneous CA contains two independently evolving chromosomes. One

represents the LUT for the cell (different cells can have different LUTs), and the

second represents the neighborhood connections for the cell. Both the LUT and

the cell’s connectivity can be evolved at the same time. Since a task is performed

by a collection of cells with different LUTs, there is no single best performing

individual; the fitness is a measure of the collective behavior of the cells’ LUTs

and their neighborhood assignments [118, 120].

One of many tasks studied by Sipper was the global ordering task [119]. Here,

the CA has fixed rather than periodic boundaries, so the “left” and “right” parts

of the CA lattice are defined. The ordering in any given IC pattern will place all

0s on the left, followed by all 1s on the right. The initial density of the IC has

to be preserved in the final configuration. Sipper designed a cellular programming

algorithm to co-evolve multiple LUTs and their neighborhood topologies. Cellular

programming carries out the same steps as the conventional GA (initialization,

evaluation, reproduction, replacement), but each cell reproduces only with its local

neighbors. The LUTs and connectivity chromosomes from the locally connected



139

sites are the only potential parents for the reproduction and replacement of cell’s

LUTs and the connectivity tables respectively. The cell’s limited connectivity

results in genetically diverse populations. If a current population has a cell with a

high-fitness LUT, its LUT will not be directly inherited by a given cell unless they

are connected. The connectivity chromosome causes spatial isolation that allows

evolution to explore multiple CA rules as a part of a collective solution [119, 120].

Sipper exhaustively tested all homogeneous CAs with r = 1 on the ordering

task, and found that the best performing rule (rule 232) correctly ordered 71%

of 1000 randomly generated ICs. The cellular programming algorithm evolved a

non-homogeneous CA that outperformed the best homogeneous CA. The evolu-

tionary search identified multiple rules that the non-homogeneous CA used as the

components in the final solution. The rules composing the collective CA solution

were classified as state preserving or repairing the incorrect ordering of the neigh-

borhood bits. The untested hypothesis is that the cellular programming algorithm

can discover multiple important rules (partial traits) that compose more complex

collective behavior.

9.3 RESOURCE SHARING

The spatial extension of evolution and coevolution algorithms, discussed in Sections

4.2.2 and 4.3, is used to maintain higher genetic diversity during evolutionary

search. Resource sharing is another method for preserving diversity in evolving

populations. This method can use a single population view, or be applied on more

than one coevolving populations. The algorithm views training examples as a

“resource” that is shared among the candidate solutions being evolved. Resource

sharing can be applied on most of the algorithms described in this chapter [40, 58,

106, 133, 135].

The resource sharing method defines a host’s fitness based on the number of



140

successful evaluations of test cases and on how many other hosts successfully eval-

uated these tests. Fitness(h) =
∑

j=Tests
1
Nj

where Tests are the successfully

evaluated test cases by host h, and Nj is the number of other hosts that correctly

evaluated the tests j. Let’s look at an example: a host successfully evaluated three

ICs out of five. The three test cases were successfully evaluated by five, six, and

two other hosts respectively. The fitness value for this host will be the sum of one-

fifth, one-sixth and one-half (Figure 9.2). The intuition behind resource sharing

is that the hosts that defeat a rarely defeated test case will be awarded by large

fitness fraction. This makes the hosts more viable to reproduce and their scarce

genetic trait will have a better chance of being passed on to offspring generation.

Resource sharing was one of the adaptive fitness strategies used by Oliveira

et al. that found the best-performing rules on density classification and global

synchronization tasks [94]. Their approach also yield large quantity of high per-

forming rules for these tasks, which supports the theory that the resource sharing

helps preserve genetic diversity in evolving populations.

9.4 AITANA

In Section 5.4 we briefly stated a hypothesis that there might be a connection be-

tween the rules’ structure and symmetry and the rules’ behavior and performance.

This observation was based on the ability to reverse some rules that solve the den-

sity classification task and end up with rules that solve the global synchronization

task.

Marques-Pita et al. explored the notion of rule symmetry and was able to re-

describe a binary array representation of a given rule by a compact set of schemas

using the rule’s structure and symmetry [79, 81, 82, 83]. A schema basically refers

to a lookup table entry. It has a size of a neighborhood diameter including the cell

that is being updated, and in addition to the binary states 0, 1 it also uses a wild-

card character. The wild-card character # allows for a single schema to describe



141

Test Cases

Candidate Solutions

Figure 9.2: An example of a resource sharing fitness evaluation. The edges between
the test cases and the candidate solutions denote successful evaluations of tests by
candidate solutions.

multiple update patterns where a particular bit value does not influence the update

output. The schemas were further subdivided into two sets: a generation set has

schemas that always update the current site to 1 and an annihilation set has

schemas that always update the current site to 0. An example of a generative

schema {1, 0, 1, 0,#,#,#} for r = 3 1DCA will update the center site to 1 for any

neighborhood where the state of the center site is 0 and the left neighborhood has

values 1, 0, 1. The configuration of states on the right of the current site does not

matter.

Aitana is the name of the program that discovers such schemas. It not only

provides a compact representation of a binary rule table with high symmetry and

structure, it also augments the search space for potentially more efficient search.

Most importantly, it introduces a notion of conceptual structure in a rule that

might reveal a connection between the rule’s behavior and the bits in the lookup

table.



142

9.5 OTHER RELATED WORK

All of the related work so far presented CA that were designed to classify particular

lattice configurations. A rule table represents a “program” or a “set of instructions”

while the initial lattice configuration is an input instance to be classified. An

alternative CA definition uses both the lattice configuration and rule(s) to encode

the automata [20, 39].

Ripps used the maximum economy of means to evolve rules for 2DCA [105]. He

co-evolved the initial lattice configuration and an LUT to find CA with as many

periodic regenerating structures on the lattice as possible. The main contribution

of this research is in its novel fitness function used by a GA. An individual’s fitness

is increased every time the individual reuses rules that already exist in a rule-set.

Fitness is decreased for an individual that has to add new rules.

The same CA definition as above was used by Sapin et al. in their approach to

automatically discover lattice structures that simulate the operation of an AND

gate [109, 111]. Genetic algorithms and Tabu search were used to find gliders,

guns, and spatial configurations of these two structures. The local interactions

among the discovered structures represent the operation of an AND gate. The

contribution of this approach is in its progressive refinement of partial results that

evolves the overall lattice configuration towards a desired solution. The broader

impact of this research might lead collision-based computing towards automatic

design of a universal cellular automaton [20, 110, 111].



143

Chapter 10

CONCLUSION

10.1 CONTRIBUTIONS

I. I presented evidence that CA are capable of solving proposed prob-

lems by emergent global behavior

In this dissertation I propose several novel tasks that challenge the ability of

2DCA to solve a problem by emergent system behavior. Genetic algorithms evolved

high performing rules that solve these tasks. The rules had complex behavior that

was different for each task. The lattice behavior for the two-dimensional den-

sity classification and global synchronization tasks had a global character with

information-carrying structures propagating through the entire lattice. The re-

maining tasks had much smaller features which resulted in solutions with infor-

mation carrying structures propagating over relatively short distances with shorter

lifespan of actively moving structures than the solutions for the classification tasks.

Although GAs were able to find high-performing rules that solve the proposed

tasks, I cannot conclusively state to what extent CA are capable of emergent global

computation. Without a theoretical framework, proving CA’s computational ca-

pability can be argued only by using experimental methods. The ability of CA to

solve problems must be shown for many more, fundamentally diverse, and globally

challenging tasks.

II. I extended statistically based filters to detect coherent spatio-

temporal structures in 2DCA space-time behavior.

I extended the analysis of information processing from 1DCA into two-dimensions.



144

The first step towards understanding the mechanisms of computation in 2DCA was

to identify the spatio-temporal structures in the lattice that were informationally

relevant. The investigation of the statistical based filters proposed by Shalizi et al.

and Lizier et al. led to the definition of filtering techniques for two-dimensional lat-

tices. The implementation of the filters did not produce high quality results. The

filters highlighted the information carrying structures with wide blurry borders

that resulted in loss of detail, failure to accurately of outlining 2D structures, and

no success in highlighting the sections of the domain borders with zero-velocity. I

proposed, implemented and tested a hybrid filtering approach that combines these

two filtering techniques, which yielded superior results in terms of the accuracy

to outline certain 2D structures and the requirements for the computational re-

sources. The hybrid filters identified the domain borders as potential information

carrying structures and highlighted them with a narrow border. The structures

were highlighted with a continuous border even at the places where the domain

border had zero velocity.

III. I showed that construction of a dynamic model of highlighted

structures’ motion is infeasible from the velocities of the domain bound-

aries.

Although the filters highlighted the coherent structures in 2DCA, it is only a

hypothesis that these structures explain the mechanism of computation in 2DCA.

To confirm the meaning of these structures, in Chapter 8 I attempted to build a

model of the structures’ dynamic behavior. The Narrow Band Level Set methods

demonstrated useful properties as a framework for simulating the system’s dy-

namics, but its implementation failed to accurately predict lattice behavior. The

model’s construction incorrectly assumed that the velocity of the information car-

rying structures can be inferred from the CA behavior shortly after the lattice

condensation time and that this velocity can accurately predict the subsequent



145

shape and position of these structures in time. The analysis of two counterexam-

ples showed that even if the initial simulation of the domain’s motion is accurate

(by solving the correspondence problem), the model will not accurately predict the

shape of the domain’s border. This is because sections of a domain border can de-

part from their predictable, linear progression through space, and enter into highly

complex, unexpected behavior. Such behavior can not be predicted by a model

that has its dynamics derived from the lattice behavior (as originally thought).

At this point, the hypothesis that the domain borders identified by the 2DCA

filters as the information-carrying structures capture the mechanism of emergent

computation in 2DCA can not be confirmed nor denied. A detailed investigation

of the domain border behavior revealed that these regions not only propagate (or

carry) information through the lattice, but they also process information. The

additional information modification in the domain regions occurs even when they

do not interact with other domain borders. Due to the information modification

by the domain border, the behavior of these structures cannot be predicted by

simply measuring their velocities, as was possible in one dimension. An alternative

approach is needed to predict the advancement of a domain front in two dimensions.

10.2 EVALUATION OF SUCCESS

Along with the list of contributions, let’s briefly examine if the research results

fulfilled the proposed research goals.

The CA’s computational capability of 2DCA was successfully tested on four

benchmark tasks. The GA discovered high-performing rules for classification tasks

with performance comparable to the previously published rules. Interestingly, the

rules’ behavior was unlike previously published rules. This attests to the CA’s

ability to solve problems in “more than one way”. I also evolved CA rules with

very different global behavior that perform the image processing tasks. The rule



146

behaviors that perform these tasks has not been previously reported. Success-

fully evolving and analyzing rules that solve proposed problems contributes to the

hypothesis that 2DCA are computationally capable architectures. The analysis

of information processing structures by statistical filtering was previously applied

only to 1DCA. It was unknown if this approach would be applicable to 2DCA,

what quality of results would it yield, and what would be the computational cost

of these filters. I extended the filtering approaches to two-dimensional lattice, and

implemented a hybrid filtering approach that outlined information-carrying struc-

tures in 2DCA with the highest accuracy, least noise, and acceptable computational

cost.

Although I failed to build a model of information processing in 2DCA (the

dynamic model), I attribute this failure to unpredictable rule behavior rather than

the proposed methodology. I detected two counterexamples that clearly identify

reasons why information-carrying structures in 2DCA cannot be modeled from the

rule’s space-time behavior. Although this contribution does not further explain the

mechanism of computation in 2DCA, it points out the non-linear lattice dynamics

that cannot be predicted by a model which uses lattice behavior to initialize its

dynamics.

10.3 FUTURE WORK AND OPEN QUESTIONS

The filtering results do not provide a thorough account of how CA perform col-

lective information processing; it is unknown how to modify the behavior of the

information-carrying structures to design new rules for solving new problems by

collective system behavior. There is a missing link among how these structures

are formed, what causes their motion, and the encoding of the CA look-up tables.

This link is partially characterized by the catalogues of domains and particle in-

teractions obtained with the Computational Mechanics framework, and although

this thesis discussed the basics of the Computational Mechanics framework, that



147

framework currently suffers from drawbacks that impede its applicability to CAs in

general. Moreover, no solid connection has been established between the look-up

table bits and formation of the information-carrying structures with desired lattice

dynamics. Therefore, a current challenge is to derive, from filtered diagrams, the

building blocks responsible for computation in the dynamics of CA. These building

blocks should be expressed as mathematical formalisms that capture the essential

features of local interconnected neighborhoods that control the state transitions

of cells in a CA lattice, where the dynamic coupling of these building blocks can

then be used to explain collective computation, and which can be created or mod-

ified to control collective dynamics. Such characterizations of the building blocks

of computation in CAs could be used, for instance, to design models of collective

computation in nature, such as the collective control of stomata apertures on a

plant’s leaf (see [100]).

10.3.1 Rule mechanics

The above described approach to reveal the mechanism of collective computation

in a system is inferred from the space-time dynamics of a lattice. The study of the

CA behavior is empirical in its nature, and can not be generalized as the mech-

anism of computation in 2DCA. This notion is further supported by the analysis

of the GA-evolved CA rules for different tasks proposed in Chapter 3. The CAs

have very different behavior that articulate widely different mechanisms of infor-

mation processing in the lattice. Even the rules evolved for the two-dimensional

density classification task by Cenek, Marques-Pita, and Wolz & de Oliveira have

different behavior from one another, and any conclusions about the nature of the

information processing in the system can not necessarily be generalized from one

rule to another. As long as the approach to analyze the mechanism of collective

computation in the lattice is based on the empirical study of CA behavior, the



148

conclusions reached are rule specific. A general Computational Mechanics frame-

work is needed that would analyze the structure of the CA rules with respect to

the lattice dynamics.

Marques-Pita observed that the bits in the GA-evolved rules for the density

classification task form patterns that are repeated throughout the rule table [79,

81, 82, 83]. His symmetry-based rule re-description method uses only the rule table

to analyze the CA behavior. Marques-Pita’s preliminary work proved to be useful

as a rule-based filtering approach to identify the coherent spatiotemporal patterns

in a CA lattice. The meaning of a rule’s symmetry has to be further investigated

in connection to the lattice behavior. An explanation of the structure and pattern

of a rule’s bits and the meaning of the bits’ periodic pattern might identify the

behavioral building blocks of a rule. A drastic reduction of a rule’s search-space

would be achieved by describing the building blocks in terms of their computational

function in the lattice, understanding blocks’ placement within the rule table, and

exploiting the periodic structure of a rule. Constraining the search-space would

aid in designing rule to achieve desired behavior, a fast reconfiguration of a CA

lattice to correct or change its behavior on-the-fly, and achieving a correct solution

for the problems that require multiple rules to solve a problem. In addition to

being able to “program” a CA lattice, the analysis of rule performance would not

have to rely on the rule’s space-time behavior. A rule can be analyzed directly

from the structure of the lookup table.

10.3.2 Towards real-life applications

As a partial motivation for this work, several chapters suggested that the future

generation of devices will consist of inherently parallel, potentially faulty, locally

connected, and decentralized components. The original definition of CA is an

idealized mathematical abstraction to study complex system behavior. As a first

step towards real-life applications of CA-like devices, the original CA definition has



149

to be relaxed. Alternative definitions are needed to account for the defects that

occur during engineering and assembly, the lack of component synchronization, and

the system configuration for a given implementation environment. Such alternative

CA definitions can be simulated by an error-prone lattice, non-local component

connectivity, and asynchronous update schemas.

The error-prone lattice can be defined by a subset of cells in the lattice that does

not update, updates incorrectly, or contains faulty connections to the neighboring

sites. Manufacturing systems components that never fail and distributing them

on a perfect two-dimensional grid is not realistic, therefore these experiments are

important for the future manufacturing and configuration of such systems. Special

attention should be paid to how these systems generate faulty information signals,

how these signals propagate though the lattice, and if the solutions are robust

enough to repair the errors automatically.

The non-local connectivity in the lattice can be simulated by a set of cells

having a limited number of neighbors wired to distant sites. It is unknown under

what conditions these non-local connections can improve or hinder the ability of

the system to perform a given task. Rules evolved using non-local connections will

likely show different information processing characteristics than rules evolved on

regular lattices. A small-world network is a theoretical model where the system

components have non-local and irregular connectivity with other network compo-

nents [63, 93]. Tomassini et al. evolved a small-world network to perform the

one-dimensional density classification and the global synchronization tasks. Their

results show that the networks with evolved component connectivity have higher

performance than the networks with the system components connected in a regular

pattern [127, 128]. Additional research shows that the small-world networks are

more robust to the random perturbations of the component inter-connect [26]. A

random boolean network (RBN) is even more relaxed model of a discrete dynam-

ical network where the system components are connected at random and a node’s



150

state is updated by a randomly generated logic function [29, 61]. Similar to the

small-world network, a RBN was also shown to be capable of solving global tasks

that require collective computation in a lattice, and that this type of network is

also robust against damage spreading in the system [75, 85].

Finally, the investigation of the asynchronous update schemes would include

updating cells in random order, applying updates to a selected subset of sites, and

using genetic algorithms to evolve timing schemas to combine more than one rule

in a non-homogeneous CA. Using these alternative update configurations might

yield systems with more complex behavior or result in superior performance of

the architecture versus the individual rules. Several research groups showed that

the asynchronous CA are capable of solving tasks that require global cooperation

among system components [92, 121, 124, 129].

The study of these alternative system definitions must address the following

questions: how computationally capable are these systems, how to control and

“program” these systems, and how can their behavior be analyzed? The answers to

these questions will likely create applications that use collective system behavior to

solve real-life problems as well as allow the behavior analysis of existing networks.

10.4 IN A BROADER CONTEXT...

Just imagine being able to take a large number of sensors, nano-scale devices, or

semi-autonomous robots, distribute them in space, and let them evolve or “pro-

gram” them to solve problems. Applications of such architectures has great po-

tential, such as: massive sensor networks to discover earthquakes, tsunami, and

geodetic events; expert architectures to detect features in multidimensional spaces

such as carbon structures in alloys or localizing abnormal biological tissue; and

nano-scale bots to assemble structures with desired shape and topology such as

drug transport agents or device interconnect for future generation electronics. Due



151

to the massive number of components, asynchronous and parallel nature, nano-

scale of the target, or unreliable connectivity and components, these systems can

not “compute” desired answers using the traditional von Neumann model of com-

putation. Instead, the system components have to solve the problem collectively

by forming complex behaviors.

The research presented in this work was on the ability of cellular automata to

perform an emergent collective behavior to compute a task. Let’s shift the appli-

cation domain away from 2DCA. Social organizations, hybrid sensor systems, leaf

stomata structure, and CPU architectures are examples of networks that can be

viewed as complex systems — locally connected, potentially faulty, decentralized

networks of simple components with complex interaction dynamics. Their origin

and function might be spontaneous without a job, a task, or an action to perform

(such as social networks) or constructed by design to perform a specific task (such

as CPUs). The emergent system behavior should be viewed as an appearance

of global interaction patterns. Although correct operation of such systems might

not depend on formation of these patterns, instead detecting global interaction

patterns might reveal useful properties or side-effects of a system (such as conges-

tion, collisions, etc.). Discovering the system-wide patterns, modeling the dynamic

properties of these structures, and understanding their role in a system’s behavior

will undoubtedly lead to better design, control, and use of natural and artificial

systems.



152

REFERENCES

[1] A. Adamatzky, A. Wuensche, and B. De Lacy Costello. Glider-based com-

puting in reaction-diffusion hexagonal cellular automata. Chaos, Solitons,

and Fractals, 27(2):287–295, 2006.

[2] D. Andre, F. H. Bennett III, and J. R. Koza. Evolution of intricate long-

distance communication signals in cellular automata using genetic program-

ming. In Artificial Life: Proceedings of the Fifth International Workshop on

the Synthesis and Simulation of Living Systems, Cambridge, MA, 1996. MIT

Press.

[3] D. Ashlock. Evolutionary Computation for Modeling and Optimization.

Springer, 2006.

[4] T. Back. Evolutionary Algorithms in Theory and Practice. Oxford University

Press, New York, NY, 1996.

[5] T. Bäck and R. Breukelaar. Using genetic algorithms to evolve behavior

in cellular automata. In C. S. Calude, M. J. Dinneen, Paun G., Perez-

Jimenez M. J., and Rozenberg G., editors, Unconventional Computation:

4th International Conference, volume 3699, pages 1–10, 2005.

[6] D. Basanta, P. J. Bentley, M. A. Miodownik, and E. A. Holm. Evolving

cellular automata to grow microstructures. In Genetic Programming: 6th

European Conference, EuroGP 2003, Essex, UK, April 14-16, 2003. Pro-

ceedings, pages 77–130. Springer Berlin / Heidelberg, 2004.



153

[7] A. Basu, S. C. Lin, C. Wasshuber, A. M. Ionescu, and K. Banerjee. A

comprehensive analytical capacitance model of a two dimensional nanodot

array. 5th International Symposium on Quality Electronic Design, 0:259–264,

2004.

[8] E. R. Berlekamp, J. H. Conway, and R. K. Guy. What is Life?, chapter 25.

Academic Press, London, 1982.

[9] N. Boccara, J. Nasser, and M. Roger. Particle-like structures and their

interactions in spatio-temporal patterns generated by one-dimensional de-

terministic cellular automaton rules. Physical Review A, 44:866–875, 1991.

[10] A. Bucci and J. B. Pollack. Order-theoretic analysis of coevolution prob-

lems: Coevolutionary statics. In GECCO 2002 Workshop on Understanding

Coevolution: Theory and Analysis of Coevolutionary Algorithms, volume 1,

pages 229–235, 2002.

[11] A. W. Burks. Essays on Cellular Automata. University of Illinois Press,

Urban, IL, 1970.

[12] J. Carmonam, J. Cortadella, Y. Takada, and F. Peper. Formal methods for

the analysis and synthesis of nanometer-scale cellular arrays. ACM Journal

on Emerging Technologies in Computing Systems, 4(2):8:1–8:27, 2008.

[13] J. Cartlidge and S. Bullock. Combating coevolutionary disengagement by re-

ducing parasite virulence. Evolutionary Computation, 12 (2):193–222, 2004.

[14] M. Cenek. Supplementary data. Web 10-05, Depart-

ment of Computer Science. Portland State Univerisity.,

http://www.cs.pdx.edu/research/technicalreports/, April 2010.

[15] M Cenek and M Mitchell. Evolving cellular automata. In R. A. Meyers,



154

editor, Encyclopedia of Complexity and Systems Science, pages 3233–3242.

Springer New York, 2009. 10.1007/978-0-387-30440-3 191.

[16] B. Chopard and M. Droz. Cellular Automata Modeling of Physical Systems.

Cambridge University Press, 1998.

[17] P. Chopra and A. Bender. Evolved cellular automata for protein secondary

structure prediction imitate the determinants for folding observed in nature.

Silico Biology 7, 0007:87–93, 2006.

[18] P. S. Churchland and T. J. Sejnowski. The Computational Brain. MIT Press,

Cambridge, MA, USA, 1994.

[19] E. F. Codd. Cellular Automata. ACM Monograph series. Academic Press,

1968.

[20] J. H. Conway, R. K. Guy, and E. R. Berlekamp, editors. Winning Ways For

Your Mathematical Plays, Volume 2. Academic Press, New York, 1982.

[21] M. Cook. Universality in elementary cellular automata. Complex Systems,

15/1:1–40, 2004.

[22] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to

Algorithms. The MIT Press, 2001.

[23] J. P. Crutchfield and J. E. Hanson. Turbulent pattern bases for cellular

automata. Physica D, 69:279–301, 1993.

[24] J. P. Crutchfield, M. Mitchell, and R Das. Evolutionary design of collective

computation in cellular automata. In J. P. Crutchfield and P. K. Schus-

ter, editors, Evolutionary Dynamics—Exploring the Interplay of Selection,

Neutrality, Accident, and Function, pages 361–411, New York, 2003. Oxford

University Press.



155

[25] J. P. Crutchfield and K. Young. Inferring statistical complexity. Phys. Rev.

Let., 63:105, 1989.

[26] Ch. Darabos, M. Giacobini, and Tomassini M. Cellular automata scale-

free automata networks are not robust in a collective computational task.

In S. El Yacoubi, B. Chopard, and S. Bandini, editors, Proceedings of 7th

International Conference on Cellular Automata, for Research and Industry,

volume 4173 of Lecture notes in computer science, pages 512–522, Berlin,

2006. Springer Verlag.

[27] R. Das, J. P. Crutchfield, M. Mitchell, and J. E. Hanson. Evolving globally

synchronized cellular automata. In Larry Eshelman, editor, Proceedings of

the Sixth International Conference on Genetic Algorithms, pages 336–343,

San Francisco, CA, 1995. Morgan Kaufmann.

[28] R. Das, M. Mitchell, and J. P. Crutchfield. A genetic algorithm discov-

ers particle-based computation in cellular automata. In Y. Davidor, H.-P.

Schwefel, and R. Männer, editors, Parallel Problem Solving from Nature-III,

volume 866, pages 344–353. Springer-Verlag, 1994.

[29] B. Drossel. Random Boolean Networks, pages 69–110. Wiley-VCH Verlag

GmbH & Co. KGaA, 2009.

[30] K. Eloranta. The dynamics of defect ensembles in one-dimesional cellular

automata. Journal of Statistical Physics, 76(5/6):1377, 1994.

[31] J. Elson, R. Karp, C. Papadimitriou, and S. Shenker. Global synchronization

in sensornets. In Martin Farach-Colton, editor, LATIN 2004: Theoretical

Informatics, volume 2976 of Lecture Notes in Computer Science, pages 2705–

2705. Springer Berlin / Heidelberg, 2004.



156

[32] J. D. Farmer, T. Toffoli, and S. Wolfram. Cellular Automata: Proceedings of

an Interdisciplinary Workshop. Elsevier Science, Los Alamos, New Mexico,

1984.

[33] R. Fedkiw. http://physbam.stanford.edu/ fedkiw/. Web, January 2008.

[34] D. Feldman. Information theory, excess entropy and statistical complexity:

Discovering and quantifying statistical structure, 1998. Unpublished lecture

notes.

[35] S. G. Ficici and J. B. Pollack. A game-theoretic approach to the simple

coevolutionary algorithm. In M. Schoenauer, K. Deb, G. Rudolph, X. Yao,

E. Lutton, J. J. Merelo, and H.-P. Schwefel, editors, Parallel Problem Solving

from Nature PPSN VI, 2000.

[36] H. E. Foundalis. PHAEACO: A Cognitive Architecture Inspired by Bongard

Problems. PhD thesis, Indiana University, 2006.

[37] P. Funes, E. Sklar, H. Juille, and J. Pollack. Animal-animat coevolution:

Using the animal population as fitness function. In R. Pfeiffer, B. Blumberg,

J. A. Wilson, and S. Meyer, editors, From Animals to Animats 5: Proceedings

of the Fifth International Conference on Simulation of Adaptive Behavior,

pages 525–533. MIT Press, 1998.

[38] P. Gacs, G. L. Kurdyumov, and L. A. Levin. One dimensional uniform arrays

that wash out finite islands. Problemy Peredachi Informatsi, 14:92–98, 1978.

[39] M. Gardner. Mathematical games: The fantastic combinations of John Con-

way’s new solitaire game “Life”. Scientific American, 223:120–123, 1970.

[40] D. E. Goldberg and J. Richardson. Genetic algorithms with sharing for mul-

timodal function optimization. In Proceedings of the Second International



157

Conference on Genetic Algorithms on Genetic algorithms and their applica-

tion, pages 41–49, Mahwah, NJ, USA, 1987. Lawrence Erlbaum Associates,

Inc.

[41] P. Grassberger. Chaos and diffusion in deterministic cellular automata. Phys-

ica D, 10(1-2):52–58, 1983.

[42] J. E. Hanson. Computational Mechanics of Cellular Automata. PhD thesis,

University of California at Berkeley, Berkeley, CA, 1993.

[43] J. E. Hanson and J. P. Crutchfield. The attractor-basin portrait of a cellular

automaton. Journal of Statistical Physics, 66:1415–1462, 1992.

[44] J. E. Hanson and J. P. Crutchfield. The attractor-basin portrait of a cellular

automaton. Journal of Statistical Physics, 66:1415, 1992.

[45] J. E. Hanson and J. P. Crutchfield. Computational mechanics of cellular

automata: An example. Physica D, 103(1-4):169–189, 1997.

[46] S. A. Haque, M. Yamamoto, R. Nakatani, and Y. Endo. Magnetic logic

gate for binary computing. Science and Technology of Advanced Materials,

5/1-2:79–82, 2004.

[47] H. Hartman and G. Y. Vichniac. Inhomogeneous cellular automata (inca).

In E. Bienenstock, F. Fogelman, and G. Weisbuch, editors, Disordered Sys-

tems and Biological Organization, volume F20, pages 53–57. Springer-Verlag,

Berlin, 1986.

[48] W. D. Hillis. Co-evolving parasites improve simulated evolution as an opti-

mization procedure. Physica D, 42:228–234, 1990.

[49] J.-M. Hong, T. Shinar, M. Kang, and R. Fedkiw. On boundary condition cap-

turing for multiphase interfaces. Journal of Scientific Computations, 31:99–

125, 2007.



158

[50] W. Hordijk. Dynamics, Emergent Computation, and Evolution in Cellular

Automata. PhD thesis, Department of Computer Science, University of New

Mexico, Albuquerque, NM 87131, 1999.

[51] W. Hordijk, J. P. Crutchfield, and M. Mitchell. Embedded-particle compu-

tation in evolved cellular automata. In T. Toffoli, M. Biafore, and J. Leão,

editors, Physics and Computation 1996, pages 153–158. New England Com-

plex Systems Institute, 1996.

[52] W. Hordijk, J. P. Crutchfield, and M. Mitchell. Mechanisms of emergent

computation in cellular automata. In A. E. Eiben, editor, Proceedings of the

Fifth International Conference on Parallel Problem Solving From Nature—

PPSN V, New York, 1998. Springer.

[53] W. Hordijk, J. P. Crutchfield, and M. Mitchell. Mechanisms of emergent

computation in cellular automata. In A. E. Eiben, T. Bäck, M. Schoe-

nauer, and H.P. Schwefel, editors, Parallel Problem Solving from Nature-V.

Springer-Verlag, 1998.

[54] M. Ikebe and Y. Amemiya. VMoS cellular-automaton circuit for picture

processing. In T. Miki, editor, Brainware: Bio-Inspired Architectures and

its Hardware Implementation, volume 6 of FLSI Soft Computing, chapter 6,

pages 135–162. World Scientific, 2001.

[55] F. Jiménez-Morales, J. P. Crutchfield, and M. Mitchell. Evolving two-

dimensional cellular automata to perform density classification: A report

on work in progress. Parallel Computing, 27 (5):571–585, 2001.

[56] H. Juillé and J. B. Pollack. Coevolutionary learning: A case study. In

Proceedings of the Fifteenth International Conference on Machine Learning

(ICML-98), pages 24–26, 1998.



159

[57] H. Juillé and J. B. Pollack. Coevolving the ‘ideal’ trainer: Application to

the discovery of cellular automata rules. In Genetic Programming 1998: Pro-

ceedings of the Third Annual Conference, San Francisco, CA, 1998. Morgan

Kaufmann.

[58] J. B. Juillé, H.and Pollack. Dynamics of co-evolutionary learning. In P. Maes,

M. J. Mataric, J. A. Meyer, J. Pollack, and S. W. Wilson, editors, From

Animals to Animats 4: Proceedings of the Fourth International Conference

on Simulation of Adaptive Behavior, Cambridge, MA, 1996. MIT Press.

[59] N. N. Kachouie and P.W. Fieguth. A narrow-band level-set method with

dynamic velocity for neural stem cell cluster segmentation. In Image Anal-

ysis and Recognition, Lecture Notes in Computer Science, pages 1006–1013.

Springer Berlin / Heidelberg, 2005.

[60] D. Kaplan and L. Glass, editors. Understanding Nonlinear Dynamics. New

York: Springer-Verlag, New York, 1995.

[61] S. A. Kauffman. Metabolic stability and epigenesis in randomly constructed

genetic nets. Journal of Theoretical Biology, 22:437–467, 1969.

[62] P. Kehoe and R.B. Reilly. Applying level set theory to digital video segmen-

tation. In IEEE International Conference on Image Processing: Proceedings

of the 2001 International Workshop on Very Low Bitrate Video Coding, Oc-

tober 2001.

[63] J. Kleinberg. The small-world phenomenon: An algorithmic perspective. In

In Proceedings of the 32nd ACM Symposium on Theory of Computing, pages

163–170, Portland, OR, 2000. ACM.

[64] J. R. Koza. Genetic Programming: On the Programming of Computers by

Means of Natural Selection. MIT Press, 1992.



160

[65] J. R. Koza. Genetic Programming II: Automatic Discovery of Reusable Pro-

grams. MIT Press, 1994.

[66] M. Land and R. K. Belew. No perfect two-state cellular automata for density

classification exists. Phys. Rev. Lett., 74(25):5148–5150, June 1995.

[67] C. Langton. Studying artificial life with cellular automata. Physica D,

10D:120, 1986.

[68] C. Langton. Computation at the edge of chaos: Phase transitions and emer-

gent computation. Physica D, 42:12–37, 1990.

[69] K. Lindgren, C. Moore, and M. Nordahl. Complexity of two-dimensional

patterns. Journal of Statistical Physics, 91(5-6):909–951, 1998.

[70] K. Lindgren and M. G. Nordahl. Universal computation in simple one di-

mensional cellular automata. Complex Systems, 4:299–318, 1990.

[71] J. T. Lizier, M. Prokopenko, and A. Y. Zomaya. Detecting non-trivial com-

putation in complex dynamics. In Proceedings of European Conference on

Artificial Life (ECAL ’07), 2007.

[72] J. T. Lizier, M. Prokopenko, and A. Y. Zomaya. A framework for the local

information dynamics of distributed computation in complex systems. Web.

http://arxiv.org/abs/0811.2690, November 2008.

[73] J. T. Lizier, M. Prokopenko, and A. Y. Zomaya. Local information transfer

as a spatiotemporal filter for complex systems. PHYSICAL REVIEW E,

77:026110, 2008.

[74] J. D. Lohn and J. A. Reggia. Automatic discovery of self-replicating struc-

tures in cellular automata. In IEEE Transactions on Evolutionary Compu-

tation, volume 1 (3), pages 165–178, 1997.



161

[75] Q. Lu and C. Teuscher. Damage spreading in spatial and small-world random

boolean networks, 2009.

[76] Cenek M., M. Mitchell, and M. Marques-Pita. Automatic detection of

information-processing structures in two-dimensional cellular automata. Un-

published Manuscript, 2010.

[77] B. F. Madore and W. L. Freedman. Computer simulations of the Belousov-

Zhabotinsky reaction. Science, 222:615–616, 11 November 1983.

[78] N. Margolus. Physics-like models of computation. Physica D Nonlinear

Phenomena, 10:81–95, 1984.

[79] M. Marques-Pita. Aitana: A Developmental Cognitive Artifact to Explore the

Evolution of Conceptual Representations of Cellular Automata-based Com-

plex Systems. PhD thesis, School of Informatics, University of Edinburgh,

Edinburgh UK, 2006.

[80] M. Marques-Pita, 2010. Personal Communication.

[81] M. Marques-Pita, M. Mitchell, and L. M. Rocha. The role of conceptual

structure in designing cellular automata to perform collective computation.

In C. S. Calude, J. F. G. Costa, R. Freund, M. Oswald, and G. Rozen-

berg, editors, Unconventional Computation: 7th International Conference

(UC 2008), UC ’08, pages 146–163, Vienna, Austria, 2008. Springer-Verlag.

Volume 5204 of Lecture Notes in Computer Science.

[82] M. Marques-Pita and L. M. Rocha. Conceptual structure in cellular au-

tomata: The density classification task. In S. Bullock, J. Noble, R. A. Wat-

son, and M. A. Bedau, editors, Proceedings of the Eleventh International

Conference on Artificial Life (Alife XI), pages 390–398, Cambridge, MA,

2008. MIT Press.



162

[83] M. Marques-Pita, L. M. Rocha, and H. Pain. Conceptual representations:

What do they have to say about the density classification task by cellular

automata? In Proceedings of the European Conference on Complex Systems

(ECCS’06), pages 180–195, 2006.

[84] B. Martin. A group interpretation of particles generated by one-dimensional

cellular automaton 54, wolfram’s rule. International Journal of Modern

Physics C, 11(1):101–123, 2000.

[85] B. Mesot and C. Teuscher. Deducing local rules for solving global tasks with

random boolean networks. Physica D: Nonlinear Phenomena, 211(1-2):88–

106, 2005.

[86] M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, 1996.

[87] M. Mitchell. Computation in cellular automata: A selected review. In

T. Gramss, S. Bornholdt, M. Gross, M. Mitchell, and T. Pellizzari, edi-

tors, Nonstandard Computation, pages 95–140. Weinheim: VCH Verlagsge-

sellschaft, 1998.

[88] M. Mitchell, J. P. Crutchfield, and R. Das. Evolving cellular automata to

perform computations: A review of recent work. In Proceedings of the First

International Conference on Evolutionary Computation and its Applications

(EvCA ’96), Moscow, Russia, 1996. Russian Academy of Sciences.

[89] M. Mitchell, P. T. Hraber, and J. P. Crutchfield. Revisiting the edge of

chaos: Evolving cellular automata to perform computations. Complex Sys-

tems, 7:89–130, 1993.

[90] M. Mitchell, M. D. Thomure, and N. L. Williams. The role of space in

the success of coevolutionary learning. In Luis Mateus Rocha, Larry S.



163

Yaeger, Mark A. Bedau, Dario Floreano, Robert L. Goldstone, and Alessan-

dro Vespignani, editors, Artificial Life X: Proceedings of the Tenth Interna-

tional Conference on the Simulation and Synthesis of Living Systems, pages

118–124, Cambridge, MA, 2006. MIT Press.

[91] J. Munkres. Topology. Prentice Hall, Upper Saddle River, NJ, 2000.

[92] C. L. Nehaniv. Evolution in asynchronous cellular automata. In Proceed-

ings of the eighth international conference on Artificial life, pages 65–73,

Cambridge, MA, USA, 2003. MIT Press.

[93] M. Newman, A.-L. Barabasi, and D. J. Watts. The Structure and Dynamics

of Networks: (Princeton Studies in Complexity). Princeton University Press,

1 edition, 2006.

[94] G. M. B. Oliveira, L. G. A. Martins, L. B. de Carvalho, and E. Fynn. Some

investigations about synchronization and density classification tasks in one-

dimensional and two-dimensional cellular automata rule spaces. Electron.

Notes Theor. Comput. Sci., 252:121–142, October 2009.

[95] N. H. Packard. Adaptation toward the edge of chaos. In J. A. S. Kelso,

A. J. Mandell, and M.F. Shlesinger, editors, Dynamic Patterns in Complex

Systems, chapter Part III., pages 293–301. World Scientific, 1988.

[96] L. Pagie and P. Hogeweg. Evolutionary consequences of coevolving targets.

Evolutionary Computation, 5 (4):401–418, 1997.

[97] L. Pagie and M. Mitchell. A comparison of evolutionary and coevolutionary

search. In R. K. Belew and H. Juillè, editors, Coevolution: Turning Adaptive

Algorithms upon Themselves, pages 20–25, San Francisco, California, USA,

7 2001.



164

[98] L. Pagie and M. Mitchell. A comparison of evolutionary and coevolutionary

search. International Journal of Computational Intelligence and Applica-

tions, 2 (1):53–69, 2002.

[99] J. K. Park, K. Steiglitz, and W. P. Thurston. Soliton-like behavior in au-

tomata. Physica D, 19(3):423–432, 1986.

[100] D. Peak, J. D. West, S. M. Messinger, and K. A. Mott. Evidence for complex,

collective dynamics and emergent, distributed computation in plants. In

R. Schekman et al., editor, Proceesings of the National Academy of Sciences

of the United States of America, volume 101. 4., pages 918–922. The National

Academy of Sciences, 2004.

[101] M. Pivato. Defect particle kinematics in one-dimensional cellular automata.

Theoretical Computer Scienc, 377(1-3):205–228, 2007.

[102] A. Popovici and D. Popovici. Optimizing epochal evolutionary search:

Population-size independent. In J. Rosenthal et al., editor, 15th International

Symposium on Mathematical Theory of Networks and Systems, August 12-16

2002.

[103] Das R. The Evolution of Emergent Computation in Cellular Automata. PhD

thesis, Colorado State University, Fort Collings, CO, 1998.

[104] R. Reynaga and E. Amthauer. Two-dimensional cellular automata of radius

one for density classification task ρ = 1
2
. Pattern Recogn. Lett., 24(15):2849–

2856, 2003.

[105] D. L. Ripps. Using economy of means to evolve transition rules within 2d

cellular automata. Artificial life, 16 (2)(1064-5462):119–126, 2010.

[106] C. Rosin and R. Belew. Methods for competitive coevolution: Finding op-

ponents worth beating. In L. J. Eshelman, editor, Proceedings of the Sixth



165

International Conference on Genetic Algorithms, pages 373–380, San Fran-

cisco, CA, 1995. Morgan Kaufmann.

[107] C. Rosin and R. Belew. New methods for competitive coevolution. Evolu-

tionary Computation, MIT Press, 5 (1):1–29, 1997.

[108] P. L. Rosin. Training cellular automata for image processing. In H. Kalvi-

ainen, J. Parkkinen, and A. Kaarna, editors, Image Analysis. 14th Scan-

dinavian Conference, SCIA 2005, pages 195–204, Joensuu, Finland, 2005.

Springer Berlin. Heidelberg. Volume 3540 of Lecture Notes in Computer

Science.

[109] E. Sapin. Gliders and glider guns discovery in cellular automata. In Game of

Life Cellular Automata, volume Chapter 9, pages 135–173. Springer, 2010.

[110] E. Sapin, O. Bailleux, J. J. Chabrier, and P. Collet. A new universal au-

tomata discovered by evolutionary algorithms. In Genetic and Evolutionary

Computation Conference, volume 3102 of Lecture Notes in Computer Sci-

ence, pages 175–187, 2004.

[111] E. Sapin, L. Bull, and A. Adamatzky. Genetic approaches to search for

computing patterns in cellular automata. IEEE Computational Intelligence

Magazine, 4:20–28, August 2009.

[112] A. Schadschneider. Cellular Automaton Approach to Pedestrian Dynamics—

Theory, pages 75–86. Berlin: Springer-Verlag, 2001.

[113] J. A. Sethian. Level Set Method. Cambridge University Press, Cambridge

MA, 1996.

[114] C. R. Shalizi. Causal Architecture, Complexity, and Self-Organization in

Time Series and Cellular Automata. PhD thesis, University of Wisconsin,

Madison, Madison, WI, 2001.



166

[115] C. R. Shalizi, R. Haslinger, J. B. Rouquier, K. L. Klinkner, and C. Moore.

Automatic filters for the detection of coherent structure in spatiotemporal

systems. Physical Review E, 73:036104, 2006.

[116] Cosma Rohilla Shalizi. Optimal nonlinear prediction of random fields on

networks. In Discrete Mathematics and Theoretical Computer Science,

AB(DMCS):11?30, pages 11–30, 2003.

[117] S. R. Shenoy and A. Daniel. Intel architecture and sili-

con cadence: The catalyst for industry innovation. Web:

ftp://download.intel.com/software/pdf/IAandSiliconCadence.pdf, Jan-

uary 2008.

[118] M. Sipper. Non-uniform cellular automata: Evolution in rule space and

formation of complex structures. In R. A. Brooks and P. Maes, editors,

Artificial Life IV, pages 394–399, Cambridge, MA, 1994. MIT Press.

[119] M. Sipper. Evolution of Parallel Cellular Machines: The Cellular Program-

ming Approach. Springer, Berlin, Heidelberg, 1997.

[120] M. Sipper and E. Ruppin. Co-evolving architectures for cellular machines.

Physica D, 99:428–441, 1997.

[121] M. Sipper, M. Tomassini, and M. Capcarrere. Evolving asynchronous and

scalable non-uniform cellular automata. In Proceedings of the International

Conference on Artificial Neural Networks and Genetic Algorithms (ICAN-

NGA97), pages 382–387. Springer Verlag, 1997.

[122] A. R. Smith. Simple computation-universal cellular spaces. Journal of the

ACM, 18(3):339–353, 1971.

[123] R. K. Squier and K. Steiglitz. Programmable parallel arithmetic in cellular

automata using a particle model. Complex Systems, 8:311–323, 1994.



167

[124] D. Stevenson. Evolving cellular automata with genetic algorithms : analyzing

asynchronous updates and small world topologies. Master’s thesis, Portland

State University, Portland, Oregon, 2008.

[125] R. Subrata and A. Y. Zomaya. Evolving cellular automata for location man-

agement in mobile computing networks. In IEEE Transactions on Parallel

Distributed Systems, volume 14(1), pages 13–26, Piscataway, NJ, USA, 2003.

IEEE Press.

[126] S. K. Tan and S.-U. Guan. Evolving cellular automata to generate nonlinear

sequences with desirable properties. Applied Soft Computing, 7 (3):1131–

1134, 2007.

[127] M. Tomassini, M. Giacobini, and C. Darabos. Parallel Problem Solving from

Nature - PPSN VIII, chapter Evolution of Small-World Networks of Au-

tomata for Computation, pages 672–681. Lecture Notes in Computer Science.

Springer Berlin / Heidelberg, 2004.

[128] M. Tomassini, M. Giacobini, and Ch. Darabos. Evolution and dynamics of

small-world cellular automata. Complex Systems, 15(4):261–284, 2005.

[129] M. Tomassini and M. Venzi. Evolution of asynchronous cellular automata for

the density task. In J. Guervós, P. Adamidis, H.-G. Beyer, H.-P. Schwefel,

and J.-L. Fernández-Villacañas, editors, Parallel Problem Solving from Na-

ture PPSN VII, volume 2439 of Lecture Notes in Computer Science, pages

934–943. Springer Berlin / Heidelberg, 2002.

[130] G. Y. Vichniac, P. Tamayo, and H. Hartman. Annealed and quenched in-

homogeneous cellular automata. Journal of Statistical Physics, 45:875–883,

1986.



168

[131] J. von Neumann. Theory of Self-Reproducing Automata. University of Illinois

Press, 1966. (edited and completed by A. W. Burks).

[132] R. A. Watson and J. B. Pollack. Coevolutionary dynamics in a minimal

substrate. In L. Spector and E. D. Goodman, editors, Proceedings of the 2001

Genetic and Evolutionary Computation Conference, pages 702–709. Morgan

Kaufmann, 2001.

[133] J. Werfel, M. Mitchell, and J. P. Crutchfield. Resource sharing and coevo-

lution in evolving cellular automata. IEEE Transactions on Evolutionary

Computation, 4 (4):388–393, 2000.

[134] P. R. Wiegand and J. Sarma. Spatial embedding and loss of gradient in co-

operative coevolutionary algorithms. Parallel Problem Solving from Nature,

1:912–921, 2004.

[135] J. Williams and M. Mitchell. Investigating the success of spatial coevolu-

tion. In Proceedings of the 2005 conference on Genetic And Evolutionary

Computation, pages 523–530, Washington DC, 2005.

[136] S. Wolfram. Universality and complexity in cellular automata. Physica D,

10D:1, 1984.

[137] S. Wolfram. Twenty problems in the theory of cellular automata. Physica

Scripta, T9:170–183, 1985.

[138] S. Wolfram. Theory and Application of Cellular Automata. World Scientific

Publishing, 1986.

[139] S. Wolfram. A New Kind of Science. Wolfram Media, Inc., Champaign, IL,

2002.



169

[140] D. Wolz and P. P. B. de Oliveira. Very effective evolutionary techniques

for searching cellular automata rule spaces. Journal of Cellular Automata,

3(4):289–312, 2008.

[141] V. Zhirnov, R. Cavin, G. Lemming, and K. Galatsis. An assessment of

integrated digital cellular automata architectures. Computer, 41(1):38–44,

2008.



170

APPENDIX A: GA EVOLVED RULES

A detailed explanation of the bit encoding of the rules listed in this appendix can

be found in Chapter 2.



171

2DGKL rule

00000000000000000000000011111111001100110011001100000000111111

11000000000000000000000000111111110011001100110011000000001111

11110000000000000000111111111111111100110011001100111111111111

11111100000000000000001111111111111111001100110011001111111111

11111111000000000000000000000000111111110011001100110011000000

00111111110000000000000000000000001111111100110011001100110000

00001111111100000000000000001111111111111111001100110011001111

11111111111111000000000000000011111111111111110011001100110011

1111111111111111

“Näıve” rule (also called the Local Majority rule)

00000000000000000000000000000001000000000000000100000001000101

11000000000000000100000001000101110000000100010111000101110111

11110000000000000001000000010001011100000001000101110001011101

11111100000001000101110001011101111111000101110111111101111111

11111111000000000000000100000001000101110000000100010111000101

11011111110000000100010111000101110111111100010111011111110111

11111111111100000001000101110001011101111111000101110111111101

11111111111111000101110111111101111111111111110111111111111111

1111111111111111

Table A.1: Human design rules for 2D Density Classification Task (Moore neigh-
borhood)



172

Cenek rule

00010000000110000011000100010101000100010110111001000000001100

11010100101001011100010111011010010000011101111001000001010101

01110100000000001000000001010000010100100001010000110000010100

00011100000000010111110000100101010011001011111111111101101111

11110101000000100000010000010100001101110001000101010101000000

11011111111000100110011111010000110111010100010111001111110101

11111101111100000001000001110011001100001111010011010101011101

00001101111111000100011011010101011001001101110111111101111111

0101111111111111

Marques-Pita rule (reported as rule 320 in [80])

00010001000100010000000000000000000100010001000100000000000000

00000100011111111100000000000000000001000111111111000000000000

00000001000111111111000000110000001100010001111111111111111111

11111100010001111111110000001100000011000100011111111111111111

11111111000100010001000100000011000000110001000100010001111111

11111111110001000111111111000000110000001100010001111111111111

11111111111100010001111111110000001100000011000100011111111111

11111111111111000100011111111100000011000000110001000111111111

1111111111111111

Wolz and deOliveira rule (reported as rule 1 in [140])

00000000000000000000000000000001000000000001000100000001010000

01000010110001010100010100000001010000110100101011011101110101

01110000000100000001000100110000011100000011000001010100010101

01011100000000100101010101011111010111000000111001010101111111

11110111000010110001101101000101010101010000010100010011000100

11010001010001011101111111010001110101111100000111011111110111

11110111011111111111010101110100011101011101000111110111111101

10011101100101101111110011111100111111101111111111111111111111

0111111101110111

Table A.2: GA evolved rules for the 2D Density Classification Task (Moore neigh-
borhood)



173

Global Synchronization

11111110111010111111110000111111111111101101011011111010011011

11111110011000111011101111011100101011000010111111000010001010

00001111110111000110111110100100111111111010111110101010101010

10000000111100101111011111010010000000111000011101100011100000

11100000111111111111110110100010101010011110111101011010010110

10110000001011101011111011101000101000010011011001100010001101

00000000000010101110101010001100110110110000101110001010010010

00001000001000011010100101100010010000100000000010000001100000

1010000010001000

Table A.3: The best performing GA-evolved rules for the two-dimensional Global
Synchronization task.

Spatial Density Niching

00000000000100000000000000110111001000100100011100100111000101

11000010000000000100010000001100110100001000110001000001011011

10110000001110111110001110000001010000000010000001111011001001

11111101010000101110010111001101110011001111011011100110110011

11110011000100001000100000010011000000010000000110100001011000

10111001010000100010100011010011010001101000100010111100111011

10111110111100011010110101010110110110110111000100111110101111

11111111111111000100000000101000010001110101110000000111111111

1111111111111111

Table A.4: The best performing GA-evolved rules for the two-dimensional Spatial
Density Niching task.



174

Rectangle Image Bounding - Default Domain and Dense Variant Rule

00000010001000111010101101000100011100111110010111010111001111

00000110110010011011100010111100111101111011001111000011011001

00110111100010111000111001111110111010000000101110011110011101

11110111100101101111100100100111111101110111001101010011111110

00111001010101001001001111011011011110010000011001111011000101

11001010110001001011111011111000100011000101110100110010000111

01100101001100100110011011100111101111101111011011111101110110

11101101000111011010110100011110100100111101110010001001101011

1100101101110111

Table A.5: The best performing GA-evolved rules for the two-dimensional Rect-
angle Image Bounding task - default domain rule.

Rectangle Image Bounding - Sparse Variant Rule

00000100000000000000000000111011001100000011001101000011110011

11000000000000011000011001000101010000010100000111000001011111

11110100000000000100000010101111000101100000100001110010000100

01001100010000000100100110101001111111010001011110011101110111

11111111000000100001001100010001000101110000010101010111011100

11011000010110010000010001000011100011101110010010010011110110

01111111111101101011010111100011101110111011111101101001111100

10101111111111000000010101111101100111111111110101001111011111

1111111111111111

Table A.6: The best performing GA-evolved rules for the two-dimensional Rect-
angle Image Bounding task - spare variant rule.



175

APPENDIX B: MATHEMATICAL DEFINITIONS FOR STATISTICAL

BASED FILTERS

B.1 LOCAL SENSITIVITY: MATH DEFINITIONS

Definition B.1.1 (Future light-cone layer of a site (~η, t)). Let l+(~η, t, δ) be the

sites in a CA space-time diagram, the state of which depends on (~η, t), in the

time-step t + δ. The output of l+(~η, t, δ) is a list of the sites in the CA’s space-

time diagram. These sites are determined according to the topology of the local

neighborhood considered by each specific CA rule, and the value of t + δ. For

typical CA neighborhoods in 1D and 2D with radius r = 1, a depiction of the first

three future light-cone layers is shown in Figure 7.7.

Definition B.1.2 (Number of sites in a future light-cone layer for 1D CA with

radius r). Given a future light-cone layer l+(~η, t, δ) for a one-dimensional CA with

neighborhood radius r, the number of sites in it can be determined from the expres-

sion,

Γ(~η, t, δ, r) = 2δr + 1

Definition B.1.3 (Number of sites in a future light-cone layer for von-Neu-

mann 2D CA with radius r). Given a future light-cone layer l+(~η, t, δ) for a two-

dimensional CA with von-Neumann neighborhood radius r, the number of sites in

it can be determined from the expression,

Γ(~η, t, δ, r) = (δr + 1)2 + (δr)2

Definition B.1.4 (Number of sites in a future light-cone layer for Moore 2D CA

with radius r). Given a future light-cone layer l+(~η, t, δ) for a two-dimensional CA



176

with Moore neighborhood radius r, the number of sites in it can be determined from

the expression,

Γ(~η, t, δ, r) = (2δr + 1)2

Definition B.1.5 (Future light-cone of (~η, t) at depth d). Let l+(~η, t) be the set

containing the union of all future light-cone layers l+(~η, t, δ), in the range δ =

{1, ..., d}. 1

Definition B.1.6 (Difference plume between two light-cones). The difference

plume between the original light-cone l+(~η, t) and a perturbed future light-cone

l+(~η′, t), is,

∆
(

l+(~η, t), l+(~η′, t)
)

=
H

(

l+(~η, t), l+(~η′, t)
)

∑d

δ=1 Γ(~η, t, δ, r)

where the function H is the Hamming distance between the two future light-

cones that have the same topology and size, i.e.

Γ(~η, t, δ, r) = Γ(~η′, t, δ, r)

for a fixed radius r and for every value of δ = 1, 2, ..., d.

Definition B.1.7 (Local Sensitivity of site ~ηo, t) with future-depth d and pertur-

bation-range p).

ξpd(~η, t) =

∑|S|
i=1 ∆

(

l+(~η, t), l+(~ηi, t)
)

|S|

where l+(~ηi, t) corresponds to the ith future light-cone resulting from replacing

the original perturbation neighborhood with si ∈ S, and l+(~η, t) to the original

future light-cone for (~η, t).

1A notation for referring to a future light-cone using a subscript (d) that denotes the specific

value of the future depth, i.e. l+(d)(~η, t) could be used as well, but this will be omitted here for

notational simplicity, under the assumption that a light-cone can only exist for a specific finite

value of d.



177

B.2 LOCAL STATISTICAL COMPLEXITY: MATH DEFINITIONS

More formally, the computation of the local statistical complexity for a site in a

CA space-time diagram, C(~η, t), requires the following mathematical definitions:

Definition B.2.1 (Observed past and future light-cone configurations for a specific

CA rule). Let the sets L− and L+ denote, respectively, the collection of (randomly

ordered) distinct past light-cone and future light-cone configurations observed in the

space-time diagram. A member of either set L− (or L+) will be denoted by l−i (or

l+i ), where i corresponds to the position of the specific past (or future) light-cone

in the source set.

Definition B.2.2 (Estimated conditional distribution matrix of observed past and

future light-cones). Let matrix M represent the conditional frequency distributions

of the observed past and future light-cone configurations. The row headers represent

a set of all unique past light-cone configurations L−, and the column headers are

all unique future light-cone configurations L+ for a given CA space-time diagram.

A specific matrix element has a value of:

mi,j =
∑

all sites

(l−i |l
+
j )

where mi,j, corresponds to the number of times the past light-cone l−i has been

followed by the future light-cone configuration l+j .

Definition B.2.3 (Estimated conditional distribution vectors). Let the m−
i denote

the ith row vector of matrix M that represents the frequency of observed future light-

cones L+ given a past light-cone l−i . This means that the notation m−
i is simply a

more compact notation of P (L+|l−i ).

Similarly, let the m+
j denote the jth column vector of matrix M representing

the estimated conditional distribution of P (L−|l+j ).



178

Definition B.2.4 (Similarity between a pair of conditional distribution vectors).

The similarity function S between two estimated conditional distribution vectors

m−
i and m−

k is defined as:

S(m−
i ,m

−
k , α) =







1 χ2(m−
i ,m

−
k ) < α

0 otherwise

where α is a similarity threshold constant, the value of which is established

empirically. The value of χ2(m−
i ,m

−
k ) is determined by calculating the following:

χ2(m−
i ,m

−
k ) =

|L+|
∑

j=0

(mi,j −mk,j)
2

mk,j

where (mi,j −mk,j) 6= 0, mk,j 6= 0

Definition B.2.5 (Equivalence class ǫm−

i
). The equivalence class, ǫm−

i
, is a set of

all estimated conditional distribution vectors m−
λ that do not belong to any other

equivalence class and the similarity S(m−
i ,m

−
λ , α) = 1 (where m−

i is the conditional

distribution vector representing the equivalence class ǫm−

i
, and m−

λ is the candidate

conditional distribution vector). The equivalence class ǫm−

i
of similar conditional

distribution vectors is defined as following:

ǫm−

i
= {m−

λ : S(m−
i ,m

−
λ , α) = 1}

Definition B.2.6 (Set of equivalence classes ǫM). The set of equivalence classes,

ǫM , for a given estimated conditional distribution matrix M is a set of disjoint

subsets ǫm−

i
∈ M :

ǫM =
⋃

i

ǫm−

i

where ǫm−

i
∩ ǫm−

j
= ∅, ∀(ǫm−

i
, ǫm−

j
) ⊂ ǫM : i 6= j.



179

Definition B.2.7 (Probability of an equivalence class ǫm−

i
). The probability that

an arbitrary past light-cone is a member of an equivalence class ǫm−

i
is given by the

formula,

Pr(ǫm−

i
) =

∑

k

|L+|
∑

j=1

mk,j

|L−|
∑

i=1

|L+|
∑

j=1

mi,j

where k : m−
k ∈ ǫm−

i

The numerator is a sum of the frequency counts of the conditional distributions

that belong to the equivalence class ǫm−

i
, and the denominator is the number of all

analyzed sites in the space-time diagram.

Definition B.2.8 (Local Statistical Complexity C(~η, t) ). The Local Statistical

Complexity associated with a site ~η at time t in the space-time diagram of a CA

is −log2 of the probability associated with the equivalence class to which the past

light-cone of the site (~η, t) belongs to:

C(~η, t) = −log2(Pr(ǫm−

i
)) where l−(~η, t) ∈ ǫm−

i
: ǫm−

i
∈ ǫM

B.3 LOCAL INFORMATION STORAGE, INFORMATION TRANS-

FER AND INFORMATION MODIFICATION: MATH DEFINI-

TIONS

Definition B.3.1 (Basic definitions: current site, past configuration, and neigh-

boring sites.). Let the expression xi,n+1 refer to the state of the automaton’s ith site

at time (n+ 1), also called the current site.

The past vector 〈x(k)
i,n〉 denotes k previous states of site i from the time n to

n− k.

〈x
(k)
i,n〉 = 〈xi,n, xi,n−1, xi,n−2, . . . , xi,n−k〉



180

The previous configuration of l many left (or right) adjacent cells to the cur-

rent site are denoted by vector 〈x
(l)
i−j,n〉 (or 〈x

(l)
i+j,n〉). In Moore neighborhood two-

dimensional CA, j refers to the eight neighboring sites adjacent to the current site

and four neighbors for van Neumann neighborhood. An abbreviated shorthand for

all neighboring sites is 〈x
(l)
i±j,n〉

Definition B.3.2 (Frequency vectors). The composite pattern is defined as a con-

catenation of one or more structures defined in B.3.1. A frequency vector stores

the occurrence counts of a particular composite pattern. For a two state CA,

each binary composite pattern encountered is encoded as an offset to the frequency

vector where the counter is incremented (the length of the frequency vectors is

2patternlength). The pattern statistics are recorded from “several” space-time dia-

grams with random initial configurations. The frequency vectors and the composite

pattern definitions are listed below:



181

Vector

Name

Pattern Definition Pattern

Length

(bits)

Vector Description

P 〈x
(k)
i,n〉 k k previous configurations of the cur-

rent site

C 〈x
(k)
i,n , xi,n+1〉 k + 1 k previous configurations of the cur-

rent site with the state of the current

state

S 〈xi,n+1〉 1 the current site

PL 〈x
(k)
i,n , x

(l)
i−j,n〉 k + l k previous configurations of the cur-

rent site with l left neighboring sites

CL 〈x(k)
i,n , x

(l)
i−j,n, xi,n+1〉 k+ l+1 k previous configurations of the cur-

rent site with l left neighboring sites

with the state of the current site

PR 〈x
(k)
i,n , x

(l)
i+j,n〉 k + l k previous configurations of the cur-

rent site with l right neighboring

sites

CR 〈x
(k)
i,n , x

(l)
i+j,n, xi,n+1〉 k+ l+1 k previous configurations of the cur-

rent site with l right neighboring

sites with the state of the current

site

Definition B.3.3 (Local Information Storage). The Local Information Storage a

in site i at time n+ 1 is defined as:

a (i, n+ 1) = lim
k→∞

log2
p
(

x
(k)
i,n , xi,n+1

)

p(x
(k)
i,n)p (xi,n+1)

= log2(
ci

pi × si
)

Definition B.3.4 (Local Information Transfer). The Left Local Information Trans-

fer is defined as a faction of following conditional probabilities:



182

tleft (i, n+ 1) = lim
k→∞

log2
p
(

xi,n+1|x
(k)
i,n , x

(l)
i−j,n

)

p
(

xi,n+1|x
(k)
i,n

) = log2
cli ÷ pli
ci ÷ pi

Right Local Information Transfer is defined analogously as following:

tright (i, n+ 1) = lim
k→∞

log2
p
(

xi,n+1|x
(k)
i,n , x

(l)
i+j,n

)

p
(

xi,n+1|x
(k)
i,n

) = log2
cri ÷ pri
ci ÷ pi

Definition B.3.5 (Local Information Modification). The Local Information Mod-

ification is a sum of Local Information Storage and the Local Information Transfer

from all directions. The equation below calculates the information modification for

one-dimensional CA:

s (i, n+ 1) = a (i, n+ 1) + tleft (i, n+ 1) + tright (i, n+ 1)


	Information Processing in Two-Dimensional Cellular Automata
	Let us know how access to this document benefits you.
	Recommended Citation

	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Motivation
	Idealized model
	What are Computation and Information? 
	A Model of Information Processing
	Dissertation Summary

	Background
	Cellular Automata
	Computation in CA
	Early Models
	Computation in 1DCA via ``Particles''
	Computation in 2DCA 


	Tasks
	Desired Attributes of Tasks
	Density Classification
	Global Synchronization
	Spatial Density Niching
	Rectangle Image Bounding
	Summary

	Evolving Cellular Automata with Genetic Algorithms
	Rule Performance and Fitness
	Evolving Cellular Automata With Genetic Algorithms
	Coevolution
	Spatially Extended GA

	Genetic Algorithms Used in This Work
	Standard GA
	Non-Spatial Coevolution
	Spatial Evolution
	Spatial Coevolution


	Results of Evolving Cellular Automata with Genetic Algorithms
	The best GA evolved rules
	Rule Behavior and Performance
	Density Classification
	Comparison with other rules

	Global Synchronization
	Spatial Density Niching
	Rectangle Image Bounding
	Summary

	Information Processing via ParticlesPortions of this chapter were adapted from CENEKMITCHELLPITA2010
	Collective Computation in Cellular Automata
	Information Processing Structures: Domains and Particles
	Model of Information Processing in 1DCA 

	Filters for Identifying Information-Processing Structures in CAPortions of this chapter were adapted from CENEKMITCHELLPITA2010
	Filtering by Epsilon-Machine Reconstruction
	Filtering by Local Sensitivity (LS)
	Filtering by Local Statistical Complexity
	Filtering by Information Storage, Transfer and Modification
	Local Information Storage (IS)
	Local Information Transfer (IT)
	Local Separable Information (S) and Information Modification (IM)

	Filtering Coherent Structures in Two-Dimensions
	Results
	Computational Requirements
	Results of Filtering

	Discussion and Summary

	Dynamic Model
	Model of Information Processing in 2DCA 
	Difference of Analytical Scope in 1DCA and 2DCA

	Background: Level Set Theory
	Level Set as CA's Dynamic Model
	Narrow Band Level Set (NBLS)

	Measuring the Interface Velocities
	Solving the Correspondence Problem
	Noise versus Information
	Hidden Forces and Complex Regions 

	Conclusion and Discussion

	Related Work
	Genetic Programming
	Parallel Cellular Machines
	Resource Sharing
	AITANA
	Other Related Work

	Conclusion
	Contributions
	Evaluation of success
	Future work and open questions
	Rule mechanics
	Towards real-life applications

	In A Broader Context...

	References
	Appendix A: GA Evolved Rules
	Appendix B: Mathematical Definitions for Statistical Based Filters
	Local Sensitivity: Math Definitions
	Local Statistical Complexity: Math Definitions
	Local Information Storage, Information Transfer and Information modification: Math Definitions


