
Portland State University Portland State University

PDXScholar PDXScholar

Mathematics and Statistics Faculty
Publications and Presentations

Fariborz Maseeh Department of Mathematics
and Statistics

2019

A DC Programming Approach for Solving Multicast A DC Programming Approach for Solving Multicast

Network Design Problems via the Nesterov Network Design Problems via the Nesterov

Smoothing Technique Smoothing Technique

Wondi Geremew
Stockton University

Mau Nam Nguyen
Portland State University, mau.nam.nguyen@pdx.edu

A. Semenov

V. Boginski

E. Pasiliao

Follow this and additional works at: https://pdxscholar.library.pdx.edu/mth_fac

 Part of the Mathematics Commons

Let us know how access to this document benefits you.

Citation Details Citation Details
Geremew, Wondi; Nguyen, Mau Nam; Semenov, A.; Boginski, V.; and Pasiliao, E., "A DC Programming
Approach for Solving Multicast Network Design Problems via the Nesterov Smoothing Technique" (2019).
Mathematics and Statistics Faculty Publications and Presentations. 272.
https://pdxscholar.library.pdx.edu/mth_fac/272

This Pre-Print is brought to you for free and open access. It has been accepted for inclusion in Mathematics and
Statistics Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us
if we can make this document more accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/mth_fac
https://pdxscholar.library.pdx.edu/mth_fac
https://pdxscholar.library.pdx.edu/mth
https://pdxscholar.library.pdx.edu/mth
https://pdxscholar.library.pdx.edu/mth_fac?utm_source=pdxscholar.library.pdx.edu%2Fmth_fac%2F272&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=pdxscholar.library.pdx.edu%2Fmth_fac%2F272&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/mth_fac/272
https://pdxscholar.library.pdx.edu/mth_fac/272?utm_source=pdxscholar.library.pdx.edu%2Fmth_fac%2F272&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:pdxscholar@pdx.edu

A DC Programming Approach for Solving Multicast Network Design

Problems via the Nesterov Smoothing Technique

W. GEREMEW,1 N. M. NAM,2 A. SEMENOV,3 V. BOGINSKI,4, and E. PASILIAO5

Abstract. This paper continues our effort initiated in [19] to study Multicast Communication

Networks, modeled as bilevel hierarchical clustering problems, by using mathematical optimization

techniques. Given a finite number of nodes, we consider two different models of multicast networks

by identifying a certain number of nodes as cluster centers, and at the same time, locating a par-

ticular node that serves as a total center so as to minimize the total transportation cost through

the network. The fact that the cluster centers and the total center have to be among the given

nodes makes this problem a discrete optimization problem. Our approach is to reformulate the

discrete problem as a continuous one and to apply Nesterov smoothing approximation technique

on the Minkowski gauges that are used as distance measures. This approach enables us to propose

two implementable DCA-based algorithms for solving the problems. Numerical results and practical

applications are provided to illustrate our approach.

Key words. DC programming, the Nesterov smoothing technique, hierarchical clustering, subgra-

dient, Fenchel conjugate.

AMS subject classifications. 49J52, 49J53, 90C31

1 Introduction

The complexity of modern networks such as communication networks, broadcasting net-

works, and distribution networks requires multilevel connectivity. For instance, many de-

partment stores usually get their merchandise delivered to them by a delivery company.

For efficiency purposes, the delivery company usually wants to identify a certain number

of locations to serve as distribution centers for the delivery of supplies to the stores. At

the same time, the company wants to identify a location as a main distribution center, also

known as the total center, from which the other distribution centers receive their supplies.

This is a typical description of a bilevel multicast communication network, which can also

be seen as a multifacility location problem or as a bilevel hierarchical clustering problem.

Borrowing some language from network optimization literature, these problems can be de-

scribed mathematically as follows: Given m nodes a1, a2, . . . , am in Rn, the objective is to

choose k cluster centroids a(1), a(2), . . . , a(k) and a total center a(k+1) from the given nodes

in such a way that the total transportation cost of the tree formed by connecting the cluster

centers to the total center, and the remaining nodes to the nearest cluster centers is mini-

mized. The fact that the centers and the total center have to be among the existing nodes

makes the problem a discrete optimization problem, which can be shown to be NP–hard.

1School of General Studies, Stockton University, Galloway, NJ 08205, USA (wgeremew24@gmail.com).

Geremew’s research was partly supported by the AFRL Mathematical Modeling and Optimization Institute.
2Fariborz Maseeh Department of Mathematics and Statistics, Portland State University, Portland, OR

97207, USA (mau.nam.nguyen@pdx.edu). Research of this author was partly supported by the National

Science Foundation under grant #1716057.
3University of Jyväskylä, P.O.Box 35 FI-40014 University of Jyvaskyla, Finland (alexan-

der.v.semenov@jyu.fi)
4University of Central Florida, 12800 Pegasus Dr., Orlando, FL 32816 USA (vladimir.boginski@ucf.edu)
5Air Force Research Laboratory Eglin AFB, FL, USA. (elpasiliao@gmail.com)

1

Many existing algorithms for solving bilevel hierarchical clustering problems are heuristics

in nature, and do not optimize any well-defined objective function. The mathematical

optimization approach for solving hierarchical clustering problems was initiated in the pio-

neering work from [6]. The authors introduced three models of hierarchical clustering based

on the Euclidean norm and employed the derivative-free method developed in [5] to solve

the problem in two dimensions. Replacing the Euclidean norm by the squared Euclidean

norm, the authors in [3] used the DCA, a well-known algorithm for minimizing differences

of convex functions introduced by Pham Dinh Tao (see [4, 27]), to solve the problem in high

dimensions. In fact, the DCA provides an effective tool for solving the classical clustering

problem and its variants; see [1, 2, 3, 6, 7, 8, 18, 19] and the references therein. In our recent

work [19], we proposed a new method based on the Nesterov smoothing technique and the

DCA to cope with the original models of hierarchical clustering introduced in [6]. The idea

of using the Nesterov smoothing technique overcomes the drawback of the DCA stated in [3]

as “the DCA is not appropriate for these models”. Our current paper continues the effort

initiated in [3, 6] in which mathematical optimization techniques for solving optimization

problems beyond convexity are used in multifacility location and clustering. In particular,

this paper is the second part of our paper [19] as we propose other two bivelel hierarchi-

cal clustering models. Another novel component of the present paper compared to [19] is

the possibility of considering problems with generalized distance generated by Minkowski

gauges as well as the possibility to handle problems with constraints.

In this paper, we propose two implementable algorithms based on a DC programming

approach combined with the Nesterov smoothing technique to solve the resulting constrained

minimization problems for both models. It is important to note that the DCA can only

guarantees the convergence to a critical point, so to achieve better results we often run the

algorithms multiple times with different starting points via suitable initialization techniques,

such as running the k-means or a genetic algorithm to generate starting centers for the two

proposed algorithms.

The paper is organized as follows. In Section 2, we present the continuous optimization

formulations of the two models using Minkowski gauges as distance measures. In section

3 we discuss some basic definitions and tools of optimization that are used throughout the

paper. In Sections 4 and 5, we develop the two algorithms for the two proposed multicast

communication networks. In Section 6 we present our numerical experiments and results

performed on artificial datasets as well as real datasets.

2 Problems Formulation

In this section, we discuss two models of bilevel hierarchical clustering and provide the tools

of optimization used throughout the paper. In order to reformulate the discrete optimization

problem under consideration as a continuous optimization problem, we introduce k artifi-

cial centers which are not necessarily the existing nodes in designing the optimal multicast

networks. Denote the k artificial cluster centers by x1, x2, . . . , xk and the distance mea-

surement between the artificial center x`, ` = 1, . . . , k, and the real node ai, i = 1, . . . ,m,

2

by a generalized distance σF (x` − ai), where σF is the support function associated with a

nonempty closed bounded convex set F containing the origin in its interior, i.e.,

σF (x) := sup{〈x, y〉 | y ∈ F}.

Note that if F is the closed unit Euclidean ball in Rn, then σF (x) defines the Euclidean norm

of x ∈ Rn. In the case where F is the closed unit box of Rn, i.e., F := {u = (u1, . . . , un) ∈
Rn | − 1 ≤ ui ≤ 1 for i = 1, . . . , n}, then σF (x) defines the `1−norm ‖x‖1 of x ∈ Rn.

In the first model, the m nodes are clustered around the k artificial centers by trying to

minimize the minimum sum of the distances from each node to the k cluster centers. A

node with the smallest such sum will serve as the total center. The total connection cost

of the tree that needs to be minimized is given by

ϕ1(x1, . . . , xk) :=

m∑
i=1

min
`=1,...,k

σF (x` − ai) + min
i=1,...,m

k∑
`=1

σF (x` − ai).

On the other hand, in the second model the m nodes are clustered around k + 1 artificial

centers by trying to minimize the minimum sum of the distances from each artificial center

to the remaining k centers. Such a center will eventually be named as the total center. In

this case, the total connection cost of the tree that needs to be minimized is given by

ϕ2(x1, . . . , xk+1) :=

m∑
i=1

min
`=1,...,k+1

σF (x` − ai) + min
`=1,...,k+1

k+1∑
j=1

σF (x` − xj).

The main difference between Model I and Model II is the way in which the total center is

selected. In addition, in Model II the total center also serves as a cluster center.

The algorithms we will develop are expected to solve the continuous optimization models

in a reasonable amount of time and give us approximate solutions to the original discrete

optimization models. Note that each node ai is assigned to its closest center x`, but in both

models the centers might not be real nodes. Therefore, for the continuous optimization

model to solve (or approximate) the discrete model, we need to add a constraint that tries

to minimize the difference between the artificial centers and the real centers, i.e.,

φ1(x1, . . . , xk) :=
k∑
`=1

min
i=1,...,m

σF (x` − ai) = 0

and

φ2(x1, . . . , xk+1) :=

k+1∑
`=1

min
i=1,...,m

σF (x` − ai) = 0.

Note that we use the generalized distance generated by σF in the constraints for convenience

of presentation although it is possible to use different distances such as the Euclidean

distance.

Model I was originally proposed in [6] where the authors used the derivative-free discrete

gradient method established in [5] to solve the resulting optimization problem, but this

3

method is not suitable for large-scale settings in high dimensions. It is also considered in [3]

to solve a similar model where the squared Euclidean distance used as a similarity measure.

Model II was considered in [8] without constraints, and the hyperbolic smoothing technique

was used to solve the problem.

3 Basic Definitions and Tools of Optimization

In this section, we present two main tools of optimization used to solve the bilevel hierarchi-

cal crusting problem: the DCA introduced by Pham Dinh Tao and the Nesterov smoothing

technique.

We consider throughout the paper DC programming:

minimize f(x) := g(x)− h(x), x ∈ Rn, (3.1)

where g : Rn → R and h : Rn → R are convex functions. The function f in (3.1) is called a

DC function and g − h is called a DC decomposition of f .

Given a convex function g : Rn → R, the Fenchel conjugate of g is defined by

g∗(y) := sup{〈y, x〉 − g(x) | x ∈ Rn}.

Note that g∗ : Rn → (−∞,+∞] is also a convex function. In addition, x ∈ ∂g∗(y) if and only

if y ∈ ∂g(x), where ∂ denotes the subdifferential operator in the sense of convex analysis;

see, e.g., [13, 16, 25].

Let us present below the DCA introduced by Tao and An [4, 27] as applied to (3.1). Al-

though the algorithm is used for nonconvex optimization problems, the convexity of the

functions involved still plays a crucial role.

Algorithm 1 The DCA

1: Input: x0 ∈ Rn, N ∈ N.

2: for k = 1, . . . , N do

3: Find yk ∈ ∂h(xk−1)

4: Find xk ∈ ∂g∗(yk)
5: end for

6: Output: xN .

Let us discuss below a convergence result of DC programming. A function h : Rn → R is

called γ-convex (γ ≥ 0) if the function defined by k(x) := h(x)− γ
2‖x‖

2, x ∈ Rn, is convex.

If there exists γ > 0 such that h is γ−convex, then h is called strongly convex. We say that

an element x̄ ∈ Rn is a critical point of the function f defined by (3.1) if

∂g(x̄) ∩ ∂h(x̄) 6= ∅.

Obviously, in the case where both g and h are differentiable, x̄ is a critical point of f if and

only if x̄ satisfies the Fermat rule ∇f(x̄) = 0. The theorem below provides a convergence

result for the DCA. It can be derived directly from [27, Theorem 3.7].

4

Theorem 3.1 Consider the function f defined by (3.1) and the sequence {xk} generated

by the Algorithm 1. Then the following properties are valid:

(i) If g is γ1-convex and h is γ2-convex, then

f(xk)− f(xk+1) ≥ γ1 + γ2

2
‖xk+1 − xk‖2 for all k ∈ N.

(ii) The sequence {f(xk)} is monotone decreasing.

(iii) If f is bounded from below, g is γ1-convex and h is γ2-convex with γ1 + γ2 > 0, and

{xk} is bounded, then every subsequential limit of the sequence {xk} is a critical point of f .

Let us present below a direct consequence of the Nesterov smoothing technique given in

[21]. In the proposition below, d(x; Ω) denotes the Euclidean distance and P (x; Ω) denotes

the Euclidean projection from a point x to a nonempty closed convex set Ω in Rn.

Proposition 3.2 Given any a ∈ Rn and µ > 0, a Nesterov smoothing approximation of

ϕ(x) := σF (x− a) has the representation

ϕµ(x) :=
1

2µ
‖x− a‖2 − µ

2

[
d(
x− a
µ

;F)
]2
.

Moreover, ∇ϕµ(x) = P (x−aµ ;F) and

ϕµ(x) ≤ ϕ(x) ≤ ϕµ(x) +
µ

2
‖F‖2,

where ‖F‖ := sup{‖f‖ | f ∈ F}.

4 Hierarchical Clustering via Continuous Optimization Tech-

niques: Model I

In this section, we present an approach of using continuous optimization techniques for

hierarchical clustering. As mentioned earlier, our main tools are the DCA and the Nesterov

smoothing technique. Recall that the first model under consideration is formulated as a

constrained optimization problem:

minimize

m∑
i=1

min
`=1,...,k

σF (x` − ai) + min
i=1,...,m

k∑
`=1

σF (x` − ai)

subject to
k∑
`=1

min
i=1,...,m

σF (x` − ai) = 0, x1, . . . , xk ∈ Rn.

After the centers x1, . . . , xk have been found, a total center is selected from the existing

nodes as follows: For each i = 1, . . . ,m, we compute the sum
∑k

`=1 σF (x` − ai). Then a

total center c∗ is a node ai that yields the smallest sum, i.e.,

c∗ := argmin
{ k∑
`=1

σF (x` − ai)
∣∣ i = 1, . . . ,m

}
.

5

Now we convert the constrained optimization problem under consideration to an uncon-

strained optimization problem using the penalty method with a penalty parameter λ > 0:

minimize

m∑
i=1

min
`=1,...,k

σF (x` − ai) + min
i=1,...,m

k∑
`=1

σF (x` − ai) + λ

k∑
`=1

min
i=1,...,m

σF (x` − ai)

x1, . . . , xk ∈ Rn.

Proposition 4.1 The objective function

f(x1, . . . , xk) :=
m∑
i=1

min
`=1,...,k

σF (x` − ai) + min
i=1,...,m

k∑
`=1

σF (x` − ai) + λ
k∑
`=1

min
i=1,...,m

σF (x` − ai)

for x1, . . . , xk ∈ Rn and λ > 0 can be written as a difference of convex functions.

Proof. First note that the minimum of m real numbers αi for i = 1, . . . ,m has the

representation:

min
i=1,...,m

αi =

m∑
i=1

αi − max
t=1,...,m

m∑
i=1
i 6=t

αi.

Hence, we can represent f(x1, . . . , xk) as a function defined on (Rn)k as follows:

f(x1, . . . , xk) = (2 + λ)
m∑
i=1

k∑
`=1

σF (x` − ai)−
m∑
i=1

max
t=1,...,k

k∑
`=1
`6=t

σF (x` − ai)

− λ
k∑
`=1

max
t=1,...,m

m∑
i=1
i 6=t

σF (x` − ai)− max
t=1,...,m

m∑
i=1
i 6=t

k∑
`=1

σF (x` − ai).

This shows that f has a DC representation f = g0 − h0, where

g0(x1, . . . , xk) := (2 + λ)
m∑
i=1

k∑
`=1

σF (x` − ai) (4.1)

and

h0(x1, . . . , xk) :=

m∑
i=1

max
t=1,...,k

k∑
`=1
6̀=t

σF (x` − ai) + λ

k∑
`=1

max
t=1,...,m

m∑
i=1
i 6=t

σF (x` − ai)

+ max
t=1,...,m

m∑
i=1
i 6=t

k∑
`=1

σF (x` − ai)

are convex functions defined on (Rn)k. �

Based on Proposition 3.2, we obtain a Nesterov’s approximation of the generalized distance

function ϕ(x) := σF (x− a) for x, a ∈ Rn as follows

ϕµ(x) :=
µ

2

∥∥∥∥∥x− aµ
∥∥∥∥∥

2

−
[
d

(
x− a
µ

;F

)]2
 .

6

As a result, the function g0 defined in (4.1) has a smooth approximation given by

g0µ(x1, . . . , xk) :=
(2 + λ)µ

2

m∑
i=1

k∑
`=1

∥∥∥∥∥x` − aiµ

∥∥∥∥∥
2

− (2 + λ)µ

2

m∑
i=1

k∑
`=1

[
d

(
x` − ai

µ
;F

)]2

.

Thus, the function f has the following DC approximation convenient for applying the DCA:

fµ(x1, . . . , xk) : =
(2 + λ)µ

2

m∑
i=1

k∑
`=1

∥∥∥∥∥x` − aiµ

∥∥∥∥∥
2

− (2 + λ)µ

2

m∑
i=1

k∑
`=1

[
d

(
x` − ai

µ
;F

)]2

−
m∑
i=1

max
t=1,...,k

k∑
`=1
6̀=t

σF (x` − ai)− λ
k∑
`=1

max
s=1,...,m

m∑
i=1
i 6=t

σF (x` − ai)

− max
t=1,...,m

m∑
i=1
i 6=t

k∑
`=1

σF (x` − ai).

Instead of minimizing the function f , we minimize its DC approximation

fµ(x1, . . . , xk) = gµ(x1, . . . , xk)− hµ(x1, . . . , xk), x1, . . . , xk ∈ Rn.

In this formulation, gµ and hµ are convex functions given by

gµ(x1, . . . , xk) :=
2 + λ

2µ

m∑
i=1

k∑
`=1

‖x` − ai‖2,

hµ(x1, . . . , xk) := h1µ(x1, . . . , xk) + h2(x1, . . . , xk) + h3(x1, . . . , xk) + h4(x1, . . . , xk),

where

h1µ(x1, . . . , xk) :=
(2 + λ)µ

2

m∑
i=1

k∑
`=1

[
d

(
x` − ai

µ
;F

)]2

, h2(x1, . . . , xk) :=
m∑
i=1

max
t=1,...,k

k∑
`=1
`6=t

σF (x` − ai),

h3(x1, . . . , xk) := λ
k∑
`=1

max
t=1,...,m

m∑
i=1
i 6=t

σF (x` − ai), h4(x1, . . . , xk) := max
t=1,...,m

m∑
i=1
i 6=t

k∑
`=1

σF (x` − ai).

The proposition below is a direct consequence of Proposition 3.2.

Proposition 4.2 Given any λ > 0 and µ > 0, the functions f and fµ satisfy

fµ(x1, . . . , xk) ≤ f(x1, . . . , xk) ≤ fµ(x1, . . . , xk) +mk

(
1 +

λ

2

)
µ‖F‖2.

for all x1, . . . , xk ∈ Rn.

In what follows we will prove that each of the functions f and fµ admits an absolute

minimum in (Rn)k.

7

Theorem 4.3 Given any λ > 0 and µ > 0, each of the functions f and fµ has an absolute

minimum in (Rn)k.

Proof. Let us show that for any γ ∈ R, the sublevel set

Lγ := {(x1, . . . , xk) | f(x1, . . . , xk) ≤ γ}

is bounded in (Rn)k. Since 0 ∈ int(F), there exists r > 0 such that B(0; r) ⊂ F . Conse-

quently,

r‖x‖ = sup{〈x, u〉 | u ∈ B(0; r)} ≤ sup{〈x, u〉 | u ∈ F} = σF (x) for all x ∈ Rn.

From the definition of the function f , we have

{(x1, . . . , xk) ∈ (Rn)k | f(x1, . . . , xk) ≤ γ} ⊂ {(x1, . . . , xk) ∈ (Rn)k | min
i=1,...,m

k∑
`=1

σF (x` − ai) ≤ γ}

⊂ {(x1, . . . , xk) ∈ (Rn)k | min
i=1,...,m

k∑
`=1

‖x` − ai‖ ≤ γ

r
}

⊂
m⋃
i=1

{(x1, . . . , xk) | ϕi(x1, . . . , xk) ≤ γ

r
},

where ϕi(x
1, . . . , xk) :=

∑k
`=1 ‖x` − ai‖. Observe that for each i = 1, . . . ,m, one has the

inclusion

{(x1, . . . , xk) | ϕi(x1, . . . , xk) ≤ γ

r
} ⊂ {(x1, . . . , xk) |

k∑
`=1

‖x`‖ ≤ γ

r
+ k‖ai‖}.

Thus, Lγ is a bounded set as it is contained in the union of a finite number of bounded sets

in (Rn)k. As f is a continuous function, it has an absolute minimum in (Rn)k.

Let γµ := mk
(
1 + λ

2

)
µ‖F‖2. It follows from Proposition 4.2 that for any γ ∈ R,

{(x1, . . . , xk) ∈ (Rn)k | fµ(x1, . . . , xk) ≤ γ} ⊂ {(x1, . . . , xk) ∈ (Rn)k | f(x1, . . . , xk) ≤ γµ+γ}.

It follows that the sublevel set {(x1, . . . , xk) ∈ (Rn)k | fµ(x1, . . . , xk) ≤ γ} is also bounded,

and hence fµ has an absolute minimum in (Rn)k. �

To facilitate the gradient and subgradient calculations for the DCA, we will introduce a

data matrix A and a variable matrix X. The data matrix A is formed by putting each ai,

i = 1, . . . ,m, in the ith row, i.e.,

A =


a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

...
...

...
...

am1 am2 am3 . . . amn

 .

8

Similarly, if x1, . . . , xk are the k cluster centers, then the variable X is formed by putting

each x`, ` = 1, . . . , k, in the `th row, i.e.,

X =


x11 x12 x13 . . . x1n

x21 x22 x23 . . . x2n

...
...

...
...

xk1 xk2 xk3 . . . xkn

 .

With these notations, the decision variable X of the optimization problem belongs to Rk×n,

the linear space of k × n real matrices. Hence, we will assume that Rk×n is equipped with

the inner product 〈X,Y 〉 := trace(XTY). The Frobenius norm on Rk×n is defined by

‖X‖F :=
√
〈X,X〉 =

√√√√ k∑
`=1

〈x`, x`〉 =

√√√√ k∑
`=1

‖x`‖2.

Let us start by computing the gradient of the first part of the DC decomposition, i.e.,

gµ(X) =
2 + λ

2µ

m∑
i=1

k∑
`=1

‖x` − ai‖2.

Using the Frobenius norm, the function gµ can be written as

gµ(X) =
2 + λ

2µ

m∑
i=1

k∑
`=1

‖x` − ai‖2

=
2 + λ

2µ

m∑
i=1

k∑
`=1

[
‖x`‖2 − 2〈x`, ai〉+ ‖ai‖2

]
=

2 + λ

2µ

[
m‖X‖2F − 2〈X,EA〉+ k‖A‖2F

]
,

where E is a k ×m matrix whose entries are all ones. Hence, gµ is differentiable and its

gradient is given by

∇gµ(X) =
2 + λ

µ
[mX−EA] .

Our goal now is to find X ∈ ∂g∗(Y), which can be accomplished by employing the relation

X ∈ ∂g∗(Y) if and only if Y ∈ ∂g(X).

This can equivalently be written as 2+λ
µ [mX−EA] = Y, and we solve for X as follows:

(2 + λ) [mX−EA] = µY

(2 + λ)X = (2 + λ)EA + µY

X =
(2 + λ)EA + µY

(2 + λ)m

9

Next, we will demonstrate in more detail the techniques we used to compute a subgradient

for the convex function

hµ = h1µ +
4∑
j=2

hj .

Since each function in this sum is convex, we will compute a subgradient of hµ applying the

subdifferential sum rule (see, e.g., [16, Corollary 2.46]) and maximum rule (see, e.g., [16,

Proposition 2.54]) well known in convex analysis. We will begin our demonstration with

h1µ given by

h1µ(X) =
(2 + λ)µ

2

m∑
i=1

k∑
`=1

[
d

(
x` − ai

µ
;F

)]2

.

From its representation one can see that h1µ is differentiable. Thus, its gradient at X can

be computed by computing the partial derivatives with respect to x1, . . . , xk, i.e.,

∂h1µ

∂x`
(X) = (2 + λ)

m∑
i=1

[
x` − ai

µ
− P

(
x` − ai

µ
;F

)]
for ` = 1, . . . , k. (4.2)

Hence, ∇h1µ(X)) is a k × n matrix H1 whose `th row is
∂h1µ
∂x`

(X)).

Note that the convex functions hj for j = 2, 3, 4 are not differentiable in general. However,

we can compute a subgradient for each function at X by applying the subdifferential sum

rule and maximum rule for convex functions. The following is an illustration of how one

can compute subgradients of such functions using h2 as an example. For t = 1, . . . , k and

i = 1, . . . ,m, define

γti(X) :=

k∑
`=1,`6=t

σF (x` − ai) =
k∑
`=1

σF (x` − ai)− σF (xt − ai) and γi(X) := max
t=1,...,k

γti(X).

Thus, h2 can be represented as the sum of m convex functions as follows:

h2(X) =
m∑
i=1

max
t=1,...,k

k∑
`=1,` 6=t

σF (x` − ai) =
m∑
i=1

γi(X).

Note that γi is the maximum of k convex functions γti for t = 1, . . . , k. Based on the

subdifferential maximum rule, for each i = 1, . . . ,m, we will find a k × n matrix H2i ∈
∂γi(X). Then, by the subdifferential sum rule H2 :=

∑m
i=1 H2i is a subgradient of h2 at

X. To accomplish this goal, we first choose an index t∗ ∈ {1, . . . , k} such that γi(X) =

γt∗i(X) :=
∑k

`=1,` 6=t∗ σF (x` − ai). The `th row wi` of the matrix H2i for ` 6= t∗ can be

computed as described in Proposition 4.4 below, which follows from [16, Theorem 2.93].

The t∗ row of the matrix H2i is set to zero, as γit∗ is independent of xt
∗
. The procedures for

computing a subgradient for h3 and h4 are very similar to the procedure we have illustrated.

Proposition 4.4 Given a ∈ Rn, the function ϕ(x) := σF (x− a) is convex with its subdif-

ferential at x̄ ∈ Rn given by

∂ϕ(x̄) = coF (x̄),

10

where F (x̄) := {q ∈ F | 〈x̄, q〉 = σF (x̄)}.

In particular, if F is the Euclidean closed unit ball in Rn, then

∂ϕ(x̄) =

{
x̄−a
‖x̄−a‖ if x̄ 6= a,

B if x̄ = a.

At this point, we have demonstrated all the necessary steps in calculating the gradients and

subgradients needed for our first DCA-based algorithm for solving the bilevel hierarchical

clustering problem formulated in Model I.

Algorithm 2 Model I

1: Input: A,X0, λ0, µ0, σ1, σ2, ε,N ∈ N.

2: while stopping criteria (λ, µ, ε) = false do

3: for k = 1, . . . , N do

4: Find Yk ∈ ∂hµ(Xk−1)

5: Xk = (2+λ)EA+µYk

(2+λ)m

6: end for

7: update λ and µ

8: end while

9: Output: xN .

Example 4.5 (`2−clustering with Algorithm 2). In this example, we illustrate our method

to study the problem of `2−clustering. The key point in Algorithm 2 is the computation

of Y ∈ ∂hµ(X) for the case where F is the Euclidean closed unit ball B in Rn. By the

subdifferential sum rule,

hµ(X) = ∇h1µ(X) + ∂h2(X) + ∂h3(X) + ∂h4(X).

Define

u`i :=

 x`−ai
‖x`−ai‖ if x` 6= ai,

0 otherwise.

Now, we illustrate the way to find the gradient of h1 and a subgradient of hi for i = 2, 3, 4

at X.

The gradient of h1: The gradient Y1 := ∇h1(X) is the k×n matrix whose `th row is
∂h1µ
∂x`

(X)

given in (4.2). Note that in this case, the Euclidean projection P (z;F) from z ∈ Rn to F

is given by

P (z;F) :=

{
z
‖z‖ if ‖z‖ > 1,

z otherwise.

A subgradient of h2: In this case,

h2(X) =

m∑
i=1

max
t=1,...,k

k∑
`=1
6̀=t

‖x` − ai‖ =

m∑
i=1

max
t=1,...,k

(k∑
`=1

‖x` − ai‖ − ‖xt − ai‖
)
.

11

For each i = 1, . . . ,m, choose an index t(i) such that

max
t=1,...,k

(k∑
`=1

‖x` − ai‖ − ‖xt − ai‖
)

=
k∑
`=1

‖x` − ai‖ − ‖xt(i) − ai‖.

Let us now form a k ×mn block matrix U = (u`i), where u`i is considered as a row vector.

We also use U i to denote the ith block column of the matrix U. Equivalently, Ui is the

k × n matrix formed by placing the row vectors u`i in its `th row for ` = 1, . . . , k. Then a

subgradient of h2 at X is given by

Y2 :=
m∑
i=1

(
U i − et(i)ut(i)i

)
,

where et(i) is the column vector of k components with 1 at the t(i)th position and 0 at other

positions.

A subgradient of h3: In this case,

h3(X) = λ

k∑
`=1

max
t=1,...,m

m∑
i=1
i 6=t

‖x` − ai‖ = λ

k∑
`=1

max
t=1,...,m

(m∑
i=1

‖x` − ai‖ − ‖x` − at‖
)
.

For each ` = 1, . . . , k, we choose an index t(`) such that

max
t=1,...,m

(m∑
i=1

‖x` − ai‖ − ‖x` − at‖
)

=

m∑
i=1

‖x` − ai‖ − ‖x` − at(`)‖.

Let V be the k × n matrix whose `th row is
∑m

i=1 u`i − u`t(`). Then a subgradient of h3 at

X is given by

Y3 := λV.

A subgradient of h4: In this case,

h4(X) = max
t=1,...,m

m∑
i=1
i 6=t

k∑
`=1

‖x` − ai‖

= max
t=1,...,m

(
m∑
i=1

k∑
`=1

‖x` − ai‖ −
k∑
`=1

‖x` − at‖

)
.

Again, we choose an index t such that

max
t=1,...,m

(
m∑
i=1

k∑
`=1

‖x` − ai‖ −
k∑
`=1

‖x` − at‖

)
=

m∑
i=1

k∑
`=1

‖x` − ai‖ −
k∑
`=1

‖x` − at‖.

Let Z be the k × n matrix whose `th row is
∑m

i=1 u`i. Then a subgradient of h4 is given by

Y4 := Z − Zt,

where Zt is the k × n matrix whose `th row is u`t.

12

Example 4.6 (`1−clustering with Algorithm 2). In this example, we illustrate our method

to study the problem of `1−clustering. We will find a subgradient Y ∈ ∂hµ(X) for the case

where F is the closed unit box in Rn given by

F := {(u1, . . . , un) ∈ Rn | − 1 ≤ ui ≤ 1 for i = 1, . . . , n}.

For t ∈ R, define

sign(t) :=


1 t > 0,

0 t = 0,

−1 t < 0.

Then we define sign(x) := (sign(x1), . . . , sign(xn)) for x = (x1, . . . , xn) ∈ Rn. Note that

for the function p(x) := ‖x‖1, a subgradient of p at x ∈ Rn is simply sign(x). Now, we

illustrate the way to find the gradient of h1 and a subgradient of hi for i = 2, 3, 4 at X.

The gradient of h1: Similar to Example 4.5, the gradient of Y1 := ∇h1(X) is the k × n
matrix whose `th row is

∂h1µ
∂x`

(X) given in (4.2). Note that in this case, the Euclidean

projection P (z;F) from z ∈ Rn to F is given by

P (z;F) := max(−e,min(z, e)) componentwise,

where e ∈ Rn is the vector consisting of 1 in each component.

A subgradient of h2: In this case,

h2(X) =
m∑
i=1

max
r=1,...,k

k∑
`=1
6̀=r

‖x` − ai‖1 =
m∑
i=1

max
r=1,...,k

(k∑
`=1

‖x` − ai‖1 − ‖xr − ai‖1
)
.

For each i = 1, . . . ,m, choose an index r(i) such that

max
r=1,...,k

(k∑
`=1

‖x` − ai‖1 − ‖xr − ai‖1
)

=
k∑
`=1

‖x` − ai‖1 − ‖xr(i) − ai‖1.

Now we form the k ×mn signed block matrix S = (s`i) given by s`i = sign(x` − ai) as a

row vector. We also use Si to denote the ith column block matrix of the signed matrix S.

Then a subgradient of h2 at X is given by

Y2 :=
m∑
i=1

(
Si − er(i)sr(i)i

)
,

where er(i) is the column vector of k components with 1 at the r(i)th position and 0 at

other positions.

A subgradient of h3: In this case,

h3(X) = λ
k∑
`=1

max
t=1,...,m

m∑
i=1
i 6=t

σF (x` − ai) = λ
k∑
`=1

max
t=1,...,m

(m∑
i=1

‖x` − ai‖1 − ‖x` − at‖1
)
.

13

For each ` = 1, . . . , k, we choose an index t(`) such that

max
t=1,...,m

(m∑
i=1

‖x` − ai‖1 − ‖x` − at‖1
)

=
m∑
i=1

‖x` − ai‖1 − ‖x` − at(`)‖1.

Let V be the k × n matrix whose `th row is
∑m

i=1 s`i − s`t(`). Then a subgradient of h3 at

X is given by

Y3 := λV.

A subgradient of h4: In this case,

h4(X) = max
t=1,...,m

m∑
i=1
i 6=t

k∑
`=1

‖x` − ai‖1

= max
t=1,...,m

(
m∑
i=1

k∑
`=1

‖x` − ai‖1 −
k∑
`=1

‖x` − at‖1

)
.

Again, we choose an index t such that

max
t=1,...,m

(
m∑
i=1

k∑
`=1

‖x` − ai‖1 −
k∑
`=1

‖x` − at‖1

)
=

m∑
i=1

k∑
`=1

‖x` − ai‖1 −
k∑
`=1

‖x` − at‖1.

Let T be the k × n matrix whose `th row is
∑m

i=1 s`i. Then a subgradient of h4 is given by

Y4 := T − Tt,

where Tt is the k × n matrix whose `th row is s`t.

5 Hierarchical Clustering via Continuous Optimization Tech-

niques: Model II

In this section, we focus on developing nonconvex optimization techniques based on the

DCA and the Nesterov smoothing technique for the second model. Similar to Model I, we

will solve the following constrained optimization problem:

minimize

m∑
i=1

min
`=1,...,k+1

σF (x` − ai) + min
`=1,...,k+1

k+1∑
j=1

σF (x` − xj)

subject to

k+1∑
`=1

min
i=1,...,m

σF (x` − ai) = 0, x1, . . . , xk+1 ∈ Rn.

The total center is determined by

c∗ := argmin
{ k+1∑
j=1

σF (x` − xj) | ` = 1, . . . , k + 1
}
.

14

This constrained optimization problem can be solved by the following unconstrained opti-

mization problem by the penalty method with a penalty parameter λ > 0:

minimize

m∑
i=1

min
`=1,...,k+1

σF (x` − ai) + min
`=1,...,k+1

k+1∑
j=1

σF (x` − xj) + λ

k+1∑
`=1

min
i=1,...,m

σF (x` − ai)

x1, . . . , xk+1 ∈ Rn.

With the Nesterov smoothing technique, the objective function has the following approxi-

mation that is convenient for implementing the DCA:

fµ(X) : =
(1 + λ)µ

2

m∑
i=1

k+1∑
`=1

∥∥∥∥∥x` − aiµ

∥∥∥∥∥
2

+
µ

2

k+1∑
`=1

k+1∑
j=1

∥∥∥∥∥x` − xjµ

∥∥∥∥∥
2

− (1 + λ)µ

2

m∑
i=1

k+1∑
`=1

[
d

(
x` − ai

µ
;F

)]2

−
m∑
i=1

max
r=1,...,k+1

k+1∑
`=1
` 6=r

σF (x` − ai)

− λ
k+1∑
`=1

max
t=1,...,m

m∑
i=1
i 6=t

σF (x` − ai)− µ

2

k+1∑
`=1

k+1∑
j=1

[
d

(
x` − xj

µ
;F

)]2

− max
r=1,...,k+1

k+1∑
`=1
` 6=r

k+1∑
j=1

σF (x` − xj).

As in the previous section, we use a variable matrix X of size (k + 1)× n to store the row

vector x` in its `th row for ` = 1, . . . , k + 1. Now we solve the following DC programming:

minimize fµ(X) = gµ(X)− hµ(X), X ∈ R(k+1)×n,

where gµ and hµ are convex functions by

gµ(X) := g1µ(X) + g2µ(X) (5.1)

and

hµ(X) := h1µ(X) + h2µ(X) + h3µ(X) + h4µ(X) + h5µ(X),

where their respective components are defined as follows:

g1µ(X) :=
(1 + λ)µ

2

m∑
i=1

k+1∑
`=1

∥∥∥∥∥x` − aiµ

∥∥∥∥∥
2

, g2µ(X) =
µ

2

k+1∑
`=1

k+1∑
j=1

∥∥∥∥∥x` − xjµ

∥∥∥∥∥
2

and

h1µ(X) :=
(1 + λ)µ

2

m∑
i=1

k+1∑
`=1

[
d

(
x` − ai

µ
;F

)]2

, h2µ(X) :=
µ

2

k+1∑
`=1

k+1∑
j=1

[
d

(
x` − xj

µ
;F

)]2

h3(X) :=

m∑
i=1

max
t=1,...,k+1

k+1∑
`=1
6̀=t

σF (x` − ai), h4(X) := λ
k+1∑
`=1

max
t=1,...,m

m∑
i=1
i 6=t

σF (x` − ai),

h5(X) := max
t=1,...,k+1

k+1∑
`=1
6̀=t

k+1∑
j=1

σF (x` − xj).

15

Lemma 5.1 Let E be square matrix with size (k + 1) whose entries are all ones and let I
be the identity matrix of size (k + 1).

(i) Given any real numbers a and b with a 6= 0 and a 6= −(k+ 1)b, the matrix M := aI+ bE

is invertible with

M−1 = xI + yE,

where x =
1

a
and y = − b

a[a+ b(k + 1)]
.

(ii) Let Ẽ := (k + 1)I−E. Given any real numbers c and d with c 6= 0 and c 6= −d(k + 1),

the matrix N := cI + dẼ is invertible with

N−1 = αI + βE,

where α = 1
c+d(k+1) and β =

d

c[c+ d(k + 1)]
.

Proof. (i) Observe that

(aI + bE)(xI + yE) = axI + (bx+ ay)E + byE2

= axI + (bx+ ay)E + by(k + 1)E.

Thus, (aI + bE)(xI + yE) = I if and only if

ax = 1 and bx+ [a+ b(k + 1)]y = 0.

Equivalently, x =
1

a
and y = − b

a[a+ b(k + 1)]
.

(ii) We have

N = cI + dẼ = [c+ d(k + 1)I]− dE.

It remains to apply the result from (i). �

The proposition below provides a formula for computing ∇g∗µ required for applying the

DCA.

Proposition 5.2 Given any λ > 0 and µ > 0, the Fenchel conjugate g∗µ of the function gµ
defined in (5.1) is continuously differentiable with

∇g∗µ(Y) = (αI + βE)
(

(1 + λ)EA + µY
)

for Y ∈ Rk×n,

where E is defined in Lemma 5.1 and

α :=
1

m(λ+ 1) + 2(k + 1)
and β :=

2

m(λ+ 1)[m(λ+ 1) + 2(k + 1)]
. (5.2)

Proof. We have

∇g1µ(X) =
1 + λ

µ
[mX−EA] ,

∇g2µ(X) =
2

µ
[(k + 1)I−E] X.

16

Recall that X ∈ ∂g∗µ(Y) if and only if Y = ∇gµ(X). The equation ∇gµ(X) = Y can be

written as

1 + λ

µ
[mX−EA] +

2

µ
ẼX = Y

(1 + λ) [mX−EA] + 2ẼX = µY(
m(1 + λ)I + 2Ẽ

)
X = (1 + λ)EA + µY.

Solving this equation using Lemma 5.1(ii) yields

X = (αI + βE)
(

(1 + λ)EA + µY
)
, (5.3)

where α and β are given in (5.2). It follows that ∂g∗µ(Y) is a singleton for every Y ∈ Rk×n,

and so g∗µ is continuously differentiable and ∇g∗µ(Y) is given by the expression on the right-

hand side of (5.3); see [16, Theorem 3.3]. �

To implement the DCA, it remains to find a subgradient of hµ. From their representations,

one can see that h1µ and h2µ are differentiable. Their respective subgradients coincides with

their gradients, that can be computed by the partial derivatives with respect to x1, . . . , xk+1

given by

∂h1µ

∂x`
(X) = (1 + λ)

m∑
i=1

[
x` − ai

µ
− P

(
x` − ai

µ
;F

)]
for ` = 1, . . . , k + 1. (5.4)

Thus, ∇h1µ(X)) is the (k + 1)× n matrix H1 whose `th row is
∂h21µ
∂x`

(X).

Similarly,

∂h2µ

∂x`
(X) = 2

k+1∑
j=1

[
x` − xj

µ
− P

(
x` − xj

µ
;F

)]
for ` = 1, . . . , k + 1. (5.5)

Hence, ∇h2µ(X) is the (k + 1)× n matrix H4 whose `th row is
∂h2µ
∂x`

(X).

The procedures for computing a subgradient of hi for i = 3, 4, 5 are similar to those from

the previous section. Therefore, we are ready to give a new DCA-based algorithm for the

bilevel hierarchical clustering problem in Model II.

Example 5.3 (`2−clustering with Algorithm 3). In this example, we consider the hierar-

chical clustering problem in Model II for the case where F is the Euclidean closed unit ball

in Rn. To implement Algorithm 3, it remains to find a subgradient Y ∈ ∂hµ(X). Recall

that

hµ(X) = h1µ(X) + h2µ(X) + h3(X) + h4(X) + h5(X) for X ∈ R(k+1)×n.

The functions h1µ and h2µ are continuously differentiable. The gradients ∇h1µ(X) and

∇h2µ(X) can be determined by their partial derivatives from (5.4) and (5.5), respectively.

We can find subgradients Y3 ∈ ∂h3(X) and Y4 ∈ ∂h4(X) by the procedure developed in

17

Algorithm 3 Model II

1: Input: A,X0, λ0, µ0, σ1, σ2, ε,N ∈ N.

2: while stopping criteria (λ, µ, ε) = false do

3: α := 1
m(λ+1)+2(k+1)

4: β := 2
m(λ+1)[m(λ+1)+2(k+1)]

5: for k = 1, . . . , N do

6: Find Yk ∈ ∂hµ(Xk−1)

7: Xk = (αI + βE)
(

(1 + λ)EA + µYk

)
8: end for

9: update λ and µ

10: end while

11: Output: XN .

Example 4.5. Now, we focus on finding a subgradient Y5 ∈ ∂h5(X). In this case,

h5(X) := max
t=1,...,k+1

k+1∑
`=1
6̀=t

k+1∑
j=1

‖x` − xj‖ = max
t=1,...,k+1

k+1∑
`=1

k+1∑
j=1

‖x` − xj‖ −
k+1∑
j=1

‖xt − xj‖

 .

To find such a subgradient, we will apply the subdifferential sum rule and maximum rule.

Choose an index t∗ such that

max
t=1,...,k+1

k+1∑
`=1

k+1∑
j=1

‖x` − xj‖ −
k+1∑
j=1

‖xt − xj‖

 =
k+1∑
`=1

k+1∑
j=1

‖x` − xj‖ −
k+1∑
j=1

‖xt∗ − xj‖.

Define

v`j :=

 x`−xj
‖x`−xj‖ if x` 6= xj ,

0 otherwise.

Then Y5 can be determined by the (k + 1)× n matrix whose `th row is given by

Y` := 2

k+1∑
j=1

v`j − v`t∗ for ` = 1, . . . , k + 1.

By the procedure developed in Example 4.6 with the use of a signed matrix, we can similarly

provide another example for hierarchical clustering for Model II in the case where F is the

closed unit box in Rn. The detail is left for the reader.

6 Numerical Experiments

We conducted our numerical experiments on a MacBook Pro with 2.2 GHz Intel Core i7

Processor, 16 GB 1600 MHz DDR3 Memory. Even though the two continuous optimization

formulations we consider are nonsmooth and nonconvex, the Nesterov smoothing technique

allowed us to design two implementable DCA-based algorithms.

18

For the implementation of the algorithms, we wrote the codes in MATLAB. Since our

algorithms are adaptations of the DCA, there is no guarantee that our algorithms converge

to a global optimal solution. However, for the artificial test dataset we created to test the

performance of Algorithm 2 with 11 nodes, 2 clearly identifiable cluster centers, and a total

center (see Figure 1), the algorithm converges 100% of the time to a global optimal solution

for all 55 different pairs of starting centers selected from the 11 points, i.e.,
(

11
2

)
= 55.

(a) Artificial Test Dataset for Model I (b) 100% convergence to a global optimal solution

Figure 1: Performance of Algorithm 2.

On the other hand, for the artificial test dataset we created to test the performance of

Algorithm 2 with 15 nodes, 2 clearly identifiable cluster centers, and a total center (see

Figure 2), the algorithm converges to a global optimal solution 85% of the time, which

means that for all 455 different starting centers selected from the 15 points, i.e.,
(

15
3

)
= 455,

the algorithm converges to a global optimal solution 85% of the time.

(a) Artificial test dataset for Model II (b) 85% convergence to a global optimal solution

Figure 2: Performance of Algorithm 3 on the Test Data Set.

Further numerical experiments were performed on the dataset EIL76 (The 76 City Problem)

taken from the Traveling Salesman Problem Library [24]. For instance, Figures 3(a) and

3(b) show optimal solutions for Model I and Model II, respectively, for three cluster centers

and a total center. The optimal solutions were calculated by the brute-force search method

in which we exhaustively generated all the four possible candidates, 3 cluster centers and

1 total center, and then computed the corresponding cost to take the minimum. In this

19

case, we have
(

76
3

)
= 70, 300 combinations for Model I and

(
76
4

)
= 1, 282, 975 combinations

of cluster centers and a total center to check for Model II. For instance, the optimal value

for Model I tested on EIL76 with 3 cluster centers and 1 total center is 1179.76, while for

Model II with 3 cluster centers and 1 total center, it is 1035.29.

(a) Model I on EIL76 (b) Model II on EIL76

Figure 3: Optimal Solutions for Model I and Model II on EIL76.

In the two MATLAB codes we wrote to implement the two algorithms, we updated the

penalty parameter λ and the smoothing parameter µ in every iteration by the relations

λi+1 = σ1λi, σ1 > 1, and µi+1 = σ2µi, σ2 ∈ (0, 1), respectively. The two parameters were

updated until µ < 10−6.

For the choice of the starting centers, we used three different methods:

• Random. We used the “datasample” (a MATLAB built in function) to randomly

select starting centers from the existing nodes without replacement.

• K-means clustering. We used the “kmeans” (a MATLAB built in function) to

partition the nodes into k clusters first, and then we selected the k cluster centroid

locations as starting centers.

• C++ implementation We implemented the model 1 and model 2 algorithms in

C++ and used uniform random numbers generator to generate starting centers. The

code was developed using Armadillo library and run on a computer having 20 Intel(R)

Xeon(R) CPU E5-2640 v4 @ 2.40GHz cores and 250 GB RAM.

20

µ0 = 16, λ0 = 0.01, σ1 = 160, σ2 = 0.5

COST1 COST2 Time1 Time2 Iter1 Iter2 k m n

EIL76 1194.29 1048.41 8.04 10.55 1058 1361 3 76 2

EIL76 1201.97 1048.62 6.84 7.84 918 1006 3 76 2

EIL76 1179.76 1041.53 7.31 10.93 986 1413 3 76 2

EIL76 1181.02 1057.87 7.99 7.50 1030 929 3 76 2

EIL76 1208.39 1057.87 6.40 7.57 832 925 3 76 2

EIL76 1179.76 1057.87 8.16 6.77 1030 876 3 76 2

EIL76 1194.29 1091.57 7.89 6.81 1056 881 3 76 2

EIL76 1179.76 1057.87 7.36 7.19 987 927 3 76 2

EIL76 1204.35 1119.50 9.97 9.62 1337 1238 3 76 2

EIL76 1201.97 1054.90 6.98 6.42 928 820 3 76 2

Table 1: Starting centers selected randomly, MATLAB code.

µ0 = 16, λ0 = 0.01, σ1 = 160, σ2 = 0.5

COST1 COST2 Time1 Time2 Iter1 Iter2 k m n

EIL76 1204.35 1059.01 9.91 6.62 1320 853 3 76 2

EIL76 1179.76 1045.90 7.23 9.29 969 1195 3 76 2

EIL76 1194.29 1049.53 7.84 5.75 1051 738 3 76 2

EIL76 1179.76 1059.01 7.47 6.61 994 853 3 76 2

EIL76 1204.35 1059.01 9.89 6.59 1320 846 3 76 2

EIL76 1179.76 1059.01 7.42 6.64 994 853 3 76 2

EIL76 1181.02 1041.29 7.21 6.18 965 797 3 76 2

EIL76 1201.97 1059.01 6.99 6.57 931 846 3 76 2

EIL76 1181.02 1059.01 7.39 6.62 988 853 3 76 2

EIL76 1201.97 1048.62 6.49 6.67 870 860 3 76 2

Table 2: Starting centers selected by the k-means, MATLAB code.

µ0 = 16, λ0 = 0.01, σ1 = 160, σ2 = 0.5

COST1 COST2 Iter1 Iter2 Time1 Time2 k m n

EIL76 1224.04 1064.91 952 829 0.09 0.05 3 76 2

EIL76 1195.55 1053.38 1051 874 0.07 0.05 3 76 2

EIL76 1206.92 1041.52 1045 1091 0.07 0.07 3 76 2

EIL76 1206.92 1057.86 1008 855 0.06 0.06 3 76 2

EIL76 1215.56 1065.79 1165 887 0.07 0.05 3 76 2

EIL76 1218.48 1057.86 1263 829 0.07 0.04 3 76 2

EIL76 1197.42 1067.6 988 884 0.04 0.04 3 76 2

EIL76 1206.92 1048.6 1045 1020 0.05 0.04 3 76 2

EIL76 1215.56 1057.86 1148 843 0.05 0.04 3 76 2

EIL76 1215.56 1165.62 1206 920 0.05 0.04 3 76 2

Table 3: Starting centers selected randomly, C++ code

21

µ0 = 16, λ0 = 0.01, σ1 = 160, σ2 = 0.5

COST1 COST2 Iter1 Iter2 Time1 Time2 k m n

1002C 2.56341e+06 2.24537e+06 1023 1023 1.31 1 6 1002 2

1002C 2.16241e+06 1.79317e+06 1023 1023 1.09 1 6 1002 2

1002C 2.55508e+06 2.25252e+06 1023 1023 1.1 0.99 6 1002 2

1002C 2.29283e+06 2.12459e+06 1023 1023 1.1 0.99 6 1002 2

1002C 2.28579e+06 2.02933e+06 1023 1023 1.1 1 6 1002 2

1002C 2.02867e+06 1.84531e+06 1023 1023 1.1 0.99 6 1002 2

1002C 2.49236e+06 2.43734e+06 1023 1023 1.1 0.99 6 1002 2

1002C 3.02324e+06 2.42825e+06 1023 1023 1.1 0.99 6 1002 2

1002C 2.33796e+06 2.1374e+06 1023 1023 1.1 1 6 1002 2

1002C 2.37677e+06 1.85446e+06 1023 1023 1.09 1 6 1002 2

Table 4: Starting centers selected randomly, C++ code

µ0 = 16, λ0 = 0.01, σ1 = 160, σ2 = 0.5

COST1 COST2 Iter1 Iter2 Time1 Time2 k m n

10000RND 1.94933e+07 1.8097e+07 1023 1023 11.36 10.1 6 10000 2

10000RND 2.44543e+07 2.07372e+07 1023 1023 11.15 10.1 6 10000 2

10000RND 2.36188e+07 1.90255e+07 1023 1023 11.18 10.07 6 10000 2

10000RND 2.13395e+07 1.81326e+07 1023 1023 11.16 10.09 6 10000 2

10000RND 1.97625e+07 1.74163e+07 1023 1023 11.17 10.09 6 10000 2

10000RND 1.9848e+07 1.79588e+07 1023 1023 11.18 10.11 6 10000 2

10000RND 2.4502e+07 2.0164e+07 1023 1023 11.17 10.08 6 10000 2

10000RND 2.38836e+07 2.09025e+07 1023 1023 11.16 10.09 6 10000 2

10000RND 1.81975e+07 1.68355e+07 1023 1023 11.17 10.09 6 10000 2

10000RND 2.05324e+07 1.68926e+07 1023 1023 11.16 10.1 6 10000 2

Table 5: Starting centers selected randomly, C++ code, 10000 u. randomly distributed

points

22

µ0 = 16, λ0 = 0.01, σ1 = 160, σ2 = 0.5

COST1 COST2 Iter1 Iter2 Time1 Time2 k m n

10000RND 5.17176e+06 5.10097e+06 1023 1023 218.72 166.85 100 10000 2

10000RND 5.32321e+06 5.20111e+06 1023 1023 218.1 164.76 100 10000 2

10000RND 5.32893e+06 5.21018e+06 1023 1023 215.79 166.91 100 10000 2

10000RND 5.45463e+06 5.34531e+06 1023 1023 217.58 166.92 100 10000 2

10000RND 5.59697e+06 5.42149e+06 1023 1023 217.25 164.93 100 10000 2

10000RND 5.57053e+06 5.39613e+06 1023 1023 215.23 169.07 100 10000 2

10000RND 5.67843e+06 5.55442e+06 1023 1023 217.15 166.78 100 10000 2

10000RND 5.7148e+06 5.57767e+06 1023 1023 215.6 165.05 100 10000 2

10000RND 5.37335e+06 5.28977e+06 1023 1023 219.63 164.81 100 10000 2

10000RND 5.73865e+06 5.61554e+06 1023 1023 217.23 166.87 100 10000 2

Table 6: Starting centers selected randomly, C++ code, 10000 u. randomly distributed

points

µ0 = 16, λ0 = 0.01, σ1 = 160, σ2 = 0.5

COST1 COST2 Iter1 Iter2 Time1 Time2 k m n

10000RND3D 2.83948e+07 2.63213e+07 1023 1023 24.79 19.71 10 10000 3

10000RND3D 2.74404e+07 2.65681e+07 1023 1023 24.6 19.7 10 10000 3

10000RND3D 2.9869e+07 2.85641e+07 1023 1023 24.59 19.7 10 10000 3

10000RND3D 3.44097e+07 3.07609e+07 1023 1023 24.6 19.7 10 10000 3

10000RND3D 3.05076e+07 2.89047e+07 1023 1023 24.6 19.7 10 10000 3

10000RND3D 2.72841e+07 2.61452e+07 1023 1023 24.61 19.7 10 10000 3

10000RND3D 2.94171e+07 2.81767e+07 1023 1023 24.6 22.25 10 10000 3

10000RND3D 3.15467e+07 2.72963e+07 1023 1023 24.6 19.69 10 10000 3

10000RND3D 2.78719e+07 2.64644e+07 1023 1023 24.61 21.48 10 10000 3

10000RND3D 2.80267e+07 2.64164e+07 1023 1023 24.59 19.7 10 10000 3

Table 7: Starting centers selected randomly, C++ code, 10000 u. randomly distributed

points, 3 dimensions

23

µ0 = 16, λ0 = 0.01, σ1 = 160, σ2 = 0.5

COST1 COST2 Iter1 Iter2 Time1 Time2 k m n

1000RND6D 5.68343e+06 5.49334e+06 1023 1023 2.72 2.16 10 1000 6

1000RND6D 6.15169e+06 5.94648e+06 1023 1023 2.5 2.15 10 1000 6

1000RND6D 5.95467e+06 5.87668e+06 1023 1023 2.51 2.15 10 1000 6

1000RND6D 5.848e+06 5.67641e+06 1023 1023 2.5 2.16 10 1000 6

1000RND6D 5.82286e+06 5.73382e+06 1023 1023 2.5 2.15 10 1000 6

1000RND6D 5.81637e+06 5.49823e+06 1023 1023 2.51 2.15 10 1000 6

1000RND6D 6.00205e+06 5.84304e+06 1023 1023 2.5 2.15 10 1000 6

1000RND6D 5.9963e+06 5.86284e+06 1023 1023 2.5 2.17 10 1000 6

1000RND6D 6.16517e+06 6.03364e+06 1023 1023 2.5 2.14 10 1000 6

1000RND6D 5.71309e+06 5.60686e+06 1023 1023 2.51 2.15 10 1000 6

Table 8: Starting centers selected randomly, C++ code, 1000 u. randomly distributed

points in 6 dimensions

µ0 = 16, λ0 = 0.01, σ1 = 160, σ2 = 0.5

COST1 COST2 Iter1 Iter2 Time1 Time2 k m n

100000RND2D 1.40282e+08 1.33498e+08 1023 1023 198.3 165.35 10 100000 2

100000RND2D 1.83297e+08 1.54512e+08 1023 1023 197.06 168.74 10 100000 2

100000RND2D 1.5134e+08 1.41451e+08 1023 1023 198.74 165.34 10 100000 2

100000RND2D 1.59333e+08 1.4203e+08 1023 1023 199.65 164.96 10 100000 2

100000RND2D 1.53366e+08 1.35764e+08 1023 1023 199.08 167.07 10 100000 2

100000RND2D 1.55465e+08 1.45342e+08 1023 1023 199.99 166.82 10 100000 2

100000RND2D 1.39211e+08 1.32843e+08 1023 1023 197.37 165.71 10 100000 2

100000RND2D 1.60153e+08 1.4911e+08 1023 1023 199.78 167.28 10 100000 2

100000RND2D 1.52469e+08 1.38242e+08 1023 1023 200.14 167.13 10 100000 2

100000RND2D 1.46638e+08 1.38241e+08 1023 1023 197.63 165.07 10 100000 2

Table 9: Starting centers selected randomly, C++ code, 100000 u. randomly distributed

points in 2 dimensions

7 Conclusion and Future Research

In this study, we presented two DCA-based algorithms for solving two different bilevel hier-
archical clustering problems where the similarity(dissimilarity) measure between two data
points (nodes) is given by generalized distances. As special cases of generalized distances,
we provided two detailed examples for the `1 and `2 norms. We implemented the algo-
rithms with MATLAB and C++ and tested them on different datasets of various sizes and
dimensions. We expect that our method used in this paper for solving bilevel hierarchi-
cal clustering problems are applicable to solving other nonsmooth nonconvex optimization
problems.

24

References

[1] An, L.T.H., Belghiti, M.T., Tao, P.D.: A new efficient algorithm based on DC programming

and DCA for clustering. J. Glob. Optim., 27, 503–608 (2007).

[2] An, L.T.H., Minh, L.H., Tao, P.D.: New and efficient DCA based algorithms for minimum

sum-of-squares clustering, Pattern Recognition, 47, 388–401(2014).

[3] An, L.T.H., Minh, L.H.: Optimization based DC programming and DCA for hierarchical clus-

tering. European J. Oper. Res. 183, 1067–1085 (2007).

[4] An, L.T.H., Tao, P.D.: Convex analysis approach to D.C. programming: Theory, algorithms

and applications. Acta Math. Vietnam. 22, 289–355 (1997).

[5] Bagirov, A.: Derivative-free methods for unconstrained nonsmooth optimization and its nu-

merical analysis. Investigacao Operacional. 19, 75–93 (1999).

[6] Bagirov, A., Jia, L., Ouveysi, I., Rubinov, A.M.: Optimization based clustering algorithms in

Multicast group hierarchies, in: Proceedings of the Australian Telecommunications, Networks

and Applications Conference (ATNAC), Melbourne Australia (published on CD, ISNB 0-646-

42229-4) (2003).

[7] Bagirov, A., Taheri, S., Ugon, J.: Nonsmooth DC programming approach to the minimum

sum-of-squares clustering problems. Pattern Recognition. 53, 12–24 (2016).

[8] Barbosa, G. V., Villas-Boas, S. B., Xavier, A. E.: Solving the Two-level Clustering Problem by

Hyperbolic Smoothing Approach, and Design of Multicast Networks, SELECTED PROCEED-

INGS, WCTR RIO (2013).

[9] Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert

Spaces. Springer, New York (2011).

[10] Borwein, J.M., Lewis, A.S.: Convex Analysis and Nonlinear Optimization, 2nd edition.

Springer, New York (2006).

[11] Boţ, R.I.: Conjugate Duality in Convex Optimization. Springer, Berlin (2010).

[12] Hartman, P.: On functions representable as a difference of convex functions. Pacific J. Math.

9, 707–713 (1959).

[13] Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms I, II.

Springer, Berlin (1993).

[14] Hiriart-Urruty, J.B.: Generalized differentiability, duality and optimization for problems dealing

with differences of convex functions. Lecture Note in Economics and Math. Systems. 256, 37–70

(1985).

[15] Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, I: Basic Theory, II:

Applications. Springer, Berlin (2006).

[16] Mordukhovich, B.S., Nam, N.M.: An Easy Path to Convex Analysis and Applications. Morgan

& Claypool Publishers, San Rafael, CA (2014).

[17] Nam, N. M., An, N. T., Rector, R. B., J. Sun, J.: Nonsmooth algorithms and Nesterov’s

smoothing technique for generalized Fermat-Torricelli problems. SIAM J. Optim. 24, 1815–

1839 (2014).

25

[18] Nam, N.M., Rector, R.B., Giles, D.: Minimizing Differences of Convex Functions with Appli-

cations to Facility Location and Clustering. Journal of Optimization Theory and Applications.

173, 255–278 (2017).

[19] Nam, N. M., Geremew, W., Reynolds, S., Tran, T: The Nesterov Smoothing Technique and

Minimizing Differences of Convex Functions for Hierarchical Clustering, in press (2017).

[20] Nesterov, Y.: Gradient methods for minimizing composite functions. Math. Program. 140,

125–161 (2013).

[21] Nesterov, Y.: Smooth minimization of non-smooth functions. Math. Program. 103, 127–152

(2005).

[22] Nesterov, Y.: Introductory lectures on convex optimization. A basic course. Applied Optimiza-

tion, 87. Kluwer Academic Publishers, Boston, MA (2004).

[23] Ordin, B., Bagirov, A.: A heuristic algorithm for solving the minimum sum-of-squares clustering

problems. Journal of Global Optimization. 61, 341–361 (2015).

[24] Reinelt, G.: TSPLIB: A Traveling Salesman Problem Library. ORSA Journal of Computing.

3, 376–384 (1991).

[25] Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton, NJ (1970).

[26] Rockafellar, R.T.: Conjugate Duality and Optimization. SIAM, Philadelphia, PA (1974).

[27] Tao, P.D., An, L.T.H.: A d.c. optimization algorithm for solving the trust-region subproblem,

SIAM J. Optim. 8, 476–505 (1998).

26

	A DC Programming Approach for Solving Multicast Network Design Problems via the Nesterov Smoothing Technique
	Let us know how access to this document benefits you.
	Citation Details

	1 Introduction
	2 Problems Formulation
	3 Basic Definitions and Tools of Optimization
	4 Hierarchical Clustering via Continuous Optimization Techniques: Model I
	5 Hierarchical Clustering via Continuous Optimization Techniques: Model II
	6 Numerical Experiments
	7 Conclusion and Future Research

