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Abstract
While COVID-19 vaccines have been available since December 2020 and efforts have been made to
vaccinate the maximum population, a large number of people are continuing to be hesitant,
prolonging the pandemic in the US. While most previous studies investigated social, economic,
and demographic variables that are associated with COVID-19 vaccine hesitancy, we added
ecological and technological variables to better understand the spatial variations of vaccine rates in
the contiguous United States using spatial regression and geographically weighted regression
(GWR) models. We aim to identify spatially varying social, ecological, and technological factors
that are associated with COVID-19 vaccination rates, which can aid in identifying and
strengthening the public health system and vaccination programs that can eventually facilitate and
overcome vaccination hesitancy. We found six statistically significant predictors; two predictors,
% Republican voters (r= 0.507, p < .001) and % Black population (r=−0.360, p < .001) were
negatively correlated with the vaccination rates, whereas four remaining predictors, % Population
with college degree (r= 0.229, p < 001), NRI Score (r= 0.131, p < .001), % Population with
broadband access (r= 0.020, p < 001), and Health facilities per 10 000 population (r= 0.424,
p < 001) were positively correlated with the vaccination rates at the county level. GWR results show
spatially varying relationships between vaccination rate and explanatory variables, indicating the
need for regional-specific public health policy. To achieve widespread vaccination, addressing
social, ecological, and technological factors will be essential. We draw particular attention to the
spatial variances even among positively and negatively associated factors. This research also calls
for a reexamination of existing practices, including vaccination communication and other public
health policies, local and national public health organizations, telecommunications agents, and
mobilization of resources by the public and private sectors.

1. Introduction

Vaccine hesitancy refers to a delay in accepting or
refusing vaccinations despite vaccine services being
available (MacDonald 2015, Troiano and Nardi
2021). COVID-19 vaccine hesitancy is a serious
challenge globally, despite attempts by healthcare
providers to vaccinate the majority of the popula-
tion. This hesitancy has resulted in a resurgence of
COVID-19 cases in many parts of the world. In the
United States (US) alone, there were nearly 5 million
new cases in the first week of 2022 (CDC 2022a).

According to recent vaccination statistics, regions
with lower vaccination rates have greater social and
racial disparities (Attonito et al 2021, Dorélien et al
2021, Mollalo and Tatar 2021). Multivariate research
revealed a significant link between the number of vac-
cination sites in a ZIP code and race and ethnicity, but
a lesser association with the percentage of residents
below the poverty level (Attonito et al 2021). Dis-
ease exposure and mortality rates are more in racial
and ethnic minorities, as well as in socioeconomically
deprived communities than in other groups (Tribby
and Hartmann 2021). Long-standing socioeconomic
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and health inequities among African Americans,
Hispanics, Native Americans, and Alaska Natives res-
ulted in increased virus exposure, limited access to
care, and increased risks of developing more severe
diseases (Tai et al 2021).

Globally, vaccine hesitancy has been fueled by
ills such as anti-science movements and pseudo-
scientific arguments (Cornwall 2020, Wang et al
2020), despite the fact that COVID-19 vaccination
has been considered safe and effective (Sultana et al
2020, Thomas et al 2021). Many factors potentially
contribute to vaccine hesitancy, such as political affil-
iation, religious beliefs, race, income, and overall dis-
trust toward government. The facilitators of vaccine
hesitancy can also be exacerbated by factors such
as demonizing immunity through internet conspir-
acy blogs and websites (Muric et al 2021). Prior to
COVID-19 pandemic, several studies have focused
on general vaccine hesitancy and dilemma (Facciolà
et al 2019, Kabir and Tanimoto 2020, 2021, Sultana
et al 2020). For instance, the cyclic mean-field model
developed by Kabir and Tanimoto (2021) explores the
sensitivity of vaccine acceptance based on social inter-
actions. Another separate study by Kabir (2021) ana-
lyzes the evolutionary game theory and reflects on
how individual vaccination practices prioritize selfish
interest above the collective good, while Facciolà et al
(2019) emphasize the importance of health education
and communication in promoting vaccinations for
preventable diseases.

However, only a handful of studies have thor-
oughly evaluated factors relating to COVID-19 vac-
cination and hesitancy. Mollalo and Tatar (2021), for
instance, conducted a spatial epidemiological study
in the continental US to evaluate the socioeconomic
drivers of the COVID-19 vaccination rate. Their find-
ings show that the geospatial disparity in COVID-19
vaccination rate is strongly positively linked to per
capita income but negatively related to the unin-
sured rate. They suggested that higher-resolution spa-
tial analysis at different scales be carried out, as well
as environmental, demographic, and health-related
variables. Hernandez et al (2021) examined how
community-based walk-up sites in New Orleans, LA,
increased coverage and utilization of Covid-19 testing
services for vulnerable and hard-to-reach individuals.
Patients who were African American or Asian were
substantially more likely, 14.7% and 53.0%, respect-
ively, than whites to use the nearest walk-in site,
because they traveled a shorter distance to get tested.
The same effect was shown in elderly people, who
were much less likely to have their blood tested at loc-
ations further away from their homes. Across socio-
demographic categories, persistent differences exist
in vaccine behavior and views. Due to their confid-
ence and caution, Blacks are more likely than whites
to develop vaccine hesitancy. While vaccine hesitancy
amongAfricanAmericans has decreased considerably
over time, it varies little by state (Liu and Li 2021).

While recent data suggests that the racial difference
in COVID-19 vaccine uptake is reducing, in most
reporting states, white individuals still have a higher
vaccination rate than the Hispanic and Black popula-
tions (Ndugga et al 2021).

In the US, studies have shown the role of polit-
ical partisanship in vaccine hesitancy (Allcott et al
2020, Grossman et al 2020). Geographical access-
ibility to vaccination facilities and resources is also
becoming increasingly frequent in recent literature
(Mohammadi et al 2021, Mollalo et al 2021). Thus, a
comprehensive spatial analysis is required to improve
policymakers’ insights into vaccination programs.
Although the relationship of certain socioeconomic
variables to vaccination rates is well established, sev-
eral variables, including those beyond the socioeco-
nomic domain, have not been well researched for
vaccine rates. To fill this research gap, we perform
spatial analysis to understand COVID-19 vaccine
rates in US. Using complete vaccination data at the
county level until the end of December 2021, we
seek to answer where and why vaccine hesitancy per-
sists across the country using a Social-Ecological-
Technological Systems (SETS) framework (Grimm
et al 2017, Chang et al 2020, 2021). As there is a
scarcity of research on the environmental and techno-
logical aspects of COVID-19 vaccine spatial modeling
in US, this study can serve as a geospatial reference
to aid public health decision-makers in developing
region-specific policies and monitoring vaccination
programs. We also focus on additional socioeco-
nomic variables (e.g. % Female population of fertility
age, % Population with bachelor’s degree or higher)
that previous studies did not investigate.

Research questions:

(a) Where are the geographic hotspots of low and
high vaccination rates?

(b) What are the SET factors explaining the spatial
variations of low and high vaccination rates?

(c) How does the relationship between vaccination
rates and explanatory variables vary over space?

2. Study area

Our study areas consist of 3108 counties and county-
equivalent administrative units in the contiguous US
(CONUS). US represents a various social, political,
ecological, technological spectrum, and the county
is the smallest spatial unit that vaccination rate and
other explanatory variables are readily available. A
total of 135 counties were excluded (out of 3243 total
counties or county-equivalent) either because they
were not part of the CONUS or because the vaccin-
ation data was not available.US is leading the global
charts on COVID infections, and the CONUS region
is responsible for over 95% of the cases as of 31
December 2021 (Coronavirus Resource Center 2021).
TheUS federal government, in conjunction with state
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and local governments, has ensured that over 60% of
the population are fully vaccinated with two doses as
of 31 December 2021 (figure 1). As shown in figure 1,
there is a substantial spatial variation of the vaccina-
tion rate. As such, we examined what factors explain
vaccination rates or hesitancy in the CONUS counties
for which recent data is available.

3. Materials andmethods

3.1. SETS framework to analyze vaccination
rates/hesitancy
Many recent studies have focused on socioeco-
nomic factors that contribute to vaccination rates
(Attonito et al 2021, Dorélien et al 2021, Liu and
Li 2021, Mollalo and Tatar 2021). While socioeco-
nomic factors are important, we believe that envir-
onmental and technological dimensions can provide
additional insights into the vaccination hesitancy in
society (Runkle et al 2020, Gatti et al 2021). The SETS
framework has proven utility in various urban vul-
nerability and risk analysis studies in the US (Grimm
et al 2017, Chang et al 2020, 2021, Kim et al 2021).
We propose this framework to evaluate it for a pub-
lic health vulnerability analysis for the first time,
but given that public health is indeed related to the
environment and technology, there is a clear need
to include these dimensions in the analysis (table 1).
We also propose to include new social variables such
as political belief (via 2020 Presidential voting num-
bers) and the female population of fertility age for
the first time in a comprehensive manner. No stud-
ies have analyzed the entire 2021 vaccination rates
from a national political belief perspective; other than
Buckman et al (2020), which focused on local political
trends in North Carolina, there is only one national
study that related vaccination rates to national polit-
ical trends halfway into the vaccination efforts in 2021
(Albrecht 2022). We believe that many events lead-
ing up to the 2020 Presidential election also led to
the politicization of vaccines, which became a symbol
of a battle where science meets politics and ideology.
Such political conflicts adversely affect the ability to
develop evidence-based interventions. There was a lot
of anti-vaccine rhetoric in 2020 and 2021 among the
Republican leadership, politicians, and other popu-
lar figures (Allcott et al 2020, Lerer 2021). As such,
it is worthwhile to investigate its link to vaccination
rates and hesitancy; thus, we included political belief
as one of the variables. In addition, we introduce
the National Risk Index (NRI), a tool designed by
the Federal EmergencyManagement Agency (FEMA)
to identify areas that are at risk of 18 natural haz-
ards, as an ecological variable (FEMA 2021). Addi-
tionally, no study has associated vaccination rates
with farmlands. In terms of technological dimension,
we include impervious surface as a proxy for urb-
anization that is likely to promote vaccination sites,

and polluting sites/factories as a proxy for potential
COVID vaccination deserts. Finally, we also hypo-
thesize that greater internet access as a proxy for
information access is key to higher vaccination rates,
which has not been evaluated prior to this study.

3.2. Data
We obtained the COVID vaccination data (December
2020–December 2021) at the county level from CDC
and US Census Bureau (US Census Bureau 2019,
CDC 2022b), which serve as the dependent variable
in our regression analysis. The COVID vaccination
data is a weekly aggregate at the county level from
December 2020 to December 2021, therefore it is the
total % of people vaccinated per county. The 2020
election data was downloaded from the MIT Elec-
tion Data and Science Lab (MIT 2018). Additional
social variables were obtained from the US Census
Bureau, ACS-5 yr estimates from 2019 (US Census
Bureau 2019). Both farmland and impervious sur-
face were derived from National Land Cover Data,
2019 (Dewitz 2021). The NRI data was downloaded
from FEMA (FEMA 2021). The factories data was
aggregated from the US Energy Information Admin-
istration using multiple layers—coal plants and gen-
eral manufacturing facilities (EIA 2020). The health
facilities data (summarized version) was created by
National Council for Prescription Drug Programs
and obtained from Dr Inmaculada Hernandez at the
University of California at San Diego. All geospa-
tial data were either obtained or summarized at the
county level.

3.3. Methods
3.3.1. Hotspot analysis
A hotspot is an area that has a higher concentration of
occurrences compared to the expected number given
a random distribution of occurrences. Hotspot detec-
tion evolved from the study of point distributions or
spatial arrangements of points in space (Chakravorty
1995). A comprehensive spatial randomness model is
used to compare the density of points inside a specific
area. The hotspotmodel was run onArcMap 10.8.1 to
calculate the Getis-Ord Gi∗ statistic (ESRI 2020). The
Gi∗ statistics is given as:

G∗
i =

∑n
j=1wi,jxj − X

∑n
j=1wi,j

S

√ [
n
∑n

j=1 w
2
i,j−(

∑n
j=1 wi,j)

2
]

n−1

(1)

where, xj is the attribute value for feature j, wi,j is the
spatial weight between feature i and j, n is equal to the
total number of features.

To model the spatial relationship, we selected
the Contiguity Edges and Corners/Queen’s Case rule,
which constructs neighbors from polygons that share
either a boundary (edge) or a corner (node) (Lloyd
2010). This method combines the Bishop and Rook

3



Environ. Res.: Health 1 (2023) 011001

Ta
bl
e
1.
SE

T
va
ri
ab
le
s
to

ex
pl
ai
n
th
e
C
O
V
ID

va
cc
in
at
io
n
ac
ce
pt
an
ce
/h
es
it
an
cy
.

C
at
eg
or
y

V
ar
ia
bl
e
an
d
hy
po

th
es
iz
ed

re
la
ti
on

sh
ip

So
u
rc
e

Ju
st
if
ic
at
io
n

R
ef
er
en
ce
s

So
ci
al

%
V
ot
er
s
w
h
o
vo
te
d
fo
r
R
ep
u
bl
ic
an

P
re
si
de
n
ti
al
N
om

in
ee

in
20
20

(−
)

M
IT

E
le
ct
io
n
D
at
a
an
d
Sc
ie
n
ce

La
b

R
ep
u
bl
ic
an

vo
te
rs
ar
e
le
ss
lik
el
y
to

be
va
cc
in
at
ed

du
e
to

m
is
co
n
ce
pt
io
n
s
ab
ou

t
va
cc
in
e

B
u
ck
m
an

et
al
20
20
,A

lb
re
ch
t

20
22

%
Po

pu
la
ti
on

A
ge
d
65

an
d
O
ve
r
(+

)
A
C
S
20
19
,U

S
C
en
su
s
B
u
re
au

T
h
e
el
de
rl
y
po

pu
la
ti
on

is
m
or
e
lik
el
y
to

be
va
cc
in
at
ed

be
ca
u
se
of

ag
e-
re
la
te
d
h
ea
lt
h
co
n
ce
rn
s

C
h
ak
ra
bo

rt
y
et
al
20
21
,

Z
an
et
ti
n
ie
ta

l2
02
1

%
Po

pu
la
ti
on

C
h
an
ge

(2
01
0–
20
20
)
(+

)
A
C
S
20
10

an
d
A
C
S
20
20
,U

S
C
en
su
s
B
u
re
au

P
la
ce
s
w
it
h
a
gr
ea
te
r
n
u
m
be
r
of

p
eo
pl
e
ar
e
m
or
e

lik
el
y
to

of
fe
r
an
d
ac
ce
pt

va
cc
in
at
io
n
s
du

e
to

av
ai
la
bi
lit
y
an
d
ac
ce
ss

Ju
n
g
an
d
A
lb
ar
ra
c
20
21

%
Po

pu
la
ti
on

(A
ge
d
18

or
O
ve
r)
w
it
h

B
ac
h
el
or
’s
D
eg
re
e
or

H
ig
h
er
(+

)
A
C
S
20
19
,U

S
C
en
su
s
B
u
re
au

T
h
e
ed
u
ca
te
d
po

pu
la
ti
on

is
m
or
e
lik
el
y
to

re
ce
iv
e

va
cc
in
es
du

e
to

re
la
ti
ve
ly
h
ig
h
er
aw

ar
en
es
s

E
h
de

et
al
20
21
,H

ol
ev
a
et
al

20
22

%
M
in
or
it
y
by

ea
ch

ra
ci
al
gr
ou

p
(−

)
A
C
S
20
19
,U

S
C
en
su
s
B
u
re
au

M
in
or
it
ie
s
ar
e
le
ss
lik
el
y
to

h
av
e
eq
u
al
ac
ce
ss
to

va
cc
in
es

A
tt
on

it
o
et
al
20
21
,M

ol
la
lo

et
al
20
21
,P
al
la
th
ad
ka

et
al

20
21

%
Fe
m
al
e
Po

pu
la
ti
on

of
Fe
rt
ili
ty
A
ge

(1
5–
44
)

(−
)

A
C
S
20
19
,U

S
C
en
su
s
B
u
re
au

Fe
m
al
es
of

fe
rt
ili
ty
ag
e
ar
e
le
ss
lik
el
y
du

e
to

co
n
ce
rn
s
ab
ou

t
re
pr
od

u
ct
iv
e
h
ea
lt
h

M
ar
ke
rt
et
al
20
21
,H

ol
ev
a

et
al
20
22

M
ed
ia
n
H
ou

se
h
ol
d
In
co
m
e
(+

)
A
C
S
20
19
,U

S
C
en
su
s
B
u
re
au

W
ea
lt
hy

p
eo
pl
e
ar
e
m
or
e
lik
el
y
to

re
ce
iv
e
va
cc
in
es

du
e

M
ol
la
lo

et
al
20
21

E
co
lo
gi
ca
l

N
at
io
n
al
R
is
k
In
de
x
(+

)
FE

M
A

T
h
e
co
m
m
u
n
it
ie
s
th
at
ar
e
at
ri
sk

of
n
at
u
ra
l

h
az
ar
ds

ar
e
m
or
e
lik
el
y
to

re
ce
iv
e
va
cc
in
es

be
ca
u
se
of

h
ig
h
er
ri
sk

p
er
ce
pt
io
n
,w

h
ic
h
ca
n

in
di
ca
te
pr
oa
ct
iv
e
pr
ep
ar
ed
n
es
s
to

di
sa
st
er
s

in
cl
u
di
n
g
pu

bl
ic
h
ea
lt
h
cr
is
is

N
u
zz
o
et
al
20
19
,J
os
h
ie
ta

l
20
21

%
Fa
rm

la
n
d
(−

)
N
LC

D
,2
01
9

A
la
rg
e
am

ou
n
t
of

gr
ee
n
sp
ac
e
pr
om

ot
es
go
od

ci
rc
u
la
ti
on

of
ai
r

C
h
ic
as

et
al
20
22

Te
ch
n
ol
og
ic
al

%
Po

pu
la
ti
on

w
it
h
B
ro
ad
ba
n
d
A
cc
es
s
(+

)
FC

C
,2
01
8

w
w
w
.f
cc
.g
ov
/f
or
m
-4
77
-c
ou

n
ty
-

da
ta
-i
n
te
rn
et
-a
cc
es
s-
se
rv
ic
es

Pe
op

le
w
it
h
h
ig
h
-s
p
ee
d
in
te
rn
et
ac
ce
ss
ar
e
m
or
e

lik
el
y
to

h
av
e
gr
ea
te
r
di
gi
ta
ll
it
er
ac
y
an
d
ac
ce
ss
to

in
fo
rm

at
io
n

H
or
ri
ga
n
20
10
,S
ch
er
er
an
d

Pe
n
ny
co
ok

20
20

H
ea
lt
h
Fa
ci
lit
ie
s
(+

)
N
at
io
n
al
C
ou

n
ci
lf
or

P
re
sc
ri
pt
io
n

D
ru
g
P
ro
gr
am

s
T
h
e
h
ig
h
er
de
n
si
ty
of

h
ea
lt
h
fa
ci
lit
ie
s
m
ak
es
it

ea
si
er
to

ge
t
va
cc
in
at
ed

B
er
en
br
ok

et
al
20
21

%
Im

p
er
vi
ou

s
Su
rf
ac
e
(+

)
N
LC

D
,2
01
9

H
ig
h
er
im

p
er
vi
ou

s
su
rf
ac
e
in
di
ca
te
s

u
rb
an
iz
at
io
n
,w

h
er
e
va
cc
in
at
io
n
ra
te
s
ar
e
h
ig
h

du
e
to

ac
ce
ss
an
d
aw

ar
en
es
s

C
er
io

et
al
20
21

Fa
ct
or
ie
s
(−

)
E
n
er
gy

In
fo
rm

at
io
n
A
dm

in
is
tr
at
io
n

(E
IA
),
20
21

In
du

st
ri
al
ar
ea
s
h
av
e
m
or
e
ai
r
po

llu
ti
on

an
d
ar
e

u
su
al
ly
lo
ca
te
d
in

u
n
de
si
ra
bl
e
ar
ea
s,
w
h
er
e

m
ar
gi
n
al
iz
ed

co
m
m
u
n
it
ie
s
of
te
n
liv
e,
m
ak
in
g

th
em

le
ss
lik
el
y
to

ge
t
th
e
va
cc
in
at
io
n

W
u
et
al
20
20

4

https://www.fcc.gov/form-477-county-data-internet-access-services
https://www.fcc.gov/form-477-county-data-internet-access-services


Environ. Res.: Health 1 (2023) 011001

relationships into a single measure, accounting for
spatial contiguity by considering adjacent neighbors
in all directions (Tsai et al 2009, Ghosh et al 2021).

3.3.2. Spatial regression model
Because vaccination rate shows strong spatial auto-
correlation, we ran three different regression mod-
els to examine demographic, geographic, and
situational factors explaining vaccine acceptance/
hesitancy. These variables are broadly classified into
three main domains: Social (S), Ecological (E), and
Technological (T). The baseline model we adopted
was the conventional Ordinary Least Square (OLS)
model. An OLS model is most commonly used for
comparing variables and relationships. We initially
ran Exploratory Regression on ArcMap 10.8.1 (ESRI
2020) to determine the best combination of explor-
atory variables to use in the OLS model by avoiding
multicollinearity (VIF > 10; Salmerón et al 2018).
Because OLS models do not take into account spatial
autocorrelation that many spatial data might present,
they have limited utility for explaining spatial phe-
nomena. In contrast, spatial regression models, by
considering spatial autocorrelation in either depend-
ent (spatial lag models) or residuals (spatial error
models), are capable of addressing the limitation of
OLS. We thus use the same set of explanatory vari-
ables for running spatial regressionmodels onGeoDa
version 1.20 (Anselin et al 2006). By comparing R2

and AIC values, we selected spatial error models over
spatial lag models for the final model comparison
betweenOLS and spatial regressionmodels. The form
of spatial error regression is as follows:

Yi= Xiβi + ε ε= λWε+ ξ (2)

where,Yi is the vaccination rate at county i,Xi= inde-
pendent variable at county i, βi = regression coeffi-
cient, ε = random error terms, λ = spatial autore-
gressive coefficient,Wε= spatially lagged error term,
ξ = homoscedastic and independent error term.

3.3.3. Geographically weighted regression
GWR is a local spatial regression method with an
objective to identify and quantify the spatial correl-
ates of an independent variable event based on spatial
proximity or distance among observations (Brunsdon
et al 1996, Sassi 2010). GWR has been used for under-
standing spatial non-stationarity (the existence of
different relationships at different points in space)
in environmental and epidemiological studies (e.g.
Mollalo and Tatar 2021). The GWR-gaussian scheme
is an ideal method for normally distributed data. The
Gaussian weighting scheme offers the regression fea-
ture (feature i) a weight of one, while the weights for
the surrounding features (j features) steadily decrease
as the distance from the regression feature increases.
We used adaptive bandwidth to create weight met-
rics because county size varies over CONUS. The

GWRanalysis was conducted in ArcGIS Pro 2.8 (ESRI
2021). The general form of a GWR model is as
follows:

yi = βi0 +

p∑
j=1

βijxij + εi (3)

where yi represents vaccination rate at county i, βi0

is the intercept for county i, βij is the estimation of
coefficient for jth explanatory variable, Xij is the jth
explanatory variable at county i, p is the number of
explanatory variables, εi is the error term in themodel
estimates.

3.3.4. GIS analysis and mapping
ArcMap 10.8.1 (ESRI 2020) was used to map local R2

values that show the goodness of fit in GWR models.
We also mapped the coefficient values of the statist-
ically significant explanatory variables at each county
using local t-statistical values. Statistically insignific-
ant counties are shown as white.

4. Results

4.1. Spatial patterns of vaccination rate
As shown in figure 1, there exists a distinct spa-
tial pattern of vaccination rate in CONUS. Both
counties with high vaccination rates and low vaccin-
ation rates are spatially clustered, creating hotspots
and coldspots. The hotspot analysis of vaccination
rates displays six regions with high vaccinations—
Pacific Northwest, Southern California, Southwest-
ern border areas, Navajo Nation, the Upper Midwest,
Northeast, and Southern Florida. Similarly, vaccine
hesitancy (cold spots) is observed in the Northern
Mountain region (Montana, North Dakota, Neb-
raska, Wyoming), the inner Pacific West (California,
Nevada), Missouri, and Georgia.

4.2. OLS and Spatial regression analysis
The six statistically significant explanatory variables
display distinct spatial patterns in figure 2. Percent
republication voters and Black populationmaps show
strong spatial clustering. Percent Republican voters
are higher in the inner mountain west, south, and
central mid-west, while percent Black population
is predominantly concentrated along the southeast
coast. NRI scores are higher in the southwest, along
the southeast coast, and themajor rivers. Percent pop-
ulation with broadband access is high in the Pacific
Northwest, southwest, northeast, upper mid-west,
and Florida and Texas counties. Health facilities per
10K population variable are somewhat randomly dis-
tributed, while hotspots are found in the far northeast
and the Ohio Valley.

Table 2 shows the results of regression analysis in
both OLS and spatial regression. In OLS, Vaccination
rates are significantly negatively associated with %

5
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Figure 1. Vaccination rates and vaccination hotspots in the CONUS. The map was created in ArcMap 10.8.1. As of 31 December
2021.

Republican voters (−0.50) and%Black (−0.36) pop-
ulation, whereas they are positively associated with %
Population with a college degree (0.22), NRI (0.13),
% Population with broadband internet access (0.02)
and Counties with a greater number of per capita
health facilities (0.42). The Spatial Error (SER)model
yielded similar results but, with a significant spatial
autoregressive coefficient (0.478), had an overall bet-
ter fit (58%) compared to the OLS model (47%) and
the Spatial Lag model (52%) (not shown).

4.3. GWR analysis
The GWR model explained 76% of the variation of
vaccination rate, which was much higher than the
baselineOLSmodel (table 3). TheGWRmodel repor-
ted higher local R-squared values in the following
regions: the Mountain West (e.g. Montana, Idaho,
Utah, Colorado), the Southwest (e.g. Arizona, New
Mexico), parts of the South (e.g. Florida, Louisiana),
and the Midwest (Wisconsin, Minnesota, Indiana,
Ohio) (figure 3), implying improvedmodel perform-
ance and better fit. Relatively lower local R-squared
values were observed in the following regions: New
England (e.g. Vermont, NewHampshire), parts of the
South (e.g. Tennessee), and most of the Great Plains
(e.g. Kansas, Nebraska), implying that the model is
not a perfect fit, but a reverse relationship may be
considered.

As shown in figure 4, all explanatory variables
show both positive and negative signs of coefficient
values. Vaccine hesitancy is strong among Repub-
lican voters as shown by both OLS (−0.507, p < 0.01)
and GWR models. The strong negative association
is visible (figure 4) in many Republican counties
across the nation, especially in the Mountain States
(e.g. Montana, Wyoming), Southwest (e.g. Arizona,
New Mexico), and the American South (e.g. Louisi-
ana, Georgia, Florida). In the Northeast, however,
many Republican counties in Virginias, New Jersey as
well as in New England states such as Maine and Ver-
mont, do show a positive associationwith vaccination
rates, perhaps reflecting a persuasive population of
libertarian-leaning or moderate Republicans. Over-
all, the black population is also negatively associated
with vaccination rates, and a strong negative associ-
ation is found in the South (e.g. Alabama, Georgia),
Mountain States (e.g. Colorado, Wyoming), along
the Southwest (e.g. Arizona, New Mexico) as well as
the Pacific Northwest (e.g. Washington, Oregon)—
although results for the West are mixed, especially
in some Montana and Nevada counties, indicat-
ing that this relationship may vary by state and/or
region (figure 4). Another strong predictor of vac-
cination hesitancy is college education or a popula-
tion with at least a bachelor’s degree. Not surpris-
ingly, the most highly educated demographics are

6
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Figure 2. Spatial pattern of significant explanatory variables of regression analysis in the CONUS. The map was created in
ArcMap 10.8.1.

Table 2. Descriptive statistics and results of OLS and SER model of COVID-19 vaccination rates in the United States.

Domain Variable Minimum Maximum Average
Standard
Deviation

Coefficient
OLS

Coefficient
SER VIF

Social % Republican voters 0 96.18 65.01 16.11 −0.507∗∗ −0.451∗∗ 2.333
Social % Population with

college degree
0 60.32 15.74 6.90 0.229∗∗ 0.260∗∗ 1.855

Social % Black population 0 87.45 8.80 14.16 −0.360∗∗ −0.343∗∗ 1.570
Ecological National Risk Index

score
0 100 10.35 6.54 0.131∗∗ 0.110∗∗ 1.082

Technological % Population with
broadband access

0 100 65.45 31.18 0.020∗∗ 0.024∗∗ 1.254

Technological Health facilities per
10 000 population

0 34.46 2.79 1.99 0.424∗∗ 0.187∗ 1.044

Spatial Autoregressive
coefficient

NA 0.478∗∗

AIC 22 768.2 22 238.4
R2 0.476 0.585

OLS= Ordinary Least Squares. SER= Spatial Error. VIF= Variation Inflation Factor. AIC= Akaike information criterion.
∗∗ indicates p < 0.01; ∗ indicates p < 0.05.

also more likely to get vaccinated, and this trend is
strong in many urbanized parts of the nation such
as the Northeast (e.g. Maine, Pennsylvania, Vir-
ginias, Vermont), Midwest (e.g. Indiana, Michigan,
Ohio, Dakotas), and the South (e.g. North Carolina,
Florida), while populations with lower educational

attainment show vaccine hesitancy in many counties
of the relatively less urbanized counties in the
South (e.g. Arkansas, Tennessee, North Caro-
lina), the Southwest (e.g. California, Arizona),
as well as the Mountain States (e.g. Montana,
Wyoming).
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Table 3. OLS (global) and GWR (local) coefficients of the empirical regression model.

GWR

Minimum
Lower
quartile Median

Upper
quartile Maximum OLS

Intercept −65.41 63.14 69.00 89.55 215.24 77.95
% Republican voters −1.96 −0.52 −0.43 0.24 0.93 −0.51
% Black population −3.82 −0.34 −0.24 0.07 3.11 −0.36
% Population with college
degree

−1.22 0.31 0.39 0.66 1.77 0.23

NRI score −1.09 0.00 0.05 0.29 1.15 0.13
% Population with
broadband access

−0.26 −0.02 0.01 0.06 0.40 0.02

Health facilities per capita
(10k population)

−6.29 0.10 0.26 0.86 5.45 0.42

R2 0.764 0.476
AICc 21 450 22 768.2
σ2 50.46 88.72

Figure 3. GWRmodel results of vaccination rates explained by the selected variables. The map was created in ArcMap 10.8.1.

For ecological indicators, only the NRI is statist-
ically significant. Overall, the NRI is positively asso-
ciated with vaccination rates. However, most US
counties show insignificant relationships with this
variable. Vaccine hesitancy is relatively stronger in
parts of the Tornado alley region (e.g. Louisiana,
Missouri), but weakens toward the interior west (e.g.
Colorado, Nebraska, North Dakota). While vaccin-
ation rates are positively associated with NRI score
in most counties, some counties do show negative

associations with NRI scores (a portion of the mid-
west and poverty-belt along the Appalachian Moun-
tains), indicating the potential role of public commu-
nication in these high ecological risk areas.

Two significant technological indicators play a
part in vaccine hesitancy. Both are positively associ-
ated with vaccination rates. Populations with broad-
band access have a strong positive association with
vaccination rates inmuch of theWest (e.g. California,
Oregon, Nevada) and in significant portion of the
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Figure 4. GWRmodel coefficient values showing statistically significant results. The map was created in ArcMap 10.8.1.

geographically smaller Rhode Island. However, pop-
ulations with broadband access display negative asso-
ciation with vaccination rates in the American South
(Georgia, North Carolina), as well as the Northeast
(e.g. New York, Vermont), indicating that lack of
or limited access to high-speed internet may have
played a role in vaccine hesitancy there. Health facilit-
ies are also strongly linked to vaccination rates, espe-
cially along the Pacific Coast (Washington, Oregon,
California) and Canadian border counties in the
North (e.g. North Dakota, Minnesota). They are also
positively linked to vaccination rates inmany counties
in the South (Alabama, Florida, Georgia). The lack
of health facilities per capita population may have
caused delays or loss of opportunity to vaccinate in
some regions, especially in the Indian reservation ter-
ritories (e.g. Arizona, Colorado, and New Mexico),
as well as across the Plains (e.g. Kansas, Missouri,
Iowa), and in parts of the South (e.g. Alabama,
Florida, Georgia, North Carolina). Similarly, vaccine
hesitancy linked to health facilities is also severe in
many parts of the Northeast (e.g. New York, New
Hampshire, Massachusetts, Maine, Vermont).

5. Discussion

Many COVID-19 outbreaks in US are currently
attributed to those who do not agree with vaccines

due to religious or political beliefs (Albrecht 2022).
This vaccine hesitation can instill fear in even the
most educated and intelligent citizens, causing a state
of alarm. Many spatial patterns of vaccine hesitancy
are fueled by misinformation spread by politicians,
as shown by multiple studies (Allcott et al 2020,
Evanega et al 2020, Shahi et al 2021). Allcott et al
(2020) highlighted variations along political lines in
social distancing, partisanship, COVID-19, and pub-
lic policy. This explains the high vaccine hesitancy
found among Republican voters in general, but this
study found geographic variations in how vaccine
hesitancy is spread even among Republican voters,
particularly closer to the Canadian border in the
west (e.g. Montana, Washington) and the Northeast
(e.g. Maine, Vermont). The wide variation, while in
part explained by factors such as religious beliefs
(Scott et al 2021), political spectrum, and the like,
does serve to highlight the potential for geographic
patterns of vaccine hesitancy that could have policy
implications and lead to improved communication.
Indeed, studies have shown that efficient and con-
sistent communication is key to changing people’s
minds on challenging public health issues, includ-
ing medical treatments like vaccinations (Xantus et al
2021). At the same time, the low rates of vaccination
among the Black population are fueled by a combina-
tion of lack of healthcare access or medical racism, as
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well as misinformation (Chee 2021, Savoia et al 2021,
DiRago et al 2022). However, geographically, Black
population vaccine hesitancy generally seems to vary
with local political landscape, implying that varying
factors–such as social-political context and healthcare
access–may contribute to the observed differences in
vaccination rates of the Black population. The find-
ings imply that existing racial and spatial inequal-
ity in public health remains an issue (Kim and Kwan
2021, Pallathadka et al 2021). Our study addition-
ally demonstrates that educated populations are less
likely to be vaccine-hesitant, although this trend can
vary geographically. Florida provides an interesting
case, for example, where both Republican voters and
the Black population are more hesitant of vaccines,
but the college-educated population is more accept-
ing of vaccines (figure 4). Spatial patterns can also be
impacted by trust in government regardless of race
and political affiliations (AlShurman et al 2021, Joshi
et al 2021, Savoia et al 2021). Our finding of the NRI
score in relation to vaccination highlights the import-
ance of building trust in public communication and
in government agencies. Indeed, studies have shown
that the level of distrust in government influences
people’s willingness to vaccinate and or follow public
communication (Park and Lee 2018, Joshi et al 2021,
Offerdal et al 2021, Park et al 2021). Places with a
high number of natural disasters are typically more
familiar with government agencies and therefore less
distrustful of them depending on the government
response there. In themajority of the mountain states
(e.g. Colorado, Wyoming), this seems to be the case
where the disasters do not have maritime influence
and government efforts here seem to be more suc-
cessful. In contrast, places that have maritime influ-
ence with disasters such as hurricanes and sea-level
rise still have low vaccination rates, implying the
varying nature of public natural disaster mitigation
efforts and outcomes. Beyond these factors, our find-
ings emphasized that having reliable broadband inter-
net access is essential for achieving high vaccination
rates. Indeed, research via a national survey by Luo
et al (2022) showed that respondents with internet
access at home were more willing to get vaccinated.
Berenbrok et al (2021) and Mohammadi et al (2021)
suggested that access to healthcare is critical for high
levels of vaccination, similar to our findings. Our res-
ults further suggest that health facilities per capita are
strongly tied to urbanized counties, and this repres-
ents barriers to vaccination for rural counties that
have a significantly lower proportion of adolescents
vaccinated.

This analysis demonstrates the usefulness of a
GWR model over OLS and SER models, especially
in capturing the locally varying relationships between
vaccination rate and explanatory variables. This study
supportsGWR (a local spatial analysis approach) over
nonspatial global methods for explaining the spatial

variation of vaccination rates. For example, the OLS
model provided spatially stationary results, but GWR
demonstrated the diversity of county-level vaccin-
ation rates to a much greater degree than OLS or
SER. This finding should be considered by public
health professionals and policymakers dealing with
locally specific public health issues, especially those
of a public disaster when analyzing spatially varying
relationships.

Our models also demonstrate SETS as a use-
ful framework in reviewing vaccine hesitancy. Other
models that rely heavily on socioeconomic factors
suffer from redundancy, and as suchmay benefit from
using this expanded model that includes other ecolo-
gical and technological factors. The results show the
consideration of ecological and technological vari-
ables enrich the explanatory power of a regression
analysis. After all, the SETS framework can be applied
to any multilevel design, representing a basis for dis-
entangling complex socioeconomic and geographic
factors by aggregating them into variables. Public
health policy analysts could use the findings of our
information to understand the interactions among
social, ecological, and technological variables. Over-
all, we believe that this framework can serve policy-
makers in developing critical decision-making tools.

There are some limitations to our study. The
GWR model is exploratory in nature, thus it is not
suitable for predicting vaccination rates independent
of explanatory variables. Additionally, the vaccina-
tion rate is a continuously evolving number, and as
such,many factors discussed in this studymay change
over time. The findings are shown at the county level,
so interpretation at a different level is not recommen-
ded. We also recognize that certain sections of the
population may have medical reasons (e.g. infants,
immunocompromised individuals) not to vaccinate.
Further, we acknowledge that variables used heremay
have substitutes that we could not capture in this
study, which may have led to misspecification errors,
particularly for those counties that exhibit lower R2

values. Future research should explore these factors at
a finer scale (e.g. Census Tract or Block Group) and
investigate whether relationships remain the same.
Additionally, different states and counties have imple-
mented different policies related to COVID-19mitig-
ation. Thus, future research is warranted to examine
how different policies affect vaccination rates.

6. Conclusions

Public health experts have repeatedly stressed that
achieving universal vaccination is key to controlling
the incidence of vaccine-preventable diseases such as
COVID-19. In this study, we explored factors explain-
ing vaccination rates to understand vaccine hesit-
ancy from a comprehensive SETS lens. Our research
highlighted that socio-political, environmental, and
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technological determinant of vaccine hesitancy
might vary across regions. We found six statistic-
ally significant predictors; two variables, % Repub-
lican voters and % Black population were negat-
ively correlated with the vaccination rates, whereas
four remaining variables, % Population with college
degree, NRI Score, % Population with broadband
access, and Health facilities per 10,000 population
were positively correlated with the vaccination rates
at the county level. The relationships were varying
geographically, with clusters of local hotspots spread
across the CONUS. Highly focused government
intervention through consistent communication,
well-structured immunization schedules, and feed-
back on vaccination status may help foster vaccine
hesitancy mitigation where it exists. While a prag-
matic approach to dealing with vaccination hesitancy
in the interest of greater public health is a lesson from
our study, we also recommend ongoing observation
and documenting these local dynamics to monitor
and better understand vaccine hesitancy and how to
mitigate it.
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