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a b s t r a c t

This article presents the datasets gathered for the hot processing of
three Ni-based superalloys intended for A-USC application, Haynes
214, Haynes 230 and Inconel 740H. Isothermal compression tests
were conducted with a Gleeble 3500 at temperatures between
1000 �C and 1200 �C and strain rates between 0.01/s and 1/s to a
full true strain of 0.7. The obtained true stress-true strain curves
were used as basis for hot processing maps, linking temperature,
stress and strain rate. Subsequently, all samples were sectioned
through the geometric centre to provide microstructural infor-
mation, captured using EBSD, as well as EDX for the evolution of
secondary phases. Thermodynamic modelling was performed to
validate compositions and mass fraction data from EDX measure-
ments. These combined datasets help in understanding the
deformation behaviour of a selected range of superalloys, under
commercial processing conditions, aiding in process design opti-
mizations and improvements. For complete interpretation of the
data the reader should refer to the related publication “Compar-
ative study of the hot processing behavior in advanced Ni-based
superalloys for use in A-USC applications”.
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1. Data

The true stress-true strain curves for are shown in combined graphs for each alloy and strain rate,
with all 5 test temperatures in one graph. The EBSD data is split up in bandcontrast and inverse pole
figure images, both saved in slides in powerpoint files, one image per processing condition. The
property phase diagrams obtained with the ThermoCalc software are split up in separate images, for all
stable phases, for the weight fraction and mole fraction of elements within each stable phase, for each
alloy based on their as-received composition. Further, the compositions of each stable phase over
temperature is saved as excel data files.

2. Experimental design, materials, and methods

The chamber atmosphere was controlled by evacuating to 1 � 10�2 mTorr and subsequent back-
filling with research-grade argon gas. The heating rate was 2.5 �C s�1, samples were soaked at the test
temperature for 30 s, to ensure thermal equilibrium, during which the temperature was maintained.
Adequate lubrication between the tungsten-carbide cobalt anvils and the samples was maintained
using 0.125 mm thick graphite foil. After the deformationwas done, samples remained in the chamber
and cooled naturally by heat conduction through the anvils and heat convection through the gas. Using
recorded data from attached thermocouples, the cooling rate was determined to be around 60 �C for
the first few hundred degrees.

Specifications Table

Subject Metals and Alloys
Specific subject area Hot processing behaviour of Ni-based superalloys
Type of data Table

Image
Graph
Figure

How data were acquired Gleeble 3500; Zeiss Sigma 30kV VP FEG-SEM; Oxford Nanolys EBSD; Oxford EDX;
Microsoft Excel; Originlab OriginPro 2018; Aztec 4.1; Channel5 Tango; ThermoCalc
2015; Overleaf Latex

Data format Raw stress-strain, load-stroke ASCII data, ‘.d0x’ type files.
Computational data from ThermoCalc in the form of ‘.jpg’ files and ‘.xlsx’ Excel files
JPG and PNG files of images and figures in Microsoft Powerpoint presentation

Parameters for data collection Temperature 1000 �Ce1200 �C in 50 �C steps; strain rates 0.01/s, 0.1/s, 1/s; true strain of
0.7

Description of data collection Stress-strain data was acquired using an LVDT gauge and a loadcell, temperature was
collected using a spot-welded type-K thermocouple

Data source location Institution: Portland State University
City/Town/Region: Portland, OR Country: United States

Data accessibility Repository name: Mendeley
Data identification number: 10.17632/rpr7yykzx8.1
Direct URL to data: https://data.mendeley.com/datasets/rpr7yykzx8/1

Related research article Benjamin M. Adam, Julie D. Tucker, Graham Tewksbury
Comparative study of the hot processing behavior in advanced Ni-based superalloys for
use in A-USC applications
Journal of Alloys and Compounds

Value of the Data
� The data obtained from hot deformation testing and microstructural observations allows for a more complete under-

standing of the complex hot processing behaviour of some advanced Ni-based superalloys.
� Both academic and industrial users of this type of material, interested in the hot processing behavior
� This data will be useful as baseline reference and comparison for similar studies as well as potential aid in optimization of

material processing conditions of these materials.

B. Adam et al. / Data in brief 28 (2020) 1049232

https://data.mendeley.com/datasets/rpr7yykzx8/1


Adiabatic heating corrections have been carried out in order to correct for the effect of additional
heat on the flow stress curve, as compared to ideal isothermal conditions. This is an expected effect at
higher strain rates, seen by various authors [1e3]. Various correction methods are proposed in the
literature, including studies involving numerical solutions using FEM-simulations of hot-compression
tests [4] and complex iterative approaches [5]. However, the more commonly used approach is shown
in Eq. (5) [6,7].

DT¼ha
ð
ðsdεÞ=ðrCpÞ

Here, s and ε are the stress and strain values recorded from the compression tests. a corresponds to
the amount of deformation energy transformed into heat, which is usually assumed to be 0.95e0.98,
while h stands for the adiabatic correction factor. Н is assumed to change between h¼ 0 for strain rates
�10�3 s�1 and h ¼ 1 for strain rates � 101 s�1. The integral !sd represents the area underneath the
uncorrected stress-strain curve, r is the material density of 8.05 g cm�3 for Inconel 740H and Haynes
214, and 8.97 g cm�3 for Haynes 230. Cp is the temperature-dependent heat capacity in J (kg �C)�1,
which is defined using a linear fit on the reported specific heat values for the corresponding tem-
perature range from the manufacturer's datasheet [8e10].

Eq. (5) is generally correcting for the amount of heat transferred to the dies during adiabatic heating.
In this dateset the values for h have been defined for each strain rate, based upon comparable values
from the literature, i.e. for strain rate of 0.01 s�1 a value of 0.1, for 0.1 s�1 a value of 0.5, and for 1.0 s�1 a
value of 0.9 [56, 63, 64]. The flow stress can then be corrected by Eq. (6) [11,12].

Ds ¼ DTðvs=vTÞ
where by vs/vT is obtained by plotting the uncorrected flow stress values at low true strain values
(here: ε¼ 0.02) against the temperature, and calculating the first derivative of a linear regression to the
curve.

All testedsampleswerecut inhalf, parallel to thedeformationaxis, prior tohot-mounting inconductive
resin. Sample preparation followed grindingwith silicon carbide and stepwise polishing to afinalfinish of
0.04mmwith colloidal silica, and subsequent ultrasonic cleaning with ethanol. Analyses were performed
on a Zeiss Sigma 30kV FEG-SEM with an Oxford Instruments Nanolys EBSD detector and an SDD EDX
detector for chemical analysis. EDX mapping acquisition settings were a 10 keV spectral range, at 2048
channels, and60e80mcountsper frame, for2 framesper samples.Elemental EDXmapswereprocessed in
ImageJ2/FiJi to optimize contrast and edge sharpness of the precipitates for best particle size detection.
EBSD acquisition settingswere 8� 8 and 8� 16 binning at 15 kV, andmapswere recorded at a step size of
0.3e0.4 mm at various magnifications to allow for sufficient number of grains per field of view. All post-
processing of maps, the grain size analysis and misorientation angle calculation, were performed in HKL
Channel5 software.

Noise reduction was performed on EBSD patterns, with removal of wild spikes and zero solu-
tions. Wild spikes are considered single pixels, that have a completely different orientation than the
surrounding pixels, if these share a common orientation. Zero solutions are reduced if more than 4
neighboring grains are indexed, then removal and replacement with the neighbor average will
occur. Grain reconstruction was based on a 5� minimum grain treshold angle, and minimum grain
sizes of 20e200 pixels, depending on the grain size; the thresholds for low angle grain boundaries
(LAGB) � 5�, and �10� for high angle grain boundaries (HAGB), respectively. CSL-type boundaries
were excluded from the grain size measurements, using 5� maximum angular deviation for the
detection. This is a tighter range than suggested by the commonly employed Brandon's criterion
[13], but follows approaches suggested by e.g. Randle [14]. Determination of the fraction of
recrystallized grains and the DRX grain size was done using the well-known grain orientation
spread (GOS) approach [15e17], which gives the averaged difference of the misorientations be-
tween each pixel of a grain and the grain's mean misorientation. The GOS of a recrystallized grain
will be much lower than for deformed or substructured grains, the treshold for the present alloys
was between 2� and 3�. Grain size determination was performed using the equivalent circle
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diameter (ECD) based on statistically significant datasets of many hundreds of grains per field-of-
view.

Modeling of the stable phases in equilibrium was performed using ThermoCalc 2015a with the
TCNi7.1 database, the stable phase diagrams for all three alloys can be found in the appendix, including
a scaled view of the temperature range of interest. For the temperature range used in the mechanical
testing, all alloys are predicted to have some amounts of secondary phases stable in equilibrium, except
for Haynes 214, which only shows the g-matrix. Both Haynes 230 and Inconel 740H are predicted to
form primary carbides from the melt, stable to temperatures below 1000 �C. For Inconel 740H, this is a
(Nb,Ti)C-type carbide, while for Haynes 230 it is a tungsten-rich M6C-type carbide. In addition, Haynes
230 is predicted to form aM23C6-type carbide, also with FCCL12-type structure, stable from 1160 �C to
below 1000 �C. In addition, due its aging treatment at 800 �C, Inkconel 740H is expected to have
initially some g0-phase present, likely to be metastable due to the projected g0-dissolution temperature
of 995 �C.
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