
Portland State University Portland State University 

PDXScholar PDXScholar 

Physics Faculty Publications and Presentations Physics 

11-2017 

Ion Transport across Biological Membranes by Ion Transport across Biological Membranes by 

Carborane-Capped Gold Nanoparticles Carborane-Capped Gold Nanoparticles 

Marcin P. Grzelczak 
University of Liverpool 

Stephen P. Danks 
University of Liverpool 

Robert C. Klipp 
Portland State University, KlippRob@gmail.com 

Domagoj Belic 
University of Liverpool 

Adnana Zaulet 
Institut de Ciencia de Materials de Barcelona 

See next page for additional authors 

Follow this and additional works at: https://pdxscholar.library.pdx.edu/phy_fac 

 Part of the Physics Commons 

Let us know how access to this document benefits you. 

Citation Details Citation Details 
Grzelczak, M. P., Danks, S. P., Klipp, R. C., Belic, D., Zaulet, A., Kunstmann-Olsen, C., & ... Brust, M. (2017). 
Ion Transport across Biological Membranes by Carborane-Capped Gold Nanoparticles. ACS Nano, 11(12), 
12492-12499. 

This Article is brought to you for free and open access. It has been accepted for inclusion in Physics Faculty 
Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make 
this document more accessible: pdxscholar@pdx.edu. 

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/phy_fac
https://pdxscholar.library.pdx.edu/phy
https://pdxscholar.library.pdx.edu/phy_fac?utm_source=pdxscholar.library.pdx.edu%2Fphy_fac%2F276&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/193?utm_source=pdxscholar.library.pdx.edu%2Fphy_fac%2F276&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/phy_fac/276
mailto:pdxscholar@pdx.edu


Authors Authors 
Marcin P. Grzelczak, Stephen P. Danks, Robert C. Klipp, Domagoj Belic, Adnana Zaulet, Casper Kunstmann-
Olsen, Dan F. Bradley, Tatsuya Tsukuda, Clara Vin ̃as, Francesc Teixidor, Jonathan J. Abramson, and 
Mathias Brust 

This article is available at PDXScholar: https://pdxscholar.library.pdx.edu/phy_fac/276 

https://pdxscholar.library.pdx.edu/phy_fac/276


Ion Transport across Biological Membranes by
Carborane-Capped Gold Nanoparticles
Marcin P. Grzelczak,*,† Stephen P. Danks,† Robert C. Klipp,§ Domagoj Belic,† Adnana Zaulet,‡

Casper Kunstmann-Olsen,† Dan F. Bradley,† Tatsuya Tsukuda,∥ Clara Viñas,‡ Francesc Teixidor,‡
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ABSTRACT: Carborane-capped gold nanoparticles (Au/carbor-
ane NPs, 2−3 nm) can act as artificial ion transporters across
biological membranes. The particles themselves are large
hydrophobic anions that have the ability to disperse in aqueous
media and to partition over both sides of a phospholipid bilayer
membrane. Their presence therefore causes a membrane potential
that is determined by the relative concentrations of particles on
each side of the membrane according to the Nernst equation. The
particles tend to adsorb to both sides of the membrane and can
flip across if changes in membrane potential require their
repartitioning. Such changes can be made either with a
potentiostat in an electrochemical cell or by competition with another partitioning ion, for example, potassium in the
presence of its specific transporter valinomycin. Carborane-capped gold nanoparticles have a ligand shell full of voids,
which stem from the packing of near spherical ligands on a near spherical metal core. These voids are normally filled with
sodium or potassium ions, and the charge is overcompensated by excess electrons in the metal core. The anionic particles
are therefore able to take up and release a certain payload of cations and to adjust their net charge accordingly. It is
demonstrated by potential-dependent fluorescence spectroscopy that polarized phospholipid membranes of vesicles can be
depolarized by ion transport mediated by the particles. It is also shown that the particles act as alkali-ion-specific
transporters across free-standing membranes under potentiostatic control. Magnesium ions are not transported.

KEYWORDS: artificial ion transporters, gold nanoparticles, carborane, membrane potential, fluorescence spectroscopy, electrochemistry

Ion transport across biological membranes is a fundamental
phenomenon ubiquitous in nature.1−6 Photosynthesis, the
respiratory chain, ATP production, muscle contraction,

neuronal signaling, and many other key biological processes
depend on it.7,8 Numerous active and passive transport
mechanisms exist ranging from simple ion channels to highly
complex and regulated energy-converting nanomachineries.
Naturally occurring ion transporters are proteins, whereas
artificial ones can be made in different ways, usually from
peptides,9 macrocyclic organic compounds,10,11 or appropri-
ately functionalized polymers including DNA.12−15 Substances
that affect ion transport or its regulation play important roles in
both basic research and drug development. Carborane-capped
gold nanoparticles16 in the 1−4 nm size range are known for
their ability to store and release cationic charge that is
counterbalanced by excess electrons in the metal core.17 This is
possible due to the inevitable voids in the ligand shell, which
are caused by the near spherical shape of the carborane ligand.

It may also be assisted by the dipole moment of the ligand,
which in this case is pointing toward the gold surface.
Carboranes have the interesting property that the orientation
of their dipole moment relative to a surface can be controlled
by the position of the two vicinal carbon atoms.18 Gold
nanoparticles loaded up with cations readily disperse in water as
net polyanions but, if possible, tend to associate with water/oil
interfaces or with hydrophobic membranes. Unlike most other
nanoscopic forms of gold,19 the particles are cytotoxic and can
enter biological cells by direct membrane penetration and
finally lodge inside membranous structures including the
mitochondria. Here, we report that 2−3 nm gold nanoparticles
protected by mercaptocarborane ligands (a) readily penetrate
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phospholipid bilayer membranes and establish a membrane
potential as partitioning anions and (b) effect the transport of
alkali cations across the membrane and hence represent a class
of membrane transporters. Two complementary experimental
techniques have been used to study these phenomena: (i)
voltage-dependent fluorescence spectroscopy of dispersions of
vesicles and (ii) potentiometric and potential step experiments
across a free-standing bilayer membrane.

RESULTS AND DISCUSSION

We have previously reported the unexpected ability of the
hydrophobic carborane-capped gold nanoparticles (2−3 nm) to
disperse readily in aqueous media.17 This is due to the storage
of both electronic and ionic charge in the metallic core and in
the ligand shell, respectively, as illustrated in Figure 1. Phase
transfer experiments with cationic transfer agents have

established the anionic character of the nanoparticles, and ion
exchange with lithium followed by Li nuclear magnetic
resonance (6Li NMR) spectroscopy has shown that alkali
cations close to the metal surface compensate most of the
excess electronic charge of the metal core. Removal of most
charge by acid treatment renders the particles completely
hydrophobic. It is useful to recall these findings when
interpreting the results presented here.
Before studying the ability of these nanoparticles to act as ion

transporters across biological membranes, it is necessary to
consider their own propensity as large anions to partition across
the membrane and to establish a membrane potential. For this
purpose, we used an established experimental approach to
monitor the membrane potential of phospholipid vesicles by
fluorescence spectroscopy using the potential indicator dye
safranin O that partitions between the membrane and the outer
aqueous phase depending on membrane potential.20,21 The

Figure 1. Schematic representation of nanoparticles and charge storage. (a) Carborane-capped gold nanoparticles. (b) Charge storage in
metallic core (electrons) and ligand shell (sodium ions) and formation of a water-dispersible polyanion by dissociation of sodium ions from
the ligand shell.17

Figure 2. Membrane polarization by Au/carborane NPs. (a) Schematic representation of membrane polarization after addition of anionic Au/
carborane NPs to the aqueous medium outside the vesicles. While the particles readily transfer across the membrane, counterions remain on
the outside of the vesicle. (b) Fluorescence response to the addition of Au/carborane NPs in a range of different concentrations in the
absence of electrolyte. Note that polyethylene glycol-coated gold nanoparticles (Au/PEG-OH NPs) have no effect. (c) Membrane potential
estimated from the data presented in (b). (d) Plot derived from the Nernst equation for two different NaCl concentrations. The membrane
potentials were directly measured using a DIB cell (Figure S4a). Note the dependence of the charge of the Au/carborane NPs on the NaCl
concentration, −3 at 100 mM and −6 at 1 mM. This is likely to be the case also for other alkali ions that can enter the ligand shell.
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fluorescence intensity significantly increases when the dye
molecules reside inside the membrane. Vesicles of 100−200 nm
diameter with a positive ζ-potential (Table S1) were prepared
following the method reported by Stupp and co-workers22 and
characterized by dynamic light scattering (DLS) and cryo-
transmission electron microscopy (cryo-TEM) (Figure S1). For
calibration purposes, their membrane potential was controlled
by carefully adjusting the concentrations of K+ ions inside and
outside the vesicles in the presence of the K+-specific
transporter valinomycin. The fluorescence intensity of safranin
O was calibrated against the membrane potential values
calculated from the Nernst equation (Figure S2).20,23 If,
instead of valinomycin, the nanoparticles are added, a rapid
polarization of the membrane in the same direction (inside
negative) is also observed, but the final value does not depend
on the potassium concentrations on both sides of the
membrane but only on the amount of nanoparticles added.
This effect is most pronounced in the absence of any added

electrolyte other than the particles themselves (Figure 2b,c). If
electrolytes are present, the polarizing effect of the Au/
carborane NPs differs somewhat for different cations (Figure
S3). We attribute this polarization to the anionic nanoparticles’
ability to transfer across the membrane and, in the absence of

cation transport, to determine the membrane potential as the
only partitioning ion. They are self-transporting partitioning
ions. To quantify this in terms of a Nernst equilibrium, it is
necessary to control the concentrations of nanoparticles on
both sides of the membrane, which is not possible with the
vesicle system but can be achieved using a droplet interface
bilayer (DIB) separating two independently accessible electro-
lyte solutions, as elegantly demonstrated by Bayley et al. (Figure
S4a).24−26 The results are presented in Figure 2d. Although
these direct measurements of membrane potential in this
system are experimentally challenging and hence somewhat
noisy, the results are robust and fully commensurate with the
predictions from the Nernst equation. Also, the average charge
per particle can now be inferred as −6 in 1 mM sodium
chloride and −3 in 100 mM sodium chloride. At this stage,
there is no evidence that the particles are capable of
transporting ions across the membrane other than themselves.
A different scenario presents itself when the membrane is

first polarized by the presence of a potassium gradient using the
potassium-specific transporter valinomycin (less than 2
molecules per vesicle). Figure 3a,b show how the membrane
potential is built up and reaches its saturation value. If then the
gold nanoparticles are added (1 to 2 particles per vesicle), an

Figure 3. Monitoring the fluorescence of safranin O to probe the polarization and depolarization of the vesicle membrane. (a) All three traces
show the initial polarization of the membrane after addition of valinomycin (11 nM) in the presence of safranin O (180 nM) in the medium
outside the vesicles. The concentration of KCl was 100 mM inside and 0.1 mM outside the vesicles, and that of NaCl was 1 mM inside and
100.9 mM outside, which gives a positive polarity outside. Addition of Au/PEG-OH (20 nM) particles (black trace) leads to a rapid small
decrease in fluorescence intensity but none attributable to change in membrane potential. This indicates that no charge is transferred by these
particles. When instead Au/carborane NPs (20 nM) are added (red trace), besides the familiar small change in signal, the fluorescence
decreased exponentially over 600 s. This is attributed to influx of sodium and efflux of potassium ions mediated by Au/carborane NPs and
valinomycin. (b) Same as the red trace in (a) but with different potassium ions gradients, i.e., different saturation potentials. Depolarization of
the membrane to a final value by Au/carborane NPs occurs over a wide range of potentials. (c) Red trace shows the same experiment as in (a),
but the NPs were added first followed by addition of valinomycin (300 s). After the initial small polarization caused by NPs themselves, the
membrane is polarized further upon addition of valinomycin. Note that after further polarization to an onset overpotential depolarization
occurs as in (a) and (b). (d) Overpotentials for the onset of depolarization (black) and final potentials after depolarization (red) as a function
of saturation membrane potential given by the potassium ion gradient (Figure S5).
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initial fast but small decline in fluorescence intensity is always
observed. We interpret this as an artifact perhaps due to
quenching and/or reabsorption of light by the metallic particle.
Then, the fluorescence intensity decreases, gradually

approaching a constant final value that quite accurately
corresponds to the membrane potential the particles alone
would have caused. The effective canceling of the potential
initially determined by the potassium gradient is explained by
the influx of Na+ and the efflux of K+ ions both from high to
low concentration, indicating that the gold nanoparticles added
under these conditions do provide a mechanism for Na+

transport across the membrane as well as for K+, in addition
to valinomycin. As there are now transporters for sodium and
potassium present in the membrane, both ions can freely flow
in and out until their concentrations inside and outside the
vesicles are equal and they cause the membrane potential to
drop to zero (really to the small value determined by the
partitioning of the nanoparticles). For a discussion of transport
rates see Supporting Information (Index 7). While the
nanoparticles were not found to transport ions that polarize
the membrane, this experiment shows unequivocally that they
support ion transport to depolarize the membrane in the
presence of a competing polarizing mechanism. For compar-
ison, if instead, our standard Au/PEG−OH nanoparticles of the
same size are added, only the initial fast drop in signal intensity
is observed but no subsequent depolarization of the
membrane.27 An unexpected phenomenon is revealed by an
experiment identical to that shown in (Figure 3a,b) except that

the nanoparticles are now added before the addition of
valinomycin rather than afterward. The result is shown in
Figure 3c. Upon addition of the particles, as expected, a small
membrane potential is generated (30−40 mV inside negative)
due to the partitioning of the anionic particles. When then
valinomycin is added, the membrane is further polarized,
making the inside more negative due to the increased K+

selectivity of the membrane induced by valinomycin. This
initially confirms that the nanoparticles do not transport ions
under these conditions, until the membrane potential reaches a
value of 20−30 mV more negative inside than the potential
caused by the particles alone. At this point, the membrane
suddenly begins to depolarize gradually to the original value
determined by the nanoparticles. We suggest that this empirical
overpotential for depolarization is needed to activate the
repartitioning of nanoparticles if they have prepolarized the
membrane by having been added to one side only. After this
initial polarization, the anionic particles will reside predom-
inantly on the inside of the vesicles and will first have to cross
the membrane before they can support the influx of sodium
ions. The observed overpotential is always between 20 and 30
mV negative of the equilibrium potential caused by the particles
alone. We believe that this would disappear if we had an equal
concentration of particles on both sides of the membrane,
which in the present system is experimentally not possible. A
further shortcoming of this experimental approach is that we
can only measure membrane potentials with an outside
positive/inside negative polarity as it was not possible to

Figure 4. Current−voltage responses in potential step experiments on free-standing phospholipid bilayer membranes. (a) Current traces in
response to potential steps of −80/+80 mV. The electrochemical cells are color coded underneath. Note that the largest currents are obtained
in the presence of steep gradients of potassium and sodium concentrations across the membrane. (b) I−V curves corresponding to (a). Each
point represents the steady-state current of the potential step experiment. The graph has been corrected to eliminate a small offset current
(3−4 pA) that is present even in the absence of NPs. The intercept of +8 mV shows that K+ is preferentially transported over Na+. (c,d) Same
as (a) and (b) but using sodium and magnesium instead. The intercept at −40 mV shows that sodium is transported preferentially to
magnesium. This selectivity also indicates that simple defect formation in the membrane can be excluded as a transport mechanism.
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prepare the vesicles with the potential sensitive dye
incorporated inside, which would have been necessary to
measure membrane potentials of opposite polarity. Also, ionic
currents across the membranes are inferred but are not
measured directly. To overcome these limitations and to
validate our findings independently by an alternative method,
we used planar bilayer membranes separated by two compart-
ments of a small 3D-printed electrochemical cell (Figure
S4b).28,29 These are conceptually similar to the DIB that have
been used to measure the membrane potential caused by the
partitioning of the nanoparticles. The current responses to
alternating potential steps of up to −80/+80 mV applied across
the membrane were recorded under various conditions. The
results are shown in Figure 4. While sodium and potassium are
both transported readily with a small preference for potassium,
significant differences are found when comparing sodium and
magnesium (Figure 4c,d). The intercept of −40 mV in Figure
4d indicates a clear preference for sodium over magnesium.
This selectivity has also been observed by electrospray
ionization time-of-flight (ESI-TOF) mass spectrometry after
ion exchange experiments (Figure S6).
The information provided by both approaches is consistent.

The vesicle experiments have established that the nanoparticles
act as cation transporters when they depolarize the membrane.
Importantly, all attempts failed to polarize the membrane with
partitioning ions that use the nanoparticles as transporter. Only
the nanoparticles themselves can polarize the membrane
regardless of the presence and concentration differences of
other ions in the system. The depolarization of a prepolarized
membrane is not possible if sodium is replaced by magnesium

(Figure 5a,b), confirming the very low affinity of the particles
for magnesium established by the electrochemical study.
Further polarization of a prepolarized membrane is also not
possible (Figure 5c,d), further confirming that the particles only
transport ions if the resulting flow depolarizes the membrane.
In this sense, the particles behave differently from a transporter
such as valinomycin, which can be used to polarize the
membrane with a potassium gradient. The particles alone will
not do this; instead they always establish a membrane potential
that is due to their own partitioning as anions.
The inability to polarize the membrane by the transport of

cations in the presence of a concentration gradient strongly
suggests that the particles do not simply open channels through
which ions can freely flow across the membrane. A shuttle
mechanism is more likely by which the particles fill up with
cations on the side of high concentration, flip across the
membrane, and release them on the side of low concentration,
probably becoming more negative upon cation release unless
the empty vacancies are immediately filled up with other
cations. Only if the cations are released on the negatively
polarized side of the membrane (depolarization) can the
membrane potential push back the negatively charged particle
to the positive side, where it is replenished with cations and the
process repeats. Our current understanding of this process is
summarized in Figure 6. Release of cations on the positive side
of the membrane (polarization) would stop the process as the
particle would remain trapped on that side of the membrane.
The vesicle experiments also revealed that membrane
depolarization requires an overpotential which we attribute to
having the particles only added to one side of the membrane.

Figure 5. (a) Polarization with potassium gradient after addition of valinomycin. Addition of Au/carborane NPs does not lead to
depolarization if magnesium is chosen as the partitioning ion. (b) Same as (a) but the Au/carborane NPs were added before addition of
valinomycin at 300 s. Again no depolarization occurs. (c) Polarization with potassium gradient after addition of valinomycin and attempt to
further polarize the membrane using Au/carborane NPs as a transporter and sodium as partitioning ion. (d) Same as (c) but the NPs were
added before of addition of valinomycin. All electrolyte concentrations are given in the insets.
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Indeed, the electrochemical experiments do not show this
overpotential and further seem to suggest that the particles act
as transporters much like valinomycin (Figure S7). This is
because by the very nature of these experiments, under
potentiostatic control, the membrane is always polarized in
such a way that cations cross the membrane from the positive
to the negative side. The unusual property of the particles not
to support a polarizing flow of cations would thus not have
been noticed by the electrochemical investigation alone.

CONCLUSION
In conclusion, we have demonstrated by two complementary
experimental approaches that cation transport across phospho-
lipid membranes can be facilitated by ligand-capped gold
nanoparticles, which by themselves are large partitioning anions
that form a Nernst equilibrium and result in the buildup of a
membrane potential. Electrochemical experiments have estab-
lished little selectivity within the alkali ions tested but high
selectivity of alkali over alkaline earth ions. A condition for the
particles’ activity as transporters is that the membrane potential
is kept away from the equilibrium potential determined by the
particles. This is done by either providing a chemical potential
difference and an ion selective pathway or by controlling the
membrane potential directly with a potentiostat. In the absence
of both, the particles do not act as transporters for any ions but
themselves and cannot be used, for example, like valinomycin,
to polarize a membrane with a suitable partitioning ion.
Our findings establish functionalized nanoparticles as a class

of ion transporters with some interesting properties. The
phenomena observed suggest a simple model of a nanoscale
electrostatically driven shuttle. The presence of the metallic
core should, in parallel, enable electronic conduction which
would create interesting opportunities for the use of biological
membranes. The design of nano- and microscale systems with
coupled electronic and ionic transport between compartments

separated by a membrane is the subject of ongoing research in
our laboratories.

METHODS
Chemicals. Hydrogen tetrachloroaurate(III) hydrate (HAuCl4·

3H2O) and sodium borohydride (NaBH4) were supplied by Aldrich.
Both cationic liposome kit and asolectin from soybean were purchased
from Sigma. HS-C11-PEG4-OH was supplied by ProChimia. The
cationic exchange resin, strongly acidic PA with a total exchange
capacity of 2.0 mequiv/mL, and a water content of 46−52%, loaded
with the desired cation chloride was provided by Panreac.
Mercaptocarborane, 1-SH-1,2-closo-C2B10H11, was synthesized accord-
ing to the literature.30,31 All salts were purchased from Sigma.
Synthetic grade methanol, ethanol, and Milli-Q-grade (MQ) water
were used in all preparations.

Unilamellar Vesicles. A 10 mM stock solution of phospholipids
was made by dilution of lyophilized powder from a liposome kit
(cholesterol 9 μmol, L-α-phosphatidylcholine 63 μmol, stearylamine
18 μmol) in chloroform.22,23 One milliliter aliquots of the stock
solution were rotary evaporated to dryness and for a further 2 h in
order to remove all residues of organic solvent. MQ water or KCl,
Na2SO4, K2SO4 buffer solutions were used to hydrate the
phospholipids depending on the requirements of each experiment
(agitate overnight). In order to make the suspension of phospholipids
more homogeneous, it was heated to 60 °C followed by 6−9 freeze−
thaw cycles using liquid nitrogen. Next, the homogeneous
phospholipid solution was extruded 20 times through a mini-extruder
(Avanti) with a 100 nm pore-size polycarbonate filter (Whatman) to
form vesicles of about 100 nm diameters. Purification of such prepared
vesicles and buffer exchange were carried out by using dialysis tubing
MWCO 12000−14000 (Serva).

Preparation of Ligand-Capped 2−3 nm Gold Nanoclusters.
Both Au/PEG-OH and Au/carborane gold nanoclusters were
synthesized following a literature method.17 All the reaction
components were mixed in the following final concentrations: capping
agents [HS-C11-PEG4-OH] or [mercaptocarborane] = 3 mM,
[HAuCl4] = 3 mM, [NaBH4] = 9.5 mM. In the case of
mercaptocarborane-capped gold nanoclusters solvent was rota
evaporated followed by washing of excess capping agent molecules
with diethyl ether. In the final step, dark-brown residue was dissolved
in isopropyl alcohol and filtered to remove the remaining sodium
borohydride and other insoluble contaminants. PEGylated gold
nanoclusters were washed by using ultra-high-speed centrifuge at
163000 rcf for 1 h, and the pellet was redispersed in a 9:1 mixture of
water and ethanol. In total, the purification process was repeated three
times where final product was redispersed in MQ water only. All
particles were additionally characterized by ultraviolet−visible spec-
troscopy (UV−vis), high-resolution transmission electron microscopy
(HR-TEM), and Fourier transform infrared spectroscopy (FTIR)
(Figures S9 and S10).

Membrane Potential Changes Monitored by Fluorescence
Spectroscopy. The suspension of vesicles with a final concentration
of phospholipids of 1 mM was placed in a fluorimetric cuvette
followed by addition of the potential probe dye safranin O (180 nM
final concentration). Then the fluorescence intensity was allowed to
equilibrate for 2 min. The kinetic mode was used to detect continuous
fluorescence intensity changes at 589 nm with an excitation
wavelength of 521 nm. In membrane depolarization experiments,
concentrations varying from 11 to 15 nM valinomycin, and 20 nM Au/
carborane NPs were used. The fluorescence intensity was monitored
over 2000 s. Experiments including NaCl, KCl, and MgCl2 salts were
performed at a pH range of 6.8−6.9. Experiment including sulfates
(Figure 5c,d) was carried out in similar pH values 6.8−6.9 using 10
mM sodium phosphate buffer.

Membrane Formation in the Droplet Interface Bilayer Cell.
The chamber of a 3D-printed polyacrylamide cell (Figure S4a) was
filled with aqueous electrolyte (300 μL), and then a lipid-containing
decane solution (150 μL) was added on the top, so that a lipid
monolayer formed at the interface. A droplet of electrolyte (∼3 μL)

Figure 6. Scheme of membrane depolarization by transport of
sodium and potassium ions. (I) Particles are added to the sodium
rich dispersion of vesicles and adsorb to the vesicle membrane
(Figure S8). Note, the membrane has been polarized (outside
positive) by the presence of a potassium ion concentration gradient
and the potassium specific carrier valinomycin (not shown). (II) As
the particles penetrate the membrane, sodium ions are released
inside the vesicle (down their concentration gradient). (III) As
long as particles reside within the membrane, they can shuttle
sodium ions across by passive transport down their concentration
gradient. In parallel with the mechanism provided by valinomycin,
the particles could also contribute to the export of potassium. The
process stops when the concentrations of sodium and potassium
inside and outside the vesicles are equal. The remaining potential
of the depolarized membrane is then due to the partitioning of the
anionic nanoparticles.
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was pipetted onto an agarose-coated Ag/AgCl electrode and
maneuvered, using a micromanipulator, so that the droplet was in
the lipid−decane solution, where a monolayer of lipids surrounded the
droplet. It was then moved to be in contact with the interface
monolayer, where a bilayer membrane formed between the two
aqueous phases. The formation of the membranes was tracked by
using electrochemical methods. The average value of capacitance of
membranes created using this procedure was 16 ± 2 nF, and resistance
was in the range of 108−109 Ω. In each experiment, the membrane was
formed with equal electrolyte and Au/carborane NP concentration in
both aqueous phases called “in” and “out” (Figure S4a). Thereafter,
gradual addition (via micropipette) of Au/carborane NPs to
underlying planar aqueous medium (out) built up the concentration
gradient of NPs across the membrane.
Formation of the Supported Planar Bilayer Membranes.

Two Ag/AgCl electrodes were each fixed into one of two
compartments of a 3D-printed polyacrylamide cell, with an aperture
of ∼270 μm diameter separating the two compartments (Figure S4b).
Electrolyte solution (200 μL) was added into each compartment to
cover the electrodes, but not enough for the aqueous phase to reach
the aperture. Fifty microliters of phospholipid solution made of
asolectin from soybean mixture dissolved in decane (25 mg/mL) was
added on top of the aqueous phase and left for 20 min for monolayers
to form at the interface between the aqueous and organic phases. The
monolayers were brought into contact by raising the level of the
aqueous phase, via alternating micropipette additions of electrolyte
into each compartment, until the aperture was fully submerged. The
formation of the membrane was monitored by cyclic voltammetry
using a Metrohm μAutolab III potentiostat and confirmed via
capacitance and resistance measurements. In a standard experiment,
capacitance of the formed membrane was in the range of 80−170 pF,
yielding average specific capacitance value of 0.248 ± 0.06 μF/cm2.
Specific resistance of such formed membranes was in the range of
107−108 Ω·cm2.32 In each experiment, either NPs or valinomycin were
added to both sides cis and trans of phospholipid bilayer membrane,
reaching their final concentration of 200 nM. All experiments were
carried out at a pH range of 7.1−7.2 using 20 mM MOPS buffer (3-
(N-morpholino)propanesulfonic acid).
ζ-Potential and DLS Measurements. The ζ-potential measure-

ments were performed on the earlier purified nanoparticles and vesicle
solutions. Three measurements, each including 10 runs, were used to
estimate average ζ-potential value. Malvern Zetasizer Nano ZS
Zen3600 was used for both ζ-potential and DLS measurements.
Infrared. Colloidal suspensions of gold nanoparticles were

deposited on IR windows by using a drop-casting method. Aqueous
solutions of Au/PEG-OH were drop-casted on the ZnSe and Au/
carborane NPs suspended in ethanol on the CaF2 IR windows. Powder
of pure mercaptocarborane ligand was characterized by using
attenuated total reflection (ATR) mode.
HR-TEM. The Au NP samples were prepared by drop-casting 3 μL

of Au NP colloidal dispersion onto a holey carbon film, 300 mesh
copper TEM grid (Agar Scientific), which was then dried in air for an
hour before insertion into the microscope. HR-TEM was performed
on a JEOL JEM 2100FCs equipped with a spherical aberration
corrector (CEOS GmbH), operating at an accelerating voltage of 200
kV.
Cryo-TEM. Holey carbon film, 300 mesh, or Quantifoil R2/2, 200

mesh copper TEM grids (Agar Scientific), was glow-discharged in a
Quorum 150T S turbo-pumped glow-discharge system. The samples
were prepared by mixing the lipid vesicle solution with 50 nM colloidal
dispersion of Au NPs. Three microliters of the prepared solution was
drop-casted onto a glow-discharged TEM grid placed inside an FEI
Vitrobot Mk2 vitrification system that was set to 8 °C and relative
humidity of 98%. The samples were blotted 2 × 2 s before being
plunged into liquid ethane. Vitrified samples were transferred onto a
Gatan 626 cryogenic sample holder and imaged on an FEI Tecnai
Spirit G2 BioTWIN TEM operating at an accelerating voltage of 120
kV, using an Olympus-SIS MegaView III digital camera. Cryo-TEM
imaging was performed in low-dose mode (electron beam current
density of 6.3 e−/Å2 s, with the total electron dose per imaged area of

<50 e−/Å2) at a defocus ranging from −0.5 to −1.5 μm. During cryo-
TEM, the sample holder temperature was maintained below −179 °C.

The acquired electron microscopy images were processed using
ImageJ 1.46r software (NIH).

Ion Exchange and MALDI-TOF MS. To replace the sodium
counterbalancing ions by Li+, approximately 100 mg of prepared
sodium-loaded Au/carborane NPs were dissolved in water. Then, the
solution was passed repeatedly through a lithium ion exchange column
and subsequently analyzed by 7Li NMR spectroscopy.17 Moreover, we
interchanged the initial Na+ cation with K+, Mg2+, and Ca2+, by passing
a solution of water-soluble sodium reached Au/carborane nano-
particles through the cation-exchange resin previously loaded with the
corresponding cation (K+, Mg2+, and Ca2+). ESI-TOF mass spectra of
the ethanol solutions of the Au/carborane NPs after the ion exchange
were measured in the positive-ion mode using a home-built mass
spectrometer.33 Results showed that Na+ can be interchanged only by
other alkali metals such as Li+ or K+. With alkali-earth metals, such as
Mg2+ and Ca2+, there is no cation exchange even if the aqueous
solution of the Au/carborane is passed more than 7 times through the
resin as represented in (Figure S6).
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